1
|
Çelik Tekeli M, Yalçın Y, Verdi H, Aktaş Y, Çelebi N. In vitro cellular uptake and insulin secretion studies on INS-1E cells of exendin-4-loaded self-nanoemulsifying drug delivery systems. Pharm Dev Technol 2024; 29:1101-1110. [PMID: 39474799 DOI: 10.1080/10837450.2024.2423823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/09/2024]
Abstract
Exendin-4 (ex-4) is a peptide molecule that regulates blood glucose levels without causing hypoglycemia by providing insulin secretion from beta cells in the pancreas. Self-nanoemulsifying drug delivery systems (SNEDDS) attract attention for oral administration of therapeutic peptide/proteins because they protect therapeutic peptide/proteins from the gastric environment, reduce changes due to food effects, are easy to prepare and scale-up. Ex-4 has no commercial form that can be administered orally. In this study, the cytotoxicity, cellular uptake, and insulin secretion of ex-4 and ex-4/chymostatin (chym) SNEDDS were investigated on INS-1E rat pancreatic beta cells. The effect of ex-4 and ex-4/chym SNEDDS on cell viability in INS-1E cells increased when the dilution ratio higher. Ex-4 and ex-4/chym SNEDDS increased insulin levels in 2.8 mM (low-dose) glucose-induced INS-1E cells 2.21-fold and 2.17-fold compared to control, respectively. Ex-4 and ex-4/chym SNEDDS increased insulin levels in 16.7 mM (high dose) glucose-induced INS-1E cells compared to control, respectively. In cellular uptake studies, coumarin-6 solution penetrated the apical membrane of INS-1E cells and remained in the cytoplasm, while coumarin-6 loaded SNEDDS were visualized in the nuclei of the cell. These findings will likely be useful in the development of new formulations for the oral administration of peptides/proteins.
Collapse
Affiliation(s)
- Merve Çelik Tekeli
- Department of Pharmaceutical Technology, Erciyes University Faculty of Pharmacy, Kayseri, Turkey
| | - Yaprak Yalçın
- Department of Medical Biology, Baskent University Faculty of Medicine, Ankara, Turkey
| | - Hasibe Verdi
- Department of Medical Biology, Baskent University Faculty of Medicine, Ankara, Turkey
| | - Yeşim Aktaş
- Department of Pharmaceutical Technology, Erciyes University Faculty of Pharmacy, Kayseri, Turkey
| | - Nevin Çelebi
- Department of Pharmaceutical Technology, Baskent University Faculty of Pharmacy, Ankara, Turkey
| |
Collapse
|
2
|
Reddiar SB, Xie Y, Abdallah M, Han S, Hu L, Feeney OM, Gracia G, Anshabo A, Lu Z, Farooq MA, Styles IK, Phillips ARJ, Windsor JA, Porter CJH, Cao E, Trevaskis NL. Intestinal Lymphatic Biology, Drug Delivery, and Therapeutics: Current Status and Future Directions. Pharmacol Rev 2024; 76:1326-1398. [PMID: 39179383 DOI: 10.1124/pharmrev.123.001159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/29/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024] Open
Abstract
Historically, the intestinal lymphatics were considered passive conduits for fluids, immune cells, dietary lipids, lipid soluble vitamins, and lipophilic drugs. Studies of intestinal lymphatic drug delivery in the late 20th century focused primarily on the drugs' physicochemical properties, especially high lipophilicity, that resulted in intestinal lymphatic transport. More recent discoveries have changed our traditional view by demonstrating that the lymphatics are active, plastic, and tissue-specific players in a range of biological and pathological processes, including within the intestine. These findings have, in turn, inspired exploration of lymph-specific therapies for a range of diseases, as well as the development of more sophisticated strategies to actively deliver drugs or vaccines to the intestinal lymph, including a range of nanotechnologies, lipid prodrugs, and lipid-conjugated materials that "hitchhike" onto lymphatic transport pathways. With the increasing development of novel therapeutics such as biologics, there has been interest in whether these therapeutics are absorbed and transported through intestinal lymph after oral administration. Here we review the current state of understanding of the anatomy and physiology of the gastrointestinal lymphatic system in health and disease, with a focus on aspects relevant to drug delivery. We summarize the current state-of-the-art approaches to deliver drugs and quantify their uptake into the intestinal lymphatic system. Finally, and excitingly, we discuss recent examples of significant pharmacokinetic and therapeutic benefits achieved via intestinal lymphatic drug delivery. We also propose approaches to advance the development and clinical application of intestinal lymphatic delivery strategies in the future. SIGNIFICANCE STATEMENT: This comprehensive review details the understanding of the anatomy and physiology of the intestinal lymphatic system in health and disease, with a focus on aspects relevant to drug delivery. It highlights current state-of-the-art approaches to deliver drugs to the intestinal lymphatics and the shift toward the use of these strategies to achieve pharmacokinetic and therapeutic benefits for patients.
Collapse
Affiliation(s)
- Sanjeevini Babu Reddiar
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Yining Xie
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Mohammad Abdallah
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Sifei Han
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Luojuan Hu
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Orlagh M Feeney
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Gracia Gracia
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Abel Anshabo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Zijun Lu
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Muhammad Asim Farooq
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Ian K Styles
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Anthony R J Phillips
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - John A Windsor
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Christopher J H Porter
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Enyuan Cao
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Natalie L Trevaskis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| |
Collapse
|
3
|
Verma J, Dahiya S. Nanomaterials for diabetes: diagnosis, detection and delivery. NANOTECHNOLOGY 2024; 35:392001. [PMID: 38990067 DOI: 10.1088/1361-6528/ad5db5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
537 million people worldwide suffer from diabetes mellitus, a problem of glucose management that is related to a number of major health risks, including cardiovascular diseases. There is a need for new, efficient formulations of diabetic medications to address this condition and its related consequences because existing treatments have a number of drawbacks and limits. This encouraged the development of treatment plans to get around some of these restrictions, like low therapeutic drug bioavailability or patients' disobedience to existing therapies. Approaches based on nanotechnology have a lot of promise to enhance the treatment of diabetic patients. In order to manage blood glucose, this review article highlights recent developments and explores the potential applications of different materials (polymeric, ceramic, dendrimers, etc.) as nanocarriers for the delivery of insulin and other antidiabetic medications. Using an injectable and acid-degradable polymeric network produced by the electrostatic interaction of oppositely charged dextran nanoparticles loaded with insulin and glucose-specific enzymes, we reviewed a glucose-mediated release approach for the self-regulated delivery of insulin, in which, after a degradable nano-network was subcutaneously injected into type 1 diabetic mice,in vivoexperiments confirmed that these formulations improved glucose management. In addition, a discussion of silica-based nanocarriers, their potential for treating diabetes and controlling blood glucose levels, and an explanation of the role of dendrimers in diabetes treatment have been covered. This is done by utilizing the properties of silica nanoparticles, such as their tuneable particle and pore size, surface chemistry, and biocompatibility. The article summarized the significance of nanomaterials and their uses in the diagnosis and treatment of diabetes overall, illuminating the field's potential and outlining its prospects for the future.
Collapse
Affiliation(s)
- Jaya Verma
- Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, People's Republic of China
| | - Shakti Dahiya
- Department of Surgery, Divison of Pediatric General and Thoracic Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15244, United States of America
| |
Collapse
|
4
|
Cho H, Huh KM, Cho HJ, Kim B, Shim MS, Cho YY, Lee JY, Lee HS, Kwon YJ, Kang HC. Beyond nanoparticle-based oral drug delivery: transporter-mediated absorption and disease targeting. Biomater Sci 2024; 12:3045-3067. [PMID: 38712883 DOI: 10.1039/d4bm00313f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Various strategies at the microscale/nanoscale have been developed to improve oral absorption of therapeutics. Among them, gastrointestinal (GI)-transporter/receptor-mediated nanosized drug delivery systems (NDDSs) have drawn attention due to their many benefits, such as improved water solubility, improved chemical/physical stability, improved oral absorption, and improved targetability of their payloads. Their therapeutic potential in disease animal models (e.g., solid tumors, virus-infected lungs, metastasis, diabetes, and so on) has been investigated, and could be expanded to disease targeting after systemic/lymphatic circulation, although the detailed paths and mechanisms of endocytosis, endosomal escape, intracellular trafficking, and exocytosis through the epithelial cell lining in the GI tract are still unclear. Thus, this review summarizes and discusses potential GI transporters/receptors, their absorption and distribution, in vivo studies, and potential sequential targeting (e.g., oral absorption and disease targeting in organs/tissues).
Collapse
Affiliation(s)
- Hana Cho
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
| | - Kang Moo Huh
- Department of Polymer Science and Engineering & Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyun Ji Cho
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
| | - Bogeon Kim
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
| | - Min Suk Shim
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Yong-Yeon Cho
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
- Regulated Cell Death (RCD) Control Material Research Institute, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Joo Young Lee
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
- Regulated Cell Death (RCD) Control Material Research Institute, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Hye Suk Lee
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
- Regulated Cell Death (RCD) Control Material Research Institute, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Young Jik Kwon
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA
| | - Han Chang Kang
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
- Regulated Cell Death (RCD) Control Material Research Institute, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| |
Collapse
|
5
|
Gong B, Yao Z, Zhou C, Wang W, Sun L, Han J. Glucagon-like peptide-1 analogs: Miracle drugs are blooming? Eur J Med Chem 2024; 269:116342. [PMID: 38531211 DOI: 10.1016/j.ejmech.2024.116342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024]
Abstract
Glucagon-like peptide-1 (GLP-1), secreted by L cells in the small intestine, assumes a central role in managing type 2 diabetes mellitus (T2DM) and obesity. Its influence on insulin secretion and gastric emptying positions it as a therapeutic linchpin. However, the limited applicability of native GLP-1 stems from its short half-life, primarily due to glomerular filtration and the inactivating effect of dipeptidyl peptidase-IV (DPP-IV). To address this, various structural modification strategies have been developed to extend GLP-1's half-life. Despite the commendable efficacy displayed by current GLP-1 receptor agonists, inherent limitations persist. A paradigm shift emerges with the advent of unimolecular multi-agonists, such as the recently introduced tirzepatide, wherein GLP-1 is ingeniously combined with other gastrointestinal hormones. This novel approach has captured the spotlight within the diabetes and obesity research community. This review summarizes the physiological functions of GLP-1, systematically explores diverse structural modifications, delves into the realm of unimolecular multi-agonists, and provides a nuanced portrayal of the developmental prospects that lie ahead for GLP-1 analogs.
Collapse
Affiliation(s)
- Binbin Gong
- College of Medicine, Jiaxing University, Jiaxing, 314001, China; College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310000, China
| | - Zhihong Yao
- College of Medicine, Jiaxing University, Jiaxing, 314001, China; College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310000, China
| | - Chenxu Zhou
- College of Medicine, Jiaxing University, Jiaxing, 314001, China
| | - Wenxi Wang
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310000, China
| | - Lidan Sun
- College of Medicine, Jiaxing University, Jiaxing, 314001, China.
| | - Jing Han
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| |
Collapse
|
6
|
Azizian H, Farhadi Z, Bader M, Alizadeh Ghalenoei J, Ghafari MA, Mahmoodzadeh S. GPER activation attenuates cardiac dysfunction by upregulating the SIRT1/3-AMPK-UCP2 pathway in postmenopausal diabetic rats. PLoS One 2023; 18:e0293630. [PMID: 38134189 PMCID: PMC10745199 DOI: 10.1371/journal.pone.0293630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/16/2023] [Indexed: 12/24/2023] Open
Abstract
Postmenopausal diabetic women are at higher risk to develop cardiovascular diseases (CVD) compared with nondiabetic women. Alterations in cardiac cellular metabolism caused by changes in sirtuins are one of the main causes of CVD in postmenopausal diabetic women. Several studies have demonstrated the beneficial actions of the G protein-coupled estrogen receptor (GPER) in postmenopausal diabetic CVD. However, the molecular mechanisms by which GPER has a cardioprotective effect are still not well understood. In this study, we used an ovariectomized (OVX) type-two diabetic (T2D) rat model induced by high-fat diet/streptozotocin to investigate the effect of G-1 (GPER-agonist) on sirtuins, and their downstream pathways involved in regulation of cardiac metabolism and function. Animals were divided into five groups: Sham-Control, T2D, OVX+T2D, OVX+T2D+Vehicle, and OVX+T2D+G-1. G-1 was administrated for six weeks. At the end, hemodynamic factors were measured, and protein levels of sirtuins, AMP-activated protein kinase (AMPK), and uncoupling protein 2 (UCP2) were determined by Western blot analysis. In addition, cardiac levels of oxidative stress biomarkers were measured. The findings showed that T2D led to left ventricular dysfunction and signs of oxidative stress in the myocardium, which were accompanied by decreased protein levels of Sirt1/2/3/6, p-AMPK, and UCP2 in the heart. Moreover, the induction of the menopausal state exacerbated these changes. In contrast, treatment with G-1 ameliorated the hemodynamic changes associated with ovariectomy by increasing Sirt1/3, p-AMPK, UCP2, and improving oxidative status. The results provide evidence of the cardioprotective effects of GPER operating through Sirt1/3, p-AMPK, and UCP2, thereby improving cardiac function. Our results suggest that increasing Sirt1/3 levels may offer new therapeutic approaches for postmenopausal diabetic CVD.
Collapse
Affiliation(s)
- Hossein Azizian
- Yazd Neuroendocrine Research Center, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Zeinab Farhadi
- Yazd Neuroendocrine Research Center, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu Berlin, Berlin, Germany
- University of Lübeck, Institute for Biology, Lübeck, Germany
| | - Jalil Alizadeh Ghalenoei
- Yazd Neuroendocrine Research Center, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Mohammad Amin Ghafari
- Yazd Neuroendocrine Research Center, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Shokoufeh Mahmoodzadeh
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| |
Collapse
|
7
|
Wang Y, Chen L, Wang Y, Wang X, Qian D, Yan J, Sun Z, Cui P, Yu L, Wu J, He Z. Marine biomaterials in biomedical nano/micro-systems. J Nanobiotechnology 2023; 21:408. [PMID: 37926815 PMCID: PMC10626837 DOI: 10.1186/s12951-023-02112-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/15/2023] [Indexed: 11/07/2023] Open
Abstract
Marine resources in unique marine environments provide abundant, cost-effective natural biomaterials with distinct structures, compositions, and biological activities compared to terrestrial species. These marine-derived raw materials, including polysaccharides, natural protein components, fatty acids, and marine minerals, etc., have shown great potential in preparing, stabilizing, or modifying multifunctional nano-/micro-systems and are widely applied in drug delivery, theragnostic, tissue engineering, etc. This review provides a comprehensive summary of the most current marine biomaterial-based nano-/micro-systems developed over the past three years, primarily focusing on therapeutic delivery studies and highlighting their potential to cure a variety of diseases. Specifically, we first provided a detailed introduction to the physicochemical characteristics and biological activities of natural marine biocomponents in their raw state. Furthermore, the assembly processes, potential functionalities of each building block, and a thorough evaluation of the pharmacokinetics and pharmacodynamics of advanced marine biomaterial-based systems and their effects on molecular pathophysiological processes were fully elucidated. Finally, a list of unresolved issues and pivotal challenges of marine-derived biomaterials applications, such as standardized distinction of raw materials, long-term biosafety in vivo, the feasibility of scale-up, etc., was presented. This review is expected to serve as a roadmap for fundamental research and facilitate the rational design of marine biomaterials for diverse emerging applications.
Collapse
Affiliation(s)
- Yanan Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266100, China
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China
| | - Long Chen
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, 55000, Guizhou, China
| | - Yuanzheng Wang
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, 55000, Guizhou, China.
| | - Xinyuan Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266100, China
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China
| | - Deyao Qian
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266100, China
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China
| | - Jiahui Yan
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266100, China
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China
| | - Zeyu Sun
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, 55000, Guizhou, China
| | - Pengfei Cui
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266100, China.
| | - Liangmin Yu
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266100, China
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China
| | - Jun Wu
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, 999077, China.
| | - Zhiyu He
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266100, China.
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China.
| |
Collapse
|
8
|
Zang W, Gao D, Yu M, Long M, Zhang Z, Ji T. Oral Delivery of Gemcitabine-Loaded Glycocholic Acid-Modified Micelles for Cancer Therapy. ACS NANO 2023; 17:18074-18088. [PMID: 37717223 PMCID: PMC10540784 DOI: 10.1021/acsnano.3c04793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
The clinical utility of gemcitabine, an antimetabolite antineoplastic agent applied in various chemotherapy treatments, is limited due to the required intravenous injection. Although chemical structure modifications of gemcitabine result in enhanced oral bioavailability, these modifications compromise complex synthetic routes and cause unexpected side effects. In this study, gemcitabine-loaded glycocholic acid-modified micelles (Gem-PPG) were prepared for enhanced oral chemotherapy. The in vitro transport pathway experiments revealed that intact Gem-PPG were transported across the intestinal epithelial monolayer via an apical sodium-dependent bile acid transporter (ASBT)-mediated pathway. In mice, the pharmacokinetic analyses demonstrated that the oral bioavailability of Gem-PPG approached 81%, compared to less than 20% for unmodified micelles. In addition, the antitumor activity of oral Gem-PPG (30 mg/kg, BIW) was superior to that of free drug injection (60 mg/kg, BIW) in the xenograft model. Moreover, the assessments of hematology, blood chemistry, and histology all indicated the hypotoxicity profile of the drug-loaded micelles.
Collapse
Affiliation(s)
- Wenqing Zang
- Department
of Pathology, Ninth People’s Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, China
| | - Duo Gao
- State
Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Miaorong Yu
- State
Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Manmei Long
- Department
of Pathology, Ninth People’s Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, China
| | - Zhuan Zhang
- State
Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianhai Ji
- Department
of Pathology, Ninth People’s Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, China
| |
Collapse
|
9
|
Pratap-Singh A, Guo Y, Baldelli A, Singh A. Concept for a Unidirectional Release Mucoadhesive Buccal Tablet for Oral Delivery of Antidiabetic Peptide Drugs Such as Insulin, Glucagon-like Peptide 1 (GLP-1), and their Analogs. Pharmaceutics 2023; 15:2265. [PMID: 37765234 PMCID: PMC10534625 DOI: 10.3390/pharmaceutics15092265] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 09/29/2023] Open
Abstract
Injectable peptides such as insulin, glucagon-like peptide 1 (GLP-1), and their agonists are being increasingly used for the treatment of diabetes. Currently, the most common route of administration is injection, which is linked to patient discomfort as well as being subjected to refrigerated storage and the requirement for efficient supply chain logistics. Buccal and sublingual routes are recognized as valid alternatives due to their high accessibility and easy administration. However, there can be several challenges, such as peptide selection, drug encapsulation, and delivery system design, which are linked to the enhancement of drug efficacy and efficiency. By using hydrophobic polymers that do not dissolve in saliva, and by using neutral or positively charged nanoparticles that show better adhesion to the negative charges generated by the sialic acid in the mucus, researchers have attempted to improve drug efficiency and efficacy in buccal delivery. Furthermore, unidirectional films and tablets seem to show the highest bioavailability as compared to sprays and other buccal delivery vehicles. This advantageous attribute can be attributed to their capability to mitigate the impact of saliva and inadvertent gastrointestinal enzymatic digestion, thereby minimizing drug loss. This is especially pertinent as these formulations ensure a more directed drug delivery trajectory, leading to heightened therapeutic outcomes. This communication describes the current state of the art with respect to the creation of nanoparticles containing peptides such as insulin, glucagon-like peptide 1 (GLP-1), and their agonists, and theorizes the production of mucoadhesive unidirectional release buccal tablets or films. Such an approach is more patient-friendly and can improve the lives of millions of diabetics around the world; in addition, these shelf-stable formulations ena a more environmentally friendly and sustainable supply chain network.
Collapse
Affiliation(s)
- Anubhav Pratap-Singh
- Food, Nutrition, and Health Program, Faculty of Land & Food Systems, The University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Yigong Guo
- Food, Nutrition, and Health Program, Faculty of Land & Food Systems, The University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
- Natural Health and Food Products Research Group, Centre for Applied Research & Innovation (CARI), British Columbia Institute of Technology, Burnaby, BC V5G 3H2, Canada
| | - Alberto Baldelli
- Food, Nutrition, and Health Program, Faculty of Land & Food Systems, The University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Anika Singh
- Food, Nutrition, and Health Program, Faculty of Land & Food Systems, The University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
- Natural Health and Food Products Research Group, Centre for Applied Research & Innovation (CARI), British Columbia Institute of Technology, Burnaby, BC V5G 3H2, Canada
| |
Collapse
|
10
|
Kim KS, Na K, Bae YH. Nanoparticle oral absorption and its clinical translational potential. J Control Release 2023; 360:149-162. [PMID: 37348679 DOI: 10.1016/j.jconrel.2023.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/04/2023] [Accepted: 06/17/2023] [Indexed: 06/24/2023]
Abstract
Oral administration of pharmaceuticals is the most preferred route of administration for patients, but it is challenging to effectively deliver active ingredients (APIs) that i) have extremely high or low solubility in intestinal fluids, ii) are large in size, iii) are subject to digestive and/or metabolic enzymes present in the gastrointestinal tract (GIT), brush border, and liver, and iv) are P-glycoprotein substrates. Over the past decades, efforts to increase the oral bioavailability of APIs have led to the development of nanoparticles (NPs) with non-specific uptake pathways (M cells, mucosal, and tight junctions) and target-specific uptake pathways (FcRn, vitamin B12, and bile acids). However, voluminous findings from preclinical models of different species rarely meet practical standards when translated to humans, and API concentrations in NPs are not within the adequate therapeutic window. Various NP oral delivery approaches studied so far show varying bioavailability impacted by a range of factors, such as species, GIT physiology, age, and disease state. This may cause difficulty in obtaining similar oral delivery efficacy when research results in animal models are translated into humans. This review describes the selection of parameters to be considered for translational potential when designing and developing oral NPs.
Collapse
Affiliation(s)
- Kyoung Sub Kim
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Kun Na
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea; Department of BioMedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - You Han Bae
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
11
|
Liu C, Liu W, Liu Y, Duan H, Chen L, Zhang X, Jin M, Cui M, Quan X, Pan L, Hu J, Gao Z, Wang Y, Huang W. Versatile flexible micelles integrating mucosal penetration and intestinal targeting for effectively oral delivery of paclitaxel. Acta Pharm Sin B 2023; 13:3425-3443. [PMID: 37655335 PMCID: PMC10466001 DOI: 10.1016/j.apsb.2023.05.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 09/02/2023] Open
Abstract
The extremely low bioavailability of oral paclitaxel (PTX) mainly due to the complicated gastrointestinal environment, the obstruction of intestinal mucus layer and epithelium barrier. Thus, it is of great significance to construct a coordinative delivery system which can overcome multiple intestinal physicochemical obstacles simultaneously. In this work, a high-density PEGylation-based glycocholic acid-decorated micelles (PTX@GNPs) was constructed by a novel polymer, 9-Fluorenylmethoxycarbonyl-polyethylene glycocholic acid (Fmoc-PEG-GCA). The Fmoc motif in this polymer could encapsulate PTX via π‒π stacking to form the core of micelles, and the low molecular weight and non-long hydrophobic chain of Fmoc ensures the high-density of PEG. Based on this versatile and flexible carriers, PTX@GNPs possess mucus trapping escape ability due to the flexible PEG, and excellent intestine epithelium targeting attributed to the high affinity of GCA with apical sodium-dependent bile acid transporter. The in vitro and in vivo results showed that this oral micelle could enhance oral bioavailability of PTX, and exhibited similar antitumor efficacy to Taxol injection via intravenous route. In addition, oral PTX@GNPs administered with lower dosage within shorter interval could increase in vivo retention time of PTX, which supposed to remodel immune microenvironment and enhance oral chemotherapy efficacy by synergistic effect.
Collapse
Affiliation(s)
- Chao Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wei Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing 400038, China
| | - Yanhong Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hongxia Duan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Liqing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xintong Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Mingji Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Minhu Cui
- Department of Gastroenterology, Yanbian University Hospital, Yanji 133000, China
| | - Xiuquan Quan
- Department of Gastroenterology, Yanbian University Hospital, Yanji 133000, China
| | - Libin Pan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jiachun Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
12
|
Du LR, Li X, Yu YY, Li JX, Wu QN, Wang C, Huang X, Zhou CX, Huang YG, Fu JJ. The insulin long-acting chitosan - Polyethyleneimine nanoparticles to treat the type 2 diabetes mellitus and prevent the associated complications. Int J Pharm 2023; 635:122767. [PMID: 36822342 DOI: 10.1016/j.ijpharm.2023.122767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 02/06/2023] [Accepted: 02/19/2023] [Indexed: 02/23/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is a complex metabolic disorder, which is ultimately treated by the insulin (INS). However, the subcutaneous (s. c.) injection of insulin solution faces the problems of pain and unsatisfactory patient compliance. In this study, the long-acting formulations of insulin are propsed to treat the T2DM and prevent the associated complications. The chitosan (CS) and/or branched polyethyleneimine (bPEI) nanoparticles (bPEI-INS NPs, CS-bPEI-INS NPs) were constructed to load insulin. The long -acting nanoparticles successfully achieved the sustained release of the INS in vitro and in vivo. After s. c. administration, the CS-bPEI-INS NPs greatly improved the INS bioavailability. As a result, the CS-bPEI-INS NPs produced sustained glucose-lowering effects, promising short-term and long-term hypoglycemic efficacy in the T2DM model. Furthermore, the treatment of the CS-bPEI-INS NPs greatly protected the islet in the pancreas and prevented the associated complications of the T2DM, such as cardiac fibrosis in the myocardial interstitium and the perivascular area. In a word, the CS-bPEI-INS NPs was an encouraging long-acting formulation of insulin and had great potential in the treatment of T2DM.
Collapse
Affiliation(s)
- Ling-Ran Du
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Sixth Affiliated Hospital and Fifth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Xin Li
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Sixth Affiliated Hospital and Fifth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Yuan-Yuan Yu
- Faculty of Humanities and Social Sciences, Macao Polytechnic University, Macao, China
| | - Jie-Xia Li
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Sixth Affiliated Hospital and Fifth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Qian-Ni Wu
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Sixth Affiliated Hospital and Fifth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Chaoqun Wang
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Xin Huang
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Sixth Affiliated Hospital and Fifth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Chun-Xian Zhou
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Sixth Affiliated Hospital and Fifth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Yu-Gang Huang
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Sixth Affiliated Hospital and Fifth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Medical University, Guangzhou 511436, China.
| | - Ji-Jun Fu
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Sixth Affiliated Hospital and Fifth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
13
|
Liu H, Wang B, Xing M, Meng F, Zhang S, Yang G, Cheng A, Yan C, Xu B, Gao Y. Thermal stability of exenatide encapsulated in stratified dissolving microneedles during storage. Int J Pharm 2023; 636:122863. [PMID: 36934885 DOI: 10.1016/j.ijpharm.2023.122863] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023]
Abstract
As low-temperature storage and transportation of peptides require high costs, improving the dosage form of peptides can reduce costs. We developed a thermostable and fast-releasing stratified dissolving microneedle (SDMN) system for delivering exenatide (EXT) to patients with type 2 diabetes. Among the tested polymers, dextran and polyvinyl alcohol (PVA) were the best at stabilizing EXT under high-temperature storage for 9 weeks. The two polymers possess a relatively high glass transition temperature (Tg) and weak hydrogen bonding between PVA and EXT. Additionally, zinc sulfate (ZnSO4) had a stabilizing effect on EXT among the selected stabilizers, suggesting that EXT formed a dimer after coordination with zinc ions (Zn2+). In addition, the denaturation temperature (Tm) of EXT was increased by adding ZnSO4, thus stabilizing EXT. Accordingly, SDMNs consisting of a tip layer (dextran encapsulating the Zn2+-EXT complex) and a base layer (PVA) were fabricated. Within 2 min of implantation, the EXT loaded on the patch was quickly released into the skin. Transdermal pharmacokinetics studies showed that manufactured SDMNs generated comparable efficacy to subcutaneous injection. Significantly, the remaining EXT amount was not significantly different under storage at 40 °C and -20 °C for 3 months, supporting that the SDMN system had excellent delivery efficiency and stability, thus reducing the dependence on the cold chain.
Collapse
Affiliation(s)
- Han Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baorui Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengzhen Xing
- Key Laboratory of New Material Research Institute, Department of Pharmaceutical Research Institute, Shandong University of Traditional Chinese Medicine, No. 4655, Daxue Road, Jinan 250355, China
| | - Fanda Meng
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 6699, Qingdao Road, Huaiyin District, Jinan 250000, China
| | - Suohui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; Beijing CAS Microneedle Technology Ltd., Beijing 102609, China
| | - Guozhong Yang
- Beijing CAS Microneedle Technology Ltd., Beijing 102609, China
| | - Aguo Cheng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenxin Yan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Xu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunhua Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing CAS Microneedle Technology Ltd., Beijing 102609, China.
| |
Collapse
|
14
|
Zhang L, Jin M, Pan Y, Yang F, Wu Y, Gao J, Chen T, Tan S, Yang T, Chen Y, Huang J. Sustained release of GLP-1 analog from γ-PGA-PAE copolymers for management of type 2 diabetes. BIOMATERIALS ADVANCES 2023; 148:213352. [PMID: 36867980 DOI: 10.1016/j.bioadv.2023.213352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 02/05/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023]
Abstract
GLP-1 has been clinically exploited for treating type 2 diabetes, while its short circulation half-life requires multiple daily injections to maintain effective glycemic control, thus limiting its widespread application. Here we developed a drug delivery system based on self-assembling polymer-amino acid conjugates (γ-PGA-PAE) to provide sustained release of GLP-1 analog (DLG3312). The DLG3312 loaded γ-PGA based nanoparticles (DLG3312@NPs) exhibited a spherical shape with a good monodispersity under transmission electron microscope (TEM) observation. The DLG3312 encapsulation was optimized, and the loading efficiency was as high as 78.4 ± 2.2 %. The transformation of DLG3312@NPs to network structures was observed upon treatment with the fresh serum, resulting in a sustained drug release. The in vivo long-term hypoglycemic assays indicated that DLG3312@NPs significantly reduced blood glucose and glycosylated hemoglobin level. Furthermore, DLG3312@NPs extended the efficacy of DLG3312, leading to a decrease in the dosing schedule that from once a day to once every other day. This approach combined the molecular and materials engineering strategies that offered a unique solution to maximize the availability of anti-diabetic drug and minimize its burdens to type 2 diabetic patients.
Collapse
Affiliation(s)
- Li Zhang
- School of Life Science, East China Normal University, Shanghai 200241, PR China
| | - Mingfei Jin
- School of Life Science, East China Normal University, Shanghai 200241, PR China
| | - Yingying Pan
- School of Life Science, East China Normal University, Shanghai 200241, PR China
| | - Fang Yang
- Shanghai Institute of Immunology & Department of Immunology and Microbiology, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yan Wu
- Medical 3D Printing Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jianbo Gao
- Medical 3D Printing Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Tao Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Shiming Tan
- School of Life Science, East China Normal University, Shanghai 200241, PR China
| | - Ting Yang
- School of Life Science, East China Normal University, Shanghai 200241, PR China
| | - Yazhou Chen
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, PR China; Medical 3D Printing Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, Henan, China.
| | - Jing Huang
- School of Life Science, East China Normal University, Shanghai 200241, PR China.
| |
Collapse
|
15
|
Deng F, Bae YH. Effect of modification of polystyrene nanoparticles with different bile acids on their oral transport. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 48:102629. [PMID: 36410698 PMCID: PMC9918699 DOI: 10.1016/j.nano.2022.102629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/25/2022] [Accepted: 11/11/2022] [Indexed: 11/23/2022]
Abstract
Bile acid-modified nanomedicine is a promising strategy to improve oral bioavailability. However, the efficiencies of different bile acids have not been clarified. To clarify this issue, deoxycholic acid (DCA) and cholic acid (CA) and glycocholic acid (GCA) were conjugated to carboxylated polystyrene nanoparticle (CPN). The endocytosis, intracellular and transcellular transport among the NPs were compared in Caco-2 cells, and their oral pharmacokinetics profiles were studied in C57BL/6 J mice. It was found that DCPN demonstrated higher uptake and transcytosis rate. With modification by different bile acids, the transport pathways of the NPs were altered. In mice, GCPN showed the highest absorption speed and oral bioavailability. It was found that the synergic effect of hydrophobicity and ASBT affinity might lead to the difference between in vitro and in vivo transport. This study will build a basis for the rational design of bile acid-modified nanomedicines.
Collapse
Affiliation(s)
- Feiyang Deng
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, University of Utah, 30 S 2000 E, Salt Lake City, UT 84112, USA
| | - You Han Bae
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, University of Utah, 30 S 2000 E, Salt Lake City, UT 84112, USA.
| |
Collapse
|
16
|
Gyimesi G, Hediger MA. Transporter-Mediated Drug Delivery. Molecules 2023; 28:molecules28031151. [PMID: 36770817 PMCID: PMC9919865 DOI: 10.3390/molecules28031151] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
Transmembrane transport of small organic and inorganic molecules is one of the cornerstones of cellular metabolism. Among transmembrane transporters, solute carrier (SLC) proteins form the largest, albeit very diverse, superfamily with over 400 members. It was recognized early on that xenobiotics can directly interact with SLCs and that this interaction can fundamentally determine their efficacy, including bioavailability and intertissue distribution. Apart from the well-established prodrug strategy, the chemical ligation of transporter substrates to nanoparticles of various chemical compositions has recently been used as a means to enhance their targeting and absorption. In this review, we summarize efforts in drug design exploiting interactions with specific SLC transporters to optimize their therapeutic effects. Furthermore, we describe current and future challenges as well as new directions for the advanced development of therapeutics that target SLC transporters.
Collapse
|
17
|
Silica-Based Nanomaterials for Diabetes Mellitus Treatment. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 10:bioengineering10010040. [PMID: 36671612 PMCID: PMC9855068 DOI: 10.3390/bioengineering10010040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/15/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022]
Abstract
Diabetes mellitus, a chronic metabolic disease with an alarming global prevalence, is associated with several serious health threats, including cardiovascular diseases. Current diabetes treatments have several limitations and disadvantages, creating the need for new effective formulations to combat this disease and its associated complications. This motivated the development of therapeutic strategies to overcome some of these limitations, such as low therapeutic drug bioavailability or poor compliance of patients with current therapeutic methodologies. Taking advantage of silica nanoparticle characteristics such as tuneable particle and pore size, surface chemistry and biocompatibility, silica-based nanocarriers have been developed with the potential to treat diabetes and regulate blood glucose concentration. This review discusses the main topics in the field, such as oral administration of insulin, glucose-responsive devices and innovative administration routes.
Collapse
|
18
|
Zhang Y, Wang Y, Li X, Nie D, Liu C, Gan Y. Ligand-modified nanocarriers for oral drug delivery: Challenges, rational design, and applications. J Control Release 2022; 352:813-832. [PMID: 36368493 DOI: 10.1016/j.jconrel.2022.11.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/15/2022]
Abstract
Ligand-modified nanocarriers (LMNCs) specific to their targets have attracted increasing interest for enhanced oral drug delivery in recent decades. Although the design of LMNCs for enhanced endocytosis and improved exposure of the loaded drugs through the oral route has received abundant attention, it remains unclear how the design influences their transcellular process, especially the key factors affecting their functions. This review discusses the extracellular and cellular barriers to orally administered LMNCs in the gastrointestinal (GI) tract and new discoveries regarding the GI protein corona and the sequential transport barriers that impede the preplanned movements of LMNCs after oral administration. Furthermore, innovative progress in considering key factors (including target selection, ligand properties, and other important factors) in the rational design of LMNCs for oral drug delivery is presented. In particular, some factors that endow LMNCs with efficient transcytosis rather than only endocytosis are highlighted. Finally, the prospects of orally administered LMNCs in disease therapy for the enhanced oral/local bioavailability of active pharmaceutical ingredients, as well as emerging delivery routes, such as lymphatic drug delivery and systemic location-specific drug release based on oral transcellular LMNCs, are discussed.
Collapse
Affiliation(s)
- Yaqi Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaying Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Di Nie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chang Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Gan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, Beijing 100050, China.
| |
Collapse
|
19
|
Kim KS, Lee S, Na K, Bae YH. Ovalbumin and Poly(i:c) Encapsulated Dendritic Cell-Targeted Nanoparticles for Immune Activation in the Small Intestinal Lymphatic System. Adv Healthc Mater 2022; 11:e2200909. [PMID: 35835068 PMCID: PMC9633451 DOI: 10.1002/adhm.202200909] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/24/2022] [Indexed: 01/28/2023]
Abstract
Here, antigen and adjuvant encapsulated dendritic cell-targeted nanoparticles for immune activation in the small intestinal lymphatic system to inhibit melanoma development are described. This strategy is demonstrated using chondroitin sulfate-coated nanoparticles (OPGMN) grafted with glycocholic acid and mannose for cationic liposomes encapsulated with ovalbumin as an antigen and polyinosine-polycytidylic acid as a cancer-specific adjuvant. OPGMN is absorbed in the gastrointestinal tract and delivered to the lymph nodes when orally administered. Oral delivery of OPGMN induces increased dendritic cell maturation compared to the intradermal route in the lymph node and induces T helper type 1 and type 2 responses, such as immunoglobulin G1 and G2c, interferon-gamma, and interleukin-2, in the blood. Repeated oral administration of OPGMN increases the population of CD3+ CD8+ T cells, CD44high CD62Llow memory T cells, and CD11b+ CD27+ natural killer cells in the blood. OPGMN completely prevents melanoma development in the B16F10-bearing C57BL/6 mouse model by reducing the population of CD4+ CD25+ Foxp3+ regulatory T cells in the blood. This strategy is expected to prevent the recurrence of tumors after various cancer treatments.
Collapse
Affiliation(s)
- Kyoung Sub Kim
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, 84112, USA
- Department of Biotechnology, The Catholic University of Korea, Bucheon-si, Gyeonggi-do, 14662, South Korea
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, Bucheon-si, Gyeonggi-do, 14662, South Korea
| | - Sanghee Lee
- Department of Biotechnology, The Catholic University of Korea, Bucheon-si, Gyeonggi-do, 14662, South Korea
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, Bucheon-si, Gyeonggi-do, 14662, South Korea
| | - Kun Na
- Department of Biotechnology, The Catholic University of Korea, Bucheon-si, Gyeonggi-do, 14662, South Korea
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, Bucheon-si, Gyeonggi-do, 14662, South Korea
| | - You Han Bae
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, 84112, USA
| |
Collapse
|
20
|
Recent Advances in Oral Peptide or Protein-Based Drug Liposomes. Pharmaceuticals (Basel) 2022; 15:ph15091072. [PMID: 36145293 PMCID: PMC9501131 DOI: 10.3390/ph15091072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
The high physiology and low toxicity of therapeutic peptides and proteins have made them a hot spot for drug development in recent years. However, their poor oral bioavailability and unstable metabolism make their clinical application difficult. The bilayer membrane of liposomes provides protection for the drug within the compartment, and their high biocompatibility makes the drug more easily absorbed by the body. However, phospholipids—which form the membranes—are subjected to various digestive enzymes and mucosal adhesion in the digestive tract and disintegrate before absorption. Improvements in the composition of liposomes or modifying their surface can enhance the stability of the liposomes in the gastrointestinal tract. This article reviews the basic strategies for liposome preparation and surface modification that promote the oral administration of therapeutic polypeptides.
Collapse
|
21
|
Deng F, Kim KS, Moon J, Bae YH. Bile Acid Conjugation on Solid Nanoparticles Enhances ASBT-Mediated Endocytosis and Chylomicron Pathway but Weakens the Transcytosis by Inducing Transport Flow in a Cellular Negative Feedback Loop. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201414. [PMID: 35652273 PMCID: PMC9313510 DOI: 10.1002/advs.202201414] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Indexed: 05/20/2023]
Abstract
Bile acid-modified nanoparticles provide a convenient strategy to improve oral bioavailability of poorly permeable drugs by exploiting specific interactions with bile acid transporters. However, the underlying mechanisms are unknown, especially considering the different absorption sites of free bile acids (ileum) and digested fat molecules from bile acid-emulsified fat droplets (duodenum). Here, glycocholic acid (GCA)-conjugated polystyrene nanoparticles (GCPNs) are synthesized and their transport in Caco-2 cell models is studied. GCA conjugation enhances the uptake by interactions with apical sodium-dependent bile acid transporter (ASBT). A new pathway correlated with both ASBT and chylomicron pathways is identified. Meanwhile, the higher uptake of GCPNs does not lead to higher transcytosis to the same degree compared with unmodified nanoparticles (CPNs). The pharmacological and genomics study confirm that GCA conjugation changes the endocytosis mechanisms and downregulates the cellular response to the transport at gene levels, which works as a negative feedback loop and explains the higher cellular retention of GCPNs. These findings offer a solid foundation in the bile acid-based nanomedicine design, with utilizing advantages of the ASBT-mediated uptake, as well as inspiration to take comprehensive consideration of the cellular response with more developed technologies.
Collapse
Affiliation(s)
- Feiyang Deng
- Department of Pharmaceutics and Pharmaceutical ChemistryCollege of PharmacyUniversity of Utah30 S 2000 ESalt Lake CityUT84112USA
| | - Kyoung Sub Kim
- Department of Pharmaceutics and Pharmaceutical ChemistryCollege of PharmacyUniversity of Utah30 S 2000 ESalt Lake CityUT84112USA
| | - Jiyoung Moon
- Department of Pharmaceutics and Pharmaceutical ChemistryCollege of PharmacyUniversity of Utah30 S 2000 ESalt Lake CityUT84112USA
| | - You Han Bae
- Department of Pharmaceutics and Pharmaceutical ChemistryCollege of PharmacyUniversity of Utah30 S 2000 ESalt Lake CityUT84112USA
| |
Collapse
|
22
|
Liu H, Zhang S, Zhou Z, Xing M, Gao Y. Two-Layer Sustained-Release Microneedles Encapsulating Exenatide for Type 2 Diabetes Treatment. Pharmaceutics 2022; 14:pharmaceutics14061255. [PMID: 35745827 PMCID: PMC9230706 DOI: 10.3390/pharmaceutics14061255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/19/2022] [Accepted: 06/10/2022] [Indexed: 01/27/2023] Open
Abstract
Daily administration of multiple injections can cause inconvenience and reduce compliance in diabetic patients; thus, microneedle (MN) administration is favored due to its various advantages. Accordingly, the two-layer sustained-release MNs (TS-MNs) were fabricated by encapsulating exenatide (EXT) in calcium alginate (CA) gel in this work. The TS-MNs were composed of a sodium alginate (SA) tip and a water-soluble matrix-containing calcium chloride (CaCl2). Subsequently, the calcium ion (Ca2+) contained in the matrix layer penetrated the tip layer for cross-linking, leaving the drug in the cross-linked network. The patches have adequate mechanical strength to pierce the skin; then, the matrix layer is dissolved, leaving the tip layer to achieve sustained release. Additionally, the TS-MNs encapsulating EXT retained high activity during long-term storage at room temperature. The pharmacokinetic results indicated that the plasma concentrations of EXT were sustained for 48 h in the EXT MN group, which agreed with the in vitro release test. Furthermore, they had high relative bioavailability (83.04%). Moreover, the hypoglycemic effect was observed to last for approximately 24 h after a single administration and remained effective after multiple administrations without drug resistance. These results suggest that the TS-MNs are a promising depot for the sustained delivery of encapsulated EXT.
Collapse
Affiliation(s)
- Han Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing 100190, China; (H.L.); (S.Z.); (Z.Z.); (M.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Suohui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing 100190, China; (H.L.); (S.Z.); (Z.Z.); (M.X.)
- Beijing CAS Microneedle Technology Ltd., Beijing 102609, China
| | - Zequan Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing 100190, China; (H.L.); (S.Z.); (Z.Z.); (M.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengzhen Xing
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing 100190, China; (H.L.); (S.Z.); (Z.Z.); (M.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunhua Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing 100190, China; (H.L.); (S.Z.); (Z.Z.); (M.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing CAS Microneedle Technology Ltd., Beijing 102609, China
- Correspondence: ; Tel.: +86-10-82543581
| |
Collapse
|
23
|
McCright J, Naiknavare R, Yarmovsky J, Maisel K. Targeting Lymphatics for Nanoparticle Drug Delivery. Front Pharmacol 2022; 13:887402. [PMID: 35721179 PMCID: PMC9203826 DOI: 10.3389/fphar.2022.887402] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/16/2022] [Indexed: 12/25/2022] Open
Abstract
The lymphatics transport material from peripheral tissues to lymph nodes, where immune responses are formed, before being transported into systemic circulation. With key roles in transport and fluid homeostasis, lymphatic dysregulation is linked to diseases, including lymphedema. Fluid within the interstitium passes into initial lymphatic vessels where a valve system prevents fluid backflow. Additionally, lymphatic endothelial cells produce key chemokines, such as CCL21, that direct the migration of dendritic cells and lymphocytes. As a result, lymphatics are an attractive delivery route for transporting immune modulatory treatments to lymph nodes where immunotherapies are potentiated in addition to being an alternative method of reaching systemic circulation. In this review, we discuss the physiology of lymphatic vessels and mechanisms used in the transport of materials from peripheral tissues to lymph nodes. We then summarize nanomaterial-based strategies to take advantage of lymphatic transport functions for delivering therapeutics to lymph nodes or systemic circulation. We also describe opportunities for targeting lymphatic endothelial cells to modulate transport and immune functions.
Collapse
|
24
|
Construction and Evaluation of Chitosan-Based Nanoparticles for Oral Administration of Exenatide in Type 2 Diabetic Rats. Polymers (Basel) 2022; 14:polym14112181. [PMID: 35683851 PMCID: PMC9183037 DOI: 10.3390/polym14112181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 01/20/2023] Open
Abstract
Oral delivery of therapeutic peptides has been a daunting challenge due to poor transport across the tight junctions and susceptibility to enzymatic degradation in the gastrointestinal tract. Numerous advancement in nanomedicine has been made for the effective delivery of protein and peptide. Owing to the superior performance of chitosan in opening intercellular tight junctions of epithelium and excellent mucoadhesive properties, chitosan-based nanocarriers have recently garnered considerable attention, which was formulated in this paper to orally deliver the GLP-1 drug (Exenatide). Against this backdrop, we used chitosan (CS) polymers to encapsulate the exenatide, sodium tripolyphosphate (TPP) as the cross-linking agent and coated the exterior with sodium alginate (ALG) to impart the stability in an acidic environment. The chitosan/alginate nanoparticles (CS-TPP-ALG) functioned as a protective exenatide carrier, realized efficient cellular uptake and controlled release, leading to a steady hypoglycemic effect and a good oral bioavailability in vivo. Trimethyl chitosan (TMC), a chitosan derivative with stronger positive electrical properties was additionally selected as a substitute for chitosan to construct the TMC-TPP-ALG nanoparticle, and its oral peptide delivery capacity was explored in terms of both characterization and pharmacodynamics studies. Overall, our study demonstrated that functional chitosan/alginate nanoparticles can protect proteins from enzymatic degradation and enhance oral absorption, which presents important research value and application prospects.
Collapse
|
25
|
Li Y, Zhang W, Zhao R, Zhang X. Advances in oral peptide drug nanoparticles for diabetes mellitus treatment. Bioact Mater 2022; 15:392-408. [PMID: 35386357 PMCID: PMC8958389 DOI: 10.1016/j.bioactmat.2022.02.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 12/11/2022] Open
Abstract
Peptide drugs play an important role in diabetes mellitus treatment. Oral administration of peptide drugs is a promising strategy for diabetes mellitus because of its convenience and high patient compliance compared to parenteral administration routes. However, there are a series of formidable unfavorable conditions present in the gastrointestinal (GI) tract after oral administration, which result in the low oral bioavailability of these peptide drugs. To overcome these challenges, various nanoparticles (NPs) have been developed to improve the oral absorption of peptide drugs due to their unique in vivo properties and high design flexibility. This review discusses the unfavorable conditions present in the GI tract and provides the corresponding strategies to overcome these challenges. The review provides a comprehensive overview on the NPs that have been constructed for oral peptide drug delivery in diabetes mellitus treatment. Finally, we will discuss the rational application and give some suggestions that can be utilized for the development of oral peptide drug NPs. Our aim is to provide a systemic and comprehensive review of oral peptide drug NPs that can overcome the challenges in GI tract for efficient treatment of diabetes mellitus. •Oral administration of peptide drugs is a promising strategy for diabetes mellitus treatment •A series of formidable unfavorable conditions in gastrointestinal tract result in the low oral bioavailability of peptide drugs •Nanoparticles can improve the oral bioavailability of peptide drugs
Collapse
Affiliation(s)
- Yan Li
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Wen Zhang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Ruichen Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China.,School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xin Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
| |
Collapse
|
26
|
Oral delivery of therapeutic peptides and proteins: Technology landscape of lipid-based nanocarriers. Adv Drug Deliv Rev 2022; 182:114097. [PMID: 34999121 DOI: 10.1016/j.addr.2021.114097] [Citation(s) in RCA: 163] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/04/2021] [Accepted: 12/21/2021] [Indexed: 12/17/2022]
Abstract
The oral administration of therapeutic peptides and proteins is favoured from a patient and commercial point of view. In order to reach the systemic circulation after oral administration, these drugs have to overcome numerous barriers including the enzymatic, sulfhydryl, mucus and epithelial barrier. The development of oral formulations for therapeutic peptides and proteins is therefore necessary. Among the most promising formulation approaches are lipid-based nanocarriers such as oil-in-water nanoemulsions, self-emulsifying drug delivery systems (SEDDS), solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), liposomes and micelles. As the lipophilic character of therapeutic peptides and proteins can be tremendously increased such as by the formation of hydrophobic ion pairs (HIP) with hydrophobic counter ions, they can be incorporated in the lipophilic phase of these carriers. Since gastrointestinal (GI) peptidases as well as sulfhydryl compounds such as glutathione and dietary proteins are too hydrophilic to enter the lipophilic phase of these carriers, the incorporated therapeutic peptide or protein is protected towards enzymatic degradation as well as unintended thiol/disulfide exchange reactions. Stability of lipid-based nanocarriers towards lipases can be provided by the use to excipients that are not or just poorly degraded by these enzymes. Nanocarriers with a size <200 nm and a mucoinert surface such as PEG or zwitterionic surfaces exhibit high mucus permeating properties. Having reached the underlying absorption membrane, lipid-based nanocarriers enable paracellular and lymphatic drug uptake, induce endocytosis and transcytosis or simply fuse with the cell membrane releasing their payload into the systemic circulation. Numerous in vivo studies provide evidence for the potential of these delivery systems. Within this review we provide an overview about the different barriers for oral peptide and protein delivery, highlight the progress made on lipid-based nanocarriers in order to overcome them and discuss strengths and weaknesses of these delivery systems in comparison to other technologies.
Collapse
|
27
|
Bendicho-Lavilla C, Seoane-Viaño I, Otero-Espinar FJ, Luzardo-Álvarez A. Fighting type 2 diabetes: Formulation strategies for peptide-based therapeutics. Acta Pharm Sin B 2022; 12:621-636. [PMID: 35256935 PMCID: PMC8897023 DOI: 10.1016/j.apsb.2021.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/27/2021] [Accepted: 05/15/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus is a major health problem with increasing prevalence at a global level. The discovery of insulin in the early 1900s represented a major breakthrough in diabetes management, with further milestones being subsequently achieved with the identification of glucagon-like peptide-1 (GLP-1) and the introduction of GLP-1 receptor agonists (GLP-1 RAs) in clinical practice. Moreover, the subcutaneous delivery of biotherapeutics is a well-established route of administration generally preferred over the intravenous route due to better patient compliance and prolonged drug absorption. However, current subcutaneous formulations of GLP-1 RAs present pharmacokinetic problems that lead to adverse reactions and treatment discontinuation. In this review, we discuss the current challenges of subcutaneous administration of peptide-based therapeutics and provide an overview of the formulations available for the different routes of administration with improved bioavailability and reduced frequency of administration.
Collapse
Affiliation(s)
- Carlos Bendicho-Lavilla
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), Santiago de Compostela 15782, Spain
- Paraquasil Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela 15706, Spain
| | - Iria Seoane-Viaño
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), Santiago de Compostela 15782, Spain
- Paraquasil Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela 15706, Spain
| | - Francisco J. Otero-Espinar
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), Santiago de Compostela 15782, Spain
- Paraquasil Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela 15706, Spain
| | - Asteria Luzardo-Álvarez
- Paraquasil Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela 15706, Spain
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Sciences, Campus de Lugo, University of Santiago de Compostela, Lugo 27002, Spain
| |
Collapse
|
28
|
Chen G, Kang W, Li W, Chen S, Gao Y. Oral delivery of protein and peptide drugs: from non-specific formulation approaches to intestinal cell targeting strategies. Theranostics 2022; 12:1419-1439. [PMID: 35154498 PMCID: PMC8771547 DOI: 10.7150/thno.61747] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 11/20/2021] [Indexed: 11/27/2022] Open
Abstract
The past few years has witnessed a booming market of protein and peptide drugs, owing to their superior efficiency and biocompatibility. Parenteral route is the most commonly employed method for protein and peptide drugs administration. However, short plasma half-life protein and peptide drugs requires repetitive injections and results in poor patient compliance. Oral delivery is a promising alternative but hindered by harsh gastrointestinal environment and defensive intestinal epithelial barriers. Therefore, designing suitable oral delivery systems for peptide and protein drugs has been a persistent challenge. This review summarizes the main challenges for oral protein and peptide drugs delivery and highlights the advanced formulation strategies to improve their oral bioavailability. More importantly, major intestinal cell types and available targeting receptors are introduced along with the potential strategies to target these cell types. We also described the multifunctional biomaterials which can be used to prepare oral carrier systems as well as to modulate the mucosal immune response. Understanding the emerging delivery strategies and challenges for protein and peptide drugs will surely inspire the production of promising oral delivery systems that serves therapeutic needs in clinical settings.
Collapse
Affiliation(s)
- Guanyu Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Weirong Kang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Wanqiong Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Shaomeng Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Yanfeng Gao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
29
|
Durán-Lobato M, López-Estévez AM, Cordeiro AS, Dacoba TG, Crecente-Campo J, Torres D, Alonso MJ. Nanotechnologies for the delivery of biologicals: Historical perspective and current landscape. Adv Drug Deliv Rev 2021; 176:113899. [PMID: 34314784 DOI: 10.1016/j.addr.2021.113899] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/05/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022]
Abstract
Biological macromolecule-based therapeutics irrupted in the pharmaceutical scene generating a great hope due to their outstanding specificity and potency. However, given their susceptibility to degradation and limited capacity to overcome biological barriers new delivery technologies had to be developed for them to reach their targets. This review aims at analyzing the historical seminal advances that shaped the development of the protein/peptide delivery field, along with the emerging technologies on the lead of the current landscape. Particularly, focus is made on technologies with a potential for transmucosal systemic delivery of protein/peptide drugs, followed by approaches for the delivery of antigens as new vaccination strategies, and formulations of biological drugs in oncology, with special emphasis on mAbs. Finally, a discussion of the key challenges the field is facing, along with an overview of prospective advances are provided.
Collapse
|
30
|
Mühlberg E, Burtscher M, Umstätter F, Fricker G, Mier W, Uhl P. Trends in liposomal nanocarrier strategies for the oral delivery of biologics. Nanomedicine (Lond) 2021; 16:1813-1832. [PMID: 34269068 DOI: 10.2217/nnm-2021-0177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The number of approved macromolecular drugs such as peptides, proteins and antibodies steadily increases. Since drugs with high molecular weight are commonly not suitable for oral delivery, research on carrier strategies enabling oral administration is of vital interest. In past decades, nanocarriers, in particular liposomes, have been exhaustively investigated as oral drug-delivery platform. Despite their successful application as parenteral delivery vehicles, liposomes have up to date not succeeded for oral administration. However, a plenitude of approaches aiming to increase the oral bioavailability of macromolecular drugs administered by liposomal formulations has been published. Here, we summarize the strategies published in the last 10 years (vaccine strategies excluded) with a main focus on strategies proven efficient in animal models.
Collapse
Affiliation(s)
- Eric Mühlberg
- Department of Nuclear Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg, 69120, Germany
| | - Mira Burtscher
- Department of Nuclear Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg, 69120, Germany
| | - Florian Umstätter
- Department of Nuclear Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg, 69120, Germany
| | - Gert Fricker
- Department of Pharmaceutical Technology & Biopharmacy, Institute for Pharmacy & Molecular Biotechnology, Ruprecht-Karls University, Im Neuenheimer Feld 329, Heidelberg, 69120, Germany
| | - Walter Mier
- Department of Nuclear Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg, 69120, Germany
| | - Philipp Uhl
- Department of Nuclear Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg, 69120, Germany
| |
Collapse
|
31
|
Han Y, Liu W, Chen L, Xin X, Wang Q, Zhang X, Jin M, Gao Z, Huang W. Effective oral delivery of Exenatide-Zn 2+ complex through distal ileum-targeted double layers nanocarriers modified with deoxycholic acid and glycocholic acid in diabetes therapy. Biomaterials 2021; 275:120944. [PMID: 34153783 DOI: 10.1016/j.biomaterials.2021.120944] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 12/29/2022]
Abstract
The oral administration route is popular with T2DM patients because they need convenience in lifelong medication. At present, oral Exenatide is not available on the market and therefore the relevant studies are valuable. Herein, we constructed a novel dual cholic acid-functionalized nanoparticle for oral delivery of Exenatide, which was based on the functionalized materials of deoxycholic acid-low molecular weight protamine and glycocholic acid-poly (ethylene glycol)-b-polysialic acid. The hydrophobic deoxycholic acid strengthened the nanoparticles and the hydrophilic glycolic acid targeted to specific transporter. We first condensed Exenatide-Zn2+ complex with deoxycholic acid-low molecular weight protamine to prepare nanocomplexes with ζ-potentials of +8 mV and sizes of 95 nm. Then, we used glycocholic acid-poly (ethylene glycol)-b-polysialic acid copolymers masking the positive charge of nanocomplexes to prepare nanoparticles with negative charges of -22 mV and homogeneous sizes of 140 nm. As a result, this dual cholic acid-functionalized nanoparticle demonstrated enhanced uptake and transport of Exenatide, and a special targeting to apical sodium-dependent cholic acid transporter in vitro. Moreover, in vivo studies showed that the nanoparticle effectively accumulated in distal ileum, raised the plasma concentration of Exenatide, prolonged hypoglycemic effect, reduced blood lipid levels, and lightened organ lesions.
Collapse
Affiliation(s)
- Ying Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Wei Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Liqing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xin Xin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Qiming Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xintong Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Mingji Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
32
|
Kerry RG, Mahapatra GP, Maurya GK, Patra S, Mahari S, Das G, Patra JK, Sahoo S. Molecular prospect of type-2 diabetes: Nanotechnology based diagnostics and therapeutic intervention. Rev Endocr Metab Disord 2021; 22:421-451. [PMID: 33052523 DOI: 10.1007/s11154-020-09606-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/08/2020] [Indexed: 02/08/2023]
Abstract
About ninety percent of all diabetic conditions account for T2D caused due to abnormal insulin secretion/ action or increased hepatic glucose production. Factors that contribute towards the aetiology of T2D could be well explained through biochemical, molecular, and cellular aspects. In this review, we attempt to explain the recent evolving molecular and cellular advancement associated with T2D pathophysiology. Current progress fabricated in T2D research concerning intracellular signaling cascade, inflammasome, autophagy, genetic and epigenetics changes is discretely explained in simple terms. Present available anti-diabetic therapeutic strategies commercialized and their limitations which are needed to be acknowledged are addressed in the current review. In particular, the pre-eminence of nanotechnology-based approaches to nullify the inadequacy of conventional anti-diabetic therapeutics and heterogeneous nanoparticulated systems exploited in diabetic researches are also discretely mentioned and are also listed in a tabular format in the review. Additionally, as a future prospect of nanotechnology, the review presents several strategic hypotheses to ameliorate the austerity of T2D by an engineered smart targeted nano-delivery system. In detail, an effort has been made to hypothesize novel nanotechnological based therapeutic strategies, which exploits previously described inflammasome, autophagic target points. Utilizing graphical description it is explained how a smart targeted nano-delivery system could promote β-cell growth and development by inducing the Wnt signaling pathway (inhibiting Gsk3β), inhibiting inflammasome (inhibiting NLRP3), and activating autophagic target points (protecting Atg3/Atg7 complex from oxidative stress) thereby might ameliorate the severity of T2D. Additionally, several targeting molecules associated with autophagic and epigenetic factors are also highlighted, which can be exploited in future diabetic research.
Collapse
Affiliation(s)
- Rout George Kerry
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha, 751004, India
| | | | - Ganesh Kumar Maurya
- Zoology Section, Mahila MahaVidyalya, Banaras Hindu University, Varanasi, 221005, India
| | - Sushmita Patra
- Department of Biotechnology, North Odissa University, Takatpur, Baripada, Odisha, 757003, India
| | - Subhasis Mahari
- DBT- National Institute of Animal Biotechnology, Hyderabad, 500032, India
| | - Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, 10326, Republic of Korea
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, 10326, Republic of Korea.
| | - Sabuj Sahoo
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha, 751004, India.
| |
Collapse
|
33
|
Yao W, Xu Z, Sun J, Luo J, Wei Y, Zou J. Deoxycholic acid-functionalised nanoparticles for oral delivery of rhein. Eur J Pharm Sci 2021; 159:105713. [PMID: 33453389 DOI: 10.1016/j.ejps.2021.105713] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 12/09/2020] [Accepted: 01/07/2021] [Indexed: 12/18/2022]
Abstract
Rhein (RH) is a candidate for the treatment of kidney diseases. However, clinical application of RH is impeded by low aqueous solubility and oral bioavailability. Deoxycholic acid-conjugated nanoparticles (DNPs) were prepared by ionic interaction for enhancing intestinal absorption by targeting the apical sodium-dependent bile acid transporter in the small intestine. Resultant DNPs showed relatively high entrapment efficiency (90.7 ± 0.73)% and drug-loading efficiency (6.5 ± 0.29)% with a particle size of approximately 190 nm and good overall dispersibility. In vitro release of RH from DNPs exhibited sustained and pH-dependent profiles. Cellular uptake and apparent permeability coefficient (Papp) of the DNPs were 3.25- and 5.05-fold higher than that of RH suspensions, respectively. An in vivo pharmacokinetic study demonstrated significantly enhanced oral bioavailability of RH when encapsulated in DNPs, with 2.40- and 3.33-fold higher Cmax and AUC0-inf compared to RH suspensions, respectively. DNPs are promising delivery platforms for poorly absorbed drugs by oral administration.
Collapse
Affiliation(s)
- Wenjie Yao
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 311402, Zhejiang, China
| | - Zhishi Xu
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 311402, Zhejiang, China
| | - Jiang Sun
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 311402, Zhejiang, China
| | - Jingwen Luo
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 311402, Zhejiang, China
| | - Yinghui Wei
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 311402, Zhejiang, China.
| | - Jiafeng Zou
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 311402, Zhejiang, China
| |
Collapse
|
34
|
Patient-centric design for peptide delivery: Trends in routes of administration and advancement in drug delivery technologies. MEDICINE IN DRUG DISCOVERY 2021. [DOI: 10.1016/j.medidd.2020.100079] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
35
|
Wang Y, Wang C, Li K, Song X, Yan X, Yu L, He Z. Recent advances of nanomedicine-based strategies in diabetes and complications management: Diagnostics, monitoring, and therapeutics. J Control Release 2021; 330:618-640. [PMID: 33417985 DOI: 10.1016/j.jconrel.2021.01.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/31/2020] [Accepted: 01/02/2021] [Indexed: 02/07/2023]
Abstract
Diabetes mellitus (DM) is a metabolic disorder characterized by the presence of chronic hyperglycemia driven by insulin deficiency or resistance, imposing a significant global burden affecting 463 million people worldwide in 2019. This review has comprehensively summarized the application of nanomedicine with accurate, patient-friendly, real-time properties in the field of diabetes diagnosis and monitoring, and emphatically discussed the unique potential of various nanomedicine carriers (e.g., polymeric nanoparticles, liposomes, micelles, microparticles, microneedles, etc.) in the management of diabetes and complications. Novel delivery systems have been developed with improved pharmacokinetics and pharmacodynamics, excellent drug biodistribution, biocompatibility, and therapeutic efficacy, long-term action safety, as well as the improved production methods. Furthermore, the effective nanomedicine for the treatment of several major diabetic complications with significantly improved life qualities of diabetic patients were discussed in detail. Going through the literature review, several critical issues of the nanomedicine-based strategies applications need to be addressed such as stabilities and long-term safety effects in vivo, the deficiency of standard for formulation administration, feasibility of scale-up, etc. Overall, the review provides an insight into the design, advantages and limitations of novel nanomedicine application in the diagnostics, monitoring, and therapeutics of DM.
Collapse
Affiliation(s)
- Yanan Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China
| | - Chunhui Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China
| | - Keyang Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China
| | - Xinyu Song
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China
| | - Xuefeng Yan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China
| | - Liangmin Yu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China.
| | - Zhiyu He
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China.
| |
Collapse
|
36
|
Kim KS, Suzuki K, Cho H, Bae YH. Selected Factors Affecting Oral Bioavailability of Nanoparticles Surface-Conjugated with Glycocholic Acid via Intestinal Lymphatic Pathway. Mol Pharm 2020; 17:4346-4353. [PMID: 33064945 DOI: 10.1021/acs.molpharmaceut.0c00764] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Here, we describe the absorption pathways of nanoparticles whose surface is modified with bile acid and present environmental factors that influence oral bioavailability (BA) from the gastrointestinal tract (GIT). The approach utilized 100 nm sized fluorescence-labeled, carboxylated polystyrene nanoparticles (CPN) conjugated with glycocholic acid (G/CPN) to exclude potential artifacts, if existing, and instability issues in evaluating the transit of G/CPN in the GIT and measuring BA. The in vitro study using SK-BR-3 that expresses the apical sodium bile acid transporter showed that once G/CPN is internalized, it stayed 2.9 times longer in the cells than CPN, indirectly suggesting that G/CPN takes intracellular trafficking pathways different from CPN in SK-BR-3 cells. In a Caco-2 cell monolayer, G/CPN passed through the monolayer without damaging the tight junction. G/CPN, when administered orally in rodents, showed sustained transit time in the GIT for at least 4 h and was absorbed into the intestinal lymphatic system and circulated into the blood. Ingestion of food before and after oral administration delays G/CPN absorption and decreases BA. A decrease in gastrointestinal motility by anesthetic condition increased the relative BA of G/CPN by up to 74%. Thus, the oral BA of G/CPN can be optimized by taking food ingestion and gastrointestinal motility into account.
Collapse
Affiliation(s)
- Kyoung Sub Kim
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Kenichi Suzuki
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States.,Fuji Research Laboratories, Pharmaceutical Division, Kowa Company Limited, 332-1 Ohnoshinden, Fuji, Shizuoka 417-8650, Japan
| | - Hana Cho
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - You Han Bae
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
37
|
Lymph-directed immunotherapy - Harnessing endogenous lymphatic distribution pathways for enhanced therapeutic outcomes in cancer. Adv Drug Deliv Rev 2020; 160:115-135. [PMID: 33039497 DOI: 10.1016/j.addr.2020.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/07/2020] [Accepted: 10/02/2020] [Indexed: 12/13/2022]
Abstract
The advent of immunotherapy has revolutionised the treatment of some cancers. Harnessing the immune system to improve tumour cell killing is now standard clinical practice and immunotherapy is the first line of defence for many cancers that historically, were difficult to treat. A unifying concept in cancer immunotherapy is the activation of the immune system to mount an attack on malignant cells, allowing the body to recognise, and in some cases, eliminate cancer. However, in spite of a significant proportion of patients that respond well to treatment, there remains a subset who are non-responders and a number of cancers that cannot be treated with these therapies. These limitations highlight the need for targeted delivery of immunomodulators to both tumours and the effector cells of the immune system, the latter being highly concentrated in the lymphatic system. In this context, macromolecular therapies may provide a significant advantage. Macromolecules are too large to easily access blood capillaries and instead typically exhibit preferential uptake via the lymphatic system. In contexts where immune cells are the therapeutic target, particularly in cancer therapy, this may be advantageous. In this review, we examine in brief the current immunotherapy approaches in cancer and how macromolecular and nanomedicine strategies may improve the therapeutic profiles of these drugs. We subsequently discuss how therapeutics directed either by parenteral or mucosal administration, can be taken up by the lymphatics thereby accessing a larger proportion of the body's immune cells. Finally, we detail drug delivery strategies that have been successfully employed to target the lymphatics.
Collapse
|
38
|
Tong T, Wang L, You X, Wu J. Nano and microscale delivery platforms for enhanced oral peptide/protein bioavailability. Biomater Sci 2020; 8:5804-5823. [PMID: 33016274 DOI: 10.1039/d0bm01151g] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In recent years, peptide/protein drugs have attracted considerable attention owing to their superior targeting and therapeutic effect and fewer side effects compared with chemical drugs. Oral administration modality with enhanced patient compliance is increasingly being recognized as an ideal route for peptide/protein delivery. However, the limited permeation efficiency and low oral bioavailability of peptide/protein drugs significantly hinder therapeutic advances. To address these problems, various nano and microscale delivery platforms have been developed, which offer significant advantages in oral peptide/protein delivery. In this review, we briefly introduce the transport mechanisms of oral peptide/protein delivery and the primary barriers to this delivery process. We also highlight the recent advances in various nano and microscale delivery platforms designed for oral peptide/protein delivery. We then summarize the existing strategies used in these delivery platforms to improve the oral bioavailability and permeation efficiency of peptide/protein therapeutics. Finally, we discuss the major challenges faced when nano and microscale systems are used for oral peptide/protein delivery. This review is expected to provide critical insight into the design and development of oral peptide/protein delivery systems with significant therapeutic advances.
Collapse
Affiliation(s)
- Tong Tong
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong, Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, PR China.
| | | | | | | |
Collapse
|
39
|
Phan TNQ, Ismail R, Le-Vinh B, Zaichik S, Laffleur F, Bernkop-Schnürch A. The Effect of Counterions in Hydrophobic Ion Pairs on Oral Bioavailability of Exenatide. ACS Biomater Sci Eng 2020; 6:5032-5039. [DOI: 10.1021/acsbiomaterials.0c00637] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Thi Nhu Quynh Phan
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, 6020 Innsbruck, Austria
- Faculty of Pharmacy, University of Medicine and Pharmacy, Hue University, 530000 Hue, Thua Thien Hue, Viet Nam
| | - Ruba Ismail
- Institute of Pharmaceutical Technology and Regulatory Affairs, Institute of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
- Institute of Pharmaceutical Technology and Regulatory Affairs, Interdisciplinary Centre of Excellence, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Bao Le-Vinh
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, 6020 Innsbruck, Austria
- Department of Industrial Pharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000 Ho Chi Minh City, Viet Nam
| | - Sergey Zaichik
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, 6020 Innsbruck, Austria
| | - Flavia Laffleur
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
40
|
Bile acid transporter-mediated oral drug delivery. J Control Release 2020; 327:100-116. [PMID: 32711025 DOI: 10.1016/j.jconrel.2020.07.034] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/15/2020] [Accepted: 07/18/2020] [Indexed: 12/12/2022]
Abstract
Bile acids are synthesized in the liver, stored in the gallbladder, and secreted into the duodenum at meals. Apical sodium-dependent bile acid transporter (ASBT), an ileal Na+-dependent transporter, plays the leading role of bile acid absorption into enterocytes, where bile acids are delivered to basolateral side by ileal bile acid binding protein (IBABP) and then released by organic solute transporter OSTα/β. The absorbed bile acids are delivered to the liver via portal vein. In this process called "enterohepatic recycling", only 5% of the bile acid pool (~3 g in human) is excreted in feces, indicating the large recycling capacity and high transport efficacy of ASBT-mediated absorption. Therefore, bile acid transporter-mediated oral drug delivery has been regarded as a feasible and potential strategy to improve the oral bioavailability. This review introduces the key factors in enterohepatic recycling, especially the mechanism of bile acid uptake by ASBT, and the development of bile acid-based oral drug delivery for ASBT-targeting, including bile acid-based prodrugs, bile acid/drug electrostatic complexation and bile acid-containing nanocarriers. Furthermore, the specific transport pathways of bile acid in enterocytes are described and the recent finding of lymphatic delivery of bile acid-containing nanocarriers is discussed.
Collapse
|
41
|
Overcoming the intestinal barrier: A look into targeting approaches for improved oral drug delivery systems. J Control Release 2020; 322:486-508. [DOI: 10.1016/j.jconrel.2020.04.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/17/2022]
|
42
|
Bao X, Qian K, Yao P. Oral delivery of exenatide-loaded hybrid zein nanoparticles for stable blood glucose control and β-cell repair of type 2 diabetes mice. J Nanobiotechnology 2020; 18:67. [PMID: 32345323 PMCID: PMC7189518 DOI: 10.1186/s12951-020-00619-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/13/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Exenatide is an insulinotropic peptide drug for type 2 diabetes treatment with low risk of hypoglycemia, and is administrated by subcutaneous injection. Oral administration is the most preferred route for lifelong treatment of diabetes, but oral delivery of peptide drug remains a significant challenge due to the absorption obstacles in gastrointestinal tract. We aimed to produce exenatide-loaded nanoparticles containing absorption enhancer, protectant and stabilizer using FDA approved inactive ingredients and easy to scale-up method, and to evaluate their long-term oral therapeutic effect in type 2 diabetes db/db mice. RESULTS Two types of nanoparticles, named COM NPs and DIS NPs, were fabricated using anti-solvent precipitation method. In COM NPs, the exenatide was complexed with cholic acid and phosphatidylcholine to increase the exenatide loading efficiency. In both nanoparticles, zein acted as the cement and the other ingredients were embedded in zein nanoparticles by hydrophobic interaction. Casein acted as the stabilizer. The nanoparticles had excellent lyophilization, storage and re-dispersion stability. Hypromellose phthalate protected the loaded exenatide from degradation in simulated gastric fluid. Cholic acid promoted the intestinal absorption of the loaded exenatide via bile acid transporters. The exenatide loading efficiencies of COM NPs and DIS NPs were 79.7% and 53.6%, respectively. The exenatide oral pharmacological availability of COM NPs was 18.6% and DIS NPs was 13.1%. COM NPs controlled the blood glucose level of the db/db mice well and the HbA1c concentration significantly decreased to 6.8% during and after 7 weeks of once daily oral administration consecutively. Both DIS NPs and COM NPs oral groups substantially increased the insulin secretion by more than 60% and promoted the β-cell proliferation by more than 120% after the 7-week administration. CONCLUSIONS Both COM NPs and DIS NPs are promising systems for oral delivery of exenatide, and COM NPs are better in blood glucose level control than DIS NPs. Using prolamin to produce multifunctional nanoparticles for oral delivery of peptide drug by hydrophobic interaction is a simple and effective strategy.
Collapse
Affiliation(s)
- Xiaoyan Bao
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Kang Qian
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Ping Yao
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
43
|
Hu Z, Nizzero S, Goel S, Hinkle LE, Wu X, Li C, Ferrari M, Shen H. Molecular targeting of FATP4 transporter for oral delivery of therapeutic peptide. SCIENCE ADVANCES 2020; 6:eaba0145. [PMID: 32270048 PMCID: PMC7112756 DOI: 10.1126/sciadv.aba0145] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/09/2020] [Indexed: 06/11/2023]
Abstract
Low oral bioavailability of peptide drugs has limited their application to parenteral administration, which suffers from poor patient compliance. Here, we show that molecular targeting of the FATP4 transporter is an effective approach to specifically transport long-chain fatty acid (LCFA)-conjugated peptides across the enterocytic membrane and, thus, enables oral delivery of drug peptides. We packaged LCFA-conjugated exendin-4 (LCFA-Ex4) into liposomes and coated with chitosan nanoparticles to form an orally deliverable Ex4 (OraEx4). OraEx4 protected LCFA-Ex4 from damage by the gastric fluid and released LCFA-Ex4 in the intestinal cavity, where LCFA-Ex4 was transported across the enterocyte membrane by the FAPT4 transporter. OraEx4 had a high bioavailability of 24.8% with respect to subcutaneous injection and exhibited a substantial hypoglycemic effect in murine models of diabetes mellitus. Thus, molecular targeting of the FATP4 transporter enhances oral absorption of therapeutic peptides and provides a platform for oral peptide drug development.
Collapse
Affiliation(s)
- Zhenhua Hu
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Sara Nizzero
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Shreya Goel
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Louis E. Hinkle
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Xiaoyan Wu
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Pediatric Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chao Li
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Mauro Ferrari
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Haifa Shen
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
44
|
Durán-Lobato M, Niu Z, Alonso MJ. Oral Delivery of Biologics for Precision Medicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1901935. [PMID: 31222910 DOI: 10.1002/adma.201901935] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/02/2019] [Indexed: 05/23/2023]
Abstract
The emerging field of precision medicine is rapidly growing, fostered by the advances in genome mapping and molecular diagnosis. In general, the translation of these advances into precision treatments relies on the use of biological macromolecules, whose structure offers a high specificity and potency. Unfortunately, due to their complex structure and limited ability to overcome biological barriers, these macromolecules need to be administered via injection. The scientific community has devoted significant effort to making the oral administration of macromolecules plausible thanks to the implementation of drug delivery technologies. Here, an overview of the current situation and future prospects in the field of oral delivery of biologics is provided. Technologies in clinical trials, as well as recent and disruptive delivery systems proposed in the literature for local and systemic delivery of biologics including peptides, antibodies, and nucleic acids, are described. Strategies for the specific targeting of gastrointestinal regions-stomach, small bowel, and colon-cell populations, and internalization pathways, are analyzed. Finally, challenges associated with the clinical translation, future prospects, and identified opportunities for advancement in this field are also discussed.
Collapse
Affiliation(s)
- Matilde Durán-Lobato
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
- IDIS Research Institute, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Zhigao Niu
- Riddet Institute, Massey University, Palmerston North, 4442, New Zealand
- Food and Bio-based Products Group, AgResearch Ltd, Palmerston North, 4442, New Zealand
| | - María José Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
- IDIS Research Institute, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| |
Collapse
|
45
|
Stagnoli S, Sosa Alderete L, Luna MA, Agostini E, Falcone RD, Niebylski AM, Correa NM. Catanionic nanocarriers as a potential vehicle for insulin delivery. Colloids Surf B Biointerfaces 2019; 188:110759. [PMID: 31887645 DOI: 10.1016/j.colsurfb.2019.110759] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/27/2019] [Accepted: 12/23/2019] [Indexed: 12/16/2022]
Abstract
Diabetes is a disease that affects millions of people in the World, constituting a global problem. Patients are administered insulin subcutaneous injections, resulting in high costs and frequent infections in the injection site. A possible solution to this problem may be the use of nanotechnology. Nanotransporters can act as specific release systems able to overcome the current limitations to drug delivery. Liposomes and vesicles can deliver drugs directly and efficiently to the site of action, decreasing toxicity and adverse effects. In previous studies, we demonstrated the biocompatibility and safety of catanionic benzyl n-hexadecyldimethylammonium 1,4 -bis-2-ethylhexylsulfosuccinate (BHD-AOT) vesicles using both in vitro and in vivo tests. Thus, the aims of this work were to evaluate the ability of the BHD-AOT vesicles to encapsulate insulin; to analyze the structural properties and stability of the system, vesicle-Insulin (VIn), at different pH conditions; and to study the ability of VIn to decrease the glycemia in miceby different administration routes. Our results showed that 2 and 5 mg mL-1 of vesicles were able to encapsulate about 55 % and 73 % of insulin, respectively. The system VIn showed a significant increase in size from 120 to 350 nm, changes in the surface zeta potential value, and high stability to different pH conditions. A significant decrease of the glycemia after VIn administration was demonstrated in in vivo assays, including the oral route. Our results reveal that BHD-AOT vesicles may be an appropriate system to encapsulate and protect insulin, and may be a potential system to be administrated in different ways as an alternative strategy to conventional therapy.
Collapse
Affiliation(s)
- Soledad Stagnoli
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS, UNRC-CONICET), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, X5804ZAB, Río Cuarto, Córdoba, Argentina; Departamento de Química. Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, X5804ZAB, Río Cuarto, Córdoba, Argentina; Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, X5804ZAB, Río Cuarto, Córdoba, Argentina.
| | - Lucas Sosa Alderete
- Instituto de Biotecnología Ambiental y Salud (INBIAS, UNRC-CONICET), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, X5804ZAB, Río Cuarto, Córdoba, Argentina; Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, X5804ZAB, Río Cuarto, Córdoba, Argentina
| | - M Alejandra Luna
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS, UNRC-CONICET), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, X5804ZAB, Río Cuarto, Córdoba, Argentina; Departamento de Química. Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, X5804ZAB, Río Cuarto, Córdoba, Argentina
| | - Elizabeth Agostini
- Instituto de Biotecnología Ambiental y Salud (INBIAS, UNRC-CONICET), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, X5804ZAB, Río Cuarto, Córdoba, Argentina; Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, X5804ZAB, Río Cuarto, Córdoba, Argentina
| | - R Dario Falcone
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS, UNRC-CONICET), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, X5804ZAB, Río Cuarto, Córdoba, Argentina; Departamento de Química. Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, X5804ZAB, Río Cuarto, Córdoba, Argentina
| | - Ana M Niebylski
- Instituto de Biotecnología Ambiental y Salud (INBIAS, UNRC-CONICET), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, X5804ZAB, Río Cuarto, Córdoba, Argentina; Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, X5804ZAB, Río Cuarto, Córdoba, Argentina
| | - N Mariano Correa
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS, UNRC-CONICET), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, X5804ZAB, Río Cuarto, Córdoba, Argentina; Departamento de Química. Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, X5804ZAB, Río Cuarto, Córdoba, Argentina.
| |
Collapse
|
46
|
Abstract
Protein and peptide therapeutics require parenteral administration, which can be a deterrent to medication adherence. For this reason, there have been extensive efforts to develop alternative delivery strategies, particularly for peptides such as insulin that are used to treat endocrine disorders. Oral delivery is especially desirable, but it faces substantial barriers related to the structural organization and physiological function of the gastrointestinal tract. This article highlights strategies designed to overcome these barriers, including permeation enhancers, inhibitors of gut enzymes, and mucus-penetrating and cell-penetrating peptides. It then focuses on the experience with oral peptides that have reached clinical trials, including insulin, calcitonin, parathyroid hormone and vasopressin, with an emphasis on the advances that have recently led to the landmark approval of an oral formulation of the glucagon-like peptide 1 receptor agonist semaglutide for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Daniel J Drucker
- Department of Medicine and Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
47
|
Nurunnabi M, Ibsen KN, Tanner EEL, Mitragotri S. Oral ionic liquid for the treatment of diet-induced obesity. Proc Natl Acad Sci U S A 2019; 116:25042-25047. [PMID: 31767747 PMCID: PMC6911186 DOI: 10.1073/pnas.1914426116] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
More than 70% of American adults are overweight or obese, a precondition leading to chronic diseases, including diabetes and hypertension. Among other factors, diets with high fat and carbohydrate content have been implicated in obesity. In this study, we hypothesize that the choline and geranate (CAGE) ionic liquid can reduce body weight by decreasing fat absorption through the intestine. In vitro studies performed using docosahexaenoic acid (DHA), a model fat molecule, show that CAGE forms particles 2 to 4 μm in diameter in the presence of fat molecules. Ex vivo permeation studies in rat intestine showed that formation of such large particles reduces intestinal fat absorption. In vivo, CAGE reduces DHA absorption by 60% to 70% compared with controls. DHA administered with CAGE was retained in the intestine even after 6 h. Rats fed with a high-fat diet (HFD) and 10 μL of daily oral CAGE exhibited 12% less body weight gain compared with rats fed with an HFD without CAGE for 30 d. Rats that were given CAGE also ate less food than the control groups. Serum biochemistry and histology results indicated that CAGE was well tolerated by the rats. Collectively, our data support the hypothesis that CAGE interacts with fat molecules to prevent their absorption through intestinal tissue and potentially providing a feeling of satiety. We conclude that CAGE offers an effective means to control body weight and a promising tool to tackle the obesity epidemic.
Collapse
Affiliation(s)
- Md Nurunnabi
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
- Wyss Institute of Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79902
| | - Kelly N Ibsen
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
- Wyss Institute of Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138
| | - Eden E L Tanner
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
- Wyss Institute of Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138
| | - Samir Mitragotri
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138;
- Wyss Institute of Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138
| |
Collapse
|
48
|
Kim KS, Youn YS, Bae YH. Immune-triggered cancer treatment by intestinal lymphatic delivery of docetaxel-loaded nanoparticle. J Control Release 2019; 311-312:85-95. [PMID: 31461664 DOI: 10.1016/j.jconrel.2019.08.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/20/2019] [Accepted: 08/25/2019] [Indexed: 12/24/2022]
Abstract
The maximally tolerated dose (MTD) approach in conventional chemotherapy accompanies adverse effects, primarily due to high drug concentrations in the blood after intravenous administration and non-specific damages to highly proliferating cells, including immune cells. This causes the immune system to dysfunction. To rather boost intrinsic tumor-fighting immune capacity, we demonstrate a new oral route treatment regimen of docetaxel (DTX) without apparent toxicity. The DTX-loaded cationic solid lipid nanoparticles (DSLN-CSG) were coated with an anionic polymer conjugated with glycocholic acid. The resulting nanoparticles (DSLN-CSG, ~120 nm in diameter) were actively absorbed in the distal ileum mediated by interactions with the apical sodium bile acid transporter. The plasma DTX profile was sustained up to 24 h after a single oral dose and did not impair the functions of the immune system. In mouse models, daily oral DSLN-CSG administration inhibited the growth of existing tumors and tumor formation by medication prior to cancer cell inoculation. The extent of effects depended on the cancer cell lines of melanoma, colorectal adenocarcinoma, and breast carcinoma. It was most effective for melanoma in growth inhibition and in preventing tumor formation in mice. During the medication, the cytotoxic T cell population increased while the populations of tumor-associated macrophage and regulatory T cell declined. The low dose daily oral treatment may help patients with intermittent maintenance therapy between MTD cycles and prevent tumor recurrence after completing remission for certain tumors.
Collapse
Affiliation(s)
- Kyoung Sub Kim
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Yu Seok Youn
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA; School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - You Han Bae
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|