1
|
Vergez I, Nekoua MP, Rubrecht C, Fasquelle F, Scuotto A, Alidjinou EK, Betbeder D, Hober D. Nanoparticles with a Lipid Core Can Enhance the Infection of Epithelial Cells with an Enterovirus. Intervirology 2024; 67:99-105. [PMID: 39068921 PMCID: PMC11524536 DOI: 10.1159/000539601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 05/30/2024] [Indexed: 07/30/2024] Open
Abstract
INTRODUCTION The effect of maltodextrin-based nanoparticles with an anionic phospholipid core (lipid-based nanoparticles [NPLs]) on the infection of a human tumoral cell line with poliovirus (PV) has been studied. METHODS NPLs were synthesized and associated with the PV type 1 Sabin strain, and the formulations were characterized. PV and PV/NPL formulations were inoculated to HEp-2 cells. RESULTS The surface charge and the diameter of PV/NPL formulation suggest that viral particles were adsorbed onto NPLs. When HEp-2 cells were inoculated with 1 tissue culture 50% infectious dose/mL PV associated with NPLs, the cytopathic effect appeared obvious; the levels of the infectious titer of culture supernatants and the proportion of VP1-positive cells were higher. The level of intracellular viral RNA extracted from HEp-2 cells inoculated with PV/NPL formulation was higher as well. CONCLUSION These results show that NPLs can enhance the infection with a virus and suggest that they might be used in virotherapy to increase the virus-mediated lysis of tumor cells.
Collapse
Affiliation(s)
- Inès Vergez
- Univ. Lille, CHU Lille, Laboratoire de Virologie URL3610, Lille, France
| | | | - Cédric Rubrecht
- Univ. Lille, CHU Lille, Laboratoire de Virologie URL3610, Lille, France
| | | | | | | | - Didier Betbeder
- Vaxinano SAS, Loos, France
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France
| | - Didier Hober
- Univ. Lille, CHU Lille, Laboratoire de Virologie URL3610, Lille, France
| |
Collapse
|
2
|
García-López L, Zamora-Vélez A, Vargas-Montes M, Sanchez-Arcila JC, Fasquelle F, Betbeder D, Gómez-Marín JE. Human T-cell activation with Toxoplasma gondii antigens loaded in maltodextrin nanoparticles. Life Sci Alliance 2024; 7:e202302486. [PMID: 38724195 PMCID: PMC11082450 DOI: 10.26508/lsa.202302486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024] Open
Abstract
Toxoplasmosis is the most prevalent parasitic zoonosis worldwide, causing ocular and neurological diseases. No vaccine has been approved for human use. We evaluated the response of peripheral blood mononuclear cells (PBMCs) to a novel construct of Toxoplasma gondii total antigen in maltodextrin nanoparticles (NP/TE) in individuals with varying infectious statuses (uninfected, chronic asymptomatic, or ocular toxoplasmosis). We analyzed the concentration of IFN-γ after NP/TE ex vivo stimulation using ELISA and the immunophenotypes of CD4+ and CD8+ cell populations using flow cytometry. In addition, serotyping of individuals with toxoplasmosis was performed by ELISA using GRA6-derived polypeptides. Low doses of NP/TE stimulation (0.9 μg NP/0.3 μg TE) achieved IFN-γ-specific production in previously exposed human PBMCs without significant differences in the infecting serotype. Increased IFN-γ expression in CD4+ effector memory cell subsets was found in patients with ocular toxoplasmosis with NP/TE but not with TE alone. This is the first study to show how T-cell subsets respond to ex vivo stimulation with a vaccine candidate for human toxoplasmosis, providing crucial insights for future clinical trials.
Collapse
Affiliation(s)
- Laura García-López
- GEPAMOL Group, Center for Biomedical Research CIBM, Faculty of Health Sciences, University of Quindío, Armenia, Colombia
- Department of Molecular and Cell Biology, University of California Merced, Merced, CA, USA
| | - Alejandro Zamora-Vélez
- GEPAMOL Group, Center for Biomedical Research CIBM, Faculty of Health Sciences, University of Quindío, Armenia, Colombia
| | - Mónica Vargas-Montes
- GEPAMOL Group, Center for Biomedical Research CIBM, Faculty of Health Sciences, University of Quindío, Armenia, Colombia
| | | | | | | | - Jorge Enrique Gómez-Marín
- GEPAMOL Group, Center for Biomedical Research CIBM, Faculty of Health Sciences, University of Quindío, Armenia, Colombia
| |
Collapse
|
3
|
Chen Q, Zheng Y, Chen X, Xing Y, Zhang J, Yan X, Zhang Q, Wu D, Chen Z. Bacteria Synergized with PD-1 Blockade Enhance Positive Feedback Loop of Cancer Cells-M1 Macrophages-T Cells in Glioma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308124. [PMID: 38520726 PMCID: PMC11132069 DOI: 10.1002/advs.202308124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/24/2024] [Indexed: 03/25/2024]
Abstract
Cancer immunotherapy is an attractive strategy because it stimulates immune cells to target malignant cells by regulating the intrinsic activity of the immune system. However, due to lacking many immunologic markers, it remains difficult to treat glioma, a representative "cold" tumor. Herein, to wake the "hot" tumor immunity of glioma, Porphyromonas gingivalis (Pg) is customized with a coating to create an immunogenic tumor microenvironment and further prove the effect in combination with the immune checkpoint agent anti-PD-1, exhibiting elevated therapeutic efficacy. This is accomplished not by enhancing the delivery of PD-1 blockade to enhance the effect of immunotherapy, but by introducing bacterial photothermal therapy to promote greater involvement of M1 cells in the immune response. After reaching glioma, the bacteria further target glioma cells and M2 phenotype macrophages selectively, enabling precise photothermal conversion for lysing tumor cells and M2 phenotype macrophages, which thereby enhances the positive feedback loop of cancer cells-M1 macrophages-T cells. Collectively, the bacteria synergized with PD-1 blockade strategy may be the key to overcoming the immunosuppressive glioma microenvironment and improving the outcome of immunotherapy toward glioma.
Collapse
Affiliation(s)
- Qi Chen
- Interdisciplinary Institute for Medical EngineeringFuzhou UniversityFuzhouFujian350108China
| | - Yuyi Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang ProvinceSchool of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouZhejiang310053China
| | - Xiaojie Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang ProvinceSchool of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouZhejiang310053China
| | - Yuan Xing
- Interdisciplinary Institute for Medical EngineeringFuzhou UniversityFuzhouFujian350108China
| | - Jiajie Zhang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang ProvinceSchool of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouZhejiang310053China
| | - Xinyi Yan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang ProvinceSchool of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouZhejiang310053China
| | - Qi Zhang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang ProvinceSchool of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouZhejiang310053China
| | - Di Wu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang ProvinceSchool of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouZhejiang310053China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang ProvinceSchool of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouZhejiang310053China
| |
Collapse
|
4
|
Gandhi S, Shastri DH, Shah J, Nair AB, Jacob S. Nasal Delivery to the Brain: Harnessing Nanoparticles for Effective Drug Transport. Pharmaceutics 2024; 16:481. [PMID: 38675142 PMCID: PMC11055100 DOI: 10.3390/pharmaceutics16040481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/21/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
The nose-to-brain drug-delivery system has emerged as a promising strategy to overcome the challenges associated with conventional drug administration for central nervous system disorders. This emerging field is driven by the anatomical advantages of the nasal route, enabling the direct transport of drugs from the nasal cavity to the brain, thereby circumventing the blood-brain barrier. This review highlights the significance of the anatomical features of the nasal cavity, emphasizing its high permeability and rich blood supply that facilitate rapid drug absorption and onset of action, rendering it a promising domain for neurological therapeutics. Exploring recent developments and innovations in different nanocarriers such as liposomes, polymeric nanoparticles, solid lipid nanoparticles, dendrimers, micelles, nanoemulsions, nanosuspensions, carbon nanotubes, mesoporous silica nanoparticles, and nanogels unveils their diverse functions in improving drug-delivery efficiency and targeting specificity within this system. To minimize the potential risk of nanoparticle-induced toxicity in the nasal mucosa, this article also delves into the latest advancements in the formulation strategies commonly involving surface modifications, incorporating cutting-edge materials, the adjustment of particle properties, and the development of novel formulations to improve drug stability, release kinetics, and targeting specificity. These approaches aim to enhance drug absorption while minimizing adverse effects. These strategies hold the potential to catalyze the advancement of safer and more efficient nose-to-brain drug-delivery systems, consequently revolutionizing treatments for neurological disorders. This review provides a valuable resource for researchers, clinicians, and pharmaceutical-industry professionals seeking to advance the development of effective and safe therapies for central nervous system disorders.
Collapse
Affiliation(s)
- Shivani Gandhi
- Department of Pharmaceutics, K. B. Institute of Pharmaceutical Education and Research, A Constituent College of Kadi Sarva Vishwavidyalaya, Sarva Vidyalaya Kelavani Mandal, Gh-6, Sector-23, Kadi Campus, Gandhinagar 382023, Gujarat, India;
| | - Divyesh H. Shastri
- Department of Pharmaceutics, K. B. Institute of Pharmaceutical Education and Research, A Constituent College of Kadi Sarva Vishwavidyalaya, Sarva Vidyalaya Kelavani Mandal, Gh-6, Sector-23, Kadi Campus, Gandhinagar 382023, Gujarat, India;
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India;
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates;
| |
Collapse
|
5
|
Yousfan A, Al Rahwanji MJ, Hanano A, Al-Obaidi H. A Comprehensive Study on Nanoparticle Drug Delivery to the Brain: Application of Machine Learning Techniques. Mol Pharm 2024; 21:333-345. [PMID: 38060692 PMCID: PMC10762658 DOI: 10.1021/acs.molpharmaceut.3c00880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 01/02/2024]
Abstract
The delivery of drugs to specific target tissues and cells in the brain poses a significant challenge in brain therapeutics, primarily due to limited understanding of how nanoparticle (NP) properties influence drug biodistribution and off-target organ accumulation. This study addresses the limitations of previous research by using various predictive models based on collection of large data sets of 403 data points incorporating both numerical and categorical features. Machine learning techniques and comprehensive literature data analysis were used to develop models for predicting NP delivery to the brain. Furthermore, the physicochemical properties of loaded drugs and NPs were analyzed through a systematic analysis of pharmacodynamic parameters such as plasma area under the curve. The analysis employed various linear models, with a particular emphasis on linear mixed-effect models (LMEMs) that demonstrated exceptional accuracy. The model was validated via the preparation and administration of two distinct NP formulations via the intranasal and intravenous routes. Among the various modeling approaches, LMEMs exhibited superior performance in capturing underlying patterns. Factors such as the release rate and molecular weight had a negative impact on brain targeting. The model also suggests a slightly positive impact on brain targeting when the drug is a P-glycoprotein substrate.
Collapse
Affiliation(s)
- Amal Yousfan
- The
School of Pharmacy, University of Reading, Reading RG6 6AD, U.K.
- Department
of Pharmaceutics and Pharmaceutical Technology, Pharmacy College, Al Andalus University for Medical Sciences, Tartus, AL Kadmous 00000, Syria
| | - Mhd Jawad Al Rahwanji
- Department
of Computer Science, Saarland University, Saarbrücken, Saarbrücken 66123, Germany
| | - Abdulsamie Hanano
- Department
of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), P.O. Box 6091, Damascus 00000, Syria
| | - Hisham Al-Obaidi
- The
School of Pharmacy, University of Reading, Reading RG6 6AD, U.K.
| |
Collapse
|
6
|
Fasquelle F, Scuotto A, Vreulx AC, Petit T, Charpentier T, Betbeder D. Nasal vaccination of six squirrel monkeys ( Saimiri sciureus): Improved immunization protocol against Toxoplasma gondii with a nanoparticle-born vaccine. Int J Parasitol Parasites Wildl 2023; 22:69-74. [PMID: 37720360 PMCID: PMC10500419 DOI: 10.1016/j.ijppaw.2023.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 09/19/2023]
Abstract
Toxoplasma gondii is an intracellular protozoon found worldwide, which completes its life cycle between felids (its definitive host) and other warm-blooded animals. While the infection rarely leads to severe complications in humans, many animal species are very susceptible to this infection, for example the squirrel monkey (Saimiri sciureus) which is the subject of this study. Toxoplasmosis is lethal for 80% of cases in this species, and fatal outbreaks are frequently reported in zoological parks. No efficient treatment exists, but a new vaccine prepared with maltodextrin nanoparticles containing killed T. gondii antigens has been tested recently in French zoos. The animals were immunized through heterologous administrations, with two nasal doses at one-month interval, followed by nasal/subcutaneous boosts thereafter. No death has been reported since the beginning of this vaccination campaign, but we felt the protocol could be simplified. Here, an improved and less-invasive immunization protocol was evaluated on 6 Saimiri sciureus in the French zoo La Palmyre. It consisted of two nasal administrations at one-month interval, followed by a nasal boost at 6 months. A specific memory T-cell immunity was observed by ELISPOT after two administrations in all the animals, without humoral responses. The results suggest that 2 nasal administrations induce a protective immune response against T. gondii infection and might be sufficient to induce a strong Tcell memory, further improving immunity.
Collapse
Affiliation(s)
| | | | | | - Thierry Petit
- Zoo de La Palmyre, 6 avenue de Royan, 17570, Les Mathes, France
| | | | | |
Collapse
|
7
|
Tang L, Wang Y, Gong X, Xiang J, Zhang Y, Xiang Q, Li J. Integrated transcriptome and metabolome analysis to investigate the mechanism of intranasal insulin treatment in a rat model of vascular dementia. Front Pharmacol 2023; 14:1182803. [PMID: 37256231 PMCID: PMC10225696 DOI: 10.3389/fphar.2023.1182803] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/04/2023] [Indexed: 06/01/2023] Open
Abstract
Introduction: Insulin has an effect on neurodegenerative diseases. However, the role and mechanism of insulin in vascular dementia (VD) and its underlying mechanism are unknown. In this study, we aimed to investigate the effects and mechanism of insulin on VD. Methods: Experimental rats were randomly assigned to control (CK), Sham, VD, and insulin (INS) + VD groups. Insulin was administered by intranasal spray. Cognitive function was evaluated using the Morris's water maze. Nissl's staining and immunohistochemical staining were used to assess morphological alterations. Apoptosis was evaluated using TUNEL-staining. Transcriptome and metabolome analyses were performed to identify differentially expressed genes (DEGs) and differentially expressed metabolites (DEMs), respectively. Results: Insulin significantly improved cognitive and memory functions in VD model rats (p < 0.05). Compared with the VD group, the insulin + VD group exhibited significantly reduced the number of Nissl's bodies numbers, apoptosis level, GFAP-positive cell numbers, apoptosis rates, and p-tau and tau levels in the hippocampal CA1 region (p < 0.05). Transcriptomic analysis found 1,257 and 938 DEGs in the VD vs. CK and insulin + VD vs. VD comparisons, respectively. The DEGs were mainly enriched in calcium signaling, cAMP signaling, axon guidance, and glutamatergic synapse signaling pathways. In addition, metabolomic analysis identified 1 and 14 DEMs between groups in negative and positive modes, respectively. KEGG pathway analysis indicated that DEGs and DEMs were mostly enriched in metabolic pathway. Conclusion: Insulin could effectively improve cognitive function in VD model rats by downregulating tau and p-tau expression, inhibiting astrocyte inflammation and neuron apoptosis, and regulating genes involved in calcium signaling, cAMP signaling, axon guidance, and glutamatergic synapse pathways, as well as metabolites involved in metabolic pathway.
Collapse
Affiliation(s)
- Liang Tang
- Department of Basic Biology, Changsha Medical College, Changsha, China
- Center for Neuroscience and Behavior, Changsha Medical College, Changsha, China
- The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical College, Changsha, China
| | - Yan Wang
- Department of Basic Biology, Changsha Medical College, Changsha, China
| | - Xujing Gong
- Department of Basic Biology, Changsha Medical College, Changsha, China
| | - Ju Xiang
- Department of Basic Biology, Changsha Medical College, Changsha, China
- Center for Neuroscience and Behavior, Changsha Medical College, Changsha, China
- The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical College, Changsha, China
- School of Computer and Communication Engineering, Changsha University of Science and Technology, Changsha, China
| | - Yan Zhang
- Department of Basic Biology, Changsha Medical College, Changsha, China
- The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical College, Changsha, China
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Qin Xiang
- Department of Basic Biology, Changsha Medical College, Changsha, China
- Center for Neuroscience and Behavior, Changsha Medical College, Changsha, China
- The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical College, Changsha, China
| | - Jianming Li
- Department of Basic Biology, Changsha Medical College, Changsha, China
- Center for Neuroscience and Behavior, Changsha Medical College, Changsha, China
- The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical College, Changsha, China
| |
Collapse
|
8
|
Ducournau C, Cantin P, Alerte V, Quintard B, Popelin-Wedlarski F, Wedlarski R, Ollivet-Courtois F, Ferri-Pisani Maltot J, Herkt C, Fasquelle F, Sannier M, Berthet M, Fretay V, Aubert D, Villena I, Betbeder D, Moiré N, Dimier-Poisson I. Vaccination of squirrel monkeys (Saimiri spp.) with nanoparticle based-Toxoplasma gondii antigens: new hope for captive susceptible species. Int J Parasitol 2023; 53:333-346. [PMID: 36997082 DOI: 10.1016/j.ijpara.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 03/31/2023]
Abstract
Squirrel monkeys (Saimiri spp.), new world primates from South America, are very susceptible to toxoplasmosis. Numerous outbreaks of fatal toxoplasmosis in zoos have been identified around the world, resulting in acute respiratory distress and sudden death. To date, preventive hygiene measures or available treatments are not able to significantly reduce this mortality in zoos. Therefore, vaccination seems to be the best long-term solution to control acute toxoplasmosis. Recently, we developed a nasal vaccine composed of total extract of soluble proteins of Toxoplasma gondii associated with muco-adhesive maltodextrin-nanoparticles. The vaccine, which generated specific cellular immune responses, demonstrated efficacy against toxoplasmosis in murine and ovine experimental models. In collaboration with six French zoos, our vaccine was used as a last resort in 48 squirrel monkeys to prevent toxoplasmosis. The full protocol of vaccination includes two intranasal sprays followed by combined intranasal and s.c. administration. No local or systemic side-effects were observed irrespective of the route of administration. Blood samples were collected to study systemic humoral and cellular immune responses up to 1 year after the last vaccination. Vaccination induced a strong and lasting systemic cellular immune response mediated by specific IFN-γ secretion by peripheral blood mononuclear cells. Since the introduction of vaccination, no deaths of squirrel monkeys due to T. gondii has been observed for more than 4 years suggesting the promising usage of our vaccine. Moreover, to explain the high susceptibility of naive squirrel monkeys to toxoplasmosis, their innate immune sensors were investigated. It was observed that Toll-like and Nod-like receptors appear to be functional following T. gondii recognition suggesting that the extreme susceptibility to toxoplasmosis may not be linked to innate detection of the parasite.
Collapse
|
9
|
Brinkhuizen C, Shapman D, Lebon A, Bénard M, Tardivel M, Dubuquoy L, Galas L, Carpentier R. Dipalmitoyl-phosphatidylserine-filled cationic maltodextrin nanoparticles exhibit enhanced efficacy for cell entry and intracellular protein delivery in phagocytic THP-1 cells. Biomol Concepts 2023; 14:bmc-2022-0029. [PMID: 37377352 DOI: 10.1515/bmc-2022-0029] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/08/2023] [Indexed: 06/29/2023] Open
Abstract
Vaccination through the upper respiratory tract is a promising strategy, and particulate antigens, such as antigens associated with nanoparticles, triggered a stronger immune response than the sole antigens. Cationic maltodextrin-based nanoparticles loaded with phosphatidylglycerol (NPPG) are efficient for intranasal vaccination but non-specific to trigger immune cells. Here we focused on phosphatidylserine (PS) receptors, specifically expressed by immune cells including macrophages, to improve nanoparticle targeting through an efferocytosis-like mechanism. Consequently, the lipids associated with NPPG have been substituted by PS to generate cationic maltodextrin-based nanoparticles with dipalmitoyl-phosphatidylserine (NPPS). Both NPPS and NPPG exhibited similar physical characteristics and intracellular distribution in THP-1 macrophages. NPPS cell entry was faster and higher (two times more) than NPPG. Surprisingly, competition of PS receptors with phospho-L-serine did not alter NPPS cell entry and annexin V did not preferentially interact with NPPS. Although the protein association is similar, NPPS delivered more proteins than NPPG in cells. On the contrary, the proportion of mobile nanoparticles (50%), the movement speed of nanoparticles (3 µm/5 min), and protein degradation kinetics in THP-1 were not affected by lipid substitution. Together, the results indicate that NPPS enter cells and deliver protein better than NPPG, suggesting that modification of the lipids of cationic maltodextrin-based nanoparticles may be a useful strategy to enhance nanoparticle efficacy for mucosal vaccination.
Collapse
Affiliation(s)
- Clément Brinkhuizen
- University Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Damien Shapman
- University of Rouen Normandy, INSERM US 51, CNRS UAR 2026, HeRacLeS-PRIMACEN, Normandie Université, 76000 Rouen, France
| | - Alexis Lebon
- University of Rouen Normandy, INSERM US 51, CNRS UAR 2026, HeRacLeS-PRIMACEN, Normandie Université, 76000 Rouen, France
| | - Magalie Bénard
- University of Rouen Normandy, INSERM US 51, CNRS UAR 2026, HeRacLeS-PRIMACEN, Normandie Université, 76000 Rouen, France
| | - Meryem Tardivel
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, F-59000 Lille, France
| | - Laurent Dubuquoy
- University Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Ludovic Galas
- University of Rouen Normandy, INSERM US 51, CNRS UAR 2026, HeRacLeS-PRIMACEN, Normandie Université, 76000 Rouen, France
| | - Rodolphe Carpentier
- University Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
| |
Collapse
|
10
|
Salah N, Dubuquoy L, Carpentier R, Betbeder D. Starch nanoparticles improve curcumin-induced production of anti-inflammatory cytokines in intestinal epithelial cells. Int J Pharm X 2022; 4:100114. [PMID: 35295898 PMCID: PMC8919232 DOI: 10.1016/j.ijpx.2022.100114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/21/2022] [Accepted: 03/05/2022] [Indexed: 01/13/2023] Open
Abstract
Inflammatory bowel disease (IBD), encompassing Crohn's disease and ulcerative colitis, is a long-term condition resulting from self-sustained intestinal inflammation. Curcumin (Cur), a powerful, naturally occurring antioxidant and anti-inflammatory polyphenol, has been investigated as a therapeutic for IBD, but its poor stability and low bioavailability limits its efficacy. We investigated the use of crosslinked starch nanocarrier (NPL) on the intracellular delivery and the anti-inflammatory efficiency of curcumin. Caco-2 epithelial cells were stimulated with TNFα for 24 h and the anti-inflammatory effects of NPL/Cur formulations were evaluated at the early stages of inflammation (4 h) or later, when fully established (24 h). NPL allowed the intracellular delivery of curcumin, which was enhanced in inflammatory cells, due to a modification of the endocytosis pathways. NPL/Cur decreased the secretion of pro-inflammatory cytokines IL-1β, IL-6 and IL-8 while increasing the anti-inflammatory cytokine IL-10. Finally, the inflammation-related opening of the tight junctions better allowed NPL/Cur to cross the epithelium by paracellular transport. This was confirmed by ex vivo analysis where NPL/Cur, administered to colonic explants from chemically-induced acute colitis mouse model, delivered curcumin deeper in the epithelium. To conclude, NPL/Cur formulation emphasizes the anti-inflammatory effects of curcumin and could constitute a therapeutic alternative in the management of IBD.
Collapse
Affiliation(s)
- Norhane Salah
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Laurent Dubuquoy
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Rodolphe Carpentier
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
- Corresponding author.
| | - Didier Betbeder
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
- Vaxinano, 59000 Lille, France
| |
Collapse
|
11
|
Teng Z, Meng LY, Yang JK, He Z, Chen XG, Liu Y. Bridging nanoplatform and vaccine delivery, a landscape of strategy to enhance nasal immunity. J Control Release 2022; 351:456-475. [PMID: 36174803 DOI: 10.1016/j.jconrel.2022.09.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/29/2022]
Abstract
Vaccination is an urgently needed and effective option to address epidemic, cancers, allergies, and other diseases. Nasal administration of vaccines offers many benefits over needle-based injection including high compliance and less risk of infection. Inactivated or attenuated vaccines as convention vaccine present potential risks of pathogenic virulence reversal, the focus of nasal vaccine development has shifted to the use of next-generation (subunit and nucleic acid) vaccines. However, subunit and nucleic acid vaccine intranasally have numerous challenges in development and utilization due to mucociliary clearance, mucosal epithelial tight junction, and enzyme/pH degradation. Nanoplatforms as ideal delivery systems, with the ability to enhance the retention, penetration, and uptake of nasal mucosa, shows great potential in improving immunogenic efficacy of nasal vaccine. This review provides an overview of delivery strategies for overcoming nasal barrier, including mucosal adhesion, mucus penetration, targeting of antigen presenting cells (APCs), enhancement of paracellular transportation. We discuss methods of enhancing antigen immunogenicity by nanoplatforms as immune-modulators or multi-antigen co-delivery. Meanwhile, we describe the application status and development prospect of nanoplatforms for nasal vaccine administration. Development of nanoplatforms for vaccine delivery via nasal route will facilitate large-scale and faster global vaccination, helping to address the threat of epidemics.
Collapse
Affiliation(s)
- Zhuang Teng
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Ling-Yang Meng
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Jian-Ke Yang
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Zheng He
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Xi-Guang Chen
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China; Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, PR China
| | - Ya Liu
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China.
| |
Collapse
|
12
|
Starch-based NP act as antigen delivery systems without immunomodulating effect. PLoS One 2022; 17:e0272234. [PMID: 35905121 PMCID: PMC9337643 DOI: 10.1371/journal.pone.0272234] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/14/2022] [Indexed: 11/19/2022] Open
Abstract
The nasal route of immunization has become a real alternative to injections. It is indeed described as more efficient at inducing immune protection, since it initiates both mucosal and systemic immunity, thus protecting against both the infection itself and the transmission of pathogens by the host. However, the use of immunomodulators should be limited since they induce inflammation. Here we investigated in vitro the mechanisms underlying the enhancement of antigen immunogenicity by starch nanoparticles (NPL) delivery systems in H292 epithelial cells, as well as the NPL’s immunomodulatory effect. We observed that NPL had no intrinsic immunomodulatory effect but enhanced the immunogenicity of an E. coli lysate (Ag) merely by increasing its intracellular delivery. Moreover, we demonstrated the importance of the NPL density on their efficiency by comparing reticulated (NPL) and non-reticulated particles (NPL·NR). These results show that an efficient delivery system is sufficient to induce a mucosal immune response without the use of immunomodulators.
Collapse
|
13
|
Mucosal vaccine delivery: A focus on the breakthrough of specific barriers. Acta Pharm Sin B 2022; 12:3456-3474. [PMID: 35818435 PMCID: PMC9259023 DOI: 10.1016/j.apsb.2022.07.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/03/2022] [Accepted: 06/30/2022] [Indexed: 12/30/2022] Open
Abstract
Mucosal vaccines can effectively induce an immune response at the mucosal site and form the first line of defense against microbial invasion. The induced mucosal immunity includes the proliferation of effector T cells and the production of IgG and IgA antibodies, thereby effectively blocking microbial infection and transmission. However, after a long period of development, the transformation of mucosal vaccines into clinical use is still relatively slow. To date, fewer than ten mucosal vaccines have been approved. Only seven mucosal vaccines against coronavirus disease 2019 (COVID-19) are under investigation in clinical trials. A representative vaccine is the adenovirus type-5 vectored COVID-19 vaccine (Ad5-nCoV) developed by Chen and coworkers, which is currently in phase III clinical trials. The reason for the limited progress of mucosal vaccines may be the complicated mucosal barriers. Therefore, this review summarizes the characteristics of mucosal barriers and highlights strategies to overcome these barriers for effective mucosal vaccine delivery.
Collapse
|
14
|
Koczerka M, Lantier I, Pinard A, Morillon M, Deperne J, Gal-Mor O, Grépinet O, Virlogeux-Payant I. In Vivo Tracking of Bacterial Colonization in Different Murine Models Using Bioluminescence: The Example of Salmonella. Methods Mol Biol 2022; 2427:235-248. [PMID: 35619038 DOI: 10.1007/978-1-0716-1971-1_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Applications of bioluminescence for the in vivo study of pathogenic microorganisms are numerous, ranging from the quantification of virulence gene expression to measuring the effect of antimicrobial molecules on the colonization of tissues and organs by the pathogen. Most studies are performed in mice, but recent works demonstrate that this technique is applicable to larger animals like fish, guinea pigs, ferrets, and chickens. Here, we describe the construction and the utilization of a constitutively luminescent strain of Salmonella Typhimurium to monitor in vivo and ex vivo the colonization of mice in the gastroenteritis, typhoid fever, and asymptomatic carriage models of Salmonella infection.
Collapse
Affiliation(s)
| | | | | | | | | | - Ohad Gal-Mor
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
- The Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | |
Collapse
|
15
|
Abstract
The blood-brain barrier (BBB) is the major barrier for brain drug delivery and limits the treatment options for central nervous system diseases. To circumvent the BBB, we introduced the focused ultrasound-mediated intranasal brain drug delivery (FUSIN) technique. FUSIN utilizes the nasal route for direct nose-to-brain drug administration, bypassing the BBB and minimizing systemic exposure. It also uses the transcranial application of ultrasound energy focused at a targeted brain region to induce microbubble cavitation, which enhances the transport of intranasally administered agents at the FUS-targeted brain location. FUSIN is unique in that it can achieve noninvasive and localized brain drug delivery with minimized systemic toxicity. The goal of this chapter is to provide a detailed protocol for FUSIN delivery to the mouse brain.
Collapse
Affiliation(s)
- Dezhuang Ye
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA
| | - Hong Chen
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA.
- Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
16
|
Garg Y, Kapoor DN, Sharma AK, Bhatia A. Drug Delivery Systems and Strategies to Overcome the Barriers of Brain. Curr Pharm Des 2021; 28:619-641. [PMID: 34951356 DOI: 10.2174/1381612828666211222163025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 11/27/2021] [Indexed: 11/22/2022]
Abstract
The transport of drugs to the central nervous system is the most challenging task for conventional drug delivery systems. Reduced permeability of drugs through the blood-brain barrier is a major hurdle in delivering drugs to the brain. Hence, various strategies for improving drug delivery through the blood-brain barrier are currently being explored. Novel drug delivery systems (NDDS) offer several advantages, including high chemical and biological stability, suitability for both hydrophobic and hydrophilic drugs, and can be administered through different routes. Furthermore, the conjugation of suitable ligands with these carriers tend to potentiate targeting to the endothelium of the brain and could facilitate the internalization of drugs through endocytosis. Further, the intranasal route has also shown potential, as a promising alternate route, for the delivery of drugs to the brain. This can deliver the drugs directly to the brain through the olfactory pathway. In recent years, several advancements have been made to target and overcome the barriers of the brain. This article deals with a detailed overview of the diverse strategies and delivery systems to overcome the barriers of the brain for effective delivery of drugs.
Collapse
Affiliation(s)
- Yogesh Garg
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, Pin. 151001. India
| | - Deepak N Kapoor
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, Pin. 173229. India
| | - Abhishek Kumar Sharma
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, Pin. 173229. India
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, Pin. 151001. India
| |
Collapse
|
17
|
Soleimanizadeh A, Dinter H, Schindowski K. Central Nervous System Delivery of Antibodies and Their Single-Domain Antibodies and Variable Fragment Derivatives with Focus on Intranasal Nose to Brain Administration. Antibodies (Basel) 2021; 10:antib10040047. [PMID: 34939999 PMCID: PMC8699001 DOI: 10.3390/antib10040047] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/10/2021] [Accepted: 11/25/2021] [Indexed: 02/06/2023] Open
Abstract
IgG antibodies are some of the most important biopharmaceutical molecules with a high market volume. In spite of the fact that clinical therapies with antibodies are broadly utilized in oncology, immunology and hematology, their delivery strategies and biodistribution need improvement, their limitations being due to their size and poor ability to penetrate into tissues. In view of their small size, there is a rising interest in derivatives, such as single-domain antibodies and single-chain variable fragments, for clinical diagnostic but also therapeutic applications. Smaller antibody formats combine several benefits for clinical applications and can be manufactured at reduced production costs compared with full-length IgGs. Moreover, such formats have a relevant potential for targeted drug delivery that directs drug cargo to a specific tissue or across the blood–brain barrier. In this review, we give an overview of the challenges for antibody drug delivery in general and focus on intranasal delivery to the central nervous system with antibody formats of different sizes.
Collapse
Affiliation(s)
- Arghavan Soleimanizadeh
- Institute of Applied Biotechnology, Biberach University of Applied Science, 88400 Biberach, Germany; (A.S.); (H.D.)
- Faculty of Medicine, University of Ulm, 89081 Ulm, Germany
| | - Heiko Dinter
- Institute of Applied Biotechnology, Biberach University of Applied Science, 88400 Biberach, Germany; (A.S.); (H.D.)
- Department of Pharmacy and Biochemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Katharina Schindowski
- Institute of Applied Biotechnology, Biberach University of Applied Science, 88400 Biberach, Germany; (A.S.); (H.D.)
- Correspondence:
| |
Collapse
|
18
|
Xu H, Cai L, Hufnagel S, Cui Z. Intranasal vaccine: Factors to consider in research and development. Int J Pharm 2021; 609:121180. [PMID: 34637935 DOI: 10.1016/j.ijpharm.2021.121180] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 01/01/2023]
Abstract
Most existing vaccines for human use are administered by needle-based injection. Administering vaccines needle-free intranasally has numerous advantages over by needle-based injection, but there are only a few intranasal vaccines that are currently approved for human use, and all of them are live attenuated influenza virus vaccines. Clearly, there are immunological as well as non-immunological challenges that prevent vaccine developers from choosing the intranasal route of administration. We reviewed current approved intranasal vaccines and pipelines and described the target of intranasal vaccines, i.e. nose and lymphoid tissues in the nasal cavity. We then analyzed factors unique to intranasal vaccines that need to be considered when researching and developing new intranasal vaccines. We concluded that while the choice of vaccine formulations, mucoadhesives, mucosal and epithelial permeation enhancers, and ligands that target M-cells are important, safe and effective intranasal mucosal vaccine adjuvants are needed to successfully develop an intranasal vaccine that is not based on live-attenuated viruses or bacteria. Moreover, more effective intranasal vaccine application devices that can efficiently target a vaccine to lymphoid tissues in the nasal cavity as well as preclinical animal models that can better predict intranasal vaccine performance in clinical trials are needed to increase the success rate of intranasal vaccines in clinical trials.
Collapse
Affiliation(s)
- Haiyue Xu
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, United States
| | - Lucy Cai
- University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Stephanie Hufnagel
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, United States
| | - Zhengrong Cui
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, United States.
| |
Collapse
|
19
|
Lim JW, Ahn YR, Park G, Kim HO, Haam S. Application of Nanomaterials as an Advanced Strategy for the Diagnosis, Prevention, and Treatment of Viral Diseases. Pharmaceutics 2021; 13:1570. [PMID: 34683863 PMCID: PMC8540357 DOI: 10.3390/pharmaceutics13101570] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/19/2021] [Accepted: 09/23/2021] [Indexed: 12/23/2022] Open
Abstract
The coronavirus disease (COVID-19) pandemic poses serious global health concerns with the continued emergence of new variants. The periodic outbreak of novel emerging and re-emerging infectious pathogens has elevated concerns and challenges for the future. To develop mitigation strategies against infectious diseases, nano-based approaches are being increasingly applied in diagnostic systems, prophylactic vaccines, and therapeutics. This review presents the properties of various nanoplatforms and discusses their role in the development of sensors, vectors, delivery agents, intrinsic immunostimulants, and viral inhibitors. Advanced nanomedical applications for infectious diseases have been highlighted. Moreover, physicochemical properties that confer physiological advantages and contribute to the control and inhibition of infectious diseases have been discussed. Safety concerns limit the commercial production and clinical use of these technologies in humans; however, overcoming these limitations may enable the use of nanomaterials to resolve current infection control issues via application of nanomaterials as a platform for the diagnosis, prevention, and treatment of viral diseases.
Collapse
Affiliation(s)
- Jong-Woo Lim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul 03722, Korea; (J.-W.L.); (G.P.)
| | - Yu-Rim Ahn
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Korea;
- Biohealth-machinery Convergence Engineering, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Korea
| | - Geunseon Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul 03722, Korea; (J.-W.L.); (G.P.)
| | - Hyun-Ouk Kim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Korea;
- Biohealth-machinery Convergence Engineering, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Korea
| | - Seungjoo Haam
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul 03722, Korea; (J.-W.L.); (G.P.)
| |
Collapse
|
20
|
Tammam SN, El Safy S, Ramadan S, Arjune S, Krakor E, Mathur S. Repurpose but also (nano)-reformulate! The potential role of nanomedicine in the battle against SARS-CoV2. J Control Release 2021; 337:258-284. [PMID: 34293319 PMCID: PMC8289726 DOI: 10.1016/j.jconrel.2021.07.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023]
Abstract
The coronavirus disease-19 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) has taken the world by surprise. To date, a worldwide approved treatment remains lacking and hence in the context of rapid viral spread and the growing need for rapid action, drug repurposing has emerged as one of the frontline strategies in the battle against SARS-CoV2. Repurposed drugs currently being evaluated against COVID-19 either tackle the replication and spread of SARS-CoV2 or they aim at controlling hyper-inflammation and the rampaged immune response in severe disease. In both cases, the target for such drugs resides in the lungs, at least during the period where treatment could still provide substantial clinical benefit to the patient. Yet, most of these drugs are administered systemically, questioning the percentage of administered drug that actually reaches the lung and as a consequence, the distribution of the remainder of the dose to off target sites. Inhalation therapy should allow higher concentrations of the drug in the lungs and lower concentrations systemically, hence providing a stronger, more localized action, with reduced adverse effects. Therefore, the nano-reformulation of the repurposed drugs for inhalation is a promising approach for targeted drug delivery to lungs. In this review, we critically analyze, what nanomedicine could and ought to do in the battle against SARS-CoV2. We start by a brief description of SARS-CoV2 structure and pathogenicity and move on to discuss the current limitations of repurposed antiviral and immune-modulating drugs that are being clinically investigated against COVID-19. This account focuses on how nanomedicine could address limitations of current therapeutics, enhancing the efficacy, specificity and safety of such drugs. With the appearance of new variants of SARS-CoV2 and the potential implication on the efficacy of vaccines and diagnostics, the presence of an effective therapeutic solution is inevitable and could be potentially achieved via nano-reformulation. The presence of an inhaled nano-platform capable of delivering antiviral or immunomodulatory drugs should be available as part of the repertoire in the fight against current and future outbreaks.
Collapse
Affiliation(s)
- Salma N Tammam
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, The German University in Cairo (GUC), 11835 Cairo, Egypt.
| | - Sara El Safy
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, The German University in Cairo (GUC), 11835 Cairo, Egypt
| | - Shahenda Ramadan
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, The German University in Cairo (GUC), 11835 Cairo, Egypt
| | - Sita Arjune
- Institute of Biochemistry, Department of Chemistry, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Eva Krakor
- Institute of Inorganic Chemistry, Department of Chemistry, , University of Cologne, Greinstraße 6, 50939 Cologne, Germany
| | - Sanjay Mathur
- Institute of Inorganic Chemistry, Department of Chemistry, , University of Cologne, Greinstraße 6, 50939 Cologne, Germany
| |
Collapse
|
21
|
Ducournau C, Moiré N, Carpentier R, Cantin P, Herkt C, Lantier I, Betbeder D, Dimier-Poisson I. Effective Nanoparticle-Based Nasal Vaccine Against Latent and Congenital Toxoplasmosis in Sheep. Front Immunol 2020; 11:2183. [PMID: 33013917 PMCID: PMC7509486 DOI: 10.3389/fimmu.2020.02183] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/10/2020] [Indexed: 01/19/2023] Open
Abstract
Toxoplasma gondii is a parasitic protozoan of worldwide distribution, able to infect all warm-blooded animals, but particularly sheep. Primary infection in pregnant sheep leads to millions of abortions and significant economic losses for the livestock industry. Moreover, infected animals constitute the main parasitic reservoir for humans. Therefore, the development of a One-health vaccine seems the best prevention strategy. Following earlier work, a vaccine constituted of total extract of Toxoplasma gondii proteins (TE) associated with maltodextrin nanoparticles (DGNP) was developed in rodents. In this study we evaluated the ability of this vaccine candidate to protect against latent and congenital toxoplasmosis in sheep. After two immunizations by either intranasal or intradermal route, DGNP/TE vaccine generated specific Th1-cellular immune response, mediated by APC-secretion of IFN-γ and IL-12. Secretion of IL-10 appeared to regulate this Th1 response for intradermally vaccinated sheep but was absent in intranasally-vaccinated animals. Finally, protection against latent toxoplasmosis and transplacental transmission were explored. Intranasal vaccination led to a marked decrease of brain cysts compared with the non-vaccinated group. This DGNP/TE vaccine administered intranasally conferred a high level of protection against latent toxoplasmosis and its transplacental transmission in sheep, highlighting the potential for development of such a vaccine for studies in other species.
Collapse
Affiliation(s)
| | | | - Rodolphe Carpentier
- INFINITE, Institute for Translational Research in Inflammation, University of Lille, Inserm, Lille, France
| | | | | | | | | | | |
Collapse
|
22
|
Fasquelle F, Carpentier R, Demouveaux B, Desseyn JL, Betbeder D. Importance of the Phospholipid Core for Mucin Hydrogel Penetration and Mucosal Cell Uptake of Maltodextrin Nanoparticles. ACS APPLIED BIO MATERIALS 2020; 3:5741-5749. [DOI: 10.1021/acsabm.0c00521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- François Fasquelle
- University of Lille, Inserm, CHU Lille, U1286—INFINITE—Institute for Translational Research in Inflammation, F-59000 Lille, France
- Vaxinano, 59000 Lille, France
| | - Rodolphe Carpentier
- University of Lille, Inserm, CHU Lille, U1286—INFINITE—Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Bastien Demouveaux
- University of Lille, Inserm, CHU Lille, U1286—INFINITE—Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Jean-Luc Desseyn
- University of Lille, Inserm, CHU Lille, U1286—INFINITE—Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Didier Betbeder
- University of Lille, Inserm, CHU Lille, U1286—INFINITE—Institute for Translational Research in Inflammation, F-59000 Lille, France
- Vaxinano, 59000 Lille, France
| |
Collapse
|
23
|
Carmona-Ribeiro AM, Pérez-Betancourt Y. Cationic Nanostructures for Vaccines Design. Biomimetics (Basel) 2020; 5:biomimetics5030032. [PMID: 32645946 PMCID: PMC7560170 DOI: 10.3390/biomimetics5030032] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/20/2022] Open
Abstract
Subunit vaccines rely on adjuvants carrying one or a few molecular antigens from the pathogen in order to guarantee an improved immune response. However, to be effective, the vaccine formulation usually consists of several components: an antigen carrier, the antigen, a stimulator of cellular immunity such as a Toll-like Receptors (TLRs) ligand, and a stimulator of humoral response such as an inflammasome activator. Most antigens are negatively charged and combine well with oppositely charged adjuvants. This explains the paramount importance of studying a variety of cationic supramolecular assemblies aiming at the optimal activity in vivo associated with adjuvant simplicity, positive charge, nanometric size, and colloidal stability. In this review, we discuss the use of several antigen/adjuvant cationic combinations. The discussion involves antigen assembled to 1) cationic lipids, 2) cationic polymers, 3) cationic lipid/polymer nanostructures, and 4) cationic polymer/biocompatible polymer nanostructures. Some of these cationic assemblies revealed good yet poorly explored perspectives as general adjuvants for vaccine design.
Collapse
|
24
|
Kortekaas Krohn I, Seys SF, Lund G, Jonckheere A, Dierckx de Casterlé I, Ceuppens JL, Steelant B, Hellings PW. Nasal epithelial barrier dysfunction increases sensitization and mast cell degranulation in the absence of allergic inflammation. Allergy 2020; 75:1155-1164. [PMID: 31769882 DOI: 10.1111/all.14132] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/21/2019] [Accepted: 10/07/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Increased epithelial permeability has been reported in allergic rhinitis, with histamine and type-2 inflammation being responsible for tight junction dysfunction. The impact of an epithelial barrier defect on allergic sensitization and mast cell (MC) degranulation remains speculative. METHODS Transepithelial passage of allergens was evaluated on primary human nasal epithelial cell cultures. Active sensitization was attempted by repeated intranasal ovalbumin (OVA) applications in Naïve mice. In a passive sensitization model, mice were injected with IgE to Dermatophagoides pteronyssinus (rDer p)2 and then exposed intranasally to the allergen. Chitosan was used to disrupt nasal epithelial integrity in vitro and in vivo. RESULTS Chitosan strongly reduced transepithelial electrical resistance and facilitated transepithelial allergen passage in cultured primary nasal epithelial cells. In vivo, intranasal chitosan affected occludin expression and facilitated allergen passage. After epithelial barrier disruption, intranasal OVA application induced higher OVA-specific IgG1 and total IgE in serum, and increased eosinophilia and interleukin-5 in bronchoalveolar lavage (BAL) compared to sham-OVA mice. Chitosan exposure, prior to rDer p2 allergen challenge in passively sensitized mice, resulted in increased β-hexosaminidase levels in serum and BAL compared to sham-rDer p2 mice. Intranasal treatment with the synthetic glucocorticoid fluticasone propionate prevented chitosan-induced barrier dysfunction, allergic sensitization, and MC degranulation. CONCLUSION Epithelial barrier dysfunction facilitates transepithelial allergen passage, allergic sensitization, and allergen-induced MC degranulation even in the absence of inflammatory environment. These results emphasize the crucial role of an intact epithelial barrier in prevention of allergy.
Collapse
Affiliation(s)
- Inge Kortekaas Krohn
- Department of Microbiology, Immunology and Transplantation Allergy and Clinical Immunology Research group KU Leuven Leuven Belgium
| | - Sven F. Seys
- Department of Microbiology, Immunology and Transplantation Allergy and Clinical Immunology Research group KU Leuven Leuven Belgium
- European Forum for Research and Education in Allergy and Airway Diseases (EUFOREA) Brussels Belgium
| | | | - Anne‐Charlotte Jonckheere
- Department of Microbiology, Immunology and Transplantation Allergy and Clinical Immunology Research group KU Leuven Leuven Belgium
| | - Isabelle Dierckx de Casterlé
- Department of Microbiology, Immunology and Transplantation Allergy and Clinical Immunology Research group KU Leuven Leuven Belgium
| | - Jan L. Ceuppens
- Department of Microbiology, Immunology and Transplantation Allergy and Clinical Immunology Research group KU Leuven Leuven Belgium
| | - Brecht Steelant
- Department of Microbiology, Immunology and Transplantation Allergy and Clinical Immunology Research group KU Leuven Leuven Belgium
| | - Peter W. Hellings
- Clinical Division of Otorhinolaryngology, Head and Neck Surgery University Hospitals Leuven Leuven Belgium
- Clinical Division of Otorhinolaryngology, Head and Neck Surgery Academic Medical Center Amsterdam The Netherlands
- Faculty of Medicine and Health Sciences University of Ghent Ghent Belgium
| |
Collapse
|
25
|
Quan Le M, Ye L, Bernasconi V, Carpentier R, Fasquelle F, Lycke N, Staeheli P, Betbeder D. Prevention of influenza virus infection and transmission by intranasal administration of a porous maltodextrin nanoparticle-formulated vaccine. Int J Pharm 2020; 582:119348. [PMID: 32325240 DOI: 10.1016/j.ijpharm.2020.119348] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/28/2020] [Accepted: 04/16/2020] [Indexed: 12/17/2022]
Abstract
Influenza vaccines administered intramuscularly exhibit poor mucosal immune responses in the respiratory tract which is the prime site of the infection. Intranasal vaccination is a potential route for vaccine delivery which has been demonstrated effective in inducing protective immune responses in both systemic and mucosal compartments. For this purpose, nanoparticles have been used as antigen delivery systems to improve antigen capture by immune cells. In this paper we demonstrate efficient delivery of viral antigens to airway epithelial cells, macrophages and dendritic cells, using polysaccharide nanoparticles (NPL), leading to a strong protection against influenza virus infection. A formulation combining split Udorn virus antigens with NPL and the mucosal protein adjuvant CTA1-DD was administered intranasally and resulted in an enhanced specific humoral immune response. Furthermore, NPL carrying split Udorn, with or without CTA1-DD, inhibited virus transmission from infected to uninfected naive mice. These results demonstrate that an intranasal delivery system combining NPL, mucosal adjuvant CTA1-DD and split virus antigens confers robust protection against influenza infection and inhibits virus transmission.
Collapse
Affiliation(s)
- Minh Quan Le
- Inserm, LIRIC - UMR 995, F-59 000 Lille, France; University of Lille, LIRIC - UMR 995, F-59 000 Lille, France; CHRU of Lille, LIRIC - UMR 995, F-59 000 Lille, France
| | - Liang Ye
- Institute of Virology, University Medical Center Freiburg, Freiburg, Germany
| | - Valentina Bernasconi
- Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Rodolphe Carpentier
- Inserm, LIRIC - UMR 995, F-59 000 Lille, France; University of Lille, LIRIC - UMR 995, F-59 000 Lille, France; CHRU of Lille, LIRIC - UMR 995, F-59 000 Lille, France.
| | - François Fasquelle
- Inserm, LIRIC - UMR 995, F-59 000 Lille, France; University of Lille, LIRIC - UMR 995, F-59 000 Lille, France; CHRU of Lille, LIRIC - UMR 995, F-59 000 Lille, France
| | - Nils Lycke
- Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Peter Staeheli
- Institute of Virology, University Medical Center Freiburg, Freiburg, Germany
| | - Didier Betbeder
- Inserm, LIRIC - UMR 995, F-59 000 Lille, France; University of Lille, LIRIC - UMR 995, F-59 000 Lille, France; CHRU of Lille, LIRIC - UMR 995, F-59 000 Lille, France; University of Artois, 62300 Lens, France
| |
Collapse
|
26
|
Yousfan A, Rubio N, Natouf AH, Daher A, Al-Kafry N, Venner K, Kafa H. Preparation and characterisation of PHT-loaded chitosan lecithin nanoparticles for intranasal drug delivery to the brain. RSC Adv 2020; 10:28992-29009. [PMID: 35520085 PMCID: PMC9055806 DOI: 10.1039/d0ra04890a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/20/2020] [Indexed: 12/18/2022] Open
Abstract
The use of nanoparticles (NPs) for intranasal (IN) drug delivery to the brain represents a hopeful strategy to enhance brain targeting of anti-epileptic drugs.
Collapse
Affiliation(s)
- Amal Yousfan
- Department of Pharmaceutics and Pharmaceutical Technology
- Pharmacy Collage
- Damascus University
- Syria
| | - Noelia Rubio
- Department of Chemistry and Materials
- Imperial College London
- London
- UK
| | - Abdul Hakim Natouf
- Department of Pharmaceutics and Pharmaceutical Technology
- Pharmacy Collage
- Damascus University
- Syria
| | - Aamal Daher
- Department of Molecular Biology and Biotechnology
- Atomic Energy Commission of Syria
- Damascus
- Syria
| | - Nedal Al-Kafry
- Department of Molecular Biology and Biotechnology
- Atomic Energy Commission of Syria
- Damascus
- Syria
| | - Kerrie Venner
- Institute of Neurology
- University College London
- London
- UK
| | - Houmam Kafa
- Department of Molecular Biology and Biotechnology
- Atomic Energy Commission of Syria
- Damascus
- Syria
| |
Collapse
|
27
|
Alshweiat A, Ambrus R, Csoka II. Intranasal Nanoparticulate Systems as Alternative Route of Drug Delivery. Curr Med Chem 2019; 26:6459-6492. [PMID: 31453778 DOI: 10.2174/0929867326666190827151741] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 06/25/2018] [Accepted: 12/11/2018] [Indexed: 12/18/2022]
Abstract
There is always a need for alternative and efficient methods of drug delivery. The nasal cavity can be considered as a non-invasive and efficient route of administration. It has been used for local, systemic, brain targeting, and vaccination delivery. Although many intranasal products are currently available on the market, the majority is used for local delivery with fewer products available for the other targets. As nanotechnology utilization in drug delivery has rapidly spread out, the nasal delivery has become attractive as a promising approach. Nanoparticulate systems facilitate drug transportation across the mucosal barrier, protect the drug from nasal enzyme degradation, enhance the delivery of vaccines to the lymphoid tissue of the nasal cavity with an adjuvant activity, and offer a way for peptide delivery into the brain and the systemic circulation, in addition to their potential for brain tumor treatment. This review article aims at discussing the potential benefit of the intranasal nanoparticulate systems, including nanosuspensions, lipid and surfactant, and polymer-based nanoparticles as regards productive intranasal delivery. The aim of this review is to focus on the topicalities of nanotechnology applications for intranasal delivery of local, systemic, brain, and vaccination purposes during the last decade, referring to the factors affecting delivery, regulatory aspects, and patient expectations. This review further identifies the benefits of applying the Quality by Design approaches (QbD) in product development. According to the reported studies on nanotechnology-based intranasal delivery, potential attention has been focused on brain targeting and vaccine delivery with promising outcomes. Despite the significant research effort in this field, nanoparticle-based products for intranasal delivery are not available. Thus, further efforts are required to promote the introduction of intranasal nanoparticulate products that can meet the requirements of regulatory affairs with high patient acceptance.
Collapse
Affiliation(s)
- Areen Alshweiat
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Hungary.,Faculty of Pharmaceutical Science, The Hashemite University, Zarqa, Jordan
| | - Rita Ambrus
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Hungary
| | - IIdikó Csoka
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Hungary
| |
Collapse
|
28
|
Lê MQ, Carpentier R, Lantier I, Ducournau C, Fasquelle F, Dimier-Poisson I, Betbeder D. Protein delivery by porous cationic maltodextrin-based nanoparticles into nasal mucosal cells: Comparison with cationic or anionic nanoparticles. Int J Pharm X 2019; 1:100001. [PMID: 31545856 PMCID: PMC6733295 DOI: 10.1016/j.ijpx.2018.100001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 11/29/2018] [Accepted: 12/06/2018] [Indexed: 12/21/2022] Open
Abstract
Different types of biodegradable nanoparticles (NPs) have been studied as delivery systems for proteins into nasal mucosal cells, especially for vaccine applications. Such a nanocarrier must have the ability to be loaded with proteins and to transport this payload into mucosal cells. However, comparative data on nanoparticles' capacity for protein loading, efficiency of subsequent endocytosis and the quantity of nanocarriers used are either lacking or contradictory, making comparisons and the choice of a best candidate difficult. Here we compared 5 types of nanoparticles with different surface charge (anionic or cationic) and various inner compositions as potential vectors: the NPL (cationic maltodextrin NP with an anionic lipid core), cationic and anionic PLGA (Poly Lactic co-Glycolic Acid) NP, and cationic and anionic liposomes. We first quantified the protein association efficiency and NPL associated the largest amount of ovalbumin, used as a model protein. In vitro, the delivery of fluorescently-labeled ovalbumin into mucosal cells (airway epithelial cells, dendritic cells and macrophages) was assessed by flow cytometry and revealed that the NPL delivered protein to the greatest extent in all 3 different cell lines. Taken together, these data underlined the potential of the porous and cationic maltodextrin-based NPL as efficient protein delivery systems to mucosal cells.
Collapse
Affiliation(s)
- Minh Quan Lê
- Inserm, LIRIC – UMR 995, F-59 000 Lille, France
- Univ Lille, LIRIC – UMR 995, F-59 045 Lille, France
- CHRU de Lille, LIRIC – UMR 995, F-59 000 Lille, France
| | - Rodolphe Carpentier
- Inserm, LIRIC – UMR 995, F-59 000 Lille, France
- Univ Lille, LIRIC – UMR 995, F-59 045 Lille, France
- CHRU de Lille, LIRIC – UMR 995, F-59 000 Lille, France
| | | | | | - François Fasquelle
- Inserm, LIRIC – UMR 995, F-59 000 Lille, France
- Univ Lille, LIRIC – UMR 995, F-59 045 Lille, France
- CHRU de Lille, LIRIC – UMR 995, F-59 000 Lille, France
| | | | - Didier Betbeder
- Inserm, LIRIC – UMR 995, F-59 000 Lille, France
- Univ Lille, LIRIC – UMR 995, F-59 045 Lille, France
- CHRU de Lille, LIRIC – UMR 995, F-59 000 Lille, France
- Université d’Artois, 62300 Lens, France
| |
Collapse
|
29
|
Li Y, Wu X, Zhu Q, Chen Z, Lu Y, Qi J, Wu W. Improving the hypoglycemic effect of insulin via the nasal administration of deep eutectic solvents. Int J Pharm 2019; 569:118584. [PMID: 31376466 DOI: 10.1016/j.ijpharm.2019.118584] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/30/2019] [Accepted: 07/30/2019] [Indexed: 02/06/2023]
Abstract
This study aimed to develop biocompatible deep eutectic solvents (DESs) as carriers for improving the nasal delivery of insulin. The DES was prepared from malic acid and choline chloride broadly used in foods, drugs, or cosmetics as biocompatible additives. The DES of choline chloride and malic acid (CM-DES) demonstrated lower melting point (-59.1 °C) and higher viscosity (120,000 cP) compared with hydrogels based on sodium carboxyl methyl cellulose (CMC-Na). The conformational structure of insulin does not change in CM-DES as characterized by circular dichroism. The in vitro results showed that CM-DES dissociated gradually but did not disintegrate immediately upon contact with water. CM-DES was able to improve the hypoglycemic effect of insulin significantly at different doses compared with hydrogels or solutions of insulin, which could be ascribed to facilitated penetration of insulin across the nasal epithelia by CM-DES. The hypoglycemic effect of CM-DES loading insulin at a dose of 25 IU/kg was similar to that of subcutaneous insulin at 1 IU/kg. In addition, no evident toxicity to nasal epithelia was observed after nasal administration to rats for seven consecutive days. In conclusion, CM-DES showed promising potential in enhancing the hypoglycemic effect of insulin via the nasal route.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Xiying Wu
- Shanghai Dermatology Hospital, Shanghai 200443, PR China
| | - Quangang Zhu
- Shanghai Dermatology Hospital, Shanghai 200443, PR China
| | - Zhongjian Chen
- Shanghai Dermatology Hospital, Shanghai 200443, PR China
| | - Yi Lu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, PR China; Shanghai Dermatology Hospital, Shanghai 200443, PR China
| | - Jianping Qi
- Shanghai Dermatology Hospital, Shanghai 200443, PR China; Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, PR China.
| | - Wei Wu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, PR China; Shanghai Dermatology Hospital, Shanghai 200443, PR China
| |
Collapse
|
30
|
Navarro-Torné A, Hanrahan F, Kerstiëns B, Aguar P, Matthiessen L. Public Health-Driven Research and Innovation for Next-Generation Influenza Vaccines, European Union. Emerg Infect Dis 2019; 25. [PMID: 30666948 PMCID: PMC6346458 DOI: 10.3201/eid2502.180359] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Influenza virus infections are a major public health threat. Vaccination is available, but unpredictable antigenic changes in circulating strains require annual modification of seasonal influenza vaccines. Vaccine effectiveness has proven limited, particularly in certain groups, such as the elderly. Moreover, preparedness for upcoming pandemics is challenging because we can predict neither the strain that will cause the next pandemic nor the severity of the pandemic. The European Union fosters research and innovation to develop novel vaccines that evoke broadly protective and long-lasting immune responses against both seasonal and pandemic influenza, underpinned by a political commitment to global public health.
Collapse
|
31
|
Salade L, Wauthoz N, Goole J, Amighi K. How to characterize a nasal product. The state of the art of in vitro and ex vivo specific methods. Int J Pharm 2019; 561:47-65. [PMID: 30822505 DOI: 10.1016/j.ijpharm.2019.02.026] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 12/13/2022]
Abstract
Nasal delivery offers many benefits over other conventional routes of delivery (e.g. oral or intravenous administration). Benefits include, among others, a fast onset of action, non-invasiveness and direct access to the central nervous system. The nasal cavity is not only limited to local application (e.g. rhinosinusitis) but can also provide direct access to other sites in the body (e.g. the central nervous system or systemic circulation). However, both the anatomy and the physiology of the nose impose their own limitations, such as a small volume for delivery or rapid mucociliary clearance. To meet nasal-specific criteria, the formulator has to complete a plethora of tests, in vitro and ex vivo, to assess the efficacy and tolerance of a new drug-delivery system. Moreover, depending on the desired therapeutic effect, the delivery of the drug should target a specific pathway that could potentially be achieved through a modified release of this drug. Therefore, this review focuses on specific techniques that should be performed when a nasal formulation is developed. The review covers both the tests recommended by regulatory agencies (e.g. the Food and Drug Administration) and other complementary experiments frequently performed in the field.
Collapse
Affiliation(s)
- Laurent Salade
- Laboratoire de Pharmacie Galénique et de Biopharmacie, Université libre de Bruxelles (ULB), Brussels, Belgium.
| | - Nathalie Wauthoz
- Laboratoire de Pharmacie Galénique et de Biopharmacie, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Jonathan Goole
- Laboratoire de Pharmacie Galénique et de Biopharmacie, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Karim Amighi
- Laboratoire de Pharmacie Galénique et de Biopharmacie, Université libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
32
|
Wang J, Hu X, Xiang D. Nanoparticle drug delivery systems: an excellent carrier for tumor peptide vaccines. Drug Deliv 2018; 25:1319-1327. [PMID: 29869539 PMCID: PMC6058474 DOI: 10.1080/10717544.2018.1477857] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/12/2018] [Accepted: 05/14/2018] [Indexed: 12/22/2022] Open
Abstract
In the past 40 years, the nanoparticle drug delivery system for tumor peptide vaccines has been widely studied which also reached a splendid result. Nanomaterial can enhance the targeting of vaccines, help vaccines enter the cells and trigger immune response by themselves. They also help in increasing cellular uptake, improving permeability and efficacy. Currently, several categories of nanopreparation, such as liposome, polymeric micelle, polymeric nanoparticle, gold nanoparticle and so on, are proved that they are appropriate for peptide vaccines. This review we discussed the possible mechanisms of nanomaterial's action on the regulation of immunological functions and several major applications of this advanced drug delivery system for tumor peptide vaccine.
Collapse
Affiliation(s)
- Jiemin Wang
- a Department of Pharmacy , Second Xiangya Hospital Central South University , Changsha , Hunan Province , China
- b Institute of Clinical Pharmacy Central South University , Changsha , Hunan Province , China
- c Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug , Changsha , Hunan Province , China
| | - Xiongbin Hu
- a Department of Pharmacy , Second Xiangya Hospital Central South University , Changsha , Hunan Province , China
- b Institute of Clinical Pharmacy Central South University , Changsha , Hunan Province , China
- c Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug , Changsha , Hunan Province , China
| | - Daxiong Xiang
- a Department of Pharmacy , Second Xiangya Hospital Central South University , Changsha , Hunan Province , China
- b Institute of Clinical Pharmacy Central South University , Changsha , Hunan Province , China
- c Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug , Changsha , Hunan Province , China
| |
Collapse
|
33
|
Ye D, Zhang X, Yue Y, Raliya R, Biswas P, Taylor S, Tai YC, Rubin JB, Liu Y, Chen H. Focused ultrasound combined with microbubble-mediated intranasal delivery of gold nanoclusters to the brain. J Control Release 2018; 286:145-153. [PMID: 30009893 PMCID: PMC6138562 DOI: 10.1016/j.jconrel.2018.07.020] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/05/2018] [Accepted: 07/11/2018] [Indexed: 12/27/2022]
Abstract
Focused ultrasound combined with microbubble-mediated intranasal delivery (FUSIN) is a new brain drug delivery technique. FUSIN utilizes the nasal route for direct nose-to-brain drug administration, thereby bypassing the blood-brain barrier (BBB) and minimizing systemic exposure. It also uses FUS-induced microbubble cavitation to enhance transport of intranasally (IN) administered agents to the FUS-targeted brain location. Previous studies have provided proof-of-concept data showing the feasibility of FUSIN to deliver dextran and the brain-derived neurotrophic factor to the caudate putamen of mouse brains. The objective of this study was to evaluate the biodistribution of IN administered gold nanoclusters (AuNCs) and assess the feasibility and short-term safety of FUSIN for the delivery of AuNCs to the brainstem. Three experiments were performed. First, the whole-body biodistribution of IN administered 64Cu-alloyed AuNCs (64Cu-AuNCs) was assessed using in vivo positron emission tomography/computed tomography (PET/CT) and verified with ex vivo gamma counting. Control mice were intravenously (IV) injected with the 64Cu-AuNCs. Second, 64Cu-AuNCs and Texas red-labeled AuNCs (TR-AuNCs) were used separately to evaluate FUSIN delivery outcome in the brain. 64Cu-AuNCs or TR-AuNCs were administered to mice through the nasal route, followed by FUS sonication at the brainstem in the presence of systemically injected microbubbles. The spatial distribution of 64Cu-AuNCs and TR-AuNCs were examined by autoradiography and fluorescence microscopy of ex vivo brain slices, respectively. Third, histological analysis was performed to evaluate any potential histological damage to the nose and brain after FUSIN treatment. The experimental results revealed that IN administration induced significantly lower 64Cu-AuNCs accumulation in the blood, lungs, liver, spleen, kidney, and heart compared with IV injection. FUSIN enhanced the delivery of 64Cu-AuNCs and TR-AuNCs at the FUS-targeted brain region compared with IN delivery alone. No histological-level tissue damage was detected in the nose, trigeminal nerve, and brain. These results suggest that FUSIN is a promising technique for noninvasive, spatially targeted, and safe delivery of nanoparticles to the brain with minimal systemic exposure.
Collapse
Affiliation(s)
- Dezhuang Ye
- Department of Mechanical Engineering and Material Science, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Xiaohui Zhang
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yimei Yue
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Ramesh Raliya
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Pratim Biswas
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Sara Taylor
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yuan-Chuan Tai
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joshua B Rubin
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yongjian Liu
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hong Chen
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA; Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, MO 63108, USA.
| |
Collapse
|
34
|
Bernasconi V, Bernocchi B, Ye L, Lê MQ, Omokanye A, Carpentier R, Schön K, Saelens X, Staeheli P, Betbeder D, Lycke N. Porous Nanoparticles With Self-Adjuvanting M2e-Fusion Protein and Recombinant Hemagglutinin Provide Strong and Broadly Protective Immunity Against Influenza Virus Infections. Front Immunol 2018; 9:2060. [PMID: 30271406 PMCID: PMC6146233 DOI: 10.3389/fimmu.2018.02060] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/21/2018] [Indexed: 12/28/2022] Open
Abstract
Due to the high risk of an outbreak of pandemic influenza, the development of a broadly protective universal influenza vaccine is highly warranted. The design of such a vaccine has attracted attention and much focus has been given to nanoparticle-based influenza vaccines which can be administered intranasally. This is particularly interesting since, contrary to injectable vaccines, mucosal vaccines elicit local IgA and lung resident T cell immunity, which have been found to correlate with stronger protection in experimental models of influenza virus infections. Also, studies in human volunteers have indicated that pre-existing CD4+ T cells correlate well to increased resistance against infection. We have previously developed a fusion protein with 3 copies of the ectodomain of matrix protein 2 (M2e), which is one of the most explored conserved influenza A virus antigens for a broadly protective vaccine known today. To improve the protective ability of the self-adjuvanting fusion protein, CTA1-3M2e-DD, we incorporated it into porous maltodextrin nanoparticles (NPLs). This proof-of-principle study demonstrates that the combined vaccine vector given intranasally enhanced immune protection against a live challenge infection and reduced the risk of virus transmission between immunized and unimmunized individuals. Most importantly, immune responses to NPLs that also contained recombinant hemagglutinin (HA) were strongly enhanced in a CTA1-enzyme dependent manner and we achieved broadly protective immunity against a lethal infection with heterosubtypic influenza virus. Immune protection was mediated by enhanced levels of lung resident CD4+ T cells as well as anti-HA and -M2e serum IgG and local IgA antibodies.
Collapse
Affiliation(s)
- Valentina Bernasconi
- Mucosal Immunobiology and Vaccine Center, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Beatrice Bernocchi
- Lille Inflammation Research International Center - U995, University of Lille, INSERM and CHU Lille, Lille, France
| | - Liang Ye
- Institute of Virology, University Medical Center Freiburg, Freiburg, Germany
| | - Minh Quan Lê
- Lille Inflammation Research International Center - U995, University of Lille, INSERM and CHU Lille, Lille, France
| | - Ajibola Omokanye
- Mucosal Immunobiology and Vaccine Center, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Rodolphe Carpentier
- Lille Inflammation Research International Center - U995, University of Lille, INSERM and CHU Lille, Lille, France
| | - Karin Schön
- Mucosal Immunobiology and Vaccine Center, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Xavier Saelens
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Peter Staeheli
- Institute of Virology, University Medical Center Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Didier Betbeder
- Lille Inflammation Research International Center - U995, University of Lille, INSERM and CHU Lille, Lille, France.,Faculté des Sciences du Sport, University of Artois, Arras, France
| | - Nils Lycke
- Mucosal Immunobiology and Vaccine Center, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
35
|
Le MQ, Carpentier R, Lantier I, Ducournau C, Dimier-Poisson I, Betbeder D. Residence time and uptake of porous and cationic maltodextrin-based nanoparticles in the nasal mucosa: Comparison with anionic and cationic nanoparticles. Int J Pharm 2018; 550:316-324. [PMID: 30171898 DOI: 10.1016/j.ijpharm.2018.08.054] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/23/2018] [Accepted: 08/28/2018] [Indexed: 12/20/2022]
Abstract
Different types of biodegradable nanoparticles (NP) have been studied as nasal mucosa cell delivery systems. These nanoparticles need to strongly interact with mucosa cells to deliver their payload. However, only a few simultaneous comparisons have been made and it is therefore difficult to determine the best candidate. Here we compared 5 types of nanoparticles with different surface charge (anionic or cationic) and various inner compositions as potential vectors: cationic and anionic liposomes, cationic and anionic PLGA (Poly Lactic co-Glycolic Acid) NP and porous and cationic maltodextrin NP (cationic surface with an anionic lipid core: NPL). We first quantified their nasal residence time after nasal administration in mice using in vivo live imaging and NPL showed the longest residence time. In vitro endocytosis on mucosal cells (airway epithelial cells, macrophages and dendritic cells) using labeled nanoparticles were performed by flow cytometry and confocal microscopy. Among the 5 nanoparticles, NPL were taken up to the greatest extent by the 3 different cell lines and the endocytosis mechanisms were characterized. Taken together, we observed that the nanoparticles' cationic surface charge is insufficient to improve mucosal residence time and cellular uptake and that the NPL are the best candidates to interact with airway mucosal cells.
Collapse
Affiliation(s)
- Minh Quan Le
- Inserm, LIRIC - UMR 995, F-59 000 Lille, France; Univ Lille, LIRIC - UMR 995, F-59 045 Lille, France; CHRU de Lille, LIRIC - UMR 995, F-59 000 Lille, France
| | - Rodolphe Carpentier
- Inserm, LIRIC - UMR 995, F-59 000 Lille, France; Univ Lille, LIRIC - UMR 995, F-59 045 Lille, France; CHRU de Lille, LIRIC - UMR 995, F-59 000 Lille, France.
| | | | | | | | - Didier Betbeder
- Inserm, LIRIC - UMR 995, F-59 000 Lille, France; Univ Lille, LIRIC - UMR 995, F-59 045 Lille, France; CHRU de Lille, LIRIC - UMR 995, F-59 000 Lille, France; Université d'Artois, 62300 Lens, France
| |
Collapse
|
36
|
Borisova T. Nervous System Injury in Response to Contact With Environmental, Engineered and Planetary Micro- and Nano-Sized Particles. Front Physiol 2018; 9:728. [PMID: 29997517 PMCID: PMC6028719 DOI: 10.3389/fphys.2018.00728] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/25/2018] [Indexed: 01/11/2023] Open
Abstract
Nerve cells take a special place among other cells in organisms because of their unique function mechanism. The plasma membrane of nerve cells from the one hand performs a classical barrier function, thereby being foremost targeted during contact with micro- and nano-sized particles, and from the other hand it is very intensively involved in nerve signal transmission, i.e., depolarization-induced calcium-dependent compound exocytosis realized via vesicle fusion following by their retrieval and calcium-independent permanent neurotransmitter turnover via plasma membrane neurotransmitter transporters that utilize Na+/K+ electrochemical gradient as a driving force. Worldwide traveling air pollution particulate matter is now considered as a possible trigger factor for the development of a variety of neuropathologies. Micro- and nano-sized particles can reach the central nervous system during inhalation avoiding the blood-brain barrier, thereby making synaptic neurotransmission extremely sensitive to their influence. Neurosafety of environmental, engineered and planetary particles is difficult to predict because they possess other features as compared to bulk materials from which the particles are composed of. The capability of the particles to absorb heavy metals and organic neurotoxic molecules from the environment, and moreover, spontaneously interact with proteins and lipids in organisms and form biomolecular corona can considerably change the particles' features. The absorption capability occasionally makes them worldwide traveling particulate carriers for delivery of environmental neurotoxic compounds to the brain. Discrepancy of the experimental data on neurotoxicity assessment of micro- and nano-sized particles can be associated with a variability of systems, in which neurotoxicity was analyzed and where protein components of the incubation media forming particle biocorona can significantly distort and even eliminate factual particle effects. Specific synaptic mechanisms potentially targeted by environmental, engineered and planetary particles, general principles of particle neurosafety and its failure were discussed. Particle neurotoxic potential depends on their composition, size, shape, surface properties, stability in organisms and environment, capability to absorb neurotoxic compounds, form dust and interrelate with different biomolecules. Changes in these parameters can break primary particle neurosafety.
Collapse
Affiliation(s)
- Tatiana Borisova
- Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kiev, Ukraine
| |
Collapse
|
37
|
Abstract
Most pathogens gain access to the human body and initiate systemic infections through mucosal sites. A large number of currently marketed licensed vaccines are parenterally administered; they generate strong systemic immunity but not mucosal immunity. Nasal vaccination is an appealing strategy for the induction of mucosal-specific immunity; however, its development is mostly challenged by several factors, such as inefficient antigen uptake, its rapid mucociliary clearance, size-restricted permeation across epithelial barriers and absence of safe human mucosal adjuvants. Therefore, a safer mucosal-adjuvanting strategy or efficient mucosal delivery platform is much warranted. This review summarizes challenges and the rationale for nasal vaccine development with a special focus on the use of nanoparticles based on polymers and lipids for mucosal vaccine delivery.
Collapse
|
38
|
Sen Gupta S, Ghosh M. Octacosanol educes physico-chemical attributes, release and bioavailability as modified nanocrystals. Eur J Pharm Biopharm 2017. [DOI: 10.1016/j.ejpb.2017.06.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Bernocchi B, Carpentier R, Betbeder D. Nasal nanovaccines. Int J Pharm 2017; 530:128-138. [PMID: 28698066 DOI: 10.1016/j.ijpharm.2017.07.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/03/2017] [Accepted: 07/04/2017] [Indexed: 01/08/2023]
Abstract
Nasal administration of vaccines is convenient for the potential stimulation of mucosal and systemic immune protection. Moreover the easy accessibility of the intranasal route renders it optimal for pandemic vaccination. Nanoparticles have been identified as ideal delivery systems and adjuvants for vaccine application. Heterogeneous protocols have been used for animal studies. This complicates the understanding of the formulation influence on the immune response and the comparison of the different nanoparticles approaches developed. Moreover anatomical and immunological differences between rodents and humans provide an additional hurdle in the rational development of nasal nanovaccines. This review will give a comprehensive expertise of the state of the art in nasal nanovaccines in animals and humans focusing on the nanomaterial used.
Collapse
Affiliation(s)
- B Bernocchi
- Inserm, LIRIC-UMR 995, F-59000 Lille, France; Université de Lille, LIRIC-UMR 995, F-59000 Lille, France; CHRU de Lille, LIRIC-UMR 995, F-59000 Lille, France
| | - R Carpentier
- Inserm, LIRIC-UMR 995, F-59000 Lille, France; Université de Lille, LIRIC-UMR 995, F-59000 Lille, France; CHRU de Lille, LIRIC-UMR 995, F-59000 Lille, France.
| | - D Betbeder
- Inserm, LIRIC-UMR 995, F-59000 Lille, France; Université de Lille, LIRIC-UMR 995, F-59000 Lille, France; CHRU de Lille, LIRIC-UMR 995, F-59000 Lille, France; University of Artois, 62000 Arras, France
| |
Collapse
|
40
|
Ochocinska MJ, Zlokovic BV, Searson PC, Crowder AT, Kraig RP, Ljubimova JY, Mainprize TG, Banks WA, Warren RQ, Kindzelski A, Timmer W, Liu CH. NIH workshop report on the trans-agency blood-brain interface workshop 2016: exploring key challenges and opportunities associated with the blood, brain and their interface. Fluids Barriers CNS 2017; 14:12. [PMID: 28457227 PMCID: PMC5410699 DOI: 10.1186/s12987-017-0061-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/08/2017] [Indexed: 01/01/2023] Open
Abstract
A trans-agency workshop on the blood–brain interface (BBI), sponsored by the National Heart, Lung and Blood Institute, the National Cancer Institute and the Combat Casualty Care Research Program at the Department of Defense, was conducted in Bethesda MD on June 7–8, 2016. The workshop was structured into four sessions: (1) blood sciences; (2) exosome therapeutics; (3) next generation in vitro blood–brain barrier (BBB) models; and (4) BBB delivery and targeting. The first day of the workshop focused on the physiology of the blood and neuro-vascular unit, blood or biofluid-based molecular markers, extracellular vesicles associated with brain injury, and how these entities can be employed to better evaluate injury states and/or deliver therapeutics. The second day of the workshop focused on technical advances in in vitro models, BBB manipulations and nanoparticle-based drug carrier designs, with the goal of improving drug delivery to the central nervous system. The presentations and discussions underscored the role of the BBI in brain injury, as well as the role of the BBB as both a limiting factor and a potential conduit for drug delivery to the brain. At the conclusion of the meeting, the participants discussed challenges and opportunities confronting BBI translational researchers. In particular, the participants recommended using BBI translational research to stimulate advances in diagnostics, as well as targeted delivery approaches for detection and therapy of both brain injury and disease.
Collapse
Affiliation(s)
- Margaret J Ochocinska
- National Heart, Lung, and Blood Institute, National Institutes of Health, 6701 Rockledge Dr., Room 9149, Bethesda, MD, 20892-7950, USA.
| | | | | | | | | | | | | | | | - Ronald Q Warren
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andrei Kindzelski
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - William Timmer
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christina H Liu
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
41
|
Ducournau C, Nguyen TT, Carpentier R, Lantier I, Germon S, Précausta F, Pisella PJ, Leroux H, Van Langendonck N, Betbeder D, Dimier-Poisson I. Synthetic parasites: a successful mucosal nanoparticle vaccine against Toxoplasma congenital infection in mice. Future Microbiol 2017; 12:393-405. [PMID: 28339296 DOI: 10.2217/fmb-2016-0146] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIM Development of protein vaccine to prevent congenital infection is a major public health priority. Our goal is the design of mucosal synthetic pathogen inducing protective immune responses against congenital toxoplasmosis. MATERIALS & METHODS Mice were immunized intranasally, establishing pregnancy and challenging orally. Placental immune response, congenital infection, pup growth, parasitic load rates were studied. RESULTS Pups born to vaccinated infected dams had significantly fewer brain cysts, no intraocular inflammation and normal growth. Protection was associated with a placental cellular Th1 response downregulated by IL-6 and correlated with persistence of vaccine for few hours in the nose before being totally eliminated. CONCLUSION Our vaccine conferred high protection against congenital toxoplasmosis. These results provide support for future studies of other congenital vaccine.
Collapse
Affiliation(s)
- Céline Ducournau
- Immunologie Parasitaire et Vaccinologie, Biothérapies Anti-Infectieuses, Université de Tours-INRA, UMR1282 Infectiologie et Santé Publique, UFR Pharmacie, F-37000 Tours, France
| | - Thi Tl Nguyen
- Immunologie Parasitaire et Vaccinologie, Biothérapies Anti-Infectieuses, Université de Tours-INRA, UMR1282 Infectiologie et Santé Publique, UFR Pharmacie, F-37000 Tours, France
| | - Rodolphe Carpentier
- Centre International de Recherche sur l'Inflammation de Lille LIRIC -UMR 995 Inserm/Université Lille 2/CHRU Lille. Innovation thérapeutique ciblant l'inflammation. Groupe Nanomédecine, Faculté de Médecine, F-59045 Lille Cedex, France.,Université d'Artois, rue du Temple, 62030 ARRAS, France
| | - Isabelle Lantier
- Laboratoire d'Expertise en Infection Animale, INRA-Université de Tours, UMR1282 Infectiologie et Santé Publique, F-37380 Nouzilly, France
| | - Stéphanie Germon
- Immunologie Parasitaire et Vaccinologie, Biothérapies Anti-Infectieuses, Université de Tours-INRA, UMR1282 Infectiologie et Santé Publique, UFR Pharmacie, F-37000 Tours, France
| | - Flavien Précausta
- Immunologie Parasitaire et Vaccinologie, Biothérapies Anti-Infectieuses, Université de Tours-INRA, UMR1282 Infectiologie et Santé Publique, UFR Pharmacie, F-37000 Tours, France
| | - Pierre-Jean Pisella
- Immunologie Parasitaire et Vaccinologie, Biothérapies Anti-Infectieuses, Université de Tours-INRA, UMR1282 Infectiologie et Santé Publique, UFR Pharmacie, F-37000 Tours, France
| | - Hervé Leroux
- Laboratoire d'Expertise en Infection Animale, INRA-Université de Tours, UMR1282 Infectiologie et Santé Publique, F-37380 Nouzilly, France
| | | | - Didier Betbeder
- Centre International de Recherche sur l'Inflammation de Lille LIRIC -UMR 995 Inserm/Université Lille 2/CHRU Lille. Innovation thérapeutique ciblant l'inflammation. Groupe Nanomédecine, Faculté de Médecine, F-59045 Lille Cedex, France.,Université d'Artois, rue du Temple, 62030 ARRAS, France
| | - Isabelle Dimier-Poisson
- Immunologie Parasitaire et Vaccinologie, Biothérapies Anti-Infectieuses, Université de Tours-INRA, UMR1282 Infectiologie et Santé Publique, UFR Pharmacie, F-37000 Tours, France
| |
Collapse
|