1
|
Zhou X, Zhou J, Wang L, Zhao B, Ma Y, Zhang N, Chen W, Huang D. Size-tailored and acid-degradable polyvinyl alcohol microgels for inhalation therapy of bacterial pneumonia. J Mater Chem B 2024; 12:9325-9334. [PMID: 39171436 DOI: 10.1039/d4tb01224k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Administration of antibiotics via inhalation is considered an effective strategy for pneumonia treatment; however, it encounters challenges related to the development of drug formulations with precise particle sizes and controlled release profiles. Herein, size-tailored and acid-degradable polyvinyl alcohol (PVA) microgels are utilized for nebulized inhalation delivery of piperacillin (PIP) antibiotics to effectively treat pneumonia. These microgels loaded with PIP (G@PIP) were prepared through the UV-crosslinking of thermo-triggered vinyl ether methacrylate-functionalized PVA (PVAVEMA) micro-aggregates in aqueous solution. The size of G@PIP microgels could be tailored by adjusting concentrations during the crosslinking process above phase-transition temperature at 15 °C. Additionally, under simulated inflammatory acidic conditions, the G@PIP microgels degraded and released PIP with relatively high inhibition efficiency against E. coli. Furthermore, in vivo therapeutic outcomes revealed that inhalational delivery of G@PIP microgel with a medium-size of 3.5 μm (G-3.5@PIP) exhibited superior lung deposition compared to other microgel sizes owing to its reduced exhalation and enhanced diffusion capacity within the pulmonary system. The high accumulation of G-3.5@PIP significantly reduced E. coli infection and associated inflammation while maintaining the biocompatibility of the microgels. Overall, these acid-degradable PVA microgels offer a versatile and efficacious inhalation therapy for pneumonia-associated infections.
Collapse
Affiliation(s)
- Xiang Zhou
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Jingjing Zhou
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Lanlan Wang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Bingbing Zhao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Yukun Ma
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Ni Zhang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Wei Chen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
- Engineering Research Center for Smart Pharmaceutical Manufacturing Technologies, Ministry of Education, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Dechun Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
- Engineering Research Center for Smart Pharmaceutical Manufacturing Technologies, Ministry of Education, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
2
|
Tie S. Microgel delivery systems of functional substances for precision nutrition. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 112:147-171. [PMID: 39218501 DOI: 10.1016/bs.afnr.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microgels delivery system have great potential in functional substances encapsulation, protection, release, precise delivery and nutritional intervention. Microgel is a three-dimensional network structure formed by physical or chemical crosslinking of biopolymers, whose characteristics include dispersion and swelling, stable structure, small volume and high specific surface area, and is a special kind of colloid. In this chapter, the common wall materials for preparing food grade microgels, and the main preparation principles, methods, advantages and disadvantages of microgels loaded with functional substances were firstly reviewed. Then the main characteristics of microgel as delivery system, such as deformability, high encapsulation, stimulus-responsive release and targeted delivery, and its potential benefits in intervening chronic diseases were summarized. Finally, the applications of microgel delivery system for functional substance in the field of precision nutrition were discussed. This chapter will help to design of next-generation advanced targeting microgel delivery system, and realize precision nutrition intervention of food functional substances on body health.
Collapse
Affiliation(s)
- Shanshan Tie
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan, P.R. China.
| |
Collapse
|
3
|
Zhao J, Yuan Y, Xue J, Hou A, Song S, Guan J, Zhang X, Mao S. Exploring the influence of microstructure and phospholipid type of liposomes on their interaction with lung. Eur J Pharm Biopharm 2024; 198:114271. [PMID: 38537907 DOI: 10.1016/j.ejpb.2024.114271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/17/2024] [Accepted: 03/24/2024] [Indexed: 04/19/2024]
Abstract
Liposome is a promising carrier for pulmonary drug delivery and the nano-sized liposomes have been widely investigated in the treatment of lung diseases. However, there still lack the knowledge of micron-sized liposomes for lung delivery, which have more advantages in terms of drug loading and sustained drug release capacity. The micron-sized liposomes can be classified into multilamellar liposome (MLL) and multivesicular liposome (MVL) according to their microstructure, thus, this study focused on exploring how the micron-sized liposomes with different microstructure and phospholipid composition influence their interaction with the lung. The MLL and MVL were prepared from different types of phospholipids (including soya phosphatidylcholine (SPC), egg yolk phosphatidylcholine (EPC), and dipalmitoyl phosphatidylcholine (DPPC)) with geometric diameter around 5 μm, and their in vitro pulmonary cell uptake, in vivo lung retention and organ distribution were investigated. The results showed that the microstructure of liposomes didn't affect pulmonary cellular uptake, in vivo lung retention and organ distribution. MLL and MVL prepared with the same phospholipid had similar cellular uptake in both NR8383 cells and A549 cells, and both of them possessed prolonged lung retention and limited distribution in other organs during 72 h. Notably, the phospholipid type presented remarkable influence on liposomes' interaction with the lung. SPC-based liposomes exhibited higher cellular uptake than the DPPC-based ones in both NR8383 cells and A549 cells, also possessed a better lung retention behavior. In conclusion, this study might provide theoretical knowledge for designing micron-sized liposomes intended for lung delivery.
Collapse
Affiliation(s)
- Jing Zhao
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ye Yuan
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jingwen Xue
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Anyue Hou
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shimeng Song
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jian Guan
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China
| | - Xin Zhang
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China
| | - Shirui Mao
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China.
| |
Collapse
|
4
|
Xie M, Wang J, Wu S, Yan S, He Y. Microgels for bioprinting: recent advancements and challenges. Biomater Sci 2024; 12:1950-1964. [PMID: 38258987 DOI: 10.1039/d3bm01733h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Microgels have become a popular and powerful structural unit in the bioprinting field due to their advanced properties, ranging from the tiny size and well-connected hydrogel (nutrient) network to special rheological properties. Different microgels can be fabricated by a variety of fabrication methods including bulk crushing, auxiliary dripping, multiphase emulsion, and lithography technology. Traditionally, microgels can encapsulate specific cells and are used for in vitro disease models and in vivo organ regeneration. Furthermore, microgels can serve as a drug carrier to realize controlled release of drug molecules. Apart from being used as an independent application unit, recently, these microgels are widely applied as a specific bioink component in 3D bioprinting for in situ tissue repair or building special 3D structures. In this review, we introduce different methods used to generate microgels and the microgel-based bioink for bioprinting. Besides, the further tendency of microgel development in future is introduced and predicted to provide guidance for related researchers in exploring more effective ways to fabricate microgels and more potential bioprinting application cases as multifunctional bioink components.
Collapse
Affiliation(s)
- Mingjun Xie
- Plastic and Reconstructive Surgery Center, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China, 310014.
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of Materials Processing and Mold, Zhengzhou University, Zhengzhou, 450002, China.
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ji Wang
- Plastic and Reconstructive Surgery Center, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China, 310014.
| | - Sufan Wu
- Plastic and Reconstructive Surgery Center, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China, 310014.
| | - Sheng Yan
- Plastic and Reconstructive Surgery Center, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China, 310014.
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of Materials Processing and Mold, Zhengzhou University, Zhengzhou, 450002, China.
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
5
|
Zhang X, Zhu R, Wang X, Wang H, Xu Z, Wang Y, Quan D, Shen L. Core-Shell Microspheres Prepared Using Coaxial Electrostatic Spray for Local Chemotherapy of Solid Tumors. Pharmaceutics 2023; 16:45. [PMID: 38258056 PMCID: PMC10820845 DOI: 10.3390/pharmaceutics16010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Local chemotherapy is an alternative therapeutic strategy that involves direct delivery of drugs to the tumor site. This approach avoids adverse reactions caused by the systemic distribution of drugs and enhances the tumor-suppressing effect by concentrating the drugs at the tumor site. Drug-loaded microspheres are injectable sustained-release drug carriers that are highly suitable for local chemotherapy. However, a complex preparation process is one of the main technical difficulties limiting the development of microsphere formulations. In this study, core-shell structured microspheres loaded with paclitaxel (PTX; with a core-shell structure, calcium alginate outer layer, and a poly (lactic acid-co-glycolic acid) copolymer inner layer, denoted as PTX-CA/PLGA-MS) were prepared using coaxial electrostatic spray technology and evaluated in vitro and in vivo. PTX-CA/PLGA-MS exhibited a two-stage drug release profile and enhanced anti-tumor effect in animal tumor models. Importantly, the preparation method reported in this study is simple and reduces the amount of organic solvent(s) used substantially.
Collapse
Affiliation(s)
- Xiaowei Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (X.Z.); (R.Z.); (X.W.); (H.W.); (Y.W.)
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, China;
| | - Rundong Zhu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (X.Z.); (R.Z.); (X.W.); (H.W.); (Y.W.)
| | - Xingzhi Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (X.Z.); (R.Z.); (X.W.); (H.W.); (Y.W.)
| | - Hao Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (X.Z.); (R.Z.); (X.W.); (H.W.); (Y.W.)
| | - Zushun Xu
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, China;
| | - Yongan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (X.Z.); (R.Z.); (X.W.); (H.W.); (Y.W.)
| | - Dongqin Quan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (X.Z.); (R.Z.); (X.W.); (H.W.); (Y.W.)
| | - Liao Shen
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (X.Z.); (R.Z.); (X.W.); (H.W.); (Y.W.)
| |
Collapse
|
6
|
Zhang M, Lu H, Xie L, Liu X, Cun D, Yang M. Inhaled RNA drugs to treat lung diseases: Disease-related cells and nano-bio interactions. Adv Drug Deliv Rev 2023; 203:115144. [PMID: 37995899 DOI: 10.1016/j.addr.2023.115144] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/07/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
In recent years, RNA-based therapies have gained much attention as biomedicines due to their remarkable therapeutic effects with high specificity and potency. Lung diseases offer a variety of currently undruggable but attractive targets that could potentially be treated with RNA drugs. Inhaled RNA drugs for the treatment of lung diseases, including asthma, chronic obstructive pulmonary disease, cystic fibrosis, and acute respiratory distress syndrome, have attracted more and more attention. A variety of novel nanoformulations have been designed and attempted for the delivery of RNA drugs to the lung via inhalation. However, the delivery of RNA drugs via inhalation poses several challenges. It includes protection of the stability of RNA molecules, overcoming biological barriers such as mucus and cell membrane to the delivery of RNA molecules to the targeted cytoplasm, escaping endosomal entrapment, and circumventing unwanted immune response etc. To address these challenges, ongoing researches focus on developing innovative nanoparticles to enhance the stability of RNA molecules, improve cellular targeting, enhance cellular uptake and endosomal escape to achieve precise delivery of RNA drugs to the intended lung cells while avoiding unwanted nano-bio interactions and off-target effects. The present review first addresses the pathologic hallmarks of different lung diseases, disease-related cell types in the lung, and promising therapeutic targets in these lung cells. Subsequently we highlight the importance of the nano-bio interactions in the lung that need to be addressed to realize disease-related cell-specific delivery of inhaled RNA drugs. This is followed by a review on the physical and chemical characteristics of inhaled nanoformulations that influence the nano-bio interactions with a focus on surface functionalization. Finally, the challenges in the development of inhaled nanomedicines and some key aspects that need to be considered in the development of future inhaled RNA drugs are discussed.
Collapse
Affiliation(s)
- Mengjun Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China; School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Haoyu Lu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China
| | - Liangkun Xie
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China
| | - Xulu Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China
| | - Dongmei Cun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China.
| | - Mingshi Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China; Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
7
|
Pangeni R, Meng T, Poudel S, Sharma D, Hutsell H, Ma J, Rubin BK, Longest W, Hindle M, Xu Q. Airway mucus in pulmonary diseases: Muco-adhesive and muco-penetrating particles to overcome the airway mucus barriers. Int J Pharm 2023; 634:122661. [PMID: 36736964 PMCID: PMC9975059 DOI: 10.1016/j.ijpharm.2023.122661] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023]
Abstract
Airway mucus is a complex viscoelastic gel that provides a defensive physical barrier and shields the airway epithelium by trapping inhaled foreign pathogens and facilitating their removal via mucociliary clearance (MCC). In patients with respiratory diseases, such as chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF), non-CF bronchiectasis, and asthma, an increase in crosslinking and physical entanglement of mucin polymers as well as mucus dehydration often alters and typically reduces mucus mesh network pore size, which reduces neutrophil migration, decreases pathogen capture, sustains bacterial infection, and accelerates lung function decline. Conventional aerosol particles containing hydrophobic drugs are rapidly captured and removed by MCC. Therefore, it is critical to design aerosol delivery systems with the appropriate size and surface chemistry that can improve drug retention and absorption with the goal of increased efficacy. Biodegradable muco-adhesive particles (MAPs) and muco-penetrating particles (MPPs) have been engineered to achieve effective pulmonary delivery and extend drug residence time in the lungs. MAPs can be used to target mucus as they get trapped in airway mucus by steric obstruction and/or adhesion. MPPs avoid muco-adhesion and are designed to have a particle size smaller than the mucus network, enhancing lung retention of particles as well as transport to the respiratory epithelial layer and drug absorption. In this review, we aim to provide insight into the composition of airway mucus, rheological characteristics of airway mucus in healthy and diseased subjects, the most recent techniques to study the flow dynamics and particle diffusion in airway mucus (in particular, multiple particle tracking, MPT), and the advancements in engineering MPPs that have contributed to improved airway mucus penetration, lung distribution, and retention.
Collapse
Affiliation(s)
- Rudra Pangeni
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA
| | - Tuo Meng
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA
| | - Sagun Poudel
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA
| | - Divya Sharma
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, USA
| | - Hallie Hutsell
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA
| | - Jonathan Ma
- Department of Pediatrics, Children's Hospital of Richmond, Richmond, VA, USA
| | - Bruce K Rubin
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, USA; Department of Pediatrics, Children's Hospital of Richmond, Richmond, VA, USA
| | - Worth Longest
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA; Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Michael Hindle
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA
| | - Qingguo Xu
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA; Department of Ophthalmology, Massey Cancer Center, Center for Pharmaceutical Engineering, and Institute for Structural Biology, Drug Discovery & Development (ISB3D), Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
8
|
Sayegh MN, Cooney KA, Han WM, Cicka M, Strobel F, Wang L, García AJ, Levit RD. Hydrogel delivery of purinergic enzymes improves cardiac ischemia/reperfusion injury. J Mol Cell Cardiol 2023; 176:98-109. [PMID: 36764383 PMCID: PMC10006353 DOI: 10.1016/j.yjmcc.2023.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/23/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
RATIONALE The innate immune response contributes to cardiac injury in myocardial ischemia/reperfusion (MI/R). Neutrophils are an important early part of the innate immune response to MI/R. Adenosine, an endogenous purine, is a known innate immune modulator and inhibitor of neutrophil activation. However, its delivery to the heart is limited by its short half-life (<30 s) and off-target side effects. CD39 and CD73 are anti-inflammatory homeostatic enzymes that can generate adenosine from phosphorylated adenosine substrate such as ATP released from injured tissue. OBJECTIVE We hypothesize that hydrogel-delivered CD39 and CD73 target the local early innate immune response, reduce neutrophil activation, and preserve cardiac function in MI/R injury. METHODS AND RESULTS We engineered a poly(ethylene) glycol (PEG) hydrogel loaded with the adenosine-generating enzymes CD39 and CD73. We incubated the hydrogels with neutrophils in vitro and showed a reduction in hydrogen peroxide production using Amplex Red. We demonstrated availability of substrate for the enzymes in the myocardium in MI/R by LC/MS, and tested release kinetics from the hydrogel. On echocardiography, global longitudinal strain (GLS) was preserved in MI/R hearts treated with the loaded hydrogel. Delivery of purinergic enzymes via this synthetic hydrogel resulted in lower innate immune infiltration into the myocardium post-MI/R, decreased markers of macrophage and neutrophil activation (NETosis), and decreased leukocyte-platelet complexes in circulation. CONCLUSIONS In a rat model of MI/R injury, CD39 and CD73 delivered via a hydrogel preserve cardiac function by modulating the innate immune response.
Collapse
Affiliation(s)
- Michael N Sayegh
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States of America; Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Kimberly A Cooney
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States of America; Department of Biological Sciences, Tennessee State University, Nashville, TN, United States of America
| | - Woojin M Han
- Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States of America; Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Markus Cicka
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States of America
| | - Frederick Strobel
- Department of Chemistry, Emory University, Atlanta, GA, United States of America
| | - Lanfang Wang
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States of America
| | - Andrés J García
- Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Rebecca D Levit
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States of America; Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States of America.
| |
Collapse
|
9
|
Zhang M, Jiang H, Wu L, Lu H, Bera H, Zhao X, Guo X, Liu X, Cun D, Yang M. Airway epithelial cell-specific delivery of lipid nanoparticles loading siRNA for asthma treatment. J Control Release 2022; 352:422-437. [PMID: 36265740 DOI: 10.1016/j.jconrel.2022.10.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022]
Abstract
With specific and inherent mRNA cleaving activity, small interfering RNA (siRNA) has been deemed promising therapeutics to reduce the exacerbation rate of asthma by inhibiting the expression and release of proinflammatory cytokines from airway epithelial cells (AECs). To exert the therapeutic effects of siRNA drugs, nano-formulations with high efficiency and safety are required to deliver these nucleic acids to the target cells. Herein, we exploited novel inhaled lipid nanoparticles (LNPs) targeting intercellular adhesion molecule-1 (ICAM-1) receptors on the apical side of AECs. This delivery system is meant to enhance the specific delivery efficiency of siRNA in AECs to prevent the expression of proinflammatory cytokines in AECs and the concomitant symptoms in parallel. A cyclic peptide that resembles part of the capsid protein of rhinovirus and binds to ICAM-1 receptors was initially conjugated with cholesterol and subsequently assembled with ionizable cationic lipids to form the LNPs (Pep-LNPs) loaded with siRNA against thymic stromal lymphopoietin (TSLP siRNA). The obtained Pep-LNPs were subjected to thorough characterization and evaluations in vitro and in vivo. Pep-LNPs significantly enhanced cellular uptake and gene silencing efficiency in human epithelial cells expressing ICAM-1 in vitro, exhibited AEC-specific delivery and improved the gene silencing effect in ovalbumin-challenged asthmatic mice after pulmonary administration. More importantly, Pep-LNPs remarkably downregulated the expression of TSLP in AECs, effectively alleviated inflammatory cell infiltration, and reduced the secretion of other proinflammatory cytokines, including IL-4 and IL-13, as well as mucus production in asthmatic mice. This study demonstrates that Pep-LNPs are safe and efficient to deliver siRNA drugs to asthmatic AECs and could potentially alleviate allergic asthma by inhibiting the overexpression of proinflammatory cytokines in the airway.
Collapse
Affiliation(s)
- Mengjun Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road, No. 103, 110016 Shenyang, China
| | - Huiyang Jiang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road, No. 103, 110016 Shenyang, China
| | - Lan Wu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road, No. 103, 110016 Shenyang, China
| | - Haoyu Lu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road, No. 103, 110016 Shenyang, China
| | - Hriday Bera
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road, No. 103, 110016 Shenyang, China; Dr. B.C. Roy College of Pharmacy & Allied Health Sciences, Durgapur, West Bengal, 713212, India
| | - Xing Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road, No. 103, 110016 Shenyang, China
| | - Xiong Guo
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road, No. 103, 110016 Shenyang, China
| | - Xulu Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road, No. 103, 110016 Shenyang, China
| | - Dongmei Cun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road, No. 103, 110016 Shenyang, China.
| | - Mingshi Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road, No. 103, 110016 Shenyang, China; Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
10
|
Ismail EA, Devnarain N, Govender T, Omolo CA. Stimuli-responsive and biomimetic delivery systems for sepsis and related complications. J Control Release 2022; 352:1048-1070. [PMID: 36372385 DOI: 10.1016/j.jconrel.2022.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/18/2022]
Abstract
Sepsis, a consequence of an imbalanced immune response to infection, is currently one of the leading causes of death globally. Despite advances in the discoveries of potential targets and nanotechnology, sepsis still lacks effective drug delivery systems for optimal treatment. Stimuli-responsive and biomimetic nano delivery systems, specifically, are emerging as advanced bio-inspired nanocarriers for enhancing the treatment of sepsis. Herein, we present a critical review of different stimuli-responsive systems, including pH-; enzyme-; ROS- and toxin-responsive nanocarriers, reported in the delivery of therapeutics for sepsis. Biomimetic nanocarriers, utilizing natural pathways in the inflammatory cascade to optimize sepsis therapy, are also reviewed, in addition to smart, multifunctional vehicles. The review highlights the nanomaterials designed for constructing these systems; their physicochemical properties; the mechanisms of drug release; and their potential for enhancing the therapeutic efficacy of their cargo. Current challenges are identified and future avenues for research into the optimization of bio-inspired nano delivery systems for sepsis are also proposed. This review confirms the potential of stimuli-responsive and biomimetic nanocarriers for enhanced therapy against sepsis and related complications.
Collapse
Affiliation(s)
- Eman A Ismail
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa; Department of Pharmaceutics, Faculty of Pharmacy, University of Gezira, Wad Medani, Sudan
| | - Nikita Devnarain
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.
| | - Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa; Department of Pharmaceutics and Pharmacy Practice, School of Pharmacy and Health Sciences, United States International University-Africa, Nairobi, Kenya.
| |
Collapse
|
11
|
Xu Y, Zhu H, Denduluri A, Ou Y, Erkamp NA, Qi R, Shen Y, Knowles TPJ. Recent Advances in Microgels: From Biomolecules to Functionality. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200180. [PMID: 35790106 DOI: 10.1002/smll.202200180] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/15/2022] [Indexed: 06/15/2023]
Abstract
The emerging applications of hydrogel materials at different length scales, in areas ranging from sustainability to health, have driven the progress in the design and manufacturing of microgels. Microgels can provide miniaturized, monodisperse, and regulatable compartments, which can be spatially separated or interconnected. These microscopic materials provide novel opportunities for generating biomimetic cell culture environments and are thus key to the advances of modern biomedical research. The evolution of the physical and chemical properties has, furthermore, highlighted the potentials of microgels in the context of materials science and bioengineering. This review describes the recent research progress in the fabrication, characterization, and applications of microgels generated from biomolecular building blocks. A key enabling technology allowing the tailoring of the properties of microgels is their synthesis through microfluidic technologies, and this paper highlights recent advances in these areas and their impact on expanding the physicochemical parameter space accessible using microgels. This review finally discusses the emerging roles that microgels play in liquid-liquid phase separation, micromechanics, biosensors, and regenerative medicine.
Collapse
Affiliation(s)
- Yufan Xu
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Hongjia Zhu
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Akhila Denduluri
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Yangteng Ou
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Nadia A Erkamp
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Runzhang Qi
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Yi Shen
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, University of Sydney, Sydney, NSW, 2006, Australia
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| |
Collapse
|
12
|
Progress in the treatment of drug-induced liver injury with natural products. Pharmacol Res 2022; 183:106361. [PMID: 35882295 DOI: 10.1016/j.phrs.2022.106361] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 12/13/2022]
Abstract
There are numerous prescription drugs and non-prescription drugs that cause drug-induced liver injury (DILI), which is the main cause of liver disease in humans around the globe. Its mechanism becomes clearer as the disease is studied further. For an instance, when acetaminophen (APAP) is taken in excess, it produces N-acetyl-p-benzoquinone imine (NAPQI) that binds to biomacromolecules in the liver causing liver injury. Treatment of DILI with traditional Chinese medicine (TCM) has shown to be effective. For example, activation of the Nrf2 signaling pathway as well as regulation of glutathione (GSH) synthesis, coupling, and excretion are the mechanisms by which ginsenoside Rg1 (Rg1) treats APAP-induced acute liver injury. Nevertheless, reducing the toxicity of TCM in treating DILI is still a problem to be overcome at present and in the future. Accumulated evidences show that hydrogel-based nanocomposite may be an excellent carrier for TCM. Therefore, we reviewed TCM with potential anti-DILI, focusing on the signaling pathway of these drugs' anti-DILI effect, as well as the possibility and prospect of treating DILI by TCM based on hydrogel materials in the future. In conclusion, this review provides new insights to further explore TCM in the treatment of DILI.
Collapse
|
13
|
Sun R, Xu Z, Zhu C, Chen T, Muñoz LE, Dai L, Zhao Y. Alpha-1 antitrypsin in autoimmune diseases: Roles and therapeutic prospects. Int Immunopharmacol 2022; 110:109001. [PMID: 35803133 DOI: 10.1016/j.intimp.2022.109001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 02/05/2023]
Abstract
Alpha-1 antitrypsin (A1AT) is a protease inhibitor in the serum. Its primary function is to inhibit the activity of a series of proteases, including proteinase 3, neutrophil elastase, metalloproteases, and cysteine-aspartate proteases. In addition, A1AT also has anti-inflammatory, anti-apoptotic, anti-oxidative stress, anti-viral, and anti-bacterial activities and plays essential roles in the regulation of tissue repair and lymphocyte differentiation and activation. The overactivation of the immune system characterizes the pathogenesis of autoimmune diseases. A1AT treatment shows beneficial effects on patients and animal models with autoimmune diseases such as rheumatoid arthritis and systemic lupus erythematosus. This review summarizes the functions and therapeutic prospects of A1AT in autoimmune diseases.
Collapse
Affiliation(s)
- Rui Sun
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China; Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhiqiang Xu
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Chenxi Zhu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China; Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tao Chen
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China; Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Luis E Muñoz
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Lunzhi Dai
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| | - Yi Zhao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China; Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
14
|
Zimmermann CJ, Schraeder T, Reynolds B, DeBoer EM, Neeves KB, Marr DW. Delivery and actuation of aerosolized microbots. NANO SELECT 2022; 3:1185-1191. [PMID: 38737633 PMCID: PMC11086685 DOI: 10.1002/nano.202100353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
For disease of the lung, the physical key to effective inhalation-based therapy is size; too large (10's of μm) and the particles or droplets do not remain suspended in air to reach deep within the lungs, too small (subμm) and they are simply exhaled without deposition. μBots within this ideal low-μm size range however are challenging to fabricate and would lead to devices that lack the speed and power necessary for performing work throughout the pulmonary network. To uncouple size from structure and function, here we demonstrate an approach where individual building blocks are aerosolized and subsequently assembled in situ into μbots capable of translation, drug delivery, and mechanical work deep within lung mimics. With this strategy, a variety of pulmonary diseases previously difficult to treat may now be receptive to μbot-based therapies.
Collapse
Affiliation(s)
- Coy J. Zimmermann
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, USA
| | - Tyler Schraeder
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, USA
| | - Brandon Reynolds
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, USA
| | - Emily M. DeBoer
- Department of Pediatrics, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Keith B. Neeves
- Departments of Bioengineering and Pediatrics, Hemophilia and Thrombosis Center, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - David W.M. Marr
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, USA
| |
Collapse
|
15
|
Wang W, Huang Z, Huang Y, Zhang X, Huang J, Cui Y, Yue X, Ma C, Fu F, Wang W, Wu C, Pan X. Pulmonary delivery nanomedicines towards circumventing physiological barriers: Strategies and characterization approaches. Adv Drug Deliv Rev 2022; 185:114309. [PMID: 35469997 DOI: 10.1016/j.addr.2022.114309] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/28/2022] [Accepted: 04/19/2022] [Indexed: 11/01/2022]
Abstract
Pulmonary delivery of nanomedicines is very promising in lung local disease treatments whereas several physiological barriers limit its application via the interaction with inhaled nanomedicines, namely bio-nano interactions. These bio-nano interactions may affect the pulmonary fate of nanomedicines and impede the distribution of nanomedicines in its targeted region, and subsequently undermine the therapeutic efficacy. Pulmonary diseases are under worse scenarios as the altered physiological barriers generally induce stronger bio-nano interactions. To mitigate the bio-nano interactions and regulate the pulmonary fate of nanomedicines, a number of manipulating strategies were established based on size control, surface modification, charge tuning and co-delivery of mucolytic agents. Visualized and non-visualized characterizations can be employed to validate the robustness of the proposed strategies. This review provides a guiding overview of the physiological barriers affecting the in vivo fate of inhaled nanomedicines, the manipulating strategies, and the validation methods, which will assist with the rational design and application of pulmonary nanomedicine.
Collapse
|
16
|
LeValley PJ, Parsons AL, Sutherland BP, Kiick KL, Oakey JS, Kloxin AM. Microgels Formed by Spontaneous Click Chemistries Utilizing Microfluidic Flow Focusing for Cargo Release in Response to Endogenous or Exogenous Stimuli. Pharmaceutics 2022; 14:1062. [PMID: 35631649 PMCID: PMC9145542 DOI: 10.3390/pharmaceutics14051062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 02/05/2023] Open
Abstract
Protein therapeutics have become increasingly popular for the treatment of a variety of diseases owing to their specificity to targets of interest. However, challenges associated with them have limited their use for a range of ailments, including the limited options available for local controlled delivery. To address this challenge, degradable hydrogel microparticles, or microgels, loaded with model biocargoes were created with tunable release profiles or triggered burst release using chemistries responsive to endogenous or exogeneous stimuli, respectively. Specifically, microfluidic flow-focusing was utilized to form homogenous microgels with different spontaneous click chemistries that afforded degradation either in response to redox environments for sustained cargo release or light for on-demand cargo release. The resulting microgels were an appropriate size to remain localized within tissues upon injection and were easily passed through a needle relevant for injection, providing means for localized delivery. Release of a model biopolymer was observed over the course of several weeks for redox-responsive formulations or triggered for immediate release from the light-responsive formulation. Overall, we demonstrate the ability of microgels to be formulated with different materials chemistries to achieve various therapeutic release modalities, providing new tools for creation of more complex protein release profiles to improve therapeutic regimens.
Collapse
Affiliation(s)
- Paige J. LeValley
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA; (P.J.L.); (B.P.S.)
| | - Amanda L. Parsons
- Chemical Engineering, University of Wyoming, Laramie, WY 82071, USA;
| | - Bryan P. Sutherland
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA; (P.J.L.); (B.P.S.)
| | - Kristi L. Kiick
- Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA;
- Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - John S. Oakey
- Chemical Engineering, University of Wyoming, Laramie, WY 82071, USA;
| | - April M. Kloxin
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA; (P.J.L.); (B.P.S.)
- Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA;
| |
Collapse
|
17
|
Ibarra-Sánchez LÁ, Gámez-Méndez A, Martínez-Ruiz M, Nájera-Martínez EF, Morales-Flores BA, Melchor-Martínez EM, Sosa-Hernández JE, Parra-Saldívar R, Iqbal HMN. Nanostructures for drug delivery in respiratory diseases therapeutics: Revision of current trends and its comparative analysis. J Drug Deliv Sci Technol 2022; 70:103219. [PMID: 35280919 PMCID: PMC8896872 DOI: 10.1016/j.jddst.2022.103219] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 02/02/2022] [Accepted: 02/26/2022] [Indexed: 02/08/2023]
Abstract
Respiratory diseases are leading causes of death and disability in developing and developed countries. The burden of acute and chronic respiratory diseases has been rising throughout the world and represents a major problem in the public health system. Acute respiratory diseases include pneumonia, influenza, SARS-CoV-2 and MERS viral infections; while chronic obstructive pulmonary disease (COPD), asthma and, occupational lung diseases (asbestosis, pneumoconiosis) and other parenchymal lung diseases namely lung cancer and tuberculosis are examples of chronic respiratory diseases. Importantly, chronic respiratory diseases are not curable and treatments for acute pathologies are particularly challenging. For that reason, the integration of nanotechnology to existing drugs or for the development of new treatments potentially benefits the therapeutic goals by making drugs more effective and exhibit fewer undesirable side effects to treat these conditions. Moreover, the integration of different nanostructures enables improvement of drug bioavailability, transport and delivery compared to stand-alone drugs in traditional respiratory therapy. Notably, there has been great progress in translating nanotechnology-based cancer therapies and diagnostics into the clinic; however, researchers in recent years have focused on the application of nanostructures in other relevant pulmonary diseases as revealed in our database search. Furthermore, polymeric nanoparticles and micelles are the most studied nanostructures in a wide range of diseases; however, liposomal nanostructures are recognized to be some of the most successful commercial drug delivery systems. In conclusion, this review presents an overview of the recent and relevant research in drug delivery systems for the treatment of different pulmonary diseases and outlines the trends, limitations, importance and application of nanomedicine technology in treatment and diagnosis and future work in this field.
Collapse
Affiliation(s)
- Luis Ángel Ibarra-Sánchez
- Tecnológico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico
| | - Ana Gámez-Méndez
- Universidad de Monterrey, Department of Basic Sciences, Av. Ignacio Morones Prieto 4500 Pte., 66238, San Pedro Garza García, Nuevo León, Mexico
| | - Manuel Martínez-Ruiz
- Tecnológico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico
| | - Erik Francisco Nájera-Martínez
- Tecnológico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico
| | - Brando Alan Morales-Flores
- Tecnológico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico
| | - Elda M Melchor-Martínez
- Tecnológico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico
| | - Juan Eduardo Sosa-Hernández
- Tecnológico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico
| | - Roberto Parra-Saldívar
- Tecnológico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico
| | - Hafiz M N Iqbal
- Tecnológico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico
| |
Collapse
|
18
|
Kunde SS, Ghosh R, Wairkar S. Emerging trends in pulmonary delivery of biopharmaceuticals. Drug Discov Today 2022; 27:1474-1482. [PMID: 35143963 DOI: 10.1016/j.drudis.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/21/2021] [Accepted: 02/03/2022] [Indexed: 11/03/2022]
Abstract
Over the years, a tendency toward biopharmaceutical products as therapeutics has been witnessed compared with small molecular drugs. Biopharmaceuticals possess greater specificity, selectivity and potency with fewer side effects. The pulmonary route is a potential noninvasive route studied for the delivery of various molecules, including biopharmaceuticals. It directly delivers drugs to the lungs in higher concentrations and provides greater bioavailability than other noninvasive routes. This review focuses on the pulmonary route for the delivery of biopharmaceuticals. We have covered various biopharmaceuticals, including peptides, recombinant proteins, enzymes, monoclonal antibodies and nucleic acids, administered via a pulmonary route and discussed their rewards and drawbacks.
Collapse
Affiliation(s)
- Shalvi Sinai Kunde
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra 400056, India
| | - Ritushree Ghosh
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra 400056, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra 400056, India.
| |
Collapse
|
19
|
Fernández-Paz E, Fernández-Paz C, Barrios-Esteban S, Santalices I, Csaba N, Remuñán-López C. Dry powders containing chitosan-based nanocapsules for pulmonary administration: Adjustment of spray-drying process and in vitro evaluation in A549 cells. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
20
|
Arredondo-Ochoa T, Silva-Martínez GA. Microemulsion Based Nanostructures for Drug Delivery. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2021.753947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Most of the active pharmaceutical compounds are often prone to display low bioavailability and biological degradation represents an important drawback. Due to the above, the development of a drug delivery system (DDS) that enables the introduction of a pharmaceutical compound through the body to achieve a therapeutic effect in a controlled manner is an expanding application. Henceforth, new strategies have been developed to control several parameters considered essential for enhancing delivery of drugs. Nanostructure synthesis by microemulsions (ME) consist of enclosing a substance within a wall material at the nanoscale level, allowing to control the size and surface area of the resulting particle. This nanotechnology has shown the importance on targeted drug delivery to improve their stability by protecting a bioactive compound from an adverse environment, enhanced bioavailability as well as controlled release. Thus, a lower dose administration could be achieved by minimizing systemic side effects and decreasing toxicity. This review will focus on describing the different biocompatible nanostructures synthesized by ME as controlled DDS for therapeutic purposes.
Collapse
|
21
|
Yan Y, Wu Q, Ren P, Liu Q, Zhang N, Ji Y, Liu J. Zinc ions coordinated carboxymethyl chitosan-hyaluronic acid microgel for pulmonary drug delivery. Int J Biol Macromol 2021; 193:1043-1049. [PMID: 34800517 DOI: 10.1016/j.ijbiomac.2021.11.088] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/09/2021] [Accepted: 11/14/2021] [Indexed: 10/19/2022]
Abstract
Microgel affords a porous and swollen microstructure for the establishment of pulmonary delivery system with sustained released properties. Here, we report a microgel (with the diameter around 4 μm) prepared with a precipitation method, synthesized by coordinating Zn2+ to the Schiff base cross-linked carboxymethyl chitosan and glycol split hyaluronate. The microgel has shown well swollen and pH sensitive behaviors, high safety and biocompatibility in vitro. Besides, the biomaterial could escape from macrophage phagocytosis, a key factor contribute to quick drug clearance in the lung after co-incubated with RAW 264.7 cells. In consist with this, the bovine serum albumin loaded in the microgel showed sustained release behavior in 24 h in vitro; meanwhile, the drug had a retention time up to 36 h in the lung and followed by clearance in ICR mice through pulmonary administration. Thus, our microgel platform provides a promising candidate for pulmonary drug delivery systems with controlled release rate.
Collapse
Affiliation(s)
- Yishu Yan
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, People's Republic of China.
| | - Qingqing Wu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Panpan Ren
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Qiuyi Liu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Na Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Yang Ji
- Glycobiology Research and Training Center, Departments of Medicine and Cellular and Molecular Medicine, University of California, San Diego, CA 92093, United States
| | - Jingxian Liu
- Jiangsu Provincial Center for Disease Prevention and Control, Nanjing 210009, People's Republic of China
| |
Collapse
|
22
|
Development of a Polysaccharide-Based Hydrogel Drug Delivery System (DDS): An Update. Gels 2021; 7:gels7040153. [PMID: 34698125 PMCID: PMC8544468 DOI: 10.3390/gels7040153] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/02/2021] [Accepted: 09/14/2021] [Indexed: 12/28/2022] Open
Abstract
Delivering a drug to the target site with minimal-to-no off-target cytotoxicity is the major determinant for the success of disease therapy. While the therapeutic efficacy and cytotoxicity of the drug play the main roles, the use of a suitable drug delivery system (DDS) is important to protect the drug along the administration route and release it at the desired target site. Polysaccharides have been extensively studied as a biomaterial for DDS development due to their high biocompatibility. More usefully, polysaccharides can be crosslinked with various molecules such as micro/nanoparticles and hydrogels to form a modified DDS. According to IUPAC, hydrogel is defined as the structure and processing of sols, gels, networks and inorganic–organic hybrids. This 3D network which often consists of a hydrophilic polymer can drastically improve the physical and chemical properties of DDS to increase the biodegradability and bioavailability of the carrier drugs. The advancement of nanotechnology also allows the construction of hydrogel DDS with enhanced functionalities such as stimuli-responsiveness, target specificity, sustained drug release, and therapeutic efficacy. This review provides a current update on the use of hydrogel DDS derived from polysaccharide-based materials in delivering various therapeutic molecules and drugs. We also highlighted the factors that affect the efficacy of these DDS and the current challenges of developing them for clinical use.
Collapse
|
23
|
Microencapsulated Chitosan-Based Nanocapsules: A New Platform for Pulmonary Gene Delivery. Pharmaceutics 2021; 13:pharmaceutics13091377. [PMID: 34575452 PMCID: PMC8472419 DOI: 10.3390/pharmaceutics13091377] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 12/24/2022] Open
Abstract
In this work, we propose chitosan (CS)-based nanocapsules (NCs) for pulmonary gene delivery. Hyaluronic acid (HA) was incorporated in the NCs composition (HA/CS NCs) aiming to promote gene transfection in the lung epithelium. NCs were loaded with a model plasmid (pCMV-βGal) to easily evaluate their transfection capacity. The plasmid encapsulation efficiencies were of approx. 90%. To facilitate their administration to the lungs, the plasmid-loaded NCs were microencapsulated in mannitol (Ma) microspheres (MS) using a simple spray-drying technique, obtaining dry powders of adequate properties. In vivo, the MS reached the deep lung, where the plasmid-loaded CS-based NCs were released and transfected the alveolar cells more homogeneously than the control formulation of plasmid directly microencapsulated in Ma MS. The HA-containing formulation achieved the highest transfection efficiency, in a more extended area and more homogeneously distributed than the rest of tested formulations. The new micro-nanostructured platform proposed in this work represents an efficient strategy for the delivery of genetic material to the lung, with great potential for the treatment of genetic lung diseases.
Collapse
|
24
|
Rabiei M, Kashanian S, Samavati SS, Derakhshankhah H, Jamasb S, McInnes SJP. Characteristics of SARS-CoV2 that may be useful for nanoparticle pulmonary drug delivery. J Drug Target 2021; 30:233-243. [PMID: 34415800 DOI: 10.1080/1061186x.2021.1971236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
As a non-invasive method of local and systemic drug delivery, the administration of active pharmaceutical ingredients (APIs) via the pulmonary route represents an ideal approach for the therapeutic treatment of pulmonary diseases. The pulmonary route provides a number of advantages, including the rapid absorption which results from a high level of vascularisation over a large surface area and the successful avoidance of first-pass metabolism. Aerosolization of nanoparticles (NPs) is presently under extensive investigation and exhibits a high potential for targeted delivery of therapeutic agents for the treatment of a wide range of diseases. NPs need to possess specific characteristics to facilitate their transport along the pulmonary tract and appropriately overcome the barriers presented by the pulmonary system. The most challenging aspect of delivering NP-based drugs via the pulmonary route is developing colloidal systems with the optimal physicochemical parameters for inhalation. The physiochemical properties of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) have been investigated as a template for the synthesis of NPs to assist in the formulation of virus-like particles (VLPs) for pharmaceutical delivery, vaccine production and diagnosis assays.
Collapse
Affiliation(s)
- Morteza Rabiei
- Nanobiotechnology Department, Faculty of Innovative Science and Technology, Razi University, Kermanshah, Iran
| | - Soheila Kashanian
- Nanobiotechnology Department, Faculty of Innovative Science and Technology, Razi University, Kermanshah, Iran.,Faculty of Chemistry, Sensor and Biosensor Research Center (SBRC) and Nanoscience and Nanotechnology Research Center (NNRC), Razi University, Kermanshah, Iran.,Nano Drug Delivery Research Center, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Seyedeh Sabereh Samavati
- Nanobiotechnology Department, Faculty of Innovative Science and Technology, Razi University, Kermanshah, Iran
| | - Hossein Derakhshankhah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shahriar Jamasb
- Department of Biomedical Engineering, Hamedan University of Technology, Hamedan, Iran
| | - Steven J P McInnes
- University of South Australia, UniSA STEM, Mawson Lakes, South Australia
| |
Collapse
|
25
|
Xiong B, Chen Y, Liu Y, Hu X, Han H, Li Q. Artesunate-loaded porous PLGA microsphere as a pulmonary delivery system for the treatment of non-small cell lung cancer. Colloids Surf B Biointerfaces 2021; 206:111937. [PMID: 34198232 DOI: 10.1016/j.colsurfb.2021.111937] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/23/2021] [Accepted: 06/22/2021] [Indexed: 12/18/2022]
Abstract
Non-small cell lung cancer (NSCLC) has emerged to be a significant cause of cancer mortality worldwide. Artesunate (ART) extracted from Chinese herb Artemisia annua L, has been proven to possess desirable anti-cancer efficacy, especially for the metastatic NSCLC treatment. Moreover, the poly(lactic-co-glycolic acid) (PLGA) microsphere has been considered to be a potential pulmonary delivery system for the sustained drug release to enhance the therapeutic efficacy of lung cancer. Herein, the ART-loaded porous PLGA microsphere was prepared through the emulsion solvent evaporation approach. The microsphere was demonstrated to possess highly porous structure and ideal aerodynamic diameter for the pulmonary administration. Meanwhile, sustained ART release was obtained from the porous microsphere within 8 days. The release solution collected from the microsphere could be effectively uptake by the cells and further induce the cell apoptosis and the cell cycle arrest at G2/M phase to execute the anti-proliferative effect, using human lung adenocarcinoma cell line A549 as a model. Additionally, strong inhibitory effect on the cell migration and invasion could be obtained after the treatment with release solution. Taken together, our results demonstrated that the ART-loaded PLGA porous microsphere could achieve excellent anti-cancer efficacy, providing a potential approach for the NSCLC treatment via the pulmonary administration.
Collapse
Affiliation(s)
- Boyu Xiong
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Yanxu Chen
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Yong Liu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Xiaolin Hu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Haobo Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China.
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China.
| |
Collapse
|
26
|
Erfani A, Hanna A, Zarrintaj P, Manouchehri S, Weigandt K, Aichele CP, Ramsey JD. Biodegradable zwitterionic poly(carboxybetaine) microgel for sustained delivery of antibodies with extended stability and preserved function. SOFT MATTER 2021; 17:5349-5361. [PMID: 33954314 DOI: 10.1039/d1sm00154j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Many recent innovative treatments are based on monoclonal antibodies (mAbs) and other protein therapies. Nevertheless, sustained subcutaneous, oral or pulmonary delivery of such therapeutics is limited by the poor stability, short half-life, and non-specific interactions between the antibody (Ab) and delivery vehicle. Protein stabilizers (osmolytes) such as carboxybetaine can prevent non-specific interactions within proteins. In this work, a biodegradable zwitterionic poly(carboxybetaine), pCB, based microgel covalently crosslinked with tetra(ethylene glycol) diacrylate (TTEGDA) was synthesized for Ab encapsulation. The resulting microgels were characterized via FTIR, diffusion NMR, small-angle neutron scattering (SANS), and cell culture studies. The microgels were found to contain up to 97.5% water content and showed excellent degradability that can be tuned with crosslinking density. Cell compatibility of the microgel was studied by assessing the toxicity and immunogenicity in vitro. Cells exposed to microgel showed complete viability and no pro-inflammatory secretion of interleukin 6 (IL6) or tumor necrosis factor-alpha (TNFα). Microgel was loaded with Immunoglobulin G (as a model Ab), using a post-fabrication loading technique, and Ab sustained release from microgels of varying crosslinking densities was studied. The released Abs (especially from the high crosslinked microgels) proved to be completely active and able to bind with Ab receptors. This study opens a new horizon for scientists to use such a platform for local delivery of Abs to the desired target with minimized non-specific interactions.
Collapse
Affiliation(s)
- Amir Erfani
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Abanoub Hanna
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Saeed Manouchehri
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Katie Weigandt
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20889-6102, USA
| | - Clint P Aichele
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Joshua D Ramsey
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
27
|
Bianchera A, Alomari E, Bruno S. Augmentation therapy with alpha 1-antitrypsin: present and future of production, formulation, and delivery. Curr Med Chem 2021; 29:385-410. [PMID: 34036902 DOI: 10.2174/0929867328666210525161942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/24/2021] [Accepted: 04/12/2021] [Indexed: 11/22/2022]
Abstract
Alpha 1-antitrypsin is one of the first protein therapeutics introduced on the market - more than 30 years ago - and, to date, it is indicated only for the treatment of the severe forms of a genetic condition known as alpha-1 antitrypsin deficiency. The only approved preparations are derived from plasma, posing potential problems associated with its limited supply and high processing costs. Moreover, augmentation therapy with alpha 1-antitrypsin is still limited to intravenous infusions, a cumbersome regimen for patients. Here, we review the recent literature on its possible future developments, focusing on i) the recombinant alternatives to the plasma-derived protein, ii) novel formulations, and iii) novel administration routes. Regulatory issues and the still unclear noncanonical functions of alpha 1-antitrypsin - possibly associated with the glycosylation pattern found only in the plasma-derived protein - have hindered the introduction of new products. However, potentially new therapeutic indications other than the treatment of alpha-1 antitrypsin deficiency might open the way to new sources and new formulations.
Collapse
Affiliation(s)
- Annalisa Bianchera
- Dipartimento di Scienze degli Alimenti e del Farmaco, University of Parma, Parma, Italy
| | - Esraa Alomari
- Dipartimento di Scienze degli Alimenti e del Farmaco, University of Parma, Parma, Italy
| | - Stefano Bruno
- Dipartimento di Scienze degli Alimenti e del Farmaco, University of Parma, Parma, Italy
| |
Collapse
|
28
|
Supercritical CO2 assisted preparation of chitosan-based nano-in-microparticles with potential for efficient pulmonary drug delivery. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101486] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
29
|
Dou Y, Li C, Li L, Guo J, Zhang J. Bioresponsive drug delivery systems for the treatment of inflammatory diseases. J Control Release 2020; 327:641-666. [PMID: 32911014 PMCID: PMC7476894 DOI: 10.1016/j.jconrel.2020.09.008] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023]
Abstract
Inflammation is intimately related to the pathogenesis of numerous acute and chronic diseases like cardiovascular disease, inflammatory bowel disease, rheumatoid arthritis, and neurodegenerative diseases. Therefore anti-inflammatory therapy is a very promising strategy for the prevention and treatment of these inflammatory diseases. To overcome the shortcomings of existing anti-inflammatory agents and their traditional formulations, such as nonspecific tissue distribution and uncontrolled drug release, bioresponsive drug delivery systems have received much attention in recent years. In this review, we first provide a brief introduction of the pathogenesis of inflammation, with an emphasis on representative inflammatory cells and mediators in inflammatory microenvironments that serve as pathological fundamentals for rational design of bioresponsive carriers. Then we discuss different materials and delivery systems responsive to inflammation-associated biochemical signals, such as pH, reactive oxygen species, and specific enzymes. Also, applications of various bioresponsive drug delivery systems in the treatment of typical acute and chronic inflammatory diseases are described. Finally, crucial challenges in the future development and clinical translation of bioresponsive anti-inflammatory drug delivery systems are highlighted.
Collapse
Affiliation(s)
- Yin Dou
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Chenwen Li
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Lanlan Li
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China; Department of Chemistry, College of Basic Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jiawei Guo
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China; Department of Pharmaceutical Analysis, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jianxiang Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China; Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| |
Collapse
|
30
|
Wang W, Huang Z, Xue K, Li J, Wang W, Ma J, Ma C, Bai X, Huang Y, Pan X, Wu C. Development of Aggregation-Caused Quenching Probe-Loaded Pressurized Metered-Dose Inhalers with Fluorescence Tracking Potentials. AAPS PharmSciTech 2020; 21:296. [PMID: 33099699 DOI: 10.1208/s12249-020-01782-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023] Open
Abstract
Recently, pressurized metered-dose inhalers (pMDIs) are getting more attention as an effective approach of pulmonary drug delivery, and nanoparticle-based formulations have become a new generation of pMDIs, especially for water insoluble drugs. Up until now, there is no clinical application of nanoparticle-based pMDIs. The main hurdle remains in the lack of knowledge of the in vivo fate of those systems. In this study, a fluorescent probe named P4 with aggregation-caused quenching (ACQ) effect was loaded in the nanoparticle-based pMDIs to track the in vivo fate. P4 probe expressed strong fluorescence when distributed in intact nanoparticles, but quenched in the in vivo aqueous environment due to molecular aggregation. Experimentally, P4 probe was encapsulated into solid lipid nanoparticles (SLN) as P4-SLN, and then, the formulation of pMDIs was optimized. The content (w/w) of the optimal formulation (P4-SLN-pMDIs) was as follows: 6.02% Pluronic® L64, 12.03% ethanol, 0.46% P4-SLN, and 81.49% 1,1,1,2-tetrafluoroethane (HFA-134a). P4-SLN-pMDI was transparent in appearance, possessed a particle size of 132.07 ± 3.56 nm, and the fine particle fraction (FPF) was 39.53 ± 1.94%, as well good stability was shown within 10 days. The results indicated P4-SLN-pMDI was successfully prepared. Moreover, the ACQ property of P4-SLN-pMDIs was verified, which ensured the fluorescence property as a credible tool for in vivo fate study. Taken together, this work established a platform that could provide a firm theoretical support for exploration of the in vivo fate of nanoparticle-based pMDIs in subsequent studies. Grapical abstract.
Collapse
|
31
|
TPGS 2k-PLGA composite nanoparticles by depleting lipid rafts in colon cancer cells for overcoming drug resistance. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 35:102307. [PMID: 32987192 DOI: 10.1016/j.nano.2020.102307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/18/2020] [Accepted: 09/16/2020] [Indexed: 11/21/2022]
Abstract
Recently, studies showed that the drug-resistant cell membranes have formed high-density lipid rafts regions; traditional targeted drug delivery systems can hardly break through the hard shell and deliver drugs to drug-resistant cells. Here, α-tocopherol polyethylene glycol 2000 succinate (TPGS2k) was successfully synthesized and used to modify poly (lactic-glycolic acid) nanoparticles co-loaded with doxorubicin (DOX) and simvastatin (SV) (SV/DOX@TPGS2k-PLGA NPs). The purpose of this study is to explore the synergistic effect between SV consuming cholesterol in lipid rafts and directly down-regulating P-gp expression on the intracellular drugs retention. The research highlights these nanoparticles interrupted lipid rafts (cholesterol-rich domains, where P-gp is often located), which inhibited drug efflux by down-regulating P-gp, promoted the mitochondria apoptosis and made SW620/AD300 cells (DOX-resistant colon cancer cell line) re-sensitized to DOX. Therefore, the carrier can become a promising SV-based nano-delivery system with depleting cholesterol in lipid rafts to reverse drug resistance.
Collapse
|
32
|
Abstract
The application of nanotechnology, molecular biotechnologies, and nano-sciences for medical purposes has been termed nanomedicine, a promising growing area of medical research. The aim of this paper is to provide an overview of and discuss nanotechnology applications in the early epochs of life, from transplacental transfer to neonatal/pediatric conditions. Diagnostic and therapeutic applications, mainly related to the respiratory tract, the neurosensory system, and infections, are explored and discussed. Preclinical studies show promising results for a variety of conditions, including for the treatment of pregnancy complications and fetal, neonatal, and pediatric diseases. However, given the complexity of the functions and interactions between the placenta and the fetus, and the complex and incompletely understood determinants of tissue growth and differentiation during early life, there is a need for much more data to confirm the safety and efficacy of nanotechnology in this field.
Collapse
|
33
|
Pontes JF, Grenha A. Multifunctional Nanocarriers for Lung Drug Delivery. NANOMATERIALS 2020; 10:nano10020183. [PMID: 31973051 PMCID: PMC7074870 DOI: 10.3390/nano10020183] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 12/14/2022]
Abstract
Nanocarriers have been increasingly proposed for lung drug delivery applications. The strategy of combining the intrinsic and more general advantages of the nanostructures with specificities that improve the therapeutic outcomes of particular clinical situations is frequent. These include the surface engineering of the carriers by means of altering the material structure (i.e., chemical modifications), the addition of specific ligands so that predefined targets are reached, or even the tuning of the carrier properties to respond to specific stimuli. The devised strategies are mainly directed at three distinct areas of lung drug delivery, encompassing the delivery of proteins and protein-based materials, either for local or systemic application, the delivery of antibiotics, and the delivery of anticancer drugs-the latter two comprising local delivery approaches. This review addresses the applications of nanocarriers aimed at lung drug delivery of active biological and pharmaceutical ingredients, focusing with particular interest on nanocarriers that exhibit multifunctional properties. A final section addresses the expectations regarding the future use of nanocarriers in the area.
Collapse
Affiliation(s)
- Jorge F. Pontes
- Centre for Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
- Drug Delivery Laboratory, Centre for Biomedical Research (CBMR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Ana Grenha
- Centre for Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
- Drug Delivery Laboratory, Centre for Biomedical Research (CBMR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Correspondence: ; Tel.: +351-289-244-441; Fax: +351-289-800-066
| |
Collapse
|
34
|
Mejías JC, Forrest OA, Margaroli C, Frey Rubio DA, Viera L, Li J, Xu X, Gaggar A, Tirouvanziam R, Roy K. Neutrophil-targeted, protease-activated pulmonary drug delivery blocks airway and systemic inflammation. JCI Insight 2019; 4:131468. [PMID: 31661469 DOI: 10.1172/jci.insight.131468] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022] Open
Abstract
Pulmonary drug delivery presents a unique opportunity to target lower airway inflammation, which is often characterized by the massive recruitment of neutrophils from blood. However, specific therapies are lacking modulation of airway neutrophil function, and difficult challenges must be overcome to achieve therapeutic efficacy against pulmonary inflammation, notably drug hydrophobicity, mucociliary and macrophage-dependent clearance, and high extracellular protease burden. Here, we present a multistage, aerodynamically favorable delivery platform that uses extracellular proteolysis to its advantage to deliver nanoparticle-embedded hydrophobic drugs to neutrophils within the lower airways. Our design consists of a self-regulated nanoparticle-in-microgel system, in which microgel activation is triggered by extracellular elastase (degranulated by inflammatory neutrophils), and nanoparticles are loaded with Nexinhib20, a potent neutrophil degranulation inhibitor. Successful in vivo delivery of Nexinhib20 to the airways and into neutrophils promoted resolution of the inflammatory response by dampening neutrophil recruitment and degranulation, proinflammatory cytokine production in both airway and systemic compartments, as well as the presence of neutrophil-derived pathological extracellular vesicles in the lung fluid. Our findings showcase a new platform that overcomes challenges in pulmonary drug delivery and allows customization to match the proteolytic footprint of given diseases.
Collapse
Affiliation(s)
- Joscelyn C Mejías
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA.,Center for Immunoengineering, Georgia Institute of Technology, Atlanta, Georgia, USA.,National Science Foundation (NSF) Engineering Research Center for Cell Manufacturing Technologies, Atlanta, Georgia, USA
| | - Osric A Forrest
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA.,Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Camilla Margaroli
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA.,Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - David A Frey Rubio
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA.,Center for Immunoengineering, Georgia Institute of Technology, Atlanta, Georgia, USA.,National Science Foundation (NSF) Engineering Research Center for Cell Manufacturing Technologies, Atlanta, Georgia, USA
| | - Liliana Viera
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jindong Li
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Xin Xu
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Amit Gaggar
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Birmingham VA Medical Center, Birmingham, Alabama, USA
| | - Rabindra Tirouvanziam
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA.,Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Krishnendu Roy
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA.,Center for Immunoengineering, Georgia Institute of Technology, Atlanta, Georgia, USA.,National Science Foundation (NSF) Engineering Research Center for Cell Manufacturing Technologies, Atlanta, Georgia, USA
| |
Collapse
|