1
|
Cao L, Du M, Cai M, Feng Y, Miao J, Sun J, Song J, Du B. Neutrophil membrane-coated nanoparticles for targeted delivery of toll-like receptor 4 siRNA ameliorate LPS-induced acute lung injury. Int J Pharm 2025; 668:124960. [PMID: 39551221 DOI: 10.1016/j.ijpharm.2024.124960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/29/2024] [Accepted: 11/13/2024] [Indexed: 11/19/2024]
Abstract
Pulmonary delivery of small interfering RNAs (siRNAs) is an effective treatment for acute lung injury (ALI), which can modulate the expression of pro-inflammatory cytokines and alleviate the symptoms of ALI. However, the rapid degradation of siRNA in vivo and its limited ability to target and validate cells are important challenges it faces in clinical practice. In this work, we developed neutrophil membrane-coated Poly (lactic-co-glycolic acid) nanoparticles loaded with TLR4 siRNA (si-TLR4) (Neutrophil-NP-TLR4), which can target both inflammatory and macrophage cells to alleviate the pulmonary inflammation in lipopolysaccharide (LPS)-induced ALI mice. These Neutrophil-NP-TLR4 effectively reduce the TNF-α and IL-1β expressions both in vitro and in vivo. Meanwhile, they also reduced the expression of TLR4, and its downstream genes including TNF receptor-associated factor 6 (TRAF6), X-linked inhibitor of apoptosis protein (XIAP), and Nuclear Factor kappa-B (NF-κB), but elevated the levels of Aquaporin 1 (AQP1) and Aquaporin 5 (AQP5). Moreover, the Neutrophil-NP-TLR4 precisely targets the inflammatory site to attenuate the lung injury without causing toxicity to normal tissue. This system provides a promising approach to effective delivery of siRNA to precisely treat the ALI.
Collapse
Affiliation(s)
- Liang Cao
- Department of ICU, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu 226014, China
| | - Min Du
- Department of Anesthesiology, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu 226014, China
| | - Mengmeng Cai
- Department of Anesthesiology, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu 226014, China
| | - Yan Feng
- Department of Anesthesiology, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu 226014, China
| | - Juanjuan Miao
- Department of Anesthesiology, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu 226014, China
| | - Jiafeng Sun
- Department of Anesthesiology, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu 226014, China
| | - Jie Song
- Department of Anesthesiology, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu 226014, China
| | - Boxiang Du
- Department of Anesthesiology, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu 226014, China.
| |
Collapse
|
2
|
Hong NE, Chaplin A, Di L, Ravodina A, Bevan GH, Gao H, Asase C, Gangwar RS, Cameron MJ, Mignery M, Cherepanova O, Finn AV, Nayak L, Pieper AA, Maiseyeu A. Nanoparticle-based itaconate treatment recapitulates low-cholesterol/low-fat diet-induced atherosclerotic plaque resolution. Cell Rep 2024; 43:114911. [PMID: 39466775 DOI: 10.1016/j.celrep.2024.114911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/22/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024] Open
Abstract
Current pharmacologic treatments for atherosclerosis do not completely protect patients; additional protection can be achieved by dietary modifications, such as a low-cholesterol/low-fat diet (LCLFD), that mediate plaque stabilization and inflammation reduction. However, this lifestyle modification can be challenging for patients. Unfortunately, incomplete understanding of the underlying mechanisms has thwarted efforts to mimic the protective effects of a LCLFD. Here, we report that the tricarboxylic acid cycle intermediate itaconate (ITA), produced by plaque macrophages, is key to diet-induced plaque resolution. ITA is produced by immunoresponsive gene 1 (IRG1), which we observe is highly elevated in myeloid cells of vulnerable plaques and absent from early or stable plaques in mice and humans. We additionally report development of an ITA-conjugated lipid nanoparticle that accumulates in plaque and bone marrow myeloid cells, epigenetically reduces inflammation via H3K27ac deacetylation, and reproduces the therapeutic effects of LCLFD-induced plaque resolution in multiple atherosclerosis models.
Collapse
Affiliation(s)
- Natalie E Hong
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Department of Biomedical Engineering, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Alice Chaplin
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Lin Di
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Department of Biomedical Engineering, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Anastasia Ravodina
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Graham H Bevan
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Huiyun Gao
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Courteney Asase
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Roopesh Singh Gangwar
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Division of Allergy and Immunology, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Mark J Cameron
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Matthew Mignery
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Olga Cherepanova
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Aloke V Finn
- Department of Internal Medicine, Cardiovascular Division, University of Maryland School of Medicine, Baltimore, MD, USA; CVPath Institute, Inc., Gaithersburg, MD, USA
| | - Lalitha Nayak
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Department of Hematology & Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Andrew A Pieper
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA; Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Department of Pathology, Case Western Reserve University, Cleveland, OH, USA; Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Andrei Maiseyeu
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
3
|
Wang Z, Zhang P. Novel imaging modalities for the identification of vulnerable plaques. Front Cardiovasc Med 2024; 11:1450252. [PMID: 39328242 PMCID: PMC11424440 DOI: 10.3389/fcvm.2024.1450252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
Atherosclerosis is a slow, progressive disease that is closely associated with major adverse cardiovascular events. Early diagnosis and risk assessment of atherosclerosis can effectively improve the prognosis and reduce the occurrence of adverse cardiovascular events in the later stage. A variety of invasive and non-invasive imaging modalities are important tools for diagnosing lesions, monitoring the efficacy of treatments, and predicting associated risk events. This review mainly introduces the four commonly used non-invasive imaging modalities in clinical practice and intravascular imaging such as optical coherence tomography, intravascular ultrasound imaging, and near-infrared spectroscopy, compares the advantages and disadvantages in the diagnosis of vulnerable plaques, and briefly summarizes the new progressions of each.
Collapse
Affiliation(s)
- Ziyan Wang
- Department of Cardiovascular Ultrasound, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Pingyang Zhang
- Department of Cardiovascular Ultrasound, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Kou H, Yang H. Molecular imaging nanoprobes and their applications in atherosclerosis diagnosis. Theranostics 2024; 14:4747-4772. [PMID: 39239513 PMCID: PMC11373619 DOI: 10.7150/thno.96037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/06/2024] [Indexed: 09/07/2024] Open
Abstract
Molecular imaging has undergone significant development in recent years for its excellent ability to image and quantify biologic processes at cellular and molecular levels. Its application is of significance in cardiovascular diseases, particularly in diagnosing them at early stages. Atherosclerosis is a complex, chronic, and progressive disease that can lead to serious consequences such as heart strokes or infarctions. Attempts have been made to detect atherosclerosis with molecular imaging modalities. Not only do imaging modalities develop rapidly, but research of relevant nanomaterials as imaging probes has also been increasingly studied in recent years. This review focuses on the latest developments in the design and synthesis of probes that can be utilized in computed tomography, positron emission tomography, magnetic resonance imaging, ultrasound imaging, photoacoustic imaging and combined modalities. The challenges and future developments of nanomaterials for molecular imaging modalities are also discussed.
Collapse
Affiliation(s)
| | - Hu Yang
- Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, MO 65409, United States
| |
Collapse
|
5
|
Nankivell V, Vidanapathirana AK, Hoogendoorn A, Tan JTM, Verjans J, Psaltis PJ, Hutchinson MR, Gibson BC, Lu Y, Goldys E, Zheng G, Bursill CA. Targeting macrophages with multifunctional nanoparticles to detect and prevent atherosclerotic cardiovascular disease. Cardiovasc Res 2024; 120:819-838. [PMID: 38696700 PMCID: PMC11218693 DOI: 10.1093/cvr/cvae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/29/2024] [Accepted: 04/02/2024] [Indexed: 05/04/2024] Open
Abstract
Despite the emergence of novel diagnostic, pharmacological, interventional, and prevention strategies, atherosclerotic cardiovascular disease remains a significant cause of morbidity and mortality. Nanoparticle (NP)-based platforms encompass diverse imaging, delivery, and pharmacological properties that provide novel opportunities for refining diagnostic and therapeutic interventions for atherosclerosis at the cellular and molecular levels. Macrophages play a critical role in atherosclerosis and therefore represent an important disease-related diagnostic and therapeutic target, especially given their inherent ability for passive and active NP uptake. In this review, we discuss an array of inorganic, carbon-based, and lipid-based NPs that provide magnetic, radiographic, and fluorescent imaging capabilities for a range of highly promising research and clinical applications in atherosclerosis. We discuss the design of NPs that target a range of macrophage-related functions such as lipoprotein oxidation, cholesterol efflux, vascular inflammation, and defective efferocytosis. We also provide examples of NP systems that were developed for other pathologies such as cancer and highlight their potential for repurposing in cardiovascular disease. Finally, we discuss the current state of play and the future of theranostic NPs. Whilst this is not without its challenges, the array of multifunctional capabilities that are possible in NP design ensures they will be part of the next frontier of exciting new therapies that simultaneously improve the accuracy of plaque diagnosis and more effectively reduce atherosclerosis with limited side effects.
Collapse
Affiliation(s)
- Victoria Nankivell
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP)
- Vascular Research Centre, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, 5000, Australia
- Faculty of Health and Medical Science, The University of Adelaide, North Terrace, Adelaide, 5000, Australia
| | - Achini K Vidanapathirana
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP)
- Vascular Research Centre, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, 5000, Australia
- Faculty of Health and Medical Science, The University of Adelaide, North Terrace, Adelaide, 5000, Australia
| | - Ayla Hoogendoorn
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP)
- Vascular Research Centre, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, 5000, Australia
| | - Joanne T M Tan
- Vascular Research Centre, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, 5000, Australia
- Faculty of Health and Medical Science, The University of Adelaide, North Terrace, Adelaide, 5000, Australia
| | - Johan Verjans
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP)
- Vascular Research Centre, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, 5000, Australia
- Faculty of Health and Medical Science, The University of Adelaide, North Terrace, Adelaide, 5000, Australia
| | - Peter J Psaltis
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP)
- Vascular Research Centre, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, 5000, Australia
- Faculty of Health and Medical Science, The University of Adelaide, North Terrace, Adelaide, 5000, Australia
| | - Mark R Hutchinson
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP)
- Faculty of Health and Medical Science, The University of Adelaide, North Terrace, Adelaide, 5000, Australia
| | - Brant C Gibson
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP)
- School of Science, RMIT University, Melbourne, Victoria, Australia
| | - Yiqing Lu
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP)
- School of Engineering, Macquarie University, Sydney, NSW, Australia
| | - Ewa Goldys
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP)
- Graduate School of Biomedical Engineering, University of New South Wales, High Street, NSW, 2052, Australia
| | - Gang Zheng
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP)
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, M5G 1L7, Canada
| | - Christina A Bursill
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP)
- Vascular Research Centre, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, 5000, Australia
- Faculty of Health and Medical Science, The University of Adelaide, North Terrace, Adelaide, 5000, Australia
| |
Collapse
|
6
|
Wang C, Li C, Zhang R, Huang L. Macrophage membrane-coated nanoparticles for the treatment of infectious diseases. Biomed Mater 2024; 19:042003. [PMID: 38740051 DOI: 10.1088/1748-605x/ad4aaa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024]
Abstract
Infectious diseases severely threaten human health, and traditional treatment techniques face multiple limitations. As an important component of immune cells, macrophages display unique biological properties, such as biocompatibility, immunocompatibility, targeting specificity, and immunoregulatory activity, and play a critical role in protecting the body against infections. The macrophage membrane-coated nanoparticles not only maintain the functions of the inner nanoparticles but also inherit the characteristics of macrophages, making them excellent tools for improving drug delivery and therapeutic implications in infectious diseases (IDs). In this review, we describe the characteristics and functions of macrophage membrane-coated nanoparticles and their advantages and challenges in ID therapy. We first summarize the pathological features of IDs, providing insight into how to fight them. Next, we focus on the classification, characteristics, and preparation of macrophage membrane-coated nanoparticles. Finally, we comprehensively describe the progress of macrophage membrane-coated nanoparticles in combating IDs, including drug delivery, inhibition and killing of pathogens, and immune modulation. At the end of this review, a look forward to the challenges of this aspect is presented.
Collapse
Affiliation(s)
- Chenguang Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Chuyu Li
- School of Medical Technology, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Ruoyu Zhang
- School of Medical Technology, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Lili Huang
- School of Medical Technology, Beijing Institute of Technology, Beijing, People's Republic of China
| |
Collapse
|
7
|
Mallén A, Narváez-Narváez DA, Pujol MD, Navarro E, Maria Suñé-Negre J, García-Montoya E, Pérez-Lozano P, Torrejón-Escribano B, Suñé-Pou M, Hueso M. Development of cationic solid lipid nanoparticles incorporating cholesteryl-9-carboxynonanoate (9CCN) for delivery of antagomiRs to macrophages. Eur J Pharm Biopharm 2024; 197:114238. [PMID: 38417704 DOI: 10.1016/j.ejpb.2024.114238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/01/2024]
Abstract
Lipid-based nanoparticles are a useful tool for nucleic acids delivery and have been regarded as a promising approach for diverse diseases. However, off-targets effects are a matter of concern and some strategies to improve selectivity of solid lipid nanoparticles (SLNs) were reported. The goal of this study was to test formulations of SLNs incorporating lipid cholesteryl-9-carboxynonanoate (9CCN) as "eat-me" signal to target antagomiR oligonucleotides to macrophages. We formulate four SLNs, and those with a mean diameter of 200 nm and a Z-potential values between 25 and 40 mV, which allowed the antagomiR binding, were selected for in vitro studies. Cell viability, transfection efficiency and cellular uptake assays were performed within in vitro macrophages using flow cytometry and confocal imaging and the SLNs incorporating 25 mg of 9CCN proved to be the best formulation. Subsequently, we used a labeled antagomiR to study tissue distribution in in-vivo ApoE-/- model of atherosclerosis. Using the ApoE-/- model we demonstrated that SLNs with phagocytic signal 9-CCN target macrophages and release the antagomiR cargo in a selective way.
Collapse
Affiliation(s)
- Adrian Mallén
- Experimental Nephrology Lab, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Spain.
| | - David A Narváez-Narváez
- Service of Development of Medicines (SDM), Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - M D Pujol
- Service of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain.
| | - Estanis Navarro
- Experimental Nephrology Lab, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Josep Maria Suñé-Negre
- Service of Development of Medicines (SDM), Faculty of Pharmacy, University of Barcelona, Barcelona, Spain; Pharmacotherapy, Pharmacogenetics and Pharmaceutical Technology Research Group, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.
| | - Encarna García-Montoya
- Service of Development of Medicines (SDM), Faculty of Pharmacy, University of Barcelona, Barcelona, Spain; Pharmacotherapy, Pharmacogenetics and Pharmaceutical Technology Research Group, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Pilar Pérez-Lozano
- Service of Development of Medicines (SDM), Faculty of Pharmacy, University of Barcelona, Barcelona, Spain; Pharmacotherapy, Pharmacogenetics and Pharmaceutical Technology Research Group, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Benjamín Torrejón-Escribano
- Advanced Light Microscopy Unit (Bellvitge Campus), Scientific and Technical Facility (CCiTUB), University of Barcelona, L'Hospitalet de LLobregat, Spain.
| | - Marc Suñé-Pou
- Service of Development of Medicines (SDM), Faculty of Pharmacy, University of Barcelona, Barcelona, Spain; Pharmacotherapy, Pharmacogenetics and Pharmaceutical Technology Research Group, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.
| | - Miguel Hueso
- Experimental Nephrology Lab, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Spain; Department of Nephrology, Hospital Universitari Bellvitge, and Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Spain.
| |
Collapse
|
8
|
Yasir M, Mishra R, Tripathi AS, Maurya RK, Shahi A, Zaki MEA, Al Hussain SA, Masand VH. Theranostics: a multifaceted approach utilizing nano-biomaterials. DISCOVER NANO 2024; 19:35. [PMID: 38407670 PMCID: PMC10897124 DOI: 10.1186/s11671-024-03979-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
Biomaterials play a vital role in targeting therapeutics. Over the years, several biomaterials have gained wide attention in the treatment and diagnosis of diseases. Scientists are trying to make more personalized treatments for different diseases, as well as discovering novel single agents that can be used for prognosis, medication administration, and keeping track of how a treatment works. Theranostics based on nano-biomaterials have higher sensitivity and specificity for disease management than conventional techniques. This review provides a concise overview of various biomaterials, including carbon-based materials like fullerenes, graphene, carbon nanotubes (CNTs), and carbon nanofibers, and their involvement in theranostics of different diseases. In addition, the involvement of imaging techniques for theranostics applications was overviewed. Theranostics is an emerging strategy that has great potential for enhancing the accuracy and efficacy of medicinal interventions. Despite the presence of obstacles such as disease heterogeneity, toxicity, reproducibility, uniformity, upscaling production, and regulatory hurdles, the field of medical research and development has great promise due to its ability to provide patients with personalised care, facilitate early identification, and enable focused treatment.
Collapse
Affiliation(s)
- Mohammad Yasir
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Sector125, Noida, 201313, India.
| | - Ratnakar Mishra
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Sector125, Noida, 201313, India
| | | | - Rahul K Maurya
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Sector125, Noida, 201313, India
| | - Ashutosh Shahi
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Sector125, Noida, 201313, India
| | - Magdi E A Zaki
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, 13318, Saudi Arabia.
| | - Sami A Al Hussain
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, 13318, Saudi Arabia
| | - Vijay H Masand
- Department of Chemistry, Vidya Bharati Mahavidyalaya, Amravati, Maharashtra, India
| |
Collapse
|
9
|
Carobbio S, Pellegrinelli V, Vidal-Puig A. Adipose Tissue Dysfunction Determines Lipotoxicity and Triggers the Metabolic Syndrome: Current Challenges and Clinical Perspectives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:231-272. [PMID: 39287854 DOI: 10.1007/978-3-031-63657-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The adipose tissue organ is organised as distinct anatomical depots located all along the body axis, and it is constituted of three different types of adipocytes: white, beige and brown, which are integrated with vascular, immune, neural, and extracellular stroma cells. These distinct adipocytes serve different specialised functions. The main function of white adipocytes is to ensure healthy storage of excess nutrients/energy and its rapid mobilisation to supply the demand of energy imposed by physiological cues in other organs, whereas brown and beige adipocytes are designed for heat production through uncoupling lipid oxidation from energy production. The concerted action of the three types of adipocytes/tissues ensures an optimal metabolic status. However, when one or several of these adipose depots become dysfunctional because of sustained lipid/nutrient overload, then insulin resistance and associated metabolic complications ensue. These metabolic alterations close a vicious cycle that negatively affects the adipose tissue functionality and compromises global metabolic homeostasis. Optimising white adipose tissue expandability and ensuring its functional metabolic flexibility and/or promoting brown/beige mediated thermogenic activity are complementary strategies that counteract obesity and its associated lipotoxic metabolic effects. However, the development of these therapeutic approaches requires a deep understanding of adipose tissue in all broad aspects. In this chapter, we will discuss the characteristics of the different adipose tissue depots with respect to origins and precursors recruitment, plasticity, cellular composition, and expandability capacity potential as well as molecular and metabolic characteristic signatures in both physiological and pathophysiological conditions. Current antilipotoxic strategies for future clinical application are also discussed in this chapter.
Collapse
Affiliation(s)
- Stefania Carobbio
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
- Centro de Investigación Principe Felipe, Valencia, Spain.
| | - Vanessa Pellegrinelli
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Antonio Vidal-Puig
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
- Centro de Investigación Principe Felipe, Valencia, Spain.
| |
Collapse
|
10
|
Setia A, Mehata AK, Priya V, Pawde DM, Jain D, Mahto SK, Muthu MS. Current Advances in Nanotheranostics for Molecular Imaging and Therapy of Cardiovascular Disorders. Mol Pharm 2023; 20:4922-4941. [PMID: 37699355 DOI: 10.1021/acs.molpharmaceut.3c00582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Cardiovascular diseases (CVDs) refer to a collection of conditions characterized by abnormalities in the cardiovascular system. They are a global problem and one of the leading causes of mortality and disability. Nanotheranostics implies to the combination of diagnostic and therapeutic capabilities inside a single nanoscale platform that has allowed for significant advancement in cardiovascular diagnosis and therapy. These advancements are being developed to improve imaging capabilities, introduce personalized therapies, and boost cardiovascular disease patient treatment outcomes. Significant progress has been achieved in the integration of imaging and therapeutic capabilities within nanocarriers. In the case of cardiovascular disease, nanoparticles provide targeted delivery of therapeutics, genetic material, photothermal, and imaging agents. Directing and monitoring the movement of these therapeutic nanoparticles may be done with pinpoint accuracy by using imaging modalities such as cardiovascular magnetic resonance (CMR), computed tomography (CT), positron emission tomography (PET), photoacoustic/ultrasound, and fluorescence imaging. Recently, there has been an increasing demand of noninvasive for multimodal nanotheranostic platforms. In these platforms, various imaging technologies such as optical and magnetic resonance are integrated into a single nanoparticle. This platform helps in acquiring more accurate descriptions of cardiovascular diseases and provides clues for accurate diagnosis. Advances in surface functionalization methods have strengthened the potential application of nanotheranostics in cardiovascular diagnosis and therapy. In this Review, we have covered the potential impact of nanomedicine on CVDs. Additionally, we have discussed the recently developed various nanoparticles for CVDs imaging. Moreover, advancements in the CMR, CT, PET, ultrasound, and photoacoustic imaging for the CVDs have been discussed. We have limited our discussion to nanomaterials based clinical trials for CVDs and their patents.
Collapse
Affiliation(s)
- Aseem Setia
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Vishnu Priya
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Datta Maroti Pawde
- School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-be University, Shirpur, Dhule, Maharashtra 425405, India
| | - Dharmendra Jain
- Department of Cardiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Sanjeev Kumar Mahto
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
11
|
Perera B, Wu Y, Nguyen NT, Ta HT. Advances in drug delivery to atherosclerosis: Investigating the efficiency of different nanomaterials employed for different type of drugs. Mater Today Bio 2023; 22:100767. [PMID: 37600355 PMCID: PMC10433009 DOI: 10.1016/j.mtbio.2023.100767] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/06/2023] [Accepted: 08/06/2023] [Indexed: 08/22/2023] Open
Abstract
Atherosclerosis is the build-up of fatty deposits in the arteries, which is the main underlying cause of cardiovascular diseases and the leading cause of global morbidity and mortality. Current pharmaceutical treatment options are unable to effectively treat the plaque in the later stages of the disease. Instead, they are aimed at resolving the risk factors. Nanomaterials and nanoparticle-mediated therapies have become increasingly popular for the treatment of atherosclerosis due to their targeted and controlled release of therapeutics. In this review, we discuss different types of therapeutics used to treat this disease and focus on the different nanomaterial strategies employed for the delivery of these drugs, enabling the effective and efficient resolution of the atherosclerotic plaque. The ideal nanomaterial strategy for each drug type (e.g. statins, nucleic acids, small molecule drugs, peptides) will be comprehensively discussed.
Collapse
Affiliation(s)
- Binura Perera
- School of Environment and Science, Griffith University, Nathan, Queensland, 4111, Australia
- Queensland Micro-Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| | - Yuao Wu
- School of Environment and Science, Griffith University, Nathan, Queensland, 4111, Australia
| | - Nam-Trung Nguyen
- School of Environment and Science, Griffith University, Nathan, Queensland, 4111, Australia
| | - Hang Thu Ta
- School of Environment and Science, Griffith University, Nathan, Queensland, 4111, Australia
- Queensland Micro-Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| |
Collapse
|
12
|
Li W, Liu C, Wang S, Liu N. Neutrophil membrane biomimetic delivery system (Ptdser-NM-Lipo/Fer-1) designed for targeting atherosclerosis therapy. IET Nanobiotechnol 2023. [PMID: 37183611 DOI: 10.1049/nbt2.12137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 05/16/2023] Open
Abstract
Atherosclerosis is a progressive inflammatory disease characterised by excessive lipid accumulation and inflammatory cell infiltration and is the basis of most cardiovascular diseases and peripheral arterial diseases. Therefore, an effectively targeted delivery system is urgently needed to deliver ferroptosis-specific inhibitors to the site of arterial plaque and the inflammatory microenvironment. Inspired by the fact that neutrophils can be recruited to arterial plaques under the action of adhesion molecules and chemokines, the authors developed a neutrophil membrane hybrid liposome nano-mimetic system (Ptdser-NM-Lipo/Fer-1) that delivers Ferrostatin-1 (Fer-1) to the atherosclerotic plaque effectively, which is composed of Fer-1-loaded Ptdser-modified liposomes core and neutrophils shell. Fer-1 was released at the AS plaque site to remove reactive oxygen species (ROS) and improve the inflammatory microenvironment. In vitro ROS clearance experiments have shown that 50 μmol/ml Fer-1 can significantly remove ROS produced by H2 O2 -induced MOVAS cells and Ptdser-NM-Lipo/Fer-1 revealed a 3-fold increase in the inhibition rate of ROS than free Fer-1 in induced-RAW264.7, demonstrating its superior ROS-cleaning effect. Based on the interaction of adhesion molecules, such as vascular cell adhesion molecule 1, ICAM-1, P-selectin, E-selectin, and chemokines released in the inflamed site, the aorta in NM-Lipo-treated mice displayed 1.3-fold greater radiant efficiency than platelet membrane-Lipo-treated mice. Meanwhile, due to the modification of the Ptdser, the aorta in Ptdser-NM-Lipo/Fer-1-treated mice exhibited the highest fluorescence intensity, demonstrating its excellent targeting ability for atherosclerosis. Therefore, we present a specific formulation for the treatment of atherosclerosis with the potential for novel therapeutic uses.
Collapse
Affiliation(s)
- Wei Li
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- Department of Cardiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Chang Liu
- Department of Pharmaceutics, State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, China
| | - Sichuan Wang
- Department of Cardiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Naifeng Liu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
13
|
Groner J, Tognazzi M, Walter M, Fleischmann D, Mietzner R, Ziegler CE, Goepferich AM, Breunig M. Encapsulation of Pioglitazone into Polymer-Nanoparticles for Potential Treatment of Atherosclerotic Diseases. ACS APPLIED BIO MATERIALS 2023. [PMID: 37145591 DOI: 10.1021/acsabm.2c01001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Atherosclerosis is one of the most urgent global health subjects, causes millions of deaths worldwide, and is associated with enormous healthcare costs. Macrophages are the root cause for inflammatory onset and progression of the disease but are not addressed by conventional therapy. Therefore, we used pioglitazone, which is a drug initially used for diabetes therapies, but at the same time has great potential regarding the mitigation of inflammation. As yet, this potential of pioglitazone cannot be exploited, as drug concentrations at the target site in vivo are not sufficient. To overcome this shortcoming, we established PEG-PLA/PLGA-based nanoparticles loaded with pioglitazone and tested them in vitro. Encapsulation of the drug was analyzed by HPLC and revealed an outstanding encapsulation efficiency of 59% into the nanoparticles, which were 85 nm in size and had a PDI of 0.17. Further, uptake of our loaded nanoparticles in THP-1 macrophages was comparable to the uptake of unloaded nanoparticles. On the mRNA level, pioglitazone-loaded nanoparticles were superior to the free drug by 32% in increasing the expression of the targeted receptor PPAR-γ. Thereby the inflammatory response in macrophages was ameliorated. In this study, we take the first step toward an anti-inflammatory, causal antiatherosclerotic therapy, using the potential of the already established drug pioglitazone, and enable it to enrich at the target site by using nanoparticles. An additional crucial feature of our nanoparticle platform is the versatile modifiability of ligands and ligand density, to achieve an optimal active targeting effect in the future.
Collapse
Affiliation(s)
- Jonas Groner
- Department of Pharmaceutical Technology, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany
| | - Martina Tognazzi
- Department of Pharmaceutical Technology, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany
- University of Parma, Via Università 12, 43121 Parma, Italy
| | - Melanie Walter
- Department of Pharmaceutical Technology, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany
| | - Daniel Fleischmann
- Department of Pharmaceutical Technology, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany
| | - Raphael Mietzner
- Department of Pharmaceutical Technology, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany
| | - Christian E Ziegler
- Department of Pharmaceutical Technology, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany
| | - Achim M Goepferich
- Department of Pharmaceutical Technology, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany
| | - Miriam Breunig
- Department of Pharmaceutical Technology, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany
| |
Collapse
|
14
|
Saeed S, Ud Din SR, Khan SU, Gul R, Kiani FA, Wahab A, Zhong M. Nanoparticle: A Promising Player in Nanomedicine and its Theranostic Applications for the Treatment of Cardiovascular Diseases. Curr Probl Cardiol 2023; 48:101599. [PMID: 36681209 DOI: 10.1016/j.cpcardiol.2023.101599] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/12/2023] [Indexed: 01/20/2023]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death around the world, a trend that will progressively grow over the next decade. Recently, with the advancement of nanotechnology, innovative nanoparticles (NPs) have been efficiently utilized in disease diagnosis and theranostic applications. In this review, we highlighted the benchmark summary of the recently synthesized NPs that are handy for imaging, diagnosis, and treatment of CVDs. NPs are the carrier of drug-delivery payloads actively reaching more areas of the heart and arteries, allowing them novel therapeutic agents for CVDs. Herein, due to the limited availability of literature, we only focused on NPs mechanism in the cardiovascular system and various treatment-based approaches that opens a new window for future research and versatile approach in the field of medical and clinical applications. Moreover, current challenges and limitations for the detection of CVDs has also discussed.
Collapse
Affiliation(s)
- Sumbul Saeed
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Syed Riaz Ud Din
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, P.R China.
| | - Shahid Ullah Khan
- Women Medical and Dental College, Khyber Medical University, Khyber Pakhtunkhwa, Pakistan
| | - Rukhsana Gul
- Department of Chemistry, Kohat University of Science and Technology, Khyber Pakhtunkhwa, Pakistan
| | - Faisal Ayub Kiani
- Department of Clinical Sciences, Faculty of Veterinary Sciences, Bahauddin Zakariyah University, Multan, 60800, Pakistan.
| | - Abdul Wahab
- Department of Pharmacy, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan.
| | - Mintao Zhong
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, P.R China.
| |
Collapse
|
15
|
dos Santos-Silva E, Torres-Rêgo M, Gláucia-Silva F, Feitosa RC, Lacerda AF, Rocha HADO, Fernandes-Pedrosa MDF, da Silva-Júnior AA. Cationic PLGA Nanoparticle Formulations as Biocompatible Immunoadjuvant for Serum Production and Immune Response against Bothrops jararaca Venom. Toxins (Basel) 2022; 14:toxins14120888. [PMID: 36548785 PMCID: PMC9786128 DOI: 10.3390/toxins14120888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Snakebite envenoming represents a worldwide public health issue. Suitable technologies have been investigated for encapsulated recombinant or native proteins capable of inducing an effective and long-lasting adaptive immune response. Nanoparticles are colloidal dispersions that have been used as drug delivery systems for bioactive biological compounds. Venom-loaded nanoparticles modulate the protein release and activate the immune response to produce specific antibodies. In this study, biocompatible cationic nanoparticles with Bothrops jararaca venom were prepared to be used as a novel immunoadjuvant that shows a similar or improved immune response in antibody production when compared to a conventional immunoadjuvant (aluminum hydroxide). We prepared stable, small-sized and spherical particles with high Bothrops jararaca venom protein association efficiency. The high protein loading efficiency, electrophoresis, and zeta potential results demonstrated that Bothrops jararaca venom is adsorbed on the particle surface, which remained as a stable colloidal dispersion over 6 weeks. The slow protein release occurred and followed parabolic diffusion release kinetics. The in vivo studies demonstrated that venom-loaded nanoparticles were able to produce an immune response similar to that of aluminum hydroxide. The cationic nanoparticles (CNp) as carriers of bioactive molecules, were successfully developed and demonstrated to be a promising immunoadjuvant.
Collapse
Affiliation(s)
- Emanuell dos Santos-Silva
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte (UFRN), Natal-RN 59072-970, Brazil
| | - Manoela Torres-Rêgo
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte (UFRN), Natal-RN 59072-970, Brazil
| | - Fiamma Gláucia-Silva
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte (UFRN), Natal-RN 59072-970, Brazil
| | - Renata Carvalho Feitosa
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte (UFRN), Natal-RN 59072-970, Brazil
| | - Ariane Ferreira Lacerda
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte (UFRN), Natal-RN 59072-970, Brazil
| | | | - Matheus de Freitas Fernandes-Pedrosa
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte (UFRN), Natal-RN 59072-970, Brazil
| | - Arnóbio Antônio da Silva-Júnior
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte (UFRN), Natal-RN 59072-970, Brazil
- Correspondence:
| |
Collapse
|
16
|
Fang F, Xiao C, Li C, Liu X, Li S. Tuning macrophages for atherosclerosis treatment. Regen Biomater 2022; 10:rbac103. [PMID: 36683743 PMCID: PMC9845526 DOI: 10.1093/rb/rbac103] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/18/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory vascular disease and a leading cause of death worldwide. Macrophages play an important role in inflammatory responses, cell-cell communications, plaque growth and plaque rupture in atherosclerotic lesions. Here, we review the sources, functions and complex phenotypes of macrophages in the progression of atherosclerosis, and discuss the recent approaches in modulating macrophage phenotype and autophagy for atherosclerosis treatment. We then focus on the drug delivery strategies that target macrophages or use macrophage membrane-coated particles to deliver therapeutics to the lesion sites. These biomaterial-based approaches that target, modulate or engineer macrophages have broad applications for disease therapies and tissue regeneration.
Collapse
Affiliation(s)
- Fei Fang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Crystal Xiao
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Chunli Li
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Song Li
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
17
|
Mishra V, Prajapati G, Baranwal V, Mishra RK. NMR-Based Metabolomic Imprinting Elucidates Macrophage Polarization of THP-1 Cell Lines Stimulated by Zinc Oxide Nanoparticles. ACS APPLIED BIO MATERIALS 2022; 5:4873-4885. [PMID: 36126340 DOI: 10.1021/acsabm.2c00603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Zinc oxide (ZnO) nanoparticles (NPs) have been widely used in industry, cosmetics, drugs, bioimaging, and drug delivery. ZnO NPs have been found to interact and interfere with cellular physiology via macrophages, thereby resulting in macrophage polarization. The functional reprogramming of the cells is synchronized through cellular metabolic adaptations. The current study, therefore, aims to establish crosstalk between ZnO-NP-induced metabolic alterations and macrophage polarization in PMA-activated THP-1 cell lines. We observed moderate to heightened cytotoxic response in terms of cell viability and proliferation. The results also revealed increased Th1-type cytokine and chemokine expression. In order to characterize the changes in metabolite concentration in treatment groups, we employed multivariate data analysis (principal component analysis and partial least-squares discriminant analysis) of 1H NMR spectra. The results revealed biologically relevant patterns and alterations in many metabolic pathways. These alterations and patterns were found to be in line across the immune-cytotoxic axis. Furthermore, the results also implicate the role of carbon metabolism toward the classical activation of macrophage polarization. The omics approach could identify the markers involved in NP-induced toxicity, thus elaborating our vision of cytotoxicity that is currently limited to end-point and cytokine assays. Also, it could be emphasized that metabolic reconfiguration upon NP stimulation could direct macrophage polarization toward classical activation.
Collapse
Affiliation(s)
- Vani Mishra
- Nanotechnology Application Centre (NAC), University of Allahabad, Prayagraj 211002, India
| | - Gurudayal Prajapati
- NMR Centre SAIF Laboratory, CSIR-Central Drug Research Institute (CDRI), Lucknow 226031, India
| | - Vikas Baranwal
- Graphene Research Labs Pvt. Ltd., 135 Road 10, KIADB IT Park, Bengaluru 562149, India
| | - Rohit Kumar Mishra
- Centre of Science and Society, Institute of Interdisciplinary Sciences (IIDS), University of Allahabad, Prayagraj 211002, India
| |
Collapse
|
18
|
Nayak L, Sweet DR, Thomas A, Lapping SD, Kalikasingh K, Madera A, Vinayachandran V, Padmanabhan R, Vasudevan NT, Myers JT, Huang AY, Schmaier A, Mackman N, Liao X, Maiseyeu A, Jain MK. A targetable pathway in neutrophils mitigates both arterial and venous thrombosis. Sci Transl Med 2022; 14:eabj7465. [PMID: 36044595 DOI: 10.1126/scitranslmed.abj7465] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Arterial and venous thrombosis constitutes a major source of morbidity and mortality worldwide. Long considered as distinct entities, accumulating evidence indicates that arterial and venous thrombosis can occur in the same populations, suggesting that common mechanisms are likely operative. Although hyperactivation of the immune system is a common forerunner to the genesis of thrombotic events in both vascular systems, the key molecular control points remain poorly understood. Consequently, antithrombotic therapies targeting the immune system for therapeutics gain are lacking. Here, we show that neutrophils are key effectors of both arterial and venous thrombosis and can be targeted through immunoregulatory nanoparticles. Using antiphospholipid antibody syndrome (APS) as a model for arterial and venous thrombosis, we identified the transcription factor Krüppel-like factor 2 (KLF2) as a key regulator of neutrophil activation. Upon activation through genetic loss of KLF2 or administration of antiphospholipid antibodies, neutrophils clustered P-selectin glycoprotein ligand 1 (PSGL-1) by cortical actin remodeling, thereby increasing adhesion potential at sites of thrombosis. Targeting clustered PSGL-1 using nanoparticles attenuated neutrophil-mediated thrombosis in APS and KLF2 knockout models, illustrating the importance and feasibility of targeting activated neutrophils to prevent pathological thrombosis. Together, our results demonstrate a role for activated neutrophils in both arterial and venous thrombosis and identify key molecular events that serve as potential targets for therapeutics against diverse causes of immunothrombosis.
Collapse
Affiliation(s)
- Lalitha Nayak
- Division of Hematology and Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - David R Sweet
- Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH 44106, USA.,Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA.,Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Asha Thomas
- Division of Hematology and Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Stephanie D Lapping
- Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH 44106, USA.,Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Kenneth Kalikasingh
- Division of Hematology and Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Annmarie Madera
- Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH 44106, USA.,Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Vinesh Vinayachandran
- Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH 44106, USA.,Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Roshan Padmanabhan
- Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH 44106, USA.,Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Neelakantan T Vasudevan
- Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH 44106, USA.,Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Jay T Myers
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Alex Y Huang
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Alvin Schmaier
- Division of Hematology and Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Nigel Mackman
- Division of Hematology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Xudong Liao
- Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Andrei Maiseyeu
- Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH 44106, USA.,Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Mukesh K Jain
- Warren Alpert Medical School of Brown University, Providence, R1 02903
| |
Collapse
|
19
|
Proença PL, Carvalho LB, Campos EV, Fraceto LF. Fluorescent labeling as a strategy to evaluate uptake and transport of polymeric nanoparticles in plants. Adv Colloid Interface Sci 2022; 305:102695. [PMID: 35598536 DOI: 10.1016/j.cis.2022.102695] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/05/2022] [Accepted: 05/08/2022] [Indexed: 11/01/2022]
Abstract
The use of biodegradable nanopolymers in agriculture offers an excellent alternative for the efficient delivery of agrochemicals that promote plant protection and development. However, tracking of these systems inside plants requires complex probe tagging strategies. In addition to providing a basis for better understanding such nanostructures to optimize delivery system design, these probes allow monitoring the migration of nanoparticles through plant tissues, and determine accumulation sites. Thus, these probes are powerful tools that can be used to quantify and visualize nanoparticle accumulation in plant cells and tissues. This review is an overview of the methods involved in labeling nanocarriers, mainly based on polymeric matrices, for the delivery of nanoagrochemicals and the recent advances in this field.
Collapse
|
20
|
Ramirez-Carracedo R, Sanmartin M, Ten A, Hernandez I, Tesoro L, Diez-Mata J, Botana L, Ovejero-Paredes K, Filice M, Alberich-Bayarri A, Martí-Bonmatí L, Largo-Aramburu C, Saura M, Zamorano JL, Zaragoza C. Theranostic Contribution of Extracellular Matrix Metalloprotease Inducer-Paramagnetic Nanoparticles Against Acute Myocardial Infarction in a Pig Model of Coronary Ischemia-Reperfusion. Circ Cardiovasc Imaging 2022; 15:e013379. [PMID: 35678191 PMCID: PMC9213084 DOI: 10.1161/circimaging.121.013379] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Rapid screening and accurate diagnosis of acute myocardial infarction are critical to reduce the progression of myocardial necrosis, in which proteolytic degradation of myocardial extracellular matrix plays a major role. In previous studies, we found that targeting the extracellular matrix metalloprotease inducer (EMMPRIN) by injecting nanoparticles conjugated with the specific EMMPRIN-binding peptide AP9 significantly improved cardiac function in mice subjected to ischemia/reperfusion.
Collapse
Affiliation(s)
- Rafael Ramirez-Carracedo
- Unidad Mixta de Investigación Cardiovascular, Departamento de Cardiología, Universidad Francisco de Vitoria, Hospital Ramón y Cajal (IRYCIS), Madrid, Spain (R.R.-C., I.H., L.T., J.D.-M., L.B., C.Z.).,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain (R.R.-C., M. Sanmartin, I.H., L.T., M. Saura, J.L.Z., C.Z.)
| | - Marcelo Sanmartin
- Departamento de Cardiología, Hospital Universitario Ramón y Cajal (IRYCIS), Madrid, Spain (M. Sanmartin, J.L.Z.).,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain (R.R.-C., M. Sanmartin, I.H., L.T., M. Saura, J.L.Z., C.Z.)
| | - Amadeo Ten
- Instituto de Investigación de salud La Fe, Grupo de Investigación Biomédica (GIBI230-PREBI). Nodo de Imagen La Fe en la Red de Imagen Biomédica (ReDIB) de Infraestructuras Científicas Técnicas y Singulares (ICTS), Valencia, Spain (A.T., L.M.-B.)
| | - Ignacio Hernandez
- Unidad Mixta de Investigación Cardiovascular, Departamento de Cardiología, Universidad Francisco de Vitoria, Hospital Ramón y Cajal (IRYCIS), Madrid, Spain (R.R.-C., I.H., L.T., J.D.-M., L.B., C.Z.).,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain (R.R.-C., M. Sanmartin, I.H., L.T., M. Saura, J.L.Z., C.Z.)
| | - Laura Tesoro
- Unidad Mixta de Investigación Cardiovascular, Departamento de Cardiología, Universidad Francisco de Vitoria, Hospital Ramón y Cajal (IRYCIS), Madrid, Spain (R.R.-C., I.H., L.T., J.D.-M., L.B., C.Z.)
| | - Javier Diez-Mata
- Unidad Mixta de Investigación Cardiovascular, Departamento de Cardiología, Universidad Francisco de Vitoria, Hospital Ramón y Cajal (IRYCIS), Madrid, Spain (R.R.-C., I.H., L.T., J.D.-M., L.B., C.Z.)
| | - Laura Botana
- Unidad Mixta de Investigación Cardiovascular, Departamento de Cardiología, Universidad Francisco de Vitoria, Hospital Ramón y Cajal (IRYCIS), Madrid, Spain (R.R.-C., I.H., L.T., J.D.-M., L.B., C.Z.)
| | - Karina Ovejero-Paredes
- Grupo de Nanobiotecnología para Ciencias de la Vida, Departamento de Química en Ciencias Farmaceuticas Facultad de Farmacia, Universidad Complutense de Madrid (UCM). Unidad de Microscopia e Imagen Dinamica, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain (K.O.-P., M.F.)
| | - Marco Filice
- QUIBIM SL - Quantitative Imaging Biomarkers in Medicine, Valencia, Spain (A.A.-B.)
| | - Angel Alberich-Bayarri
- Departamento de Cirugía Experimental, Hospital Universitario La Paz, Madrid, Spain (C.L.-A.)
| | - Luis Martí-Bonmatí
- Instituto de Investigación de salud La Fe, Grupo de Investigación Biomédica (GIBI230-PREBI). Nodo de Imagen La Fe en la Red de Imagen Biomédica (ReDIB) de Infraestructuras Científicas Técnicas y Singulares (ICTS), Valencia, Spain (A.T., L.M.-B.)
| | - Carlota Largo-Aramburu
- Departamento de Cirugía Experimental, Hospital Universitario La Paz, Madrid, Spain (C.L.-A.)
| | - Marta Saura
- Unidad de Fisiología, Departamento de Biología de Sistemas, Universidad de Alcalá (IRYCIS), Alcalá de Henares, Madrid, Spain (M. Saura).,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain (R.R.-C., M. Sanmartin, I.H., L.T., M. Saura, J.L.Z., C.Z.)
| | - Jose Luis Zamorano
- Departamento de Cardiología, Hospital Universitario Ramón y Cajal (IRYCIS), Madrid, Spain (M. Sanmartin, J.L.Z.).,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain (R.R.-C., M. Sanmartin, I.H., L.T., M. Saura, J.L.Z., C.Z.)
| | - Carlos Zaragoza
- Unidad Mixta de Investigación Cardiovascular, Departamento de Cardiología, Universidad Francisco de Vitoria, Hospital Ramón y Cajal (IRYCIS), Madrid, Spain (R.R.-C., I.H., L.T., J.D.-M., L.B., C.Z.).,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain (R.R.-C., M. Sanmartin, I.H., L.T., M. Saura, J.L.Z., C.Z.)
| |
Collapse
|
21
|
Ghitman J, Pircalabioru GG, Zainea A, Marutescu L, Iovu H, Vasile E, Stavarache C, Vasile BS, Stan R. Macrophage-targeted mannose-decorated PLGA-vegetable oil hybrid nanoparticles loaded with anti-inflammatory agents. Colloids Surf B Biointerfaces 2022; 213:112423. [PMID: 35231685 DOI: 10.1016/j.colsurfb.2022.112423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/08/2022] [Accepted: 02/20/2022] [Indexed: 01/06/2023]
Abstract
This work pledge to extend the therapeutic windows of hybrid nanoparticulate systems by engineering mannose-decorated hybrid nanoparticles based on poly lactic-co-glycolic acid (PLGA) and vegetable oil for efficient delivery of two lipophilic anti-inflammatory therapeutics (Celecoxib-CL and Indomethacin-IMC) to macrophages. The mannose surface modification of nanoparticles is achieved via O-palmitoyl-mannose spacer during the emulsification and nanoparticles assembly process. The impact of targeting motif on the hydrodynamic features (RH, PdI), stability (ζ-potential), drug encapsulation efficiency (DEE) is thoroughly investigated. Besides, the in vitro biocompatibility (MTT, LDH) and susceptibility of mannose-decorated formulations to macrophage as well their immunomodulatory activity (ELISA) are also evaluated. The monomodal distributed mannose-decorated nanoparticles are in the range of nanometric size (RH < 115 nm) with PdI < 0.20 and good encapsulation efficiency (DEE = 46.15% for CL and 76.20% for IMC). The quantitative investigation of macrophage uptake shows a 2-fold increase in fluorescence (RFU) of cells treated with mannose-decorated formulations as compared to non-decorated ones (p < 0.001) suggesting an enhanced cell uptake respectively improved macrophage targeting while the results of ELISA experiments suggest the potential immunomodulatory properties of the designed mannose-decorated hybrid formulations.
Collapse
Affiliation(s)
- Jana Ghitman
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania
| | - Gratiela Gradisteanu Pircalabioru
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania; Research Institute of the University of Bucharest, 050095 Bucharest, Romania
| | - Adriana Zainea
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania
| | - Luminita Marutescu
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania; Research Institute of the University of Bucharest, 050095 Bucharest, Romania
| | - Horia Iovu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania; Academy of Romanian Scientists, 54 Splaiul Independentei Street, 050094 Bucharest, Romania
| | - Eugeniu Vasile
- Department of Oxide Materials Science and Engineering, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Cristina Stavarache
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania
| | - Bogdan Stefan Vasile
- National Research Center for Micro and Nanomaterials, National Research Center for Food Safety, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Raluca Stan
- Department of Organic Chemistry "C. Nenitzescu", University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania.
| |
Collapse
|
22
|
Hou J, Zhou J, Chang M, Bao G, Xu J, Ye M, Zhong Y, Liu S, Wang J, Zhang W, Ran H, Wang Z, Chen Y, Guo D. LIFU-responsive nanomedicine enables acoustic droplet vaporization-induced apoptosis of macrophages for stabilizing vulnerable atherosclerotic plaques. Bioact Mater 2022; 16:120-133. [PMID: 35386311 PMCID: PMC8958425 DOI: 10.1016/j.bioactmat.2022.02.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 02/07/2023] Open
Abstract
Due to the high risk of tearing and rupture, vulnerable atherosclerotic plaques would induce serious cardiovascular and cerebrovascular diseases. Despite the available clinical methods can evaluate the vulnerability of plaques and specifically treat vulnerable plaques before a cardiovascular event, but the efficiency is still low and undesirable. Herein, we rationally design and engineer the low-intensity focused ultrasound (LIFU)-responsive FPD@CD nanomedicine for the highly efficient treatment of vulnerable plaques by facilely loading phase transition agent perfluorohexane (PFH) into biocompatible PLGA-PEG-PLGA nanoparticles (PPP NPs) and then attaching dextran sulphate (DS) onto the surface of PPP NPs for targeting delivery. DS, as a typical macrophages-targeted molecule, can achieve the precise vaporization of NPs and subsequently controllable apoptosis of RAW 264.7 macrophages as induced by acoustic droplet vaporization (ADV) effect. In addition, the introduction of DiR and Fe3O4 endows nanomedicine with near-infrared fluorescence (NIRF) and magnetic resonance (MR) imaging capabilities. The engineered FPD@CD nanomedicine that uses macrophages as therapeutic targets achieve the conspicuous therapeutic effect of shrinking vulnerable plaques based on in vivo and in vitro evaluation outcomes. A reduction of 49.4% of vascular stenosis degree in gross pathology specimens were achieved throughout the treatment period. This specific, efficient and biosafe treatment modality potentiates the biomedical application in patients with cardiovascular and cerebrovascular diseases based on the relief of the plaque rupture concerns. A new nanomedicine-enabled treatment strategy has been developed for treating vulnerable plaques by employing ADV. The optimal treatment conditions for ADV have been explored, including LIFU irradiation power intensity and plaque stability. The underlying mechanism of nanomedicine-enabled ADV in the treatment of vulnerable plaques has been studied systematically.
Collapse
Affiliation(s)
- Jingxin Hou
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Jun Zhou
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Meiqi Chang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Guangcheng Bao
- Department of Radiology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Jie Xu
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Man Ye
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Yixin Zhong
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Shuling Liu
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Junrui Wang
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Wei Zhang
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Haitao Ran
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Zhigang Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Dajing Guo
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| |
Collapse
|
23
|
Li L, Liu S, Tan J, Wei L, Wu D, Gao S, Weng Y, Chen J. Recent advance in treatment of atherosclerosis: Key targets and plaque-positioned delivery strategies. J Tissue Eng 2022; 13:20417314221088509. [PMID: 35356091 PMCID: PMC8958685 DOI: 10.1177/20417314221088509] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Atherosclerosis, a chronic inflammatory disease of vascular wall, is a progressive pathophysiological process with lipids oxidation/depositing initiation and innate/adaptive immune responses. The coordination of multi systems covering oxidative stress, dysfunctional endothelium, diseased lipid uptake, cell apoptosis, thrombotic and pro-inflammatory responding as well as switched SMCs contributes to plaque growth. In this circumstance, inevitably, targeting these processes is considered to be effective for treating atherosclerosis. Arriving, retention and working of payload candidates mediated by targets in lesion direct ultimate therapeutic outcomes. Accumulating a series of scientific studies and clinical practice in the past decades, lesion homing delivery strategies including stent/balloon/nanoparticle-based transportation worked as the potent promotor to ensure a therapeutic effect. The objective of this review is to achieve a very brief summary about the effective therapeutic methods cooperating specifical targets and positioning-delivery strategies in atherosclerosis for better outcomes.
Collapse
Affiliation(s)
- Li Li
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Sainan Liu
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Jianying Tan
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Lai Wei
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Dimeng Wu
- Chengdu Daxan Innovative Medical Tech. Co., Ltd., Chengdu, PR China
| | - Shuai Gao
- Chengdu Daxan Innovative Medical Tech. Co., Ltd., Chengdu, PR China
| | - Yajun Weng
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Junying Chen
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| |
Collapse
|
24
|
Maiseyeu A, Di L, Ravodina A, Barajas-Espinosa A, Sakamoto A, Chaplin A, Zhong J, Gao H, Mignery M, Narula N, Finn AV, Rajagopalan S. Plaque-targeted, proteolysis-resistant, activatable and MRI-visible nano-GLP-1 receptor agonist targets smooth muscle cell differentiation in atherosclerosis. Theranostics 2022; 12:2741-2757. [PMID: 35401813 PMCID: PMC8965488 DOI: 10.7150/thno.66456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/18/2022] [Indexed: 11/05/2022] Open
Abstract
Background: Glucagon-like peptide-1 receptor (GLP-1R) agonists are powerful glycemia-lowering agents, which have systematically been shown to lower cardiovascular events and mortality. These beneficial effects were difficult to pinpoint within atherosclerotic plaque due to lack of particular specificity of such agonists to the vascular cells and an inadequate understanding of the GLP-1R expression in atherosclerosis. Here, we hypothesized that the direct engagement of the GLP-1R in atherosclerosis by targeted agonists will alleviate vascular inflammation and plaque burden, even at a very low dose. Methods: The expression of GLP-1 receptor (GLP-1R, Glp1r mRNA) in human lesions with pathologic intimal thickening, Apoe-/- mouse atheroma and cultured immune/non-immune cells was investigated using genetic lineage tracing, Southern blotting and validated antisera against human GLP-1R. Protease-resistant and "activatable" nanoparticles (NPs) carrying GLP-1R agonist liraglutide (GlpNP) were engineered and synthesized. Inclusion of gadolinium chelates into GlpNP allowed for imaging by MRI. Atherosclerotic Apoe-/- mice were treated intravenously with a single dose (30 µg/kg of liraglutide) or chronically (1 µg/kg, 6 weeks, 2x/week) with GlpNP, liraglutide or control NPs, followed by assessment of metabolic parameters, atheroma burden, inflammation and vascular function. Results: Humal plaque specimens expressed high levels of GLP-1R within the locus of de-differentiated smooth muscle cells that also expressed myeloid marker CD68. However, innate immune cells under a variety of conditions expressed very low levels of Glp1r, as seen in lineage tracing and Southern blotting experiments examining full-length open reading frame mRNA transcripts. Importantly, de-differentiated vascular smooth muscle cells demonstrated significant Glp1r expression levels, suggesting that these could represent the cells with predominant Glp1r-positivity in atherosclerosis. GlpNP resisted proteolysis and demonstrated biological activity including in vivo glycemia lowering at 30 µg/kg and in vitro cholesterol efflux. Activatable properties of GlpNP were confirmed in vitro by imaging cytometry and in vivo using whole organ imaging. GlpNP targeted CD11b+/CD11c+ cells in circulation and smooth muscle cells in aortic plaque in Apoe-/- mice when assessed by MRI and fluorescence imaging. At a very low dose of 1 µg/kg, previously known to have little effect on glycemia and weight loss, GlpNP delivered i.v. for six weeks reduced triglyceride-rich lipoproteins in plasma, plaque burden and plaque cholesterol without significant effects on weight, glycemia and plasma cholesterol levels. Conclusions: GlpNP improves atherosclerosis at weight-neutral doses as low as 1 µg/kg with the effects independent from the pancreas or the central nervous system. Our study underlines the importance of direct actions of GLP-1 analogs on atherosclerosis, involving cholesterol efflux and inflammation. Our findings are the first to suggest the therapeutic modulation of vascular targets by GlpNP, especially in the context of smooth muscle cell inflammation.
Collapse
Affiliation(s)
- Andrei Maiseyeu
- Case Western Reserve University, Cleveland, OH
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH
- University of Maryland, Baltimore, MD
| | - Lin Di
- Case Western Reserve University, Cleveland, OH
| | | | - Alma Barajas-Espinosa
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH
| | | | | | - Jixin Zhong
- Case Western Reserve University, Cleveland, OH
| | - Huiyun Gao
- Case Western Reserve University, Cleveland, OH
| | | | | | - Aloke V. Finn
- University of Maryland, Baltimore, MD
- CVPath Institute, Inc., Gaithersburg, MD
| | - Sanjay Rajagopalan
- Case Western Reserve University, Cleveland, OH
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH
- University of Maryland, Baltimore, MD
| |
Collapse
|
25
|
Chopra H, Bibi S, Mishra AK, Tirth V, Yerramsetty SV, Murali SV, Ahmad SU, Mohanta YK, Attia MS, Algahtani A, Islam F, Hayee A, Islam S, Baig AA, Emran TB. Nanomaterials: A Promising Therapeutic Approach for Cardiovascular Diseases. JOURNAL OF NANOMATERIALS 2022; 2022:1-25. [DOI: 10.1155/2022/4155729] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Cardiovascular diseases (CVDs) are a primary cause of death globally. A few classic and hybrid treatments exist to treat CVDs. However, they lack in both safety and effectiveness. Thus, innovative nanomaterials for disease diagnosis and treatment are urgently required. The tiny size of nanomaterials allows them to reach more areas of the heart and arteries, making them ideal for CVDs. Atherosclerosis causes arterial stenosis and reduced blood flow. The most common treatment is medication and surgery to stabilize the disease. Nanotechnologies are crucial in treating vascular disease. Nanomaterials may be able to deliver medications to lesion sites after being infused into the circulation. Newer point-of-care devices have also been considered together with nanomaterials. For example, this study will look at the use of nanomaterials in imaging, diagnosing, and treating CVDs.
Collapse
Affiliation(s)
- Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Shabana Bibi
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, 650091 Yunnan, China
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming, 650091 Yunnan, China
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, Republic of Korea
| | - Vineet Tirth
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha, 61421 Asir, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Guraiger, Abha, 61413 Asir, P.O. Box No. 9004, Saudi Arabia
| | - Sree Vandana Yerramsetty
- Department of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu 613402, India
| | - Sree Varshini Murali
- Department of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu 613402, India
| | - Syed Umair Ahmad
- Department of Bioinformatics, Hazara University, Mansehra, Pakistan
| | - Yugal Kishore Mohanta
- Department of Applied Biology, University of Science and Technology Meghalaya, Ri-Bhoi 793101, India
| | - Mohamed S. Attia
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Ali Algahtani
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha, 61421 Asir, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Guraiger, Abha, 61413 Asir, P.O. Box No. 9004, Saudi Arabia
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Abdul Hayee
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Saiful Islam
- Civil Engineering Department, College of Engineering, King Khalid University, Abha, 61421 Asir, Saudi Arabia
| | - Atif Amin Baig
- Unit of Biochemistry, Faculty of Medicine, Universiti Sultan Zainal Abidin, Malaysia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| |
Collapse
|
26
|
Hossaini Nasr S, Huang X. Nanotechnology for Targeted Therapy of Atherosclerosis. Front Pharmacol 2021; 12:755569. [PMID: 34867370 PMCID: PMC8633109 DOI: 10.3389/fphar.2021.755569] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/22/2021] [Indexed: 01/20/2023] Open
Abstract
Atherosclerosis is the major cause of heart attack and stroke that are the leading causes of death in the world. Nanomedicine is a powerful tool that can be engineered to target atherosclerotic plaques for therapeutic and diagnosis purposes. In this review, advances in designing nanoparticles with therapeutic effects on atherosclerotic plaques known as atheroprotective nanomedicine have been summarized to stimulate further development and future translation.
Collapse
Affiliation(s)
- Seyedmehdi Hossaini Nasr
- Department of Chemistry, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
27
|
Macrophages in heterotopic ossification: from mechanisms to therapy. NPJ Regen Med 2021; 6:70. [PMID: 34702860 PMCID: PMC8548514 DOI: 10.1038/s41536-021-00178-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 09/30/2021] [Indexed: 01/04/2023] Open
Abstract
Heterotopic ossification (HO) is the formation of extraskeletal bone in non-osseous tissues. It is caused by an injury that stimulates abnormal tissue healing and regeneration, and inflammation is involved in this process. It is worth noting that macrophages are crucial mediators of inflammation. In this regard, abundant macrophages are recruited to the HO site and contribute to HO progression. Macrophages can acquire different functional phenotypes and promote mesenchymal stem cell (MSC) osteogenic differentiation, chondrogenic differentiation, and angiogenesis by expressing cytokines and other factors such as the transforming growth factor-β1 (TGF-β1), bone morphogenetic protein (BMP), activin A (Act A), oncostatin M (OSM), substance P (SP), neurotrophin-3 (NT-3), and vascular endothelial growth factor (VEGF). In addition, macrophages significantly contribute to the hypoxic microenvironment, which primarily drives HO progression. Thus, these have led to an interest in the role of macrophages in HO by exploring whether HO is a "butterfly effect" event. Heterogeneous macrophages are regarded as the "butterflies" that drive a sequence of events and ultimately promote HO. In this review, we discuss how the recruitment of macrophages contributes to HO progression. In particular, we review the molecular mechanisms through which macrophages participate in MSC osteogenic differentiation, angiogenesis, and the hypoxic microenvironment. Understanding the diverse role of macrophages may unveil potential targets for the prevention and treatment of HO.
Collapse
|
28
|
Zhang W, Sheng T, Gu Z, Zhang Y. Strategies for Browning Agent Delivery. Pharm Res 2021; 38:1327-1334. [PMID: 34398404 DOI: 10.1007/s11095-021-03081-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 07/02/2021] [Indexed: 12/31/2022]
Abstract
Obesity expands as a global climbing epidemic that is often correlated to cardiovascular diseases and endocrine disorders. Converting white adipocytes to brown adipocytes for enhanced energy expenditure has recently emerged as a promising anti-obesity treatment. However, the conventional approaches to apply browning agents systematically suffer from off-target effects, multiple dosage requirements, and poor patient compliance. To date, various delivery strategies have been reported to deliver browning agents for obesity treatment in a safer and more controllable manner. This review will discuss the latest designs in browning agent delivery systems with a focus on nanomedicines and transdermal patches.
Collapse
Affiliation(s)
- Wentao Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Tao Sheng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhen Gu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China. .,Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China. .,Zhejiang Laboratory of Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 311121, China. .,MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Yuqi Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
29
|
MacRitchie N, Di Francesco V, Ferreira MFMM, Guzik TJ, Decuzzi P, Maffia P. Nanoparticle theranostics in cardiovascular inflammation. Semin Immunol 2021; 56:101536. [PMID: 34862118 PMCID: PMC8811479 DOI: 10.1016/j.smim.2021.101536] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/30/2022]
Abstract
Theranostics, literally derived from the combination of the words diagnostics and therapy, is an emerging field of clinical and preclinical research, where contrast agents, drugs and diagnostic techniques are combined to simultaneously diagnose and treat pathologies. Nanoparticles are extensively employed in theranostics due to their potential to target specific organs and their multifunctional capacity. In this review, we will discuss the current state of theranostic nanomedicine, providing key examples of its application in the imaging and treatment of cardiovascular inflammation.
Collapse
Affiliation(s)
- Neil MacRitchie
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.
| | - Valentina Di Francesco
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | | | - Tomasz J Guzik
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; Department of Internal Medicine, Jagiellonian University, Collegium Medicum, Kraków, Poland
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Pasquale Maffia
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
30
|
Wu Y, Vazquez-Prada KX, Liu Y, Whittaker AK, Zhang R, Ta HT. Recent Advances in the Development of Theranostic Nanoparticles for Cardiovascular Diseases. Nanotheranostics 2021; 5:499-514. [PMID: 34367883 PMCID: PMC8342263 DOI: 10.7150/ntno.62730] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide. CVD includes a group of disorders of the heart and blood vessels such as myocardial infarction, ischemic heart, ischemic injury, injured arteries, thrombosis and atherosclerosis. Amongst these, atherosclerosis is the dominant cause of CVD and is an inflammatory disease of the blood vessel wall. Diagnosis and treatment of CVD remain the main challenge due to the complexity of their pathophysiology. To overcome the limitations of current treatment and diagnostic techniques, theranostic nanomaterials have emerged. The term "theranostic nanomaterials" refers to a multifunctional agent with both therapeutic and diagnostic abilities. Theranostic nanoparticles can provide imaging contrast for a diversity of techniques such as magnetic resonance imaging (MRI), positron emission tomography (PET) and computed tomography (CT). In addition, they can treat CVD using photothermal ablation and/or medication by the drugs in nanoparticles. This review discusses the latest advances in theranostic nanomaterials for the diagnosis and treatment of CVDs according to the order of disease development. MRI, CT, near-infrared spectroscopy (NIR), and fluorescence are the most widely used strategies on theranostics for CVDs detection. Different treatment methods for CVDs based on theranostic nanoparticles have also been discussed. Moreover, current problems of theranostic nanoparticles for CVDs detection and treatment and future research directions are proposed.
Collapse
Affiliation(s)
- Yuao Wu
- Queensland Micro- and Nanotechnology, Griffith University, Brisbane, Queensland 4111, Australia
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, Queensland 4072, Australia
| | - Karla X. Vazquez-Prada
- Queensland Micro- and Nanotechnology, Griffith University, Brisbane, Queensland 4111, Australia
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, Queensland 4072, Australia
| | - Yajun Liu
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, Queensland 4072, Australia
| | - Andrew K. Whittaker
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, the University of Queensland, QLD 4072, Australia
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, Queensland 4072, Australia
| | - Hang T. Ta
- Queensland Micro- and Nanotechnology, Griffith University, Brisbane, Queensland 4111, Australia
- School of Environment and Science, Griffith University, Brisbane, Queensland 4111, Australia
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
31
|
Chen F, Chen J, Han C, Yang Z, Deng T, Zhao Y, Zheng T, Gan X, Yu C. Theranostics of atherosclerosis by the indole molecule-templated self-assembly of probucol nanoparticles. J Mater Chem B 2021; 9:4134-4142. [PMID: 33972981 DOI: 10.1039/d1tb00432h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Atherosclerosis (AS) is a major cause of cardiovascular diseases, but its effective theranostic measure remains challenging thus far. Macrophages contribute to AS progress in diverse ways such as producing cytokines and reactive oxygen species (ROS), foaming macrophages, and differentiating into pro-inflammatory macrophages. With the aim of constructing a facile and efficacious theranostic system for diagnosis and treatment of AS, a templated self-assembly approach was developed. This strategy involves using indole molecule (indocyanine green (ICG) or IR783) as a template to assemble with probucol (PB) to gain multifunctional nanoparticles (IPNPs or IRPNPs). IPNPs and IRPNPs both showed excellent physicochemical properties, which testified the generality of the indole molecular self-assembly strategy for PB delivery. Besides, the nanoparticles have superior pharmaceutical characteristics including preventing macrophages from differentiating, more efficiently internalizing in inflammatory macrophages, eliminating overproduced ROS, lowering the level of inflammation cytokines, and inhibiting foaming. More importantly, IPNPs displayed effective therapeutic effects in AS model mice when administered via intravenous (i.v.) route. In addition, IPNPs and IRPNPs accumulated more effectively than ICG and IR783 via i.v. injection in the lesion area, and the blood circulation time was extended beyond 24 h. More interestingly, we discovered that the fluorescence imaging ability of IR783 and IRPNPs was more excellent than ICG and IPNPs, respectively. Moreover, a long-term treatment with IPNPs or IRPNPs revealed an excellent safety profile in mice. Accordingly, this self-assembly strategy developed herein is a universal and promising way for the delivery of lipophilic drugs. This study also provides new insights into developing effective theranostic agents for AS.
Collapse
Affiliation(s)
- Feng Chen
- Pharmaceutical Engineering Research Center, College of Pharmacy, Chongqing Medical University, Chongqing 400000, China.
| | - Jun Chen
- Pharmaceutical Engineering Research Center, College of Pharmacy, Chongqing Medical University, Chongqing 400000, China.
| | - Chuyi Han
- Pharmaceutical Engineering Research Center, College of Pharmacy, Chongqing Medical University, Chongqing 400000, China.
| | - Zhangyou Yang
- Pharmaceutical Engineering Research Center, College of Pharmacy, Chongqing Medical University, Chongqing 400000, China.
| | - Tao Deng
- Pharmaceutical Engineering Research Center, College of Pharmacy, Chongqing Medical University, Chongqing 400000, China.
| | - Yunfei Zhao
- Pharmaceutical Engineering Research Center, College of Pharmacy, Chongqing Medical University, Chongqing 400000, China.
| | - Tianye Zheng
- Pharmaceutical Engineering Research Center, College of Pharmacy, Chongqing Medical University, Chongqing 400000, China.
| | - Xuelan Gan
- Pharmaceutical Engineering Research Center, College of Pharmacy, Chongqing Medical University, Chongqing 400000, China.
| | - Chao Yu
- Pharmaceutical Engineering Research Center, College of Pharmacy, Chongqing Medical University, Chongqing 400000, China.
| |
Collapse
|
32
|
Groner J, Goepferich A, Breunig M. Atherosclerosis: Conventional intake of cardiovascular drugs versus delivery using nanotechnology - A new chance for causative therapy? J Control Release 2021; 333:536-559. [PMID: 33794270 DOI: 10.1016/j.jconrel.2021.03.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
Atherosclerosis is the leading cause of death in developed countries. The pathogenetic mechanism relies on a macrophage-based immune reaction to low density lipoprotein (LDL) deposition in blood vessels with dysfunctional endothelia. Thus, atherosclerosis is defined as a chronic inflammatory disease. A plethora of cardiovascular drugs have been developed and are on the market, but the major shortcoming of standard medications is that they do not address the root cause of the disease. Statins and thiazolidinediones that have recently been recognized to exert specific anti-atherosclerotic effects represent a potential breakthrough on the horizon. But their whole potential cannot be realized due to insufficient availability at the pathological site and severe off-target effects. The focus of this review will be to elaborate how both groups of drugs could immensely profit from nanoparticulate carriers. This delivery principle would allow for their accumulation in target macrophages and endothelial cells of the atherosclerotic plaque, increasing bioavailability where it is needed most. Based on the analyzed literature we conclude design criteria for the delivery of statins and thiazolidinediones with nanoparticles for anti-atherosclerotic therapy. Nanoparticles need to be below a diameter of 100 nm to accumulate in the atherosclerotic plaque and should be fabricated using biodegradable materials. Further, the thiazolidinediones or statins must be encapsulated into the particle core, because especially for thiazolidindiones the uptake into cells is prerequisite for their mechanism of action. For optimal uptake into targeted macrophages and endothelial cells, the ideal particle should present ligands on its surface which bind specifically to scavenger receptors. The impact of statins on the lectin-type oxidized LDL receptor 1 (LOX1) seems particularly promising because of its outstanding role in the inflammatory process. Using this pioneering concept, it will be possible to promote the impact of statins and thiazolidinediones on macrophages and endothelial cells and significantly enhance their anti-atherosclerotic therapeutic potential.
Collapse
Affiliation(s)
- Jonas Groner
- Department of Pharmaceutical Technology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Achim Goepferich
- Department of Pharmaceutical Technology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Miriam Breunig
- Department of Pharmaceutical Technology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany.
| |
Collapse
|
33
|
Pala R, Pattnaik S, Busi S, Nauli SM. Nanomaterials as Novel Cardiovascular Theranostics. Pharmaceutics 2021; 13:pharmaceutics13030348. [PMID: 33799932 PMCID: PMC7998597 DOI: 10.3390/pharmaceutics13030348] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular diseases (CVDs) are a group of conditions associated with heart and blood vessels and are considered the leading cause of death globally. Coronary heart disease, atherosclerosis, myocardial infarction represents the CVDs. Since CVDs are associated with a series of pathophysiological conditions with an alarming mortality and morbidity rate, early diagnosis and appropriate therapeutic approaches are critical for saving patients’ lives. Conventionally, diagnostic tools are employed to detect disease conditions, whereas therapeutic drug candidates are administered to mitigate diseases. However, the advent of nanotechnological platforms has revolutionized the current understanding of pathophysiology and therapeutic measures. The concept of combinatorial therapy using both diagnosis and therapeutics through a single platform is known as theranostics. Nano-based theranostics are widely used in cancer detection and treatment, as evident from pre-clinical and clinical studies. Nanotheranostics have gained considerable attention for the efficient management of CVDs. The differential physicochemical properties of engineered nanoparticles have been exploited for early diagnosis and therapy of atherosclerosis, myocardial infarction and aneurysms. Herein, we provided the information on the evolution of nano-based theranostics to detect and treat CVDs such as atherosclerosis, myocardial infarction, and angiogenesis. The review also aims to provide novel avenues on how nanotherapeutics’ trending concept could transform our conventional diagnostic and therapeutic tools in the near future.
Collapse
Affiliation(s)
- Rajasekharreddy Pala
- Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, CA 92618, USA
- Department of Medicine, University of California Irvine, Irvine, CA 92868, USA
- Correspondence: (R.P.); (S.M.N.); Tel.: +1-714-516-5462 (R.P.); +1-714-516-5480 (S.M.N.); Fax: +1-714-516-5481 (R.P. & S.M.N.)
| | - Subhaswaraj Pattnaik
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India; (S.P.); (S.B.)
| | - Siddhardha Busi
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India; (S.P.); (S.B.)
| | - Surya M. Nauli
- Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, CA 92618, USA
- Department of Medicine, University of California Irvine, Irvine, CA 92868, USA
- Correspondence: (R.P.); (S.M.N.); Tel.: +1-714-516-5462 (R.P.); +1-714-516-5480 (S.M.N.); Fax: +1-714-516-5481 (R.P. & S.M.N.)
| |
Collapse
|
34
|
Chen J, Zhang X, Millican R, Sherwood J, Martin S, Jo H, Yoon YS, Brott BC, Jun HW. Recent advances in nanomaterials for therapy and diagnosis for atherosclerosis. Adv Drug Deliv Rev 2021; 170:142-199. [PMID: 33428994 PMCID: PMC7981266 DOI: 10.1016/j.addr.2021.01.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/02/2021] [Accepted: 01/03/2021] [Indexed: 12/18/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease driven by lipid accumulation in arteries, leading to narrowing and thrombosis. It affects the heart, brain, and peripheral vessels and is the leading cause of mortality in the United States. Researchers have strived to design nanomaterials of various functions, ranging from non-invasive imaging contrast agents, targeted therapeutic delivery systems to multifunctional nanoagents able to target, diagnose, and treat atherosclerosis. Therefore, this review aims to summarize recent progress (2017-now) in the development of nanomaterials and their applications to improve atherosclerosis diagnosis and therapy during the preclinical and clinical stages of the disease.
Collapse
Affiliation(s)
- Jun Chen
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Xixi Zhang
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | | | | | - Sean Martin
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States; Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Young-Sup Yoon
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Brigitta C Brott
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ho-Wook Jun
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
35
|
Optimized rapamycin-loaded PEGylated PLGA nanoparticles: Preparation, characterization and pharmacokinetics study. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
36
|
Porter GC, Duncan WJ, Jude A, Abdelmoneim D, Easingwood RA, Coates DE. Endocytosed silver nanoparticles degrade in lysosomes to form secondary nanoparticle structures during expression of autophagy genes in osteogenic cells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 33:102355. [PMID: 33454429 DOI: 10.1016/j.nano.2020.102355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/05/2020] [Accepted: 12/23/2020] [Indexed: 01/01/2023]
Abstract
Silver nanoparticles (AgNPs) are increasingly used in combination with biomaterials, such as bone grafts, to provide antimicrobial properties. Our research focused on the cytotoxic and intracellular uptake mechanism of AgNPs on osteogenic cells, and the affected gene expression of osteoblasts exposed to AgNPs. Osteoblast cells were found to be relatively resistant to AgNP exposure, compared to osteoclasts, with a higher IC50 and fewer adverse morphological features. AgNPs were endocytosed within lysosomes, which resulted in the secondary internal formation of curved AgO nano-chains assemblies within the cytosol. Furthermore, osteoblasts demonstrated an oxidative stress response, with autophagic cell death mechanisms, as indicated from qRT2-PCR analysis, with sustained upregulation of the protective gene Heme Oxygenase 1 reaching 86-fold by 48 hours (10 μg/mL). The internalization and fate of AgNPs in osteogenic cells, and the resulting impact on gene expression over time provide further understanding of the nanotoxicity mechanism of AgNPs.
Collapse
Affiliation(s)
- G C Porter
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand.
| | - W J Duncan
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - A Jude
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - D Abdelmoneim
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - R A Easingwood
- Otago Micro and Nanoscale Imaging, Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - D E Coates
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
37
|
Sansonetti M, Waleczek FJG, Jung M, Thum T, Perbellini F. Resident cardiac macrophages: crucial modulators of cardiac (patho)physiology. Basic Res Cardiol 2020; 115:77. [PMID: 33284387 PMCID: PMC7720787 DOI: 10.1007/s00395-020-00836-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023]
Abstract
Resident cardiac macrophages (rcMacs) are integral components of the myocardium where they have key roles for tissue homeostasis and in response to inflammation, tissue injury and remodelling. In this review, we summarize the current knowledge and limitations associated with the rcMacs studies. We describe their specific role and contribution in various processes such as electrical conduction, efferocytosis, inflammation, tissue development, remodelling and regeneration in both the healthy and the disease state. We also outline research challenges and technical complications associated with rcMac research. Recent technological developments and contemporary immunological techniques are now offering new opportunities to investigate the separate contribution of rcMac in respect to recruited monocytes and other cardiac cells. Finally, we discuss new therapeutic strategies, such as drugs or non-coding RNAs, which can influence rcMac phenotype and their response to inflammation. These novel approaches will allow for a deeper understanding of this cardiac endogenous cell type and might lead to the development of more specific and effective therapeutic strategies to boost the heart's intrinsic reparative capacity.
Collapse
Affiliation(s)
- M Sansonetti
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hanover, Germany
| | - F J G Waleczek
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hanover, Germany
| | - M Jung
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hanover, Germany
| | - T Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hanover, Germany.
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany.
| | - F Perbellini
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hanover, Germany.
| |
Collapse
|
38
|
Yuan Y, Long L, Liu J, Lin Y, Peng C, Tang Y, Zhou X, Li S, Zhang C, Li X, Zhou X. The double-edged sword effect of macrophage targeting delivery system in different macrophage subsets related diseases. J Nanobiotechnology 2020; 18:168. [PMID: 33198758 PMCID: PMC7667812 DOI: 10.1186/s12951-020-00721-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 10/24/2020] [Indexed: 01/01/2023] Open
Abstract
Background Monocyte/macrophage-targeting delivery systems (MTDSs) have been focused upon as an emerging routine for delivering drugs to treat various macrophage-related diseases. However, the ability of MTDSs to distinguish different macrophage-related diseases and their impact on macrophage function and disease progression have not been systematically revealed, which is important for actively targeted therapeutic or diagnostic strategies. Results Herein, we used dextran-modified polystyrene nanoparticles (DEX-PS) to demonstrate that modification of nanoparticles by dextran can specifically enhance their recognition by M2 macrophages in vitro, but it is obstructed by monocytes in peripheral blood according to in vivo assays. DEX-PS not only targeted and became distributed in tumors, an M2 macrophage-related disease, but was also highly distributed in an M1 macrophage-related disease, namely acute peritonitis. Thus, DEX-PS acts as a double-edged sword in these two different diseases by reeducating macrophages to a pro-inflammatory phenotype. Conclusions Our results suggest that MTDSs, even those designed based on differential expression of receptors on specific macrophage subtypes, lack the ability to distinguish different macrophage subtype-related diseases in vivo. In addition to the potential impact of these carrier materials on macrophage function, studies of MTDSs should pay greater attention to the distribution of nanoparticles in non-target macrophage-infiltrated disease sites and their impact on disease processes.![]()
Collapse
Affiliation(s)
- Yuchuan Yuan
- Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, China
| | - Ling Long
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, 400042, China
| | - Jiaxing Liu
- Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, China
| | - Yongyao Lin
- Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, China
| | - Cuiping Peng
- Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, China
| | - Yue Tang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Xuemei Zhou
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Shuhui Li
- Department of Clinical Biochemistry, College of Pharmacy, Army Medical University, Chongqing, 400038, China
| | - Chengyuan Zhang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China.
| | - Xiaohui Li
- Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, China.
| | - Xing Zhou
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China.
| |
Collapse
|
39
|
Ravodina A, Badgeley MA, Rajagopalan S, Fedyukina DV, Maiseyeu A. Facile Cholesterol Loading with a New Probe ezFlux Allows for Streamlined Cholesterol Efflux Assays. ACS OMEGA 2020; 5:23289-23298. [PMID: 32954180 PMCID: PMC7495719 DOI: 10.1021/acsomega.0c03112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
Here, we report a nanoparticle-based probe that affords facile cell labeling with cholesterol in cholesterol efflux (CE) assays. This probe, called ezFlux, was optimized through a screening of multiple nanoformulations engineered with a Förster resonance energy transfer (FRET) reporter. The physicochemical- and bio-similarity of ezFlux to standard semi-synthetic acetylated low-density lipoprotein (acLDL) was confirmed by testing uptake in macrophages, the intracellular route of degradation, and performance in CE assays. A single-step fast self-assembly fabrication makes ezFlux an attractive alternative to acLDL. We also show that CE testing using ezFlux is significantly cheaper than that performed using commercial kits or acLDL. Additionally, we analyze clinical trials that measure CE and show that ezFlux has a place in many research and clinical laboratories worldwide that use CE to assess cellular and lipoprotein function.
Collapse
Affiliation(s)
- Anastasia
M. Ravodina
- Cardiovascular
Research Institute, Case Western Reserve
University, School of Medicine, 10900 Euclid Ave, Cleveland, Ohio 44106, United States
| | - Marcus A. Badgeley
- Department
of Dermatology, Mayo Clinic, 200 First St., Rochester, Minnesota 55905, United States
| | - Sanjay Rajagopalan
- Cardiovascular
Research Institute, Case Western Reserve
University, School of Medicine, 10900 Euclid Ave, Cleveland, Ohio 44106, United States
| | | | - Andrei Maiseyeu
- Cardiovascular
Research Institute, Case Western Reserve
University, School of Medicine, 10900 Euclid Ave, Cleveland, Ohio 44106, United States
| |
Collapse
|
40
|
Lin Q, Fathi P, Chen X. Nanoparticle delivery in vivo: A fresh look from intravital imaging. EBioMedicine 2020; 59:102958. [PMID: 32853986 PMCID: PMC7452383 DOI: 10.1016/j.ebiom.2020.102958] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/19/2022] Open
Abstract
Nanomedicine has proven promising in preclinical studies. However, only few formulations have been successfully translated to clinical use. A thorough understanding of how nanoparticles interact with cells in vivo is essential to accelerate the clinical translation of nanomedicine. Intravital imaging is a crucial tool to reveal the mechanisms of nanoparticle transport in vivo, allowing for the development of new strategies for nanomaterial design. Here, we first review the most recent progress in using intravital imaging to answer fundamental questions about nanoparticle delivery in vivo. We then elaborate on how nanoparticles interact with different cell types and how such interactions determine the fate of nanoparticles in vivo. Lastly, we discuss ways in which the use of intravital imaging can be expanded in the future to facilitate the clinical translation of nanomedicine.
Collapse
Affiliation(s)
- Qiaoya Lin
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Parinaz Fathi
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
41
|
Kim H, Kumar S, Kang DW, Jo H, Park JH. Affinity-Driven Design of Cargo-Switching Nanoparticles to Leverage a Cholesterol-Rich Microenvironment for Atherosclerosis Therapy. ACS NANO 2020; 14:6519-6531. [PMID: 32343121 PMCID: PMC8543299 DOI: 10.1021/acsnano.9b08216] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Atherosclerotic plaques exhibit high deposition of cholesterol and macrophages. These are not only the main components of the plaques but also key inflammation-triggering sources. However, no existing therapeutics can achieve effective removal of both components within the plaques. Here, we report cargo-switching nanoparticles (CSNP) that are physicochemically designed to bind to cholesterol and release anti-inflammatory drug in the plaque microenvironment. CSNP have a core-shell structure with a core composed of an inclusion complex of methyl-β-cyclodextrin (cyclodextrin) and simvastatin (statin), and a shell of phospholipids. Upon interaction with cholesterol, which has higher affinity to cyclodextrin than statin, CSNP release statin and scavenge cholesterol instead through cargo-switching. CSNP exhibit cholesterol-sensitive multifaceted antiatherogenic functions attributed to statin release and cholesterol depletion in vitro. In mouse models of atherosclerosis, systemically injected CSNP target atherosclerotic plaques and reduce plaque content of cholesterol and macrophages, which synergistically leads to effective prevention of atherogenesis and regression of established plaques. These findings suggest that CSNP provide a therapeutic platform for interfacing with cholesterol-associated inflammatory diseases such as atherosclerosis.
Collapse
|
42
|
Chen D, Ganesh S, Wang W, Amiji M. Protein Corona-Enabled Systemic Delivery and Targeting of Nanoparticles. AAPS JOURNAL 2020; 22:83. [DOI: 10.1208/s12248-020-00464-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/16/2020] [Indexed: 12/19/2022]
|
43
|
Current Advances in the Diagnostic Imaging of Atherosclerosis: Insights into the Pathophysiology of Vulnerable Plaque. Int J Mol Sci 2020; 21:ijms21082992. [PMID: 32340284 PMCID: PMC7216001 DOI: 10.3390/ijms21082992] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/02/2020] [Accepted: 04/15/2020] [Indexed: 12/13/2022] Open
Abstract
Atherosclerosis is a lipoprotein-driven inflammatory disorder leading to a plaque formation at specific sites of the arterial tree. After decades of slow progression, atherosclerotic plaque rupture and formation of thrombi are the major factors responsible for the development of acute coronary syndromes (ACSs). In this regard, the detection of high-risk (vulnerable) plaques is an ultimate goal in the management of atherosclerosis and cardiovascular diseases (CVDs). Vulnerable plaques have specific morphological features that make their detection possible, hence allowing for identification of high-risk patients and the tailoring of therapy. Plaque ruptures predominantly occur amongst lesions characterized as thin-cap fibroatheromas (TCFA). Plaques without a rupture, such as plaque erosions, are also thrombi-forming lesions on the most frequent pathological intimal thickening or fibroatheromas. Many attempts to comprehensively identify vulnerable plaque constituents with different invasive and non-invasive imaging technologies have been made. In this review, advantages and limitations of invasive and non-invasive imaging modalities currently available for the identification of plaque components and morphologic features associated with plaque vulnerability, as well as their clinical diagnostic and prognostic value, were discussed.
Collapse
|
44
|
Colino CI, Lanao JM, Gutierrez-Millan C. Targeting of Hepatic Macrophages by Therapeutic Nanoparticles. Front Immunol 2020; 11:218. [PMID: 32194546 PMCID: PMC7065596 DOI: 10.3389/fimmu.2020.00218] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/27/2020] [Indexed: 12/13/2022] Open
Abstract
Hepatic macrophage populations include different types of cells with plastic properties that can differentiate into diverse phenotypes to modulate their properties in response to different stimuli. They often regulate the activity of other cells and play an important role in many hepatic diseases. In response to those pathological situations, they are activated, releasing cytokines and chemokines; they may attract circulating monocytes and exert functions that can aggravate the symptoms or drive reparation processes. As a result, liver macrophages are potential therapeutic targets that can be oriented toward a variety of aims, with emergent nanotechnology platforms potentially offering new perspectives for macrophage vectorization. Macrophages play an essential role in the final destination of nanoparticles (NPs) in the organism, as they are involved in their uptake and trafficking in vivo. Different types of delivery nanosystems for macrophage recognition and targeting, such as liposomes, solid-lipid, polymeric, or metallic nanoparticles, have been developed. Passive targeting promotes the accumulation of the NPs in the liver due to their anatomical and physiological features. This process is modulated by NP characteristics such as size, charge, and surface modifications. Active targeting approaches with specific ligands may also be used to reach liver macrophages. In order to design new systems, the NP recognition mechanism of macrophages must be understood, taking into account that variations in local microenvironment may change the phenotype of macrophages in a way that will affect the uptake and toxicity of NPs. This kind of information may be applied to diseases where macrophages play a pathogenic role, such as metabolic disorders, infections, or cancer. The kinetics of nanoparticles strongly affects their therapeutic efficacy when administered in vivo. Release kinetics could predict the behavior of nanosystems targeting macrophages and be applied to improve their characteristics. PBPK models have been developed to characterize nanoparticle biodistribution in organs of the reticuloendothelial system (RES) such as liver or spleen. Another controversial issue is the possible toxicity of non-degradable nanoparticles, which in many cases accumulate in high percentages in macrophage clearance organs such as the liver, spleen, and kidney.
Collapse
Affiliation(s)
- Clara I Colino
- Area of Pharmacy and Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Salamanca, Salamanca, Spain.,The Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - José M Lanao
- Area of Pharmacy and Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Salamanca, Salamanca, Spain.,The Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Carmen Gutierrez-Millan
- Area of Pharmacy and Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Salamanca, Salamanca, Spain.,The Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| |
Collapse
|
45
|
Preparation of Hyaluronic Acid-Based Nanoparticles for Macrophage-Targeted MicroRNA Delivery and Transfection. Methods Mol Biol 2020; 2118:99-110. [PMID: 32152973 DOI: 10.1007/978-1-0716-0319-2_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Skewing the macrophage polarity to achieve a favorable phenotype is a recently investigated therapeutic strategy in multiple disease/dysfunctional conditions such as inflammation, tumors, autoimmune disorders, and tissue repairs. However, delivering the therapeutic agent specifically to the macrophages has been a challenge in this field. Here, we describe the synthesis of hyaluronic acid (HA)-based nanoparticles for targeting CD44 receptors on the macrophages. The HA backbone is modified with cationic polyethyleneimine (PEI) for efficient encapsulation of microRNA into the self-assembling nanoparticles for targeted delivery to macrophages.
Collapse
|
46
|
Huang D, Deng M, Kuang S. Polymeric Carriers for Controlled Drug Delivery in Obesity Treatment. Trends Endocrinol Metab 2019; 30:974-989. [PMID: 31668904 PMCID: PMC6927547 DOI: 10.1016/j.tem.2019.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/10/2019] [Accepted: 09/12/2019] [Indexed: 02/08/2023]
Abstract
The global rise in the prevalence of obesity and affiliated metabolic syndrome poses a significant threat to human health. Various approaches, including bariatric surgery and pharmacotherapy, have been used in the clinical setting for obesity treatment; however, these conventional options remain ineffective and carry risks of adverse effects. Therefore, treatments with higher efficacy and specificity are urgently required. Emerging drug delivery systems use polymeric materials and chemical strategies to improve therapeutic efficacy and specificity through stabilization and spatiotemporally controlled release of antiobesity agents. In this review, we provide insights into current treatments for obesity with a focus on recent developments of polymeric carriers for enhanced antiobesity drug delivery.
Collapse
Affiliation(s)
- Di Huang
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA; Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, USA; Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA
| | - Meng Deng
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, USA; Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA; School of Materials Engineering, Purdue University, West Lafayette, IN, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA; Center for Cancer Research, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
47
|
Wu Y, Zhang Y, Dai L, Wang Q, Xue L, Su Z, Zhang C. An apoptotic body-biomimic liposome in situ upregulates anti-inflammatory macrophages for stabilization of atherosclerotic plaques. J Control Release 2019; 316:236-249. [DOI: 10.1016/j.jconrel.2019.10.043] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 10/19/2019] [Accepted: 10/22/2019] [Indexed: 01/31/2023]
|
48
|
Mog B, Asase C, Chaplin A, Gao H, Rajagopalan S, Maiseyeu A. Nano-Antagonist Alleviates Inflammation and Allows for MRI of Atherosclerosis. Nanotheranostics 2019; 3:342-355. [PMID: 31723548 PMCID: PMC6838142 DOI: 10.7150/ntno.37391] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/22/2019] [Indexed: 01/08/2023] Open
Abstract
Specific targeting of inflammation remains a challenge in many pathologies, because of the necessary balance between host tolerance and efficacious inflammation resolution. Here, we discovered a short, 4-mer peptide which possesses antagonist properties towards CC chemokine receptor 2 (CCR2), but only when displayed on the surface of lipid nanoparticles. According to BLAST analysis, this peptide motif is a common repeating fragment in a number of proteins of the CC chemokine family, which are key players in the inflammatory response. In this study, self-assembled, peptide-conjugated nanoparticles (CCTV) exhibited typical properties of CCR2 antagonism, including affinity to the CCR2 receptor, inhibition of chemotactic migration of primary monocytes, and prevention from CC chemokine ligand 2 (CCL2)-induced actin polymerization. Furthermore, CCTV ameliorated NFkB activation and downregulated the secondary, but not the primary, inflammatory response in cultured macrophages. When conjugated with gadolinium or europium cryptates, CCTV enabled targeted imaging (via magnetic resonance imaging and time-resolved fluorescence) of atherosclerosis, a chronic inflammatory condition in which the CCL2/CCR2 axis is highly dysfunctional. CCTV targeted CCR2hiLy6Chi inflammatory monocytes in blood and the atherosclerotic plaque, resulting in cell-specific transcriptional downregulation of key inflammatory genes. Finally, CCTV generated pronounced inflammasome inactivation, likely mediated through reactive oxygen species scavenging and downregulation of NLRP3. In summary, our work demonstrates for the first time that a short peptide fragment presented on a nanoparticle surface exhibit potent receptor-targeted antagonist effects, which are not seen with the peptide alone. Unlike commonly used cargo-carrying, vector-directed drug delivery vehicles, CCTV nanoparticles may act as therapeutics/theranostics themselves, particularly in inflammatory conditions with CCL2/CCR2 pathogenesis, including cardiovascular disease and cancer.
Collapse
Affiliation(s)
- Brian Mog
- Davis Heart and Lung Research Institute and the Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio, 420 West 12th Avenue, Columbus, OH 43210, USA
| | - Courteney Asase
- Cardiovascular Research Institute, Case Western Reserve University, School of Medicine, 10900 Euclid Ave, Cleveland, OH 44106, USA
| | - Alice Chaplin
- Cardiovascular Research Institute, Case Western Reserve University, School of Medicine, 10900 Euclid Ave, Cleveland, OH 44106, USA
| | - Huiyun Gao
- Cardiovascular Research Institute, Case Western Reserve University, School of Medicine, 10900 Euclid Ave, Cleveland, OH 44106, USA
| | - Sanjay Rajagopalan
- Davis Heart and Lung Research Institute and the Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio, 420 West 12th Avenue, Columbus, OH 43210, USA.,Cardiovascular Research Institute, Case Western Reserve University, School of Medicine, 10900 Euclid Ave, Cleveland, OH 44106, USA
| | - Andrei Maiseyeu
- Davis Heart and Lung Research Institute and the Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio, 420 West 12th Avenue, Columbus, OH 43210, USA.,Cardiovascular Research Institute, Case Western Reserve University, School of Medicine, 10900 Euclid Ave, Cleveland, OH 44106, USA
| |
Collapse
|
49
|
Li J, Cha R, Luo H, Hao W, Zhang Y, Jiang X. Nanomaterials for the theranostics of obesity. Biomaterials 2019; 223:119474. [PMID: 31536920 DOI: 10.1016/j.biomaterials.2019.119474] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/01/2019] [Accepted: 09/03/2019] [Indexed: 02/06/2023]
Abstract
As a chronic and lifelong disease, obesity not only significant impairs health but also dramatically shortens life span (at least 10 years). Obesity requires a life-long effort for the successful treatment because a number of abnormalities would appear in the development of obesity. Nanomaterials possess large specific surface area, strong absorptivity, and high bioavailability, especially the good targeting properties and adjustable release rate, which would benefit the diagnosis and treatment of obesity and obesity-related metabolic diseases. Herein, we discussed the therapy and diagnosis of obesity and obesity-related metabolic diseases by using nanomaterials. Therapies of obesity with nanomaterials include improving intestinal health and reducing energy intake, targeting and treating functional cell abnormalities, regulating redox homeostasis, and removing free lipoprotein in blood. Diagnosis of obesity-related metabolic diseases would benefit the therapy of these diseases. The development of nanomaterials will promote the diagnosis and therapy of obesity and obesity-related metabolic diseases.
Collapse
Affiliation(s)
- Juanjuan Li
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing, 100190, PR China
| | - Ruitao Cha
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing, 100190, PR China.
| | - Huize Luo
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing, 100190, PR China
| | - Wenshuai Hao
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing, 100190, PR China
| | - Yan Zhang
- Department of Cardiac Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 North Lishi Road, Xicheng District, Beijing, 100032, PR China.
| | - Xingyu Jiang
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing, 100190, PR China; Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong, 518055, PR China; University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, PR China.
| |
Collapse
|
50
|
Kevadiya BD, Ottemann BM, Thomas MB, Mukadam I, Nigam S, McMillan J, Gorantla S, Bronich TK, Edagwa B, Gendelman HE. Neurotheranostics as personalized medicines. Adv Drug Deliv Rev 2019; 148:252-289. [PMID: 30421721 PMCID: PMC6486471 DOI: 10.1016/j.addr.2018.10.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 12/16/2022]
Abstract
The discipline of neurotheranostics was forged to improve diagnostic and therapeutic clinical outcomes for neurological disorders. Research was facilitated, in largest measure, by the creation of pharmacologically effective multimodal pharmaceutical formulations. Deployment of neurotheranostic agents could revolutionize staging and improve nervous system disease therapeutic outcomes. However, obstacles in formulation design, drug loading and payload delivery still remain. These will certainly be aided by multidisciplinary basic research and clinical teams with pharmacology, nanotechnology, neuroscience and pharmaceutic expertise. When successful the end results will provide "optimal" therapeutic delivery platforms. The current report reviews an extensive body of knowledge of the natural history, epidemiology, pathogenesis and therapeutics of neurologic disease with an eye on how, when and under what circumstances neurotheranostics will soon be used as personalized medicines for a broad range of neurodegenerative, neuroinflammatory and neuroinfectious diseases.
Collapse
Affiliation(s)
- Bhavesh D Kevadiya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Brendan M Ottemann
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Midhun Ben Thomas
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Insiya Mukadam
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Saumya Nigam
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - JoEllyn McMillan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Tatiana K Bronich
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Benson Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA; Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|