1
|
Lu F, Jang MS, Jiang W, Liu C, Wang B, Lee JH, Fu Y, Yang HY. A multifunctional hyaluronic acid-engineered mesoporous nanoreactor with H 2O 2/O 2 self-sufficiency for pH-triggered endo-lysosomal escape and synergetic cancer therapy. BIOMATERIALS ADVANCES 2025; 169:214161. [PMID: 39721571 DOI: 10.1016/j.bioadv.2024.214161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/16/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Monotherapy has poor accuracy and is easily restricted by tumor microenvironment (TME). Remodeling components of the TME to activate multimodal cancer therapy with high precision and efficiency is worth exploring. A multifunctional nanoreactor was fabricated by decorating chlorin e6-modified and PEGylated hyaluronic acid bearing diethylenetriamine-conjugated dihydrolipoic acid on the surface of glucose oxidase (GOx)-loaded hollow mesoporous CuS nanoparticles (labeled as GOx@HCuS@HA). This nanoreactor efficiently targets tumor sites, enhances cellular internalization, and swiftly escapes from endo-lysosomes after intravenous injection. Subsequently, GOx@HCuS@HA was activated in hyaluronidase and H + -rich TME to produce H2O2 and gluconic acid through the oxidation of glucose, which not only blocks the energy supply of cancer cells, executing starvation treatment (ST), but also bolsters hydroxyl radicals (•OH)-based chemodynamic therapy (CDT) by Fenton-like reaction between HCuS and H2O2. Furthermore, reductive Cu ions could catalyze H2O2 to produce O2 to alleviate the limitation of photodynamic therapy (PDT) for tumor hypoxia. Additionally, the photothermal effect of HCuS under NIR irradiation could increase the temperature of tumor tissues to perform photothermal therapy (PTT). This synergistic antitumor strategy could ultimately achieve precise tumor cell destruction and maintain excellent biosafety. Hence, this nanoreactor offer promising prospects for efficient tumor treatment.
Collapse
Affiliation(s)
- Fei Lu
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, PR China
| | - Moon-Sun Jang
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine and Center for Molecular and Cellular Imaging, Samsung Biomedical Research Institute, Seoul 06351, Republic of Korea
| | - Wei Jiang
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, PR China
| | - Changling Liu
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, PR China
| | - Bo Wang
- Jilin Provincial Key Laboratory of Straw-Based Functional Materials, Institute for Interdisciplinary Biomass Functional Materials Studies, Jilin Engineering Normal University, Changchun 130052, PR China
| | - Jung Hee Lee
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine and Center for Molecular and Cellular Imaging, Samsung Biomedical Research Institute, Seoul 06351, Republic of Korea.
| | - Yan Fu
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, PR China.
| | - Hong Yu Yang
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, PR China.
| |
Collapse
|
2
|
Liu B, Liu Z, Li J. X-ray triggered scintillator versatile nanocatalytic platform for synergistic photodynamic/chemodynamic therapy. Talanta 2025; 281:126886. [PMID: 39288590 DOI: 10.1016/j.talanta.2024.126886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/27/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024]
Abstract
Nanocatalysts with photodynamic therapy (PDT) and chemodynamic therapy (CDT) are excellent for tumor therapy. However, it is still challenging to achieve complete tumor eradication due to the drawbacks of limited penetration depth of intratumoural tissues, hypoxia and complexity of the tumor microenvironment (TME). Herein, we fabricated an integrated multifunctional nanoreactor (LuAG:Tb/Ce-RB@ZIF-8-Au2Pt-HA, LRZAPH) combining scintillating nanoparticles (SCNPs, LuAG:Tb/Ce), a metal-organic framework (ZIF-8), and bimetallic Au2Pt for X-ray-triggered PDT and dual noble-metal nanozyme catalyzed CDT. Such a nanoreactor not only significantly enhanced the PDT effect under X-ray irradiation through full resonance energy transfer from LuAG:Tb/Ce scintillator to Ross Bengal (RB), but also facilitated the reactive oxygen species (ROS) and oxygen (O2) production through the excellent peroxidase-like (POD-like) and catalase-like (CAT-like) catalytic properties of Au2Pt nanozymes. O2 also alleviates hypoxia in intratumoural tissues during coordinated PDT. In addition, the dissociation behavior of ZIF-8 with pH-responsive and targeted of hyaluronic acid (HA) in acidic TME significantly enhanced the therapeutic efficacy of LRZAPH nanocatalysts. Significantly, the high tumor growth inhibition rate of 93 % was revealed due to radiotherapy (RT)/PDT/CDT synergetic therapy in vivo, which minimized the toxic and side effects of conventional clinical radiotherapy/chemotherapy on human. The synergistic effect of LRZAPH nanocatalysts on PDT and catalytically induced CDT is expected to provide new pathways for effective treatment of deep tumors.
Collapse
Affiliation(s)
- Bin Liu
- School of Materials Science and Engineering, University of Jinan, Jinan, Shandong Province, PR China
| | - Zongming Liu
- School of Materials Science and Engineering, University of Jinan, Jinan, Shandong Province, PR China
| | - Jinkai Li
- School of Materials Science and Engineering, University of Jinan, Jinan, Shandong Province, PR China.
| |
Collapse
|
3
|
Debnath M, Sarkar S, Debnath SK, Dkhar DS, Kumari R, Vaskuri GSSJ, Srivastava A, Chandra P, Prasad R, Srivastava R. Photothermally Active Quantum Dots in Cancer Imaging and Therapeutics: Nanotheranostics Perspective. ACS APPLIED BIO MATERIALS 2024; 7:8126-8148. [PMID: 39526826 DOI: 10.1021/acsabm.4c01190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Cancer is becoming a global threat, as the cancerous cells manipulate themselves frequently, resulting in mutants and more abnormalities. Early-stage and real-time detection of cancer biomarkers can provide insight into designing cost-effective diagnostic and therapeutic modalities. Nanoparticle and quantum dot (QD)-based approaches have been recognized as clinically relevant methods to detect disease biomarkers at the molecular level. Over decades, as an emergent noninvasive approach, photothermal therapy has evolved to eradicate cancer. Moreover, various structures, viz., nanoparticles, clusters, quantum dots, etc., have been tested as bioimaging and photothermal agents to identify tumor cells selectively. Among them, QDs have been recognized as versatile probes. They have attracted enormous attention for imaging and therapeutic applications due to their unique colloidal stability, optical and physicochemical properties, biocompatibility, easy surface conjugation, scalable production, etc. However, a few critical concerns of QDs, viz., precise engineering for molecular imaging and sensing, selective interaction with the biological system, and their associated toxicity, restrict their potential intervention in curing cancer and are yet to be explored. According to the U.S. Food and Drug Administration (FDA), there is no specific regulation for the approval of nanomedicines. Therefore, these nanomedicines undergo the traditional drug, biological, and device approval process. However, the market survey of QDs is increasing, and their prospects in translational nanomedicine are very promising. From this perspective, we discuss the importance of QDs for imaging, sensing, and therapeutic usage pertinent to cancer, especially in its early stages. Moreover, we also discuss the rapidly growing translational view of QDs. The long-term safety studies and cellular interaction of these QDs could enhance their visibility and bring photothermally active QDs to the clinical stage and concurrently to FDA approval.
Collapse
Affiliation(s)
- Monalisha Debnath
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Sayoni Sarkar
- Center for Research in Nanotechnology and Sciences, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Sujit Kumar Debnath
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Daphika S Dkhar
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Rohini Kumari
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | | | - Ananya Srivastava
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Pranjal Chandra
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Rajendra Prasad
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
4
|
Gong T, Jiang J, Chen C, Lv Y, Cao T, Cao P, Zhan Q. Temperature-responsive two-dimensional polydopamine hydrogel: Preparation, mechanisms, and applications in cancer treatment. Int J Biol Macromol 2024; 282:136891. [PMID: 39490495 DOI: 10.1016/j.ijbiomac.2024.136891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/07/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Temperature-responsive hydrogels are advanced materials that exhibit significant physical or chemical changes in response to temperature variations. When the temperature reaches a specific threshold, these hydrogels alter their properties accordingly. They offer significant advantages in cancer therapy, including precise control over drug release, minimized toxicity, improved therapeutic efficacy, and biodegradability. Advancing the development of novel temperature-responsive hydrogels is crucial for enhancing therapeutic strategies. Herein, two-dimensional polydopamine (2D PDA) was first combined with chitosan (CTS) to create a temperature-responsive hydrogel for the control and release of anticancer drugs. Leveraging the carbonyl-rich nature of 2D PDA, we initiated a reversible cyclization reaction between CTS and the carbonyl groups on the surface of 2D PDA, resulting in a temperature-responsive CTS@2D PDA (CP) hydrogel. Furthermore, the CP hydrogel template was incorporated with the photosensitizer zinc phthalocyanine (ZnPc) and sodium percarbonate (SPC), an oxygen (O2) donor, to form a composite hydrogel (CSZP hydrogel). O2 released from the CSZP hydrogel mitigated solid tumor hypoxia and suppressed the expression of hypoxia-inducible factor-1α (HIF-1α), thereby augmenting the efficacy of photodynamic therapy (PDT). This temperature-responsive hydrogel represented a highly promising platform for the precise and controlled release of various therapeutics, thereby advancing the field of targeted disease treatment.
Collapse
Affiliation(s)
- Tiantian Gong
- Animal-Derived Chinese Medicine and Functional Peptides International Collaboration Joint Laboratory, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, PR China
| | - Jiahui Jiang
- Animal-Derived Chinese Medicine and Functional Peptides International Collaboration Joint Laboratory, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, PR China
| | - Cheng Chen
- Animal-Derived Chinese Medicine and Functional Peptides International Collaboration Joint Laboratory, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, PR China
| | - Yangbo Lv
- Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 324000, PR China
| | - Tao Cao
- Animal-Derived Chinese Medicine and Functional Peptides International Collaboration Joint Laboratory, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, PR China
| | - Peng Cao
- Animal-Derived Chinese Medicine and Functional Peptides International Collaboration Joint Laboratory, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, PR China; Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 324000, PR China; Jiangsu Provincial Medicinal Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, PR China; Zhenjiang Hospital of Chinese Traditional and Western Medicine, Zhenjiang, Jiangsu 212002, PR China.
| | - Qichen Zhan
- Animal-Derived Chinese Medicine and Functional Peptides International Collaboration Joint Laboratory, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, PR China.
| |
Collapse
|
5
|
Qi G, Chen K, Guan W, Xie J, Chen X, Zhang G, Yan R, Yang G. One-Pot Synthesis of a pH-Sensitive MOF Integrated with Glucose Oxidase for Amplified Tumor Photodynamic/Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:49083-49091. [PMID: 39228328 DOI: 10.1021/acsami.4c10006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Photothermal therapy (PTT) and photodynamic therapy (PDT) provide targeted approaches to cancer treatment, but each therapy has inherent limitations such as insufficient tissue penetration, uneven heat distribution, extreme hypoxia, and overexpressed HSP90 in tumor cells. To address these issues, herein, by encapsulating the IR780 dye and glucose oxidase (GOx) enzyme within ZIF-8 nanoparticles, we created a versatile system capable of combining photodynamic and enhanced photothermal therapy. The integration of the IR780 dye facilitated the generation of reactive oxygen species and hyperthermia upon light activation, enabling dual-mode cancer cell ablation. Moreover, GOx catalyzes the decomposition of glucose into gluconic acid and hydrogen peroxide, leading to the inhibition of ATP production and downregulation of heat shock protein 90 (HSP90) expression, sensitizing cancer cells to heat-induced cytotoxicity. This synergistic combination resulted in significantly improved therapeutic outcomes. Both in vitro and in vivo results validated that the nanoplatform demonstrated superior specificity and favorable therapeutic responses. Our innovative approach represents a promising strategy for overcoming current limitations in cancer treatments and offers the potential for clinical translation in the future.
Collapse
Affiliation(s)
- Guiqiang Qi
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Kang Chen
- Department of Gastroenterology of Southwest Hospital Army Medical University (Third Military Medical University), Chongqing 400038, P.R. China
| | - Wenhua Guan
- Linyi Hospital of Traditional Chinese Medicine, Linyi 276005, P. R. China
| | - Junyu Xie
- Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| | - Xiangyan Chen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan, P.R. China
| | - Guanhua Zhang
- Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| | - Ran Yan
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan, P.R. China
| | - Geng Yang
- Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| |
Collapse
|
6
|
Wang Y, Chang L, Gao H, Yu C, Gao Y, Peng Q. Nanomaterials-based advanced systems for photothermal / photodynamic therapy of oral cancer. Eur J Med Chem 2024; 272:116508. [PMID: 38761583 DOI: 10.1016/j.ejmech.2024.116508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
The traditional clinical approaches for oral cancer consist of surgery, chemotherapy, radiotherapy, immunotherapy, and so on. However, these treatments often induce side effects and exhibit limited efficacy. Photothermal therapy (PTT) emerges as a promising adjuvant treatment, utilizing photothermal agents (PTAs) to convert light energy into heat for tumor ablation. Another innovative approach, photodynamic therapy (PDT), leverages photosensitizers (PSs) and specific wavelength laser irradiation to generate reactive oxygen species (ROS), offering an effective and non-toxic alternative. The relevant combination therapies have been reported in the field of oral cancer. Simultaneously, the advancement of nanomaterials has propelled the clinical application of PTT and PDT. Therefore, a comprehensive understanding of PTT and PDT is required for better application in oral cancer treatment. Here, we review the use of PTT and PDT in oral cancer, including noble metal materials (e.g., Au nanoparticles), carbon materials (e.g., graphene oxide), organic dye molecules (e.g., indocyanine green), organic molecule-based agents (e.g., porphyrin-analog phthalocyanine) and other inorganic materials (e.g., MXenes), exemplify the advantages and disadvantages of common PTAs and PSs, and summarize the combination therapies of PTT with PDT, PTT/PDT with chemotherapy, PTT with radiotherapy, PTT/PDT with immunotherapy, and PTT/PDT with gene therapy in the treatment of oral cancer. The challenges related to the PTT/PDT combination therapy and potential solutions are also discussed.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Lili Chang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Hongyu Gao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Chenhao Yu
- Department of Periodontology, National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, China
| | - Yujie Gao
- Department of Stomatology, The First Affiliated Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, 610500, China.
| | - Qiang Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
7
|
Guo F, Li J, Chen Z, Wang T, Wang R, Wang T, Bian Y, Du Y, Yuan H, Pan Y, Jin J, Jiang H, Han F, Jiang J, Wu F, Wang Y. An Injectable Black Phosphorus Hydrogel for Rapid Tooth Extraction Socket Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:25799-25812. [PMID: 38727024 DOI: 10.1021/acsami.4c03278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
The excess production of reactive oxygen species (ROS) will delay tooth extraction socket (TES) healing. In this study, we developed an injectable thermosensitive hydrogel (NBP@BP@CS) used to treat TES healing. The hydrogel formulation incorporated black phosphorus (BP) nanoflakes, recognized for their accelerated alveolar bone regeneration and ROS-scavenging properties, and dl-3-n-butylphthalide (NBP), a vasodilator aimed at enhancing angiogenesis. In vivo investigations strongly demonstrated that NBP@BP@CS improved TES healing due to antioxidation and promotion of alveolar bone regeneration by BP nanoflakes. The sustained release of NBP from the hydrogel promoted neovascularization and vascular remodeling. Our results demonstrated that the designed thermosensitive hydrogel provided great opportunity not only for ROS elimination but also for the promotion of osteogenesis and angiogenesis, reflecting the "three birds with one stone" concept, and has tremendous potential for rapid TES healing.
Collapse
Affiliation(s)
- Fanyi Guo
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Jianfeng Li
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Ziyu Chen
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Tianxiao Wang
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Ruyu Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Tianyao Wang
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Yifeng Bian
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Yifei Du
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Hua Yuan
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Yongchu Pan
- Department of Orthodontic, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Jianliang Jin
- Department of Human Anatomy, Research Centre for Bone and Stem Cells, School of Basic Medical Sciences, Key Laboratory for Aging & Disease, School of Biomedical Engineering and informatics, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Huijun Jiang
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Feng Han
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Jiandong Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Fan Wu
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yuli Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| |
Collapse
|
8
|
Yu S, Xia G, Yang N, Yuan L, Li J, Wang Q, Li D, Ding L, Fan Z, Li J. Noble Metal Nanoparticle-Based Photothermal Therapy: Development and Application in Effective Cancer Therapy. Int J Mol Sci 2024; 25:5632. [PMID: 38891819 PMCID: PMC11172079 DOI: 10.3390/ijms25115632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/11/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
Photothermal therapy (PTT) is a promising cancer therapy modality with significant advantages such as precise targeting, convenient drug delivery, better efficacy, and minimal adverse effects. Photothermal therapy effectively absorbs the photothermal transducers in the near-infrared region (NIR), which induces the photothermal effect to work. Although PTT has a better role in tumor therapy, it also suffers from low photothermal conversion efficiency, biosafety, and incomplete tumor elimination. Therefore, the use of nanomaterials themselves as photosensitizers, the targeted modification of nanomaterials to improve targeting efficiency, or the combined use of nanomaterials with other therapies can improve the therapeutic effects and reduce side effects. Notably, noble metal nanomaterials have attracted much attention in PTT because they have strong surface plasmon resonance and an effective absorbance light at specific near-infrared wavelengths. Therefore, they can be used as excellent photosensitizers to mediate photothermal conversion and improve its efficiency. This paper provides a comprehensive review of the key role played by noble metal nanomaterials in tumor photothermal therapy. It also describes the major challenges encountered during the implementation of photothermal therapy.
Collapse
Affiliation(s)
- Shujie Yu
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China
- College of Life Science and Technology, Xinjiang University, Urumqi 830000, China
| | - Guoyu Xia
- College of Life Science and Technology, Xinjiang University, Urumqi 830000, China
| | - Nan Yang
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China
- College of Life Science and Technology, Xinjiang University, Urumqi 830000, China
| | - Longlong Yuan
- College of Life Science and Technology, Xinjiang University, Urumqi 830000, China
| | - Jianmin Li
- College of Life Science and Technology, Xinjiang University, Urumqi 830000, China
| | - Qingluo Wang
- College of Life Science and Technology, Xinjiang University, Urumqi 830000, China
| | - Dingyang Li
- College of Life Science and Technology, Xinjiang University, Urumqi 830000, China
| | - Lijun Ding
- College of Life Science and Technology, Xinjiang University, Urumqi 830000, China
| | - Zhongxiong Fan
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China
- College of Life Science and Technology, Xinjiang University, Urumqi 830000, China
| | - Jinyao Li
- College of Life Science and Technology, Xinjiang University, Urumqi 830000, China
| |
Collapse
|
9
|
Dash P, Panda PK, Su C, Lin YC, Sakthivel R, Chen SL, Chung RJ. Near-infrared-driven upconversion nanoparticles with photocatalysts through water-splitting towards cancer treatment. J Mater Chem B 2024; 12:3881-3907. [PMID: 38572601 DOI: 10.1039/d3tb01066j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Water splitting is promising, especially for energy and environmental applications; however, there are limited studies on the link between water splitting and cancer treatment. Upconversion nanoparticles (UCNPs) can be used to convert near-infrared (NIR) light to ultraviolet (UV) or visible (Vis) light and have great potential for biomedical applications because of their profound penetration ability, theranostic approaches, low self-fluorescence background, reduced damage to biological tissue, and low toxicity. UCNPs with photocatalytic materials can enhance the photocatalytic activities that generate a shorter wavelength to increase the tissue penetration depth in the biological microenvironment under NIR light irradiation. Moreover, UCNPs with a photosensitizer can absorb NIR light and convert it into UV/vis light and emit upconverted photons, which excite the photoinitiator to create H2, O2, and/or OH˙ via water splitting processes when exposed to NIR irradiation. Therefore, combining UCNPs with intensified photocatalytic and photoinitiator materials may be a promising therapeutic approach for cancer treatment. This review provides a novel strategy for explaining the principles and mechanisms of UCNPs and NIR-driven UCNPs with photocatalytic materials through water splitting to achieve therapeutic outcomes for clinical applications. Moreover, the challenges and future perspectives of UCNP-based photocatalytic materials for water splitting for cancer treatment are discussed in this review.
Collapse
Affiliation(s)
- Pranjyan Dash
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan.
| | - Pradeep Kumar Panda
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan City 32003, Taiwan
| | - Chaochin Su
- Institute of Organic and Polymeric Materials, Research and Development Center for Smart Textile Technology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
| | - Yu-Chien Lin
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan.
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- ZhongSun Co., LTD, New Taipei City 220031, Taiwan
| | - Rajalakshmi Sakthivel
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan.
| | - Sung-Lung Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan.
| | - Ren-Jei Chung
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan.
- High-value Biomaterials Research and Commercialization Center, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
| |
Collapse
|
10
|
Sun M, Li D, Xi Y, Qin X, Liao Y, Liu X, Jia S, Xie Y, Zhong C. NIR-triggered bacterial cellulose-based wound dressings for multiple synergistic therapy of infected wound. Int J Biol Macromol 2024; 259:129033. [PMID: 38176505 DOI: 10.1016/j.ijbiomac.2023.129033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/06/2024]
Abstract
Skin wounds are repaired by a complex series of events and overlapping phases in which bacterial infection and insufficient angiogenesis at the wound site delay the healing process. Thus, functional wound dressings with enhanced antibacterial activity and angiogenic capacity have attracted attention. Herein, bacterial cellulose (BC)-based dressings were successfully fabricated by functionalization with a polydopamine (PDA) coating and copper sulfide nanoparticles (CuS NPs). Under 808 nm laser illumination, the BC/PDA/CuS composite membranes exhibited outstanding adjustable photothermal and photodynamic activities as well as controlled Cu2+ release, endowing the composite membranes with synergetic antibacterial activity. Specially, a bactericidal efficiency of 99.7 % and 88.0 % for Staphylococcus aureus and Escherichia coli was achieved after treatment with BC/PDA/CuS5 sample under NIR irradiation (0.8 W/cm2, 10 min), respectively. Moreover, the BC/PDA/CuS5 composite membrane could enhance the angiogenesis due to the released Cu2+. In vivo experiments revealed that the BC/PDA/CuS5 composite membrane dressing could accelerate the wound closure process of the full-thickness skin defects with S. aureus by synergistically reducing inflammation, enhancing collagen deposition, and promoting vascularization under NIR irradiation. Additionally, the BC/PDA/CuS5 composite membrane exhibited high biocompatibility and biosafety. This work offers a new strategy to prepare multifunctional BC-based dressing for clinical wound healing.
Collapse
Affiliation(s)
- Meiyan Sun
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science and Technology, Tianjin, PR China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, PR China
| | - Dongmei Li
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science and Technology, Tianjin, PR China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, PR China
| | - Yan Xi
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science and Technology, Tianjin, PR China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, PR China
| | - Xiaotong Qin
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science and Technology, Tianjin, PR China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, PR China
| | - Yuting Liao
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science and Technology, Tianjin, PR China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, PR China
| | - Xiaozhi Liu
- Tianjin Key Laboratory of Epigenetics for Organ Development in Preterm Infants, Tianjin, PR China
| | - Shiru Jia
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science and Technology, Tianjin, PR China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, PR China
| | - Yanyan Xie
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science and Technology, Tianjin, PR China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, PR China.
| | - Cheng Zhong
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science and Technology, Tianjin, PR China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, PR China.
| |
Collapse
|
11
|
Yan Z, Liu Z, Zhang H, Guan X, Xu H, Zhang J, Zhao Q, Wang S. Current trends in gas-synergized phototherapy for improved antitumor theranostics. Acta Biomater 2024; 174:1-25. [PMID: 38092250 DOI: 10.1016/j.actbio.2023.12.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/14/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
Phototherapy, such as photothermal therapy (PTT) and photodynamic therapy (PDT), has been considered an elegant solution to eradicate tumors due to its minimal invasiveness and low systemic toxicity. Nevertheless, it is still challenging for phototherapy to achieve ideal outcomes and clinical translation due to its inherent drawbacks. Owing to the unique biological functions, diverse gases have attracted growing attention in combining with phototherapy to achieve super-additive therapeutic effects. Specifically, gases such as nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S) have been proven to kill tumor cells by inducing mitochondrial damage in synergy with phototherapy. Additionally, several gases not only enhance the thermal damage in PTT and the reactive oxygen species (ROS) production in PDT but also improve the tumor accumulation of photoactive agents. The inflammatory responses triggered by hyperthermia in PTT are also suppressed by the combination of gases. Herein, we comprehensively review the latest studies on gas-synergized phototherapy for cancer therapy, including (1) synergistic mechanisms of combining gases with phototherapy; (2) design of nanoplatforms for gas-synergized phototherapy; (3) multimodal therapy based on gas-synergized phototherapy; (4) imaging-guided gas-synergized phototherapy. Finally, the current challenges and future opportunities of gas-synergized phototherapy for tumor treatment are discussed. STATEMENT OF SIGNIFICANCE: 1. The novelty and significance of the work with respect to the existing literature. (1) Strategies to design nanoplatforms for gas-synergized anti-tumor phototherapy have been summarized for the first time. Meanwhile, the integration of various imaging technologies and therapy modalities which endow these nanoplatforms with advanced theranostic capabilities has been summarized. (2) The mechanisms by which gases synergize with phototherapy to eradicate tumors are innovatively and comprehensively summarized. 2. The scientific impact and interest. This review elaborates current trends in gas-synergized anti-tumor phototherapy, with special emphases on synergistic anti-tumor mechanisms and rational design of therapeutic nanoplatforms to achieve this synergistic therapy. It aims to provide valuable guidance for researchers in this field.
Collapse
Affiliation(s)
- Ziwei Yan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Zhu Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Haotian Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Xinyao Guan
- Experimental Teaching Center, Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Hongwei Xu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Jinghai Zhang
- Department of Biomedical Engineering, School of Medical Devices, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China.
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China.
| |
Collapse
|
12
|
Di Y, Deng R, Liu Z, Mao Y, Gao Y, Zhao Q, Wang S. Optimized strategies of ROS-based nanodynamic therapies for tumor theranostics. Biomaterials 2023; 303:122391. [PMID: 37995457 DOI: 10.1016/j.biomaterials.2023.122391] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/29/2023] [Accepted: 11/04/2023] [Indexed: 11/25/2023]
Abstract
Reactive oxygen species (ROS) play a crucial role in regulating the metabolism of tumor growth, metastasis, death and other biological processes. ROS-based nanodynamic therapies (NDTs) are becoming attractive due to non-invasive, low side effects and tumor-specific advantages. NDTs have rapidly developed into numerous branches, such as photodynamic therapy, chemodynamic therapy, sonodynamic therapy and so on. However, the complexity of the tumor microenvironment and the limitations of existing sensitizers have greatly restricted the therapeutic effects of NDTs, which heavily rely on ROS levels. To address the limitations of NDTs, various strategies have been developed to increase ROS yield, which is an urgent aspect for the positive development of NDTs. In this review, the nanodynamic potentiation strategies in terms of unique properties and universalities of NDTs are comprehensively outlined. We mainly summarize the current dilemmas faced by each NDT and the respective solutions. Meanwhile, the NDTs universalities-based potentiation strategies and NDTs-based combined treatments are elaborated. Finally, we conclude with a discussion of the key issues and challenges faced in the development and clinical transformation of NDTs.
Collapse
Affiliation(s)
- Yifan Di
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China
| | - Ruizhu Deng
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China
| | - Zhu Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China
| | - Yuling Mao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China
| | - Yikun Gao
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China.
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China.
| |
Collapse
|
13
|
Pan Y, Liu L, Mou X, Cai Y. Nanomedicine Strategies in Conquering and Utilizing the Cancer Hypoxia Environment. ACS NANO 2023; 17:20875-20924. [PMID: 37871328 DOI: 10.1021/acsnano.3c07763] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Cancer with a complex pathological process is a major disease to human welfare. Due to the imbalance between oxygen (O2) supply and consumption, hypoxia is a natural characteristic of most solid tumors and an important obstacle for cancer therapy, which is closely related to tumor proliferation, metastasis, and invasion. Various strategies to exploit the feature of tumor hypoxia have been developed in the past decade, which can be used to alleviate tumor hypoxia, or utilize the hypoxia for targeted delivery and diagnostic imaging. The strategies to alleviate tumor hypoxia include delivering O2, in situ O2 generation, reprogramming the tumor vascular system, decreasing O2 consumption, and inhibiting HIF-1 related pathways. On the other side, hypoxia can also be utilized for hypoxia-responsive chemical construction and hypoxia-active prodrug-based strategies. Taking advantage of hypoxia in the tumor region, a number of methods have been applied to identify and keep track of changes in tumor hypoxia. Herein, we thoroughly review the recent progress of nanomedicine strategies in both conquering and utilizing hypoxia to combat cancer and put forward the prospect of emerging nanomaterials for future clinical transformation, which hopes to provide perspectives in nanomaterials design.
Collapse
Affiliation(s)
- Yi Pan
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Longcai Liu
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Xiaozhou Mou
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Yu Cai
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
14
|
Saadh MJ, Baher H, Li Y, Chaitanya M, Arias-Gonzáles JL, Allela OQB, Mahdi MH, Carlos Cotrina-Aliaga J, Lakshmaiya N, Ahjel S, Amin AH, Gilmer Rosales Rojas G, Ameen F, Ahsan M, Akhavan-Sigari R. The bioengineered and multifunctional nanoparticles in pancreatic cancer therapy: Bioresponisive nanostructures, phototherapy and targeted drug delivery. ENVIRONMENTAL RESEARCH 2023; 233:116490. [PMID: 37354932 DOI: 10.1016/j.envres.2023.116490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
The multidisciplinary approaches in treatment of cancer appear to be essential in term of bringing benefits of several disciplines and their coordination in tumor elimination. Because of the biological and malignant features of cancer cells, they have ability of developing resistance to conventional therapies such as chemo- and radio-therapy. Pancreatic cancer (PC) is a malignant disease of gastrointestinal tract in which chemotherapy and radiotherapy are main tools in its treatment, and recently, nanocarriers have been emerged as promising structures in its therapy. The bioresponsive nanocarriers are able to respond to pH and redox, among others, in targeted delivery of cargo for specific treatment of PC. The loading drugs on the nanoparticles that can be synthetic or natural compounds, can help in more reduction in progression of PC through enhancing their intracellular accumulation in cancer cells. The encapsulation of genes in the nanoparticles can protect against degradation and promotes intracellular accumulation in tumor suppression. A new kind of therapy for cancer is phototherapy in which nanoparticles can stimulate both photothermal therapy and photodynamic therapy through hyperthermia and ROS overgeneration to trigger cell death in PC. Therefore, synergistic therapy of phototherapy with chemotherapy is performed in accelerating tumor suppression. One of the important functions of nanotechnology is selective targeting of PC cells in reducing side effects on normal cells. The nanostructures are capable of being surface functionalized with aptamers, proteins and antibodies to specifically target PC cells in suppressing their progression. Therefore, a specific therapy for PC is provided and future implications for diagnosis of PC is suggested.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan; Applied Science Research Center. Applied Science Private University, Amman, Jordan
| | - Hala Baher
- Department of Radiology and Ultrasonography Techniques, College of Medical Techniques, Al-Farahidi University, Baghdad, Iraq
| | - Yuanji Li
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Mvnl Chaitanya
- Department of Pharmacognosy, School of Pharmacy, Lovely Professional University, Phagwara, Punjab, 144001, India
| | - José Luis Arias-Gonzáles
- Department of Social Sciences, Faculty of Social Studies, University of British Columbia, Vancouver, Canada
| | | | | | | | - Natrayan Lakshmaiya
- Department of Mechanical Engineering, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India
| | - Salam Ahjel
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Ali H Amin
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | | | - Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Muhammad Ahsan
- Department of Measurememts and Control Systems, Silesian University of Technology, Gliwice, 44-100, Poland.
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, Germany; Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University, Warsaw, Poland
| |
Collapse
|
15
|
Huang L, Su Y, Zhang D, Zeng Z, Hu X, Hong S, Lin X. Recent theranostic applications of hydrogen peroxide-responsive nanomaterials for multiple diseases. RSC Adv 2023; 13:27333-27358. [PMID: 37705984 PMCID: PMC10496458 DOI: 10.1039/d3ra05020c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/31/2023] [Indexed: 09/15/2023] Open
Abstract
It is well established that hydrogen peroxide (H2O2) is associated with the initiation and progression of many diseases. With the rapid development of nanotechnology, the diagnosis and treatment of those diseases could be realized through a variety of H2O2-responsive nanomaterials. In order to broaden the application prospects of H2O2-responsive nanomaterials and promote their development, understanding and summarizing the design and application fields of such materials has attracted much attention. This review provides a comprehensive summary of the types of H2O2-responsive nanomaterials including organic, inorganic and organic-inorganic hybrids in recent years, and focused on their specific design and applications. Based on the type of disease, such as tumors, bacteria, dental diseases, inflammation, cardiovascular diseases, bone injury and so on, key examples for above disease imaging diagnosis and therapy strategies are introduced. In addition, current challenges and the outlook of H2O2-responsive nanomaterials are also discussed. This review aims to stimulate the potential of H2O2-responsive nanomaterials and provide new application ideas for various functional nanomaterials related to H2O2.
Collapse
Affiliation(s)
- Linjie Huang
- School of Medical Imaging, Fujian Medical University Fuzhou 350122 Fujian P. R. China
| | - Yina Su
- School of Medical Imaging, Fujian Medical University Fuzhou 350122 Fujian P. R. China
| | - Dongdong Zhang
- School of Medical Imaging, Fujian Medical University Fuzhou 350122 Fujian P. R. China
| | - Zheng Zeng
- School of Medical Imaging, Fujian Medical University Fuzhou 350122 Fujian P. R. China
| | - Xueqi Hu
- School of Medical Imaging, Fujian Medical University Fuzhou 350122 Fujian P. R. China
| | - Shanni Hong
- School of Medical Imaging, Fujian Medical University Fuzhou 350122 Fujian P. R. China
| | - Xiahui Lin
- School of Medical Imaging, Fujian Medical University Fuzhou 350122 Fujian P. R. China
| |
Collapse
|
16
|
Li Z, Guo L, Lin L, Wang T, Jiang Y, Song J, Feng J, Huang J, Li H, Bai Z, Liu W, Zhang J. Porous SiO 2-Based Reactor with Self-Supply of O 2 and H 2O 2 for Synergistic Photo-Thermal/Photodynamic Therapy. Int J Nanomedicine 2023; 18:3623-3639. [PMID: 37427365 PMCID: PMC10327690 DOI: 10.2147/ijn.s387505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/20/2023] [Indexed: 07/11/2023] Open
Abstract
Purpose Although the combined photo-thermal (PTT) and photodynamic therapy (PDT) of tumors have demonstrated promise as effective cancer therapy, the hypoxic and insufficient H2O2 supply of tumors seriously limits the efficacy of PDT, and the acidic environment reduces the catalytic activity of nanomaterial in the tumor microenvironment. To develop a platform for efficiently addressing these challenges, we constructed a nanomaterial of Aptamer@dox/GOD-MnO2-SiO2@HGNs-Fc@Ce6 (AMS) for combination tumor therapy. The treatment effects of AMS were evaluated both in vitro and in vivo. Methods In this work, Ce6 and hemin were loaded on graphene (GO) through π-π conjugation, and Fc was connected to GO via amide bond. The HGNs-Fc@Ce6 was loaded into SiO2, and coated with dopamine. Then, MnO2 was modified on the SiO2. Finally, AS1411-aptamer@dox and GOD were fixed to gain AMS. We characterized the morphology, size, and zeta potential of AMS. The oxygen and reactive oxygen species (ROS) production properties of AMS were analyzed. The cytotoxicity of AMS was detected by MTT and calcein-AM/PI assays. The apoptosis of AMS to a tumor cell was estimated with a JC-1 probe, and the ROS level was detected with a 2',7'-Dichlorodihydrofluorescein diacetate (DCFH-DA) probe. The anticancer efficacy in vivo was analyzed by the changes in the tumor size in different treatment groups. Results AMS was targeted to the tumor cell and released doxorubicin. It decomposed glucose to produce H2O2 in the GOD-mediated reaction. The generated sufficient H2O2 was catalyzed by MnO2 and HGNs-Fc@Ce6 to produce O2 and free radicals (•OH), respectively. The increased oxygen content improved the hypoxic environment of the tumor and effectively reduced the resistance to PDT. The generated •OH enhanced the ROS treatment. Moreover, AMS depicted a good photo-thermal effect. Conclusion The results revealed that AMS had an excellent enhanced therapy effect by combining synergistic PTT and PDT.
Collapse
Affiliation(s)
- Zhengzhao Li
- Department of Emergency, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, China
| | - Lianshan Guo
- Department of Emergency, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, China
| | - Liqiao Lin
- Department of Emergency, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, China
| | - Tongting Wang
- Department of Emergency, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, China
| | - Yanqiu Jiang
- Department of Emergency, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, China
| | - Jin Song
- Department of Emergency, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, China
| | - Jihua Feng
- Department of Emergency, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, China
| | - Jianfeng Huang
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, China
| | - Haoyu Li
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, China
| | - Zhihao Bai
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, China
| | - Wenqi Liu
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, China
| | - Jianfeng Zhang
- Department of Emergency, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, China
| |
Collapse
|
17
|
Liu F, Xiang Q, Luo Y, Luo Y, Luo W, Xie Q, Fan J, Ran H, Wang Z, Sun Y. A hybrid nanopharmaceutical for specific-amplifying oxidative stress to initiate a cascade of catalytic therapy for pancreatic cancer. J Nanobiotechnology 2023; 21:165. [PMID: 37221521 DOI: 10.1186/s12951-023-01932-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/17/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Oxidative stress (OS) induced by an imbalance of oxidants and antioxidants is an important aspect in anticancer therapy, however, as an adaptive response, excessive glutathione (GSH) in the tumor microenvironment (TME) acts as an antioxidant against high reactive oxygen species (ROS) levels and prevents OS damage to maintain redox homoeostasis, suppressing the clinical efficacy of OS-induced anticancer therapies. RESULTS A naturally occurring ROS-activating drug, galangin (GAL), is introduced into a Fenton-like catalyst (SiO2@MnO2) to form a TME stimulus-responsive hybrid nanopharmaceutical (SiO2-GAL@MnO2, denoted SG@M) for enhancing oxidative stress. Once exposed to TME, as MnO2 responds and consumes GSH, the released Mn2+ converts endogenous hydrogen peroxide (H2O2) into hydroxyl radicals (·OH), which together with the subsequent release of GAL from SiO2 increases ROS. The "overwhelming" ROS cause OS-mediated mitochondrial malfunction with a decrease in mitochondrial membrane potential (MMP), which releases cytochrome c from mitochondria, activates the Caspase 9/Caspase 3 apoptotic cascade pathway. Downregulation of JAK2 and STAT3 phosphorylation levels blocks the JAK2/STAT3 cell proliferation pathway, whereas downregulation of Cyclin B1 protein levels arrest the cell cycle in the G2/M phase. During 18 days of in vivo treatment observation, tumor growth inhibition was found to be 62.7%, inhibiting the progression of pancreatic cancer. Additionally, the O2 and Mn2+ released during this cascade catalytic effect improve ultrasound imaging (USI) and magnetic resonance imaging (MRI), respectively. CONCLUSION This hybrid nanopharmaceutical based on oxidative stress amplification provides a strategy for multifunctional integrated therapy of malignant tumors and image-visualized pharmaceutical delivery.
Collapse
Affiliation(s)
- Fan Liu
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Qinyanqiu Xiang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Yuanli Luo
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Ying Luo
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Wenpei Luo
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Qirong Xie
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Jingdong Fan
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Haitao Ran
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Zhigang Wang
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Yang Sun
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China.
| |
Collapse
|
18
|
Liu X, Song H, Sun T, Wang H. Responsive Microneedles as a New Platform for Precision Immunotherapy. Pharmaceutics 2023; 15:1407. [PMID: 37242649 PMCID: PMC10220742 DOI: 10.3390/pharmaceutics15051407] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/19/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Microneedles are a well-known transdermal or transdermal drug delivery system. Different from intramuscular injection, intravenous injection, etc., the microneedle delivery system provides unique characteristics for immunotherapy administration. Microneedles can deliver immunotherapeutic agents to the epidermis and dermis, where immune cells are abundant, unlike conventional vaccine systems. Furthermore, microneedle devices can be designed to respond to certain endogenous or exogenous stimuli including pH, reactive oxygen species (ROS), enzyme, light, temperature, or mechanical force, thereby allowing controlled release of active compounds in the epidermis and dermis. In this way, multifunctional or stimuli-responsive microneedles for immunotherapy could enhance the efficacy of immune responses to prevent or mitigate disease progression and lessen systemic adverse effects on healthy tissues and organs. Since microneedles are a promising drug delivery system for accurate delivery and controlled drug release, this review focuses on the progress of using reactive microneedles for immunotherapy, especially for tumors. Limitations of current microneedle system are summarized, and the controllable administration and targeting of reactive microneedle systems are examined.
Collapse
Affiliation(s)
- Xinyang Liu
- Henan Institutes of Advanced Technology, Zhengzhou University, Zhengzhou 450052, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Haohao Song
- Henan Institutes of Advanced Technology, Zhengzhou University, Zhengzhou 450052, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Tairan Sun
- The Second Affiliated Hospital of Hebei North University, Zhangjiakou 075100, China
| | - Hai Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Li J, Wang S, Fontana F, Tapeinos C, Shahbazi MA, Han H, Santos HA. Nanoparticles-based phototherapy systems for cancer treatment: Current status and clinical potential. Bioact Mater 2023; 23:471-507. [PMID: 36514388 PMCID: PMC9727595 DOI: 10.1016/j.bioactmat.2022.11.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 12/11/2022] Open
Abstract
Remarkable progress in phototherapy has been made in recent decades, due to its non-invasiveness and instant therapeutic efficacy. In addition, with the rapid development of nanoscience and nanotechnology, phototherapy systems based on nanoparticles or nanocomposites also evolved as an emerging hotspot in nanomedicine research, especially in cancer. In this review, first we briefly introduce the history of phototherapy, and the mechanisms of phototherapy in cancer treatment. Then, we summarize the representative development over the past three to five years in nanoparticle-based phototherapy and highlight the design of the innovative nanoparticles thereof. Finally, we discuss the feasibility and the potential of the nanoparticle-based phototherapy systems in clinical anticancer therapeutic applications, aiming to predict future research directions in this field. Our review is a tutorial work, aiming at providing useful insights to researchers in the field of nanotechnology, nanoscience and cancer.
Collapse
Affiliation(s)
- Jiachen Li
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Shiqi Wang
- Drug Research Program Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Flavia Fontana
- Drug Research Program Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Christos Tapeinos
- Drug Research Program Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Huijie Han
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Hélder A Santos
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
- Drug Research Program Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| |
Collapse
|
20
|
Zhang J, Sun B, Zhang M, Su Y, Xu W, Sun Y, Jiang H, Zhou N, Shen J, Wu F. Modulating the local coordination environment of cobalt single-atomic nanozymes for enhanced catalytic therapy against bacteria. Acta Biomater 2023; 164:563-576. [PMID: 37004783 DOI: 10.1016/j.actbio.2023.03.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/22/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023]
Abstract
Single-atomic nanozymes (SANZs) characterized by atomically dispersed single metal atoms have recently contributed to breakthroughs in biomedicine due to their satisfactory catalytic activity and superior selectivity compared to their nanoscale counterparts. The catalytic performance of SANZs can be improved by modulating their coordination structure. Therefore, adjusting the coordination number of the metal atoms in the active center is a potential method for enhancing the catalytic therapy effect. In this study, we synthesized various atomically dispersed Co nanozymes with different nitrogen coordination numbers for peroxidase (POD)-mimicking single-atomic catalytic antibacterial therapy. Among the single-atomic Co nanozymes with nitrogen coordination numbers of 3 (SACNZs-N3-C) and 4 (SACNZs-N4-C), single-atomic Co nanozymes with a coordination number of 2 (SACNZs-N2-C) had the highest POD-like catalytic activity. Kinetic assays and Density functional theory (DFT) calculations indicated that reducing the coordination number can lower the reaction energy barrier of single-atomic Co nanozymes (SACNZs-Nx-C), thereby increasing their catalytic performance. In vitro and in vivo antibacterial assays demonstrated that SACNZs-N2-C had the best antibacterial effect. This study provides proof of concept for enhancing single-atomic catalytic therapy by regulating the coordination number for various biomedical applications, such as tumor therapy and wound disinfection. STATEMENT OF SIGNIFICANCE: The use of nanozymes that contain single-atomic catalytic sites has been shown to effectively promote the healing of bacteria-infected wounds by exhibiting peroxidase-like activity. The homogeneous coordination environment of the catalytic site has been associated with high antimicrobial activity, which provides insight into designing new active structures and understanding their mechanisms of action. In this study, we designed a series of cobalt single-atomic nanozymes (PSACNZs-Nx-C) with different coordination environments by shearing the Co-N bond and modifying polyvinylpyrrolidone (PVP). The synthesized PSACNZs-Nx-C demonstrated enhanced antibacterial activity against both Gram-positive and Gram-negative bacterial strains, and showed good biocompatibility in both in vivo and in vitro experiments.
Collapse
|
21
|
Liang Z, Li X, Chen X, Zhou J, Li Y, Peng J, Lin Z, Liu G, Zeng X, Li C, Hang L, Li H. Fe/MOF based platform for NIR laser induced efficient PDT/PTT of cancer. Front Bioeng Biotechnol 2023; 11:1156079. [PMID: 37064235 PMCID: PMC10098195 DOI: 10.3389/fbioe.2023.1156079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/15/2023] [Indexed: 04/18/2023] Open
Abstract
Introduction: Photodynamic therapy (PDT) and photothermal therapy (PTT) are widely used in the treatment of tumors. However, their application in the treatment of clinical tumors is limited by the complexity and irreversible hypoxia environment generated by tumor tissues. To overcome this limitation, a nanoparticle composed of indocyanine green (ICG) and Fe-MOF-5 was developed. Methods: We prepared F-I@FM5 and measured its morphology, particle size, and stability. Its enzyme like ability and optical effect was verified. Then we used MTT, staining and flow cytometry to evaluated the anti-tumor effect on EMT-6 cells in vitro. Finally, the anti-tumor effect in vivo has been studied on EMT-6 tumor bearing mice. Results: For the composite nanoparticle, we confirmed that Fe-MOF-5 has the best nanozyme activity. In addition, it has excellent photothermal conversion efficiency and generates reactive oxygen species (ROS) under near-infrared light irradiation (808 nm). The composite nanoparticle showed good tumor inhibition effect in vitro and in vivo, which was superior to the free ICG or Fe-MOF-5 alone. Besides, there was no obvious cytotoxicity in major organs within the effective therapeutic concentration. Discussion: Fe-MOF-5 has the function of simulating catalase, which can promote the decomposition of excessive H2O2 in the tumor microenvironment and produce oxygen to improve the hypoxic environment. The improvement of tumor hypoxia can enhance the efficacy of PDT and PTT. This research not only provides an efficient and stable anti-tumor nano platform, but also has broad application prospects in the field of tumor therapy, and provides a new idea for the application of MOF as an important carrier material in the field of photodynamic therapy.
Collapse
Affiliation(s)
- Zixing Liang
- Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xiaofeng Li
- Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xiaofang Chen
- Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jiawei Zhou
- Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yanan Li
- Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Jianhui Peng
- Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Zhousheng Lin
- Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Gai Liu
- Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xiancheng Zeng
- Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Cheng Li
- Guangdong Second Provincial General Hospital, Guangzhou, China
- Jinan University, Guangzhou, China
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan, China
- *Correspondence: Hailiang Li, ; Cheng Li, ; Lifeng Hang,
| | - Lifeng Hang
- Guangdong Second Provincial General Hospital, Guangzhou, China
- *Correspondence: Hailiang Li, ; Cheng Li, ; Lifeng Hang,
| | - Hailiang Li
- Guangdong Second Provincial General Hospital, Guangzhou, China
- *Correspondence: Hailiang Li, ; Cheng Li, ; Lifeng Hang,
| |
Collapse
|
22
|
Zhang H, Mao Z, Kang Y, Zhang W, Mei L, Ji X. Redox regulation and its emerging roles in cancer treatment. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
Yan R, Liu J, Dong Z, Peng Q. Nanomaterials-mediated photodynamic therapy and its applications in treating oral diseases. BIOMATERIALS ADVANCES 2022; 144:213218. [PMID: 36436431 DOI: 10.1016/j.bioadv.2022.213218] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022]
Abstract
Oral diseases, such as dental caries, periodontitis and oral cancer, have a very high morbidity over the world. Basically, many oral diseases are commonly related to bacterial infections or cell malignant proliferation, and usually located on the superficial positions. These features allow the convenient and efficient application of photodynamic therapy (PDT) for oral diseases, since PDT is ideally suitable for the diseases on superficial sites and has been widely used for antimicrobial and anticancer therapy. Photosensitizers (PSs) are an essential element in PDT, which induce the generation of a large number of reactive oxygen species (ROS) upon absorption of specific lights. Almost all the PSs are small molecules and commonly suffered from various problems in the PDT environment, such as low solubility and poor stability. Recently, reports on the nanomedicine-based PDT have been well documented. Various functionalized nanomaterials can serve either as the PSs carriers or the direct PSs, thus enhancing the PDT efficacy. Herein, we aim to provide a comprehensive understanding of the features of different oral diseases and discuss the potential applications of nanomedicine-based PDT in the treatment of some common oral diseases. Also, the concerns and possible solutions for nanomaterials-mediated PDT are discussed.
Collapse
Affiliation(s)
- Ruijiao Yan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jianhong Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zaiquan Dong
- Mental Health Center of West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
24
|
Feng Z, Zhu T, Wang L, Yuan T, Jiang Y, Tian X, Tian Y, Zhang Q. Coordination-Regulated Terpyridine-Mn(II) Complexes for Photodynamic Therapy Guided by Multiphoton Fluorescence/Magnetic Resonance Imaging. Inorg Chem 2022; 61:12652-12661. [PMID: 35921656 DOI: 10.1021/acs.inorgchem.2c01603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The synergy of multiphoton fluorescence imaging (MP-FI) and magnetic resonance imaging (MRI) provides an imaging platform with high resolution and unlimited penetration depth for early disease detection. Herein, two kinds of terpyridine-Mn(II) complexes (FD-Mn-O2NO and FD-Mn-FD) possessing seven and six coordination modes, respectively, were designed rationally for photodynamic therapy (PDT) guided by MP-FI/MRI. The complexes obtain different multiphoton fluorescence/magnetic resonance properties by adjusting the number of terpyridine ligands. Among them, FD-Mn-FD exhibits the following superiorities: (1) The optimal three-photon excitation wavelength of FD-Mn-FD falls at 1450 nm (NIR-II), which brings high sensitivity and deep tissue penetration in MP-FI. (2) FD-Mn-FD has effective longitudinal relaxation efficiency (r1 = 2.6 m M-1 s-1), which can be used for T1-weighted MRI, overcoming the problems of limited tissue penetration depth and low spatial resolution. (3) FD-Mn-FD generates endogenous 1O2 under irradiation by 808 nm light, thereby enhancing the PDT effect in vitro and in vivo. To the best of our knowledge, the complex FD-Mn-FD is the first complex to guide PDT through MP-FI/MRI, providing a blueprint for accurate and effective early detection and timely treatment of the complex in the early stages of cancer.
Collapse
Affiliation(s)
- Zhihui Feng
- College of Chemistry and Chemical Engineering, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Tong Zhu
- Huaxi MR Research Centre (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610000, P. R. China
| | - Lianke Wang
- College of Chemistry and Chemical Engineering, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Tong Yuan
- School of Life Science, Anhui University, Hefei 230601, P. R. China
| | - Yufei Jiang
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, P.R.China
| | - Xiaohe Tian
- Huaxi MR Research Centre (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610000, P. R. China
| | - Yupeng Tian
- College of Chemistry and Chemical Engineering, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China.,State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, P.R.China
| | - Qiong Zhang
- College of Chemistry and Chemical Engineering, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China.,State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, P.R.China
| |
Collapse
|
25
|
Cui F, Liu J, Pang S, Li B. Recent Advance in Tumor Microenvironment-Based Stimuli-Responsive Nanoscale Drug Delivery and Imaging Platform. Front Pharmacol 2022; 13:929854. [PMID: 35935835 PMCID: PMC9354407 DOI: 10.3389/fphar.2022.929854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
The tumor microenvironment (TME) plays an important role in the development, progression, and metastasis of cancer, and the extremely crucial feature is hypoxic and acidic. Cancer-associated fibroblasts (CAFs), extracellular matrix (ECM), mesenchymal cells, blood vessels, and interstitial fluid are widely recognized as fundamentally crucial hallmarks for TME. As nanotechnology briskly boomed, the nanoscale drug delivery and imaging platform (NDDIP) emerged and has attracted intensive attention. Based on main characteristics of TME, NDDIP can be classified into pH-sensitive delivery and imaging platforms, enzyme-sensitive delivery and imaging platforms, thermo-sensitive delivery and imaging platforms, redox-sensitive delivery and imaging platforms, and light-sensitive delivery and imaging platforms. Furthermore, imageology is one of the significant procedures for disease detection, image-guided drug delivery, and efficacy assessment, including magnetic resonance imaging (MRI), computed tomography (CT), ultrasound (US), and fluorescence imaging. Therefore, the stimuli-responsive NDDIP will be a versatile and practicable tumor disease diagnostic procedure and efficacy evaluation tool. In this review article, we mainly introduce the characteristics of TME and summarize the progress of multitudinous NDDIP as well as their applications.
Collapse
Affiliation(s)
| | - Jianhua Liu
- Department of Radiology, The Second Hospital of Jilin University, Changchun, China
| | | | - Bo Li
- Department of Radiology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
26
|
Recent Advances in Strategies for Addressing Hypoxia in Tumor Photodynamic Therapy. Biomolecules 2022; 12:biom12010081. [PMID: 35053229 PMCID: PMC8774200 DOI: 10.3390/biom12010081] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 01/10/2023] Open
Abstract
Photodynamic therapy (PDT) is a treatment modality that uses light to target tumors and minimize damage to normal tissues. It offers advantages including high spatiotemporal selectivity, low side effects, and maximal preservation of tissue functions. However, the PDT efficiency is severely impeded by the hypoxic feature of tumors. Moreover, hypoxia may promote tumor metastasis and tumor resistance to multiple therapies. Therefore, addressing tumor hypoxia to improve PDT efficacy has been the focus of antitumor treatment, and research on this theme is continuously emerging. In this review, we summarize state-of-the-art advances in strategies for overcoming hypoxia in tumor PDTs, categorizing them into oxygen-independent phototherapy, oxygen-economizing PDT, and oxygen-supplementing PDT. Moreover, we highlight strategies possessing intriguing advantages such as exceedingly high PDT efficiency and high novelty, analyze the strengths and shortcomings of different methods, and envision the opportunities and challenges for future research.
Collapse
|