1
|
Ding JW, Zhou EM, Wang X, Jiang H, Su HF, Gao Q, Guo LN, Fu YS, Li MC, Li DQ, Li J. Cellulose nanocrystals-based Pickering emulsion with enhanced foliar adhesion and pH responsiveness for intelligent delivery of pesticides. Int J Biol Macromol 2024; 286:138192. [PMID: 39638167 DOI: 10.1016/j.ijbiomac.2024.138192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/20/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Pickering emulsions stabilized by functionalized natural macromolecules have emerged with promising responsiveness for pesticide encapsulation and release. This study developed Pickering emulsions using amine-modified cellulose nanocrystals (ACNCs) as stabilizers. The resultant O/W ACNCs-Pickering emulsions (ACNCs-Pickering) exhibited long-term storage stability and showed increasing emulsion stability depending on the concentration of ACNCs. Imidacloprid (IMI) was subsequently loaded onto the ACNCs-Pickering to form the IMI@ACNCs-Pickering via the in-situ loading route. The release rate of IMI demonstrated a notable pH responsiveness. Moreover, the IMI@ACNCs-Pickering prepared with an ACNCs concentration of 3 wt% showed optimal performances. Its foliar adhesion on Chinese cabbage (Brassica rapa L.ssp.pekinensis) was significantly higher than that of the commercial IMI formulation (70 WS, Bayer®, LS200032) (DG). In detail, the pesticide residue for the IMI@ACNCs-Pickering was 3.8 folds to that for DG after spraying and washing for 10 min. Also, the green peach aphid mortality rate was 98.33 %, which was 1.1 folds higher than that of the DG group. The present work developed a Pickering emulsion-based fat-soluble pesticide formulation with excellent foliar adhesion, resistance to rainfall washout, and insecticidal effect. It provided a new option to ensure the sustainable development of green agriculture.
Collapse
Affiliation(s)
- Jia-Wei Ding
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, PR China
| | - Er-Min Zhou
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, PR China
| | - Xiao Wang
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, PR China
| | - Hui Jiang
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, PR China
| | - Hui-Fen Su
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, PR China
| | - Qin Gao
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, PR China
| | - Li-Na Guo
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, PR China
| | - Yong-Sheng Fu
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, PR China
| | - Mei-Chan Li
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, PR China
| | - De-Qiang Li
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, PR China
| | - Jun Li
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, PR China.
| |
Collapse
|
2
|
Teng G, Chen C, Ma X, Mao H, Yuan X, Xu H, Wu Z, Zhang J. Spherical Assembly of Halloysite Clay Nanotubes as a General Reservoir of Hydrophobic Pesticides for pH-Responsive Management of Pests and Weeds. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402921. [PMID: 38822715 DOI: 10.1002/smll.202402921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/20/2024] [Indexed: 06/03/2024]
Abstract
The development of smart systems for pesticidal delivery presents a significant advancement in enhancing the utilization efficiency of pesticides and mitigating environmental risks. Here an acid-responsive pesticidal delivery system using microspheres formed by the self-assembly of halloysite clay nanotubes (HNTs) is proposed. Insecticide avermectin (AVM) and herbicide prometryn (PMT) are used as two models of hydrophobic pesticide and encapsulated within the porous microspheres, followed by a coating of tannic acid/iron (TA/FeIII) complex films to generate two controlled-release pesticides, named as HCEAT and HCEPT, resulting in the loading capacity of AVM and PMT being 113.3 and 120.3 mg g-1, respectively. Both HCEAT and HCEPT exhibit responsiveness to weak acid, achieving 24 h-release ratios of 85.8% and 80.5% at a pH of 5.5. The experiment and simulation results indicate that the coordination interaction between EDTA2- and Ca2+ facilitates the spherical aggregation of HNTs. Furthermore, these novel pesticide formulations demonstrate better resistance against ultraviolet (UV) irradiation, higher foliar affinity, and less leaching effect, with negligible impact of the carrier material on plants and terrestrial organisms. This work presents a promising approach toward the development of efficient and eco-friendly pesticide formulations, greatly contributing to the sustainable advancement of agriculture.
Collapse
Affiliation(s)
- Guopeng Teng
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Chaowen Chen
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Xueqi Ma
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Hengjian Mao
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui, 230026, China
| | - Xue Yuan
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Huan Xu
- School of Carbon Neutrality Science and Engineering, Anhui University of Science and Technology, Hefei, Anhui, 231131, China
| | - Zhengyan Wu
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- Engineering Research Center of Environmentally Friendly and High-Performance Fertilizer and Pesticide of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Jia Zhang
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- Engineering Research Center of Environmentally Friendly and High-Performance Fertilizer and Pesticide of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| |
Collapse
|
3
|
Amrollahi-Sharifabadi M, Rezaei Orimi J, Adabinia Z, Shakeri T, Aghabeiglooei Z, Hashemimehr M, Rezghi M. Avicenna's views on pest control and medicinal plants he prescribed as natural pesticides. Wien Med Wochenschr 2024; 174:279-287. [PMID: 38386215 DOI: 10.1007/s10354-024-01034-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/26/2024] [Indexed: 02/23/2024]
Abstract
The present study aimed to introduce Avicenna's views on pest control and the medicinal plants he proposed as natural pesticides. Also, we addressed the strategies that he leveraged to formulate and prescribe them, and, finally, we put his views into perspective with modern science. The data were collected using Al-Qanun Fi Al-Tibb (The Canon of Medicine) as well as scientific databases. According to Al-Qanun Fi Al-Tibb, 42 medicinal plants are described as natural pest control agents. After introducing the pest control properties of each plant, Avicenna explained the appropriate strategies for use of these plants. These strategies or formulations included incensing, spraying, spreading, rubbing, smudging, and scent-dispersing, which are equivalent to the modern pesticide formulations of fumigants, aerosols, pastes and poisoned baits, lotions, creams, and slow-release formulations, respectively. This study revealed that Avicenna introduced the pest control approach with natural plants in his book Al-Qanun Fi Al-Tibb and, thus, harnessed the power of nature to control nature. Future research is recommended to find the pest control merits of the presented medicinal plants, in order to incorporate them into pest control programs and reduce environmental pollution resulting from the complications of current synthetic pesticides.
Collapse
Affiliation(s)
| | - Jamal Rezaei Orimi
- Traditional Medicine and History of Medical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Zahra Adabinia
- Dr. Nourani Vesal Museum and Scientific and Cultural Documentation Center, Shiraz, Iran
| | - Tahereh Shakeri
- Faculty of Allied Medical Sciences, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Aghabeiglooei
- Traditional Medicine Clinical Trial Research Center, Shahed University, Tehran, Iran
| | - Mohammad Hashemimehr
- Traditional Medicine and History of Medical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Maedeh Rezghi
- Traditional Medicine and History of Medical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
- Department of Traditional Medicine, School of Traditional Medicine, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
4
|
Mondéjar-López M, García-Simarro MP, Navarro-Simarro P, Gómez-Gómez L, Ahrazem O, Niza E. A review on the encapsulation of "eco-friendly" compounds in natural polymer-based nanoparticles as next generation nano-agrochemicals for sustainable agriculture and crop management. Int J Biol Macromol 2024; 280:136030. [PMID: 39332563 DOI: 10.1016/j.ijbiomac.2024.136030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Crop management techniques and sustainable agriculture offer a comprehensive farming method that incorporates social, economic, and ecological factors. Sustainable agriculture places a high priority on soil health, water efficiency, and biodiversity conservation in order to develop resilient and regenerative food systems that can feed both the current and future generations. Our goal in this review is to give a thorough overview of current developments in the use of polysaccharides as raw materials for the encapsulation of natural chemicals in nanoparticles as novel crop protection products. The search for recent research articles and latest reviews has been carried out through pubmed, google scholar, BASE as search engines. Offer cutting-edge solutions for sustainable crop management that satisfy the demands of an expanding population, comply with changing legal frameworks, and address environmental issues by encasing natural compounds inside polysaccharide-based nanoparticles. A variety of natural substances, such as essential oils, plant extracts, antimicrobials compounds and miRNA, can be included in these nanoparticles. These materials have many advantages, such as biocompatibility, biodegradability and controlled release of active compounds. Thanks to their action mechanism, they are able to mediate hormone signaling and gene expression in different plant physiological aspects, as well as enhance their tolerance to abiotic stress conditions. Sustainable agriculture can be supported by this type of treatments, correctly developing food safety through the production of non-toxic nanoparticles, low-cost industrial scale-up and the use of biodegradable materials. Polysaccharide-based nanoparticles have a wide range of uses in agriculture: they improve crop yields, encourage "eco-friendly" farming methods and can decrease the concentrations of active ingredient used, providing an accurate and affective dosage without damaging further species, as well as avoiding treatment resistance risks. These nanoparticles can also reduce the negative effects of chemical fertilizers and pesticides, contributing to the environmentally friendly agricultural development. Furthermore, the application of polysaccharide-based nanoparticles is consistent with the expanding trend of green and sustainable agriculture.
Collapse
Affiliation(s)
- María Mondéjar-López
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
| | - Maria Paz García-Simarro
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain; Naplatec S.L, Calle Mayor 36, 02001 Albacete, Spain
| | - Pablo Navarro-Simarro
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
| | - Lourdes Gómez-Gómez
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain; Facultad de Farmacia, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, C/ José María Sánchez Ibáñez s/n, 02008 Albacete, Spain
| | - Oussama Ahrazem
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain; Escuela Técnica Superior de Ingeniería Agronómica y de Montes y Biotecnología, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
| | - Enrique Niza
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain; Facultad de Farmacia, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, C/ José María Sánchez Ibáñez s/n, 02008 Albacete, Spain; Escuela Técnica Superior de Ingeniería Agronómica y de Montes y Biotecnología, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain.
| |
Collapse
|
5
|
Nwagwu C, Onugwu A, Echezona A, Uzondu S, Agbo C, Kenechukwu F, Ogbonna J, Ugorji L, Nwobi L, Nwobi O, Mmuotoo O, Ezeibe E, Loretz B, Tarirai C, Mbara KC, Agumah N, Nnamani P, Ofokansi K, Lehr CM, Attama A. Biopolymeric and lipid-based nanotechnological strategies for the design and development of novel mosquito repellent systems: recent advances. NANOSCALE ADVANCES 2024:d4na00474d. [PMID: 39247861 PMCID: PMC11378059 DOI: 10.1039/d4na00474d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/15/2024] [Indexed: 09/10/2024]
Abstract
Mosquitoes are the most medically important arthropod vectors of several human diseases. These diseases are known to severely incapacitate and debilitate millions of people, resulting in countless loss of lives. Over the years, several measures have been put in place to control the transmission of mosquito-borne diseases, one of which is using repellents. Repellents are one of the most effective personal protective measures against mosquito-borne diseases. However, conventional delivery systems of repellents (e.g., creams, gels, and sprays) are plagued with toxicity and short-term efficacy issues. The application of biopolymeric and lipid-based systems has been explored over the years to develop better delivery systems for active pharmaceutical ingredients including mosquito repellents. These delivery systems (e.g., solid lipid micro/nanoparticles, micro/nanoemulsions, or liposomes) possess desirable properties such as high biocompatibility, versatility, and controlled/sustained drug delivery, and thus are very important in tackling the clinical challenges of conventional repellent systems. Their capability for controlled/sustained drug release has improved patient compliance as it removes the need for consistent reapplication of repellents. They can also be engineered to reduce repellents' skin permeation, consequently improving their safety. However, despite the benefits that these systems offer very few of them have been successfully translated to the global market for commercial use, a vital challenge that previous reports have not thoroughly examined. The issue of limited clinical translation of novel repellent systems is a vital aspect to consider, as the ultimate goal is to move these systems from bench to bedside. As such, this study seeks to highlight the recent advances in the use of biopolymeric and lipid-based systems for the development of novel mosquito-repellent systems and also analyze the challenges that have limited the clinical translation of these systems while proposing possible strategies to overcome these challenges.
Collapse
Affiliation(s)
- Chinekwu Nwagwu
- Drug Delivery and Nanomedicines Research Laboratory, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria Nsukka Nigeria
- Helmholtz Institute for Pharmaceutical Research Saarland Saarbrucken Germany
| | - Adaeze Onugwu
- Drug Delivery and Nanomedicines Research Laboratory, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria Nsukka Nigeria
| | - Adaeze Echezona
- Drug Delivery and Nanomedicines Research Laboratory, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria Nsukka Nigeria
| | - Samuel Uzondu
- Drug Delivery and Nanomedicines Research Laboratory, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria Nsukka Nigeria
| | - Chinazom Agbo
- Drug Delivery and Nanomedicines Research Laboratory, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria Nsukka Nigeria
| | - Frankline Kenechukwu
- Drug Delivery and Nanomedicines Research Laboratory, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria Nsukka Nigeria
| | - John Ogbonna
- Drug Delivery and Nanomedicines Research Laboratory, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria Nsukka Nigeria
| | - Lydia Ugorji
- Department of Pharmaceutical Technology and Industrial Pharmacy, University of Nigeria Nsukka Nigeria
| | - Lotanna Nwobi
- Department of Veterinary Physiology and Pharmacology, University of Nigeria Nsukka Nigeria
| | - Obichukwu Nwobi
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Nigeria Nsukka Enugu State Nigeria
| | - Oluchi Mmuotoo
- Faculty of Pharmaceutical Sciences, University of Nigeria Nsukka Nigeria
| | - Ezinwanne Ezeibe
- Department of Pharmaceutical Microbiology and Biotechnology, University of Nigeria Nsukka Nigeria
| | - Brigitta Loretz
- Helmholtz Institute for Pharmaceutical Research Saarland Saarbrucken Germany
| | - Clemence Tarirai
- Department of Pharmaceutical Sciences, Faculty of Sciences, Tshwane University of Technology Pretoria South Africa
| | - Kingsley Chimaeze Mbara
- Department of Pharmaceutical Sciences, Faculty of Sciences, Tshwane University of Technology Pretoria South Africa
| | - Nnabuife Agumah
- Department of Applied Microbiology, Faculty of Science, Ebonyi State University Nigeria
| | - Petra Nnamani
- Drug Delivery and Nanomedicines Research Laboratory, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria Nsukka Nigeria
- Helmholtz Institute for Pharmaceutical Research Saarland Saarbrucken Germany
| | - Kenneth Ofokansi
- Drug Delivery and Nanomedicines Research Laboratory, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria Nsukka Nigeria
| | - Claus-Micheal Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland Saarbrucken Germany
| | - Anthony Attama
- Drug Delivery and Nanomedicines Research Laboratory, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria Nsukka Nigeria
- Institute for Drug-Herbal Medicine-Excipient Research and Development, University of Nigeria Nsukka Nigeria
| |
Collapse
|
6
|
Baglioni M, Clemente I, Tamasi G, Bisozzi F, Costantini S, Fattori G, Gentile M, Rossi C. Isothiocyanate-Based Microemulsions Loaded into Biocompatible Hydrogels as Innovative Biofumigants for Agricultural Soils. Molecules 2024; 29:3935. [PMID: 39203013 PMCID: PMC11357407 DOI: 10.3390/molecules29163935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
Biofumigation was proposed as an alternative to synthetic pesticides for the disinfection of agricultural soils, in view of the biocidal effect of isothiocyanates (ITCs) released by some vegetal species, like Brassicaceae. However, biofumigation also presents limitations; thus, a novel and viable alternative could be the direct introduction of ITCs into agricultural soils as components loaded into biodegradable hydrogels. Thus, in this work, ITCs-based microemulsions were developed, which can be loaded into porous polymer-based hydrogel beads based on sodium alginate (ALG) or sodium carboxymethyl cellulose (CMC). Three ITCs (ethyl, phenyl, and allyl isothiocyanate) and three different surfactants (sodium dodecylsulfate, Brij 35, and Tween 80) were considered. The optimal system was characterized with attenuated ATR-FTIR spectroscopy and differential scanning calorimetry to study how the microemulsion/gels interaction affects the gel properties, such as the equilibrium water content or free water index. Finally, loading and release profiles were studied by means of UV-Vis spectrophotometry. It was found that CMC hydrogel beads showed a slightly more efficient profile of micelles' release in water with respect to ALG beads. For this reason, and due to the enhanced contribution of Fe(III) to their biocidal properties, CMC-based hydrogels are the most promising in view of the application on real agricultural soils.
Collapse
Affiliation(s)
- Michele Baglioni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (I.C.); (G.T.); (F.B.); (S.C.); (G.F.); (C.R.)
- Centre for Colloid and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Ilaria Clemente
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (I.C.); (G.T.); (F.B.); (S.C.); (G.F.); (C.R.)
- Centre for Colloid and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Gabriella Tamasi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (I.C.); (G.T.); (F.B.); (S.C.); (G.F.); (C.R.)
- Centre for Colloid and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Flavia Bisozzi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (I.C.); (G.T.); (F.B.); (S.C.); (G.F.); (C.R.)
- Centre for Colloid and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Sara Costantini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (I.C.); (G.T.); (F.B.); (S.C.); (G.F.); (C.R.)
- Centre for Colloid and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Giacomo Fattori
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (I.C.); (G.T.); (F.B.); (S.C.); (G.F.); (C.R.)
- Centre for Colloid and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Mariangela Gentile
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy;
| | - Claudio Rossi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (I.C.); (G.T.); (F.B.); (S.C.); (G.F.); (C.R.)
- Centre for Colloid and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
7
|
Chowdhury C. Bayesian Optimization for Efficient Prediction of Gas Uptake in Nanoporous Materials. Chemphyschem 2024; 25:e202300850. [PMID: 38763901 DOI: 10.1002/cphc.202300850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/16/2024] [Accepted: 05/01/2024] [Indexed: 05/21/2024]
Abstract
The discovery and optimization of novel nanoporous materials (NPMs) such as Metal-Organic Frameworks (MOFs) and Covalent Organic Frameworks (COFs) are crucial for addressing global challenges like climate change, energy security, and environmental degradation. Traditional experimental approaches for optimizing these materials are time-consuming and resource-intensive. This research paper presents a strategy using Bayesian optimization (BO) to efficiently navigate the complex design spaces of NPMs for gas storage applications. For a MOF dataset drawn from 19 different sources, we present a quantitative evaluation of BO using a curated set of surrogate model and acquisition function couples. In our study, we employed machine learning (ML) techniques to conduct regression analysis on many models. Following this, we identified the three ML models that exhibited the highest accuracy, which were subsequently chosen as surrogates in our investigation, including the conventional Gaussian Process (GP) model. We found that GP with expected improvement (EI) as the acquisition function but without a gamma prior which is standard in Bayesian Optimisation python library (BO Torch) outperforms other surrogate models. Additionally, it should be noted that while the machine learning model that exhibits superior performance in predicting the target variable may be considered the best choice, it may not necessarily serve as the most suitable surrogate model for BO. This observation has significant importance and warrants further investigation. This comprehensive framework accelerates the pace of materials discovery and addresses urgent needs in energy storage and environmental sustainability. It is to be noted that rather than identifying new MOFs, BO primarily enhances computational efficiency by reducing the reliance on more demanding calculations, such as those involved in Grand Canonical Monte Carlo (GCMC) or Density Functional Theory (DFT).
Collapse
Affiliation(s)
- Chandra Chowdhury
- Advanced Materials Laboratory, CSIR-Central Leather Research Institute, Sardar Patel Road, Adyar, Chennai, 600020, India
- Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
8
|
Chang X, Wang Y, Zain A, Yu H, Huang W. Antifungal Activity of Difenoconazole-Loaded Microcapsules against Curvularia lunata. J Fungi (Basel) 2024; 10:519. [PMID: 39194845 DOI: 10.3390/jof10080519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 08/29/2024] Open
Abstract
Difenoconazole-loaded (CS-DIF) microcapsules were synthesized by encapsulating difenoconazole into biocompatible chitosan. The physical and chemical properties indicated that the encapsulation and chemical loading rates were 85.58% and 61.98%, respectively. The microcapsules exhibited prominent controlled-release and surface stability performance. The cumulative release rate was only 33.6% in 168 h, and the contact angle decreased by 11.73° at 120 s compared with difenoconazole. The antifungal activity of the CS-DIF microcapsules against Curvularia lunata was confirmed through observations of colony growth, in vitro and in vivo inoculation, mycelium morphology, as well as DNA and protein leakage. The antioxidant enzyme activity of superoxide dismutase, peroxidase, and catalase decreased by 65.1%, 84.9%, and 69.7%, respectively, when Curvularia lunata was treated with 200 μg/mL microcapsules, compared with the control in 24 h. The enzymatic activity of polyphenol oxidase decreased by 323.8%. The reactive oxygen species contents of hydrogen peroxide and superoxide anions increased by 204.6% and 164%, respectively. Additionally, the soluble sugar and soluble protein contents decreased by 65.5% and 69.6%, respectively. These findings provided a novel approach to control the growth of C. lunata efficiently, laying a foundation for reducing the quantity and enhancing the efficiency of chemical pesticides. The CS-DIF microcapsules exhibited a strong inhibitory effect on fungus, effectively preventing and controlling leaf spot disease and showing potential for field applications. This study might be of great significance in ensuring plant protection strategies.
Collapse
Affiliation(s)
- Xiaoyu Chang
- College of Resources and Environment, Anhui Science and Technology University, Chuzhou 233100, China
| | - Yuyan Wang
- College of Resources and Environment, Anhui Science and Technology University, Chuzhou 233100, China
| | - Abbas Zain
- College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China
| | - Haibing Yu
- College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China
| | - Weidong Huang
- College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China
| |
Collapse
|
9
|
Rana MS, Kim S. Bentonite in Korea: A Resource and Research Focus for Biomedical and Cosmetic Industries. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1982. [PMID: 38730788 PMCID: PMC11084843 DOI: 10.3390/ma17091982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/11/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024]
Abstract
This study provides an in-depth review of bentonite, focusing on its applications in Korea's biomedical and cosmetic sectors. It delves into bentonite's chemical properties, which make it a valuable resource in various industries, particularly in the health and beauty industries. We discuss bentonite's antimicrobial properties, showcasing its effectiveness against a wide range of pathogens and its potential as a biomedicine adjuvant to boost immune responses. Despite its benefits, the review also addresses the need for caution due to its possible side effects when used in human therapy. In the cosmetics industry, bentonite is prized for its ability to absorb impurities, making it a popular ingredient in products from leading brands. The review highlights the ongoing research and development efforts aiming to further explore bentonite's capabilities and applications, underlining the material's significant contribution to advancing Korea's innovation in the biomedical and cosmetic fields. This review suggests that with more research, bentonite's full potential can be unlocked, offering new opportunities for these industries.
Collapse
Affiliation(s)
- Md Shohel Rana
- Department of Biomedical Sciences, The Graduate School, Kyungpook National University, Daegu 41944, Republic of Korea;
| | - Shukho Kim
- Department of Biomedical Sciences, The Graduate School, Kyungpook National University, Daegu 41944, Republic of Korea;
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
10
|
Hu H, Yan M, Jiang J, Huang A, Cai S, Lan L, Ye K, Chen D, Tang K, Zuo Q, Zeng Y, Tang W, Fu J, Jiang C, Wang Y, Yan Z, He X, Qiao L, Zhao Y. A state-of-the-art review on biomass-derived carbon materials for supercapacitor applications: From precursor selection to design optimization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169141. [PMID: 38072258 DOI: 10.1016/j.scitotenv.2023.169141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/22/2023] [Accepted: 12/04/2023] [Indexed: 12/27/2023]
Abstract
Biomass-derived carbon materials have the characteristics of a wide range of precursor sources, controllable carbon nano-dimension, large specific surface area and abundant heteroatoms doping. At present, biomass-derived carbon materials have been widely used in electrochemical energy storage devices, especially the research and development of biomass-derived carbon materials for supercapacitors has become mature and in-depth. Therefore, it is of importance to summarize the advanced technologies and strategies for optimizing biomass-derived carbon materials for supercapacitors, which will effectively promote the further development of high-performance supercapacitors. In this review, the recent research progress of biomass-derived carbon materials is provided in detail, including the selection of biomass precursors, the design of carbon nano-dimension and the theory of heteroatom doping. Besides, the preparation methods of biomass-derived carbon materials and the related processes of optimizing the electrochemical performance are also summarized. This review ends with the perspectives for future research directions and challenges in the field of biomass-derived carbon materials for electrochemical applications. This review aims to provide helpful reference information for the nano-dimensional design and electrochemical performance optimization of biomass-derived carbon materials for the practical application of supercapacitors.
Collapse
Affiliation(s)
- Hengyuan Hu
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an 625014, China
| | - Minglei Yan
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an 625014, China.
| | - Jietao Jiang
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Lab for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Ankui Huang
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an 625014, China
| | - Sicheng Cai
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an 625014, China
| | - Linxuan Lan
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an 625014, China
| | - Kewei Ye
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an 625014, China
| | - Danlei Chen
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an 625014, China
| | - Kewen Tang
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an 625014, China
| | - Qin Zuo
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an 625014, China
| | - Yun Zeng
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an 625014, China
| | - Wei Tang
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an 625014, China
| | - Junheng Fu
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an 625014, China
| | - Chenglu Jiang
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an 625014, China
| | - Yong Wang
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Zhenhua Yan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| | - Xi He
- Shaanxi Joint Laboratory of Artificial Intelligence, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Liang Qiao
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yang Zhao
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an 625014, China.
| |
Collapse
|
11
|
Li C, Mo Y, Jiao L, Liu Y, Li X. Synthesis and Characterization of Mesoporous Silica Nanoparticles Loaded with P-Cymene against Rice Bacterial Blight. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:250. [PMID: 38334521 PMCID: PMC10856232 DOI: 10.3390/nano14030250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/04/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024]
Abstract
Mesoporous silica nanoparticles (MSNs) can be used as carrier materials for the controlled release of pesticides while reducing their negative environmental impact. In this study, we screened an active ingredient, p-cymene (PC), with an excellent inhibitory effect on rice bacterial blight. Subsequently, the PC was successfully loaded onto MSNs via physisorption (PC@MSNs). PC@MSNs, characterized by a regular spherical shape, smooth surface, and an MSN average size of 262.9 nm, achieved an 8.6% drug loading capacity. The release kinetics of the PC from the PC@MSNs demonstrated a sustained release (288 h) pattern influenced by drug diffusion. The efficacy of the PC@MSNs against Xanthomonas oryzae pv. Oryzae paralleled those of PC. Acute toxicity assays revealed that the PC@MSNs were less toxic to aquatic life (LC50 = 257.867 mg/L) and that the formulation showed no adverse effects on rice seedling growth. In summary, these results suggest that PC@MSNs can broaden PC's scope of application in managing rice diseases.
Collapse
Affiliation(s)
- Chaonan Li
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; (C.L.); (Y.M.); (L.J.); (Y.L.)
| | - Yalan Mo
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; (C.L.); (Y.M.); (L.J.); (Y.L.)
| | - Luying Jiao
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; (C.L.); (Y.M.); (L.J.); (Y.L.)
| | - Yiping Liu
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; (C.L.); (Y.M.); (L.J.); (Y.L.)
- Hunnan Cotton Science Institute, Changde 415000, China
| | - Xiaogang Li
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; (C.L.); (Y.M.); (L.J.); (Y.L.)
| |
Collapse
|
12
|
Clemente I, Baglioni M, Bonechi C, Bisozzi F, Rossi C, Tamasi G. Green Hydrogels Loaded with Extracts from Solanaceae for the Controlled Disinfection of Agricultural Soils. Polymers (Basel) 2023; 15:4455. [PMID: 38006179 PMCID: PMC10674755 DOI: 10.3390/polym15224455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/03/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
The UN 2030 Agenda for Sustainable Development established the goal of cutting the use of pesticides in the EU by 50% by 2030. However, a ban on pesticides could seriously affect the productivity of agriculture, resulting in severe issues due to global hunger and food deficiency. Controlled release (CR) of bioactive chemicals could play a valid alternative in this context. To this aim, two biodegradable polymers, namely sodium alginate (AL) and sodium carboxymethylcellulose (CMC), were employed to obtain crosslinked hydrogel beads for the encapsulation and CR of glycoalkaloids extracted from tomato and potato leaves to be used as biocompatible disinfectants for agricultural soils. The physico-chemical characterization of the controlled-release systems was carried out by means of Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy, Scanning Electron Microscopy (SEM), thermogravimetry (TGA), differential scanning calorimetry (DSC) (FWI > 80%) and drying kinetics. The plant extracts and the encapsulation efficiency (~84%) were, respectively, characterized and evaluated by High-performance Liquid Chromatography-Mass Spectrometry (HPLC-MS). Finally, preliminary microbiological tests were conducted to test the efficacy of the most promising systems as biocidal formulations both in the lab and on a model soil, and interesting results were obtained in the reduction of bacterial and fungal load, which could lead to sustainable perspectives in the field.
Collapse
Affiliation(s)
- Ilaria Clemente
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, 53100 Siena, Italy; (M.B.); (C.B.); (F.B.); (C.R.); (G.T.)
- Siena Research Group-Centre for Colloid and Surface Science (CSGI), Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Michele Baglioni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, 53100 Siena, Italy; (M.B.); (C.B.); (F.B.); (C.R.); (G.T.)
- Siena Research Group-Centre for Colloid and Surface Science (CSGI), Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Claudia Bonechi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, 53100 Siena, Italy; (M.B.); (C.B.); (F.B.); (C.R.); (G.T.)
- Siena Research Group-Centre for Colloid and Surface Science (CSGI), Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Flavia Bisozzi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, 53100 Siena, Italy; (M.B.); (C.B.); (F.B.); (C.R.); (G.T.)
- Siena Research Group-Centre for Colloid and Surface Science (CSGI), Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Claudio Rossi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, 53100 Siena, Italy; (M.B.); (C.B.); (F.B.); (C.R.); (G.T.)
- Siena Research Group-Centre for Colloid and Surface Science (CSGI), Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Gabriella Tamasi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, 53100 Siena, Italy; (M.B.); (C.B.); (F.B.); (C.R.); (G.T.)
- Siena Research Group-Centre for Colloid and Surface Science (CSGI), Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
13
|
Wu KY, Brister D, Bélanger P, Tran SD. Exploring the Potential of Nanoporous Materials for Advancing Ophthalmic Treatments. Int J Mol Sci 2023; 24:15599. [PMID: 37958583 PMCID: PMC10650608 DOI: 10.3390/ijms242115599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
The landscape of ophthalmology is undergoing significant transformations, driven by technological advancements and innovations in materials science. One of the advancements in this evolution is the application of nanoporous materials, endowed with unique physicochemical properties ideal for a variety of ophthalmological applications. Characterized by their high surface area, tunable porosity, and functional versatility, these materials have the potential to improve drug delivery systems and ocular devices. This review, anchored by a comprehensive literature focusing on studies published within the last five years, examines the applications of nanoporous materials in ocular drug delivery systems (DDS), contact lenses, and intraocular lenses. By consolidating the most current research, this review aims to serve as a resource for clinicians, researchers, and material scientists engaged in the rapidly evolving field of ophthalmology.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery—Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Danielle Brister
- College of Public Health, National Taiwan University (NTU), Taipei 106319, Taiwan
| | - Paul Bélanger
- Department of Surgery—Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
14
|
He J, Li J, Gao Y, He X, Hao G. Nano-based smart formulations: A potential solution to the hazardous effects of pesticide on the environment. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131599. [PMID: 37210783 DOI: 10.1016/j.jhazmat.2023.131599] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/21/2023] [Accepted: 05/07/2023] [Indexed: 05/23/2023]
Abstract
Inefficient usage, overdose, and post-application losses of conventional pesticides have resulted in severe ecological and environmental issues, such as pesticide resistance, environmental contamination, and soil degradation. Advances in nano-based smart formulations are promising novel methods to decrease the hazardous impacts of pesticide on the environment. In light of the lack of a systematic and critical summary of these aspects, this work has been structured to critically assess the roles and specific mechanisms of smart nanoformulations (NFs) in mitigating the adverse impacts of pesticide on the environment, along with an evaluation of their final environmental fate, safety, and application prospects. Our study provides a novel perspective for a better understanding of the potential functions of smart NFs in reducing environmental pollution. Additionally, this study offers meaningful information for the safe and effective use of these nanoproducts in field applications in the near future.
Collapse
Affiliation(s)
- Jie He
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China.
| | - Jianhong Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China.
| | - Yangyang Gao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China.
| | - Xiongkui He
- College of Science, China Agricultural University, Beijing 100193, PR China; College of Agricultural Unmanned System, China Agricultural University, Beijing 100193, PR China.
| | - Gefei Hao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China; National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, PR China.
| |
Collapse
|
15
|
Wang C, Zhu S, Liang Y, Qin C, Wang F, Wang H, Chang C, Inoue A. Flexible free-standing antibacterial nanoporous Ag ribbon. J Colloid Interface Sci 2023; 645:287-296. [PMID: 37150002 DOI: 10.1016/j.jcis.2023.04.153] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/09/2023]
Abstract
The biomedical field has the potential to significantly benefit from the use of flexible free-standing Ag nanostructures due to their outstanding mechanical and antibacterial properties. However, the intricate process of synthesizing these nanostructures, as well as the potential toxicity of nanostructured Ag, pose significant challenges. This study used a facile etching method to synthesize the free-standing nanoporous Ag (NP-Ag) ribbons with a homogeneous and bicontinuous three-dimensional ligament structure. The free-standing NP-Ag ribbons demonstrated stable mechanical performance and excellent flexibility when subjected to various deformation states on artificial fingers. Additionally, the NP-Ag ribbons exhibited remarkable antibacterial capacity with rates of 99.81 ± 0.14% against Escherichia coli, 96.11 ± 1.49% against Staphylococcus aureus, and 95.37 ± 1.24% against methicillin-resistant Staphylococcus aureus. The antibacterial mechanism of NP-Ag is attributed to the rapid release of Ag ions (Ag+) in 24 h, causing damage to the bacterial membrane. Moreover, the in vivo results demonstrate that the NP-Ag ribbons provide rapid antibacterial efficacy and are biosafe due to the long-term stable Ag+ release of NP-Ag. The development of these free-standing flexible NP-Ag ribbons offers a new avenue for wearable antibacterial applications.
Collapse
Affiliation(s)
- Chaoyang Wang
- School of Mechanical Engineering, Dongguan University of Technology, Dongguan 523808, China; School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Shengli Zhu
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072, China.
| | - Yanqin Liang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072, China
| | - Chunling Qin
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Fang Wang
- School of Mechanical Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Hao Wang
- Institute for Material Research, Tohoku University, Sendai 9808577, Japan.
| | - Chuntao Chang
- School of Mechanical Engineering, Dongguan University of Technology, Dongguan 523808, China.
| | - Akihisa Inoue
- School of Mechanical Engineering, Dongguan University of Technology, Dongguan 523808, China; School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
16
|
Vithanage M, Zhang X, Gunarathne V, Zhu Y, Herath L, Peiris K, Solaiman ZM, Bolan N, Siddique KHM. Plant nanobionics: Fortifying food security via engineered plant productivity. ENVIRONMENTAL RESEARCH 2023; 229:115934. [PMID: 37080274 DOI: 10.1016/j.envres.2023.115934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/17/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
The world's human population is increasing exponentially, increasing the demand for high-quality food sources. As a result, there is a major global concern over hunger and malnutrition in developing countries with limited food resources. To address this issue, researchers worldwide must focus on developing improved crop varieties with greater productivity to overcome hunger. However, conventional crop breeding methods require extensive periods to develop new varieties with desirable traits. To tackle this challenge, an innovative approach termed plant nanobionics introduces nanomaterials (NMs) into cell organelles to enhance or modify plant function and thus crop productivity and yield. A comprehensive review of nanomaterials affect crop yield is needed to guide nanotechnology research. This article critically reviews nanotechnology applications for engineering plant productivity, seed germination, crop growth, enhancing photosynthesis, and improving crop yield and quality, and discusses nanobionic approaches such as smart drug delivery systems and plant nanobiosensors. Moreover, the review describes NM classification and synthesis and human health-related and plant toxicity hazards. Our findings suggest that nanotechnology application in agricultural production could significantly increase crop yields to alleviate global hunger pressures. However, the environmental risks associated with NMs should be investigated thoroughly before their widespread adoption in agriculture.
Collapse
Affiliation(s)
- Meththika Vithanage
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia; Sustainability Cluster, University of Petroleum and Energy Studies, Dehradun, India.
| | - Xiaokai Zhang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China.
| | - Viraj Gunarathne
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Yi Zhu
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Lasantha Herath
- Sri Lanka Institute of Nano Technology, Pitipana, Homagama, Sri Lanka
| | - Kanchana Peiris
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Zakaria M Solaiman
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia; UWA School of Agriculture and Environment, The Uniersity of Western Australia, Perth, WA 6009, Australia
| | - Nanthi Bolan
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia; UWA School of Agriculture and Environment, The Uniersity of Western Australia, Perth, WA 6009, Australia
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia; UWA School of Agriculture and Environment, The Uniersity of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
17
|
Jia T, Pan N, Song X, Gao Y, Zhang Z, Xu H, Zhao C. Preparation and Characterization of Insecticide/Calix[4]arene Complexes and Their Enhanced Insecticidal Activities against Plutella xylostella. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5576-5584. [PMID: 37014048 DOI: 10.1021/acs.jafc.3c00657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Applications of supramolecular materials in plant protection have attracted significant interest in recent years. To develop a feasible method to improve the efficacy and reduce the usage of chemical pesticides, the effect of calix[4]arene (C4A) inclusion on enhancing the insecticidal activity of commercial insecticides was investigated. Results showed that all three tested insecticides (chlorfenapyr, indoxacarb, and abamectin) with distinct molecular sizes and modes of action were able to form stable 1:1 host-guest complexes with C4A through simple preparation steps. The insecticidal activities of the complexes against Plutella xylostella were effectively enhanced compared to the guest molecule, with the synergism ratio being up to 3.05 (for indoxacarb). An obvious correlation was found between the enhanced insecticidal activity and the high binding affinity between insecticide and C4A, while the improvement in water solubility may not be a determining factor. The work would provide hints for the further development of functional supramolecular hosts as synergists in pesticide formulations.
Collapse
Affiliation(s)
- Tianhao Jia
- National Key Laboratory of Green Pesticide; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Nianyou Pan
- National Key Laboratory of Green Pesticide; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Xiangmin Song
- National Key Laboratory of Green Pesticide; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Yongchao Gao
- National Key Laboratory of Green Pesticide; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Zhixiang Zhang
- National Key Laboratory of Green Pesticide; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Hanhong Xu
- National Key Laboratory of Green Pesticide; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Chen Zhao
- National Key Laboratory of Green Pesticide; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
18
|
Du Q, Chen L, Ding X, Cui B, Chen H, Gao F, Wang Y, Cui H, Zeng Z. Development of emamectin benzoate-loaded liposome nano-vesicles with thermo-responsive behavior for intelligent pest control. J Mater Chem B 2022; 10:9896-9905. [PMID: 36448451 DOI: 10.1039/d2tb02080g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pesticides play an important role in agricultural disease and pest control. However, the low utilization efficiency and environmentally unfriendly disadvantages of conventional pesticide formulations cause substantial environmental and ecological damage. Constructing intelligent controlled-release pesticide systems via nanotechnology is a feasible way to overcome these defects. In this research, an emamectin benzoate-loaded liposome nano-vesicle (EB-Lip-NV) with a multicompartment structure and thermo-responsive characteristics was developed to accurately control nocturnal pests and improve insecticidal activity. EB-Lip-NV is an unusual low-temperature rapid-release system based on phase transitions of the liposome membrane. Compared with the conventional water-soluble granule (SG), the EB-Lip-NV exhibited higher control activity on Spodoptera exigua. More importantly, the control efficacy of Spodoptera exigua at 20 °C was around 1.4 times that at 40 °C because of low temperature-induced rapid release. This controlled-release behavior of EB-Lip-NV in response to temperature change could effectively control the population of nocturnal pests. In addition, the toxicity of the EB-Lip-NV towards zebrafish was lower than that of SG by above 50%. This study provides a new strategy for constructing intelligent controlled-release pesticide systems with improving utilization rate and reducing harm to the environment and non-target organisms.
Collapse
Affiliation(s)
- Qian Du
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China.
| | - Long Chen
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China.
| | - Xiquan Ding
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China.
| | - Bo Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China.
| | - Hongyan Chen
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China.
| | - Fei Gao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China.
| | - Yan Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China.
| | - Haixin Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China.
| | - Zhanghua Zeng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China.
| |
Collapse
|
19
|
Xiao D, Wu H, Zhang Y, Kang J, Dong A, Liang W. Advances in stimuli-responsive systems for pesticides delivery: Recent efforts and future outlook. J Control Release 2022; 352:288-312. [PMID: 36273530 DOI: 10.1016/j.jconrel.2022.10.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/08/2022]
Abstract
Effective pest management for enhanced crop output is one of the primary goals of establishing sustainable agricultural practices in the world. Pesticides are critical in preventing biological disasters, ensuring crop productivity, and fostering sustainable agricultural production growth. Studies showed that crops are unable to properly utilize pesticides because of several limiting factors, such as leaching and bioconversion, thereby damaging ecosystems and human health. In recent years, stimuli-responsive systems for pesticides delivery (SRSP) by nanotechnology demonstrated excellent promise in enhancing the effectiveness and safety of pesticides. SRSP are being developed with the goal of delivering precise amounts of active substances in response to biological needs and environmental factors. An in-depth analysis of carrier materials, design fundamentals, and classification of SRSP were provided. The adhesion of SRSP to crop tissue, absorption, translocation in and within plants, mobility in the soil, and toxicity were also discussed. The problems and shortcomings that need be resolved to accelerate the actual deployment of SRSP were highlighted in this review.
Collapse
Affiliation(s)
- Douxin Xiao
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China
| | - Haixia Wu
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China
| | - Yanling Zhang
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China
| | - Jing Kang
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China.
| | - Wenlong Liang
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
20
|
Liang Y, Wang S, Yao Y, Yu S, Li A, Wang Y, Song J, Huo Z. Degradable Self-Destructive Redox-Responsive System Based on Mesoporous Organosilica Nano-Vehicles for Smart Delivery of Fungicide. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12234249. [PMID: 36500872 PMCID: PMC9741037 DOI: 10.3390/nano12234249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 06/01/2023]
Abstract
The development of stimuli-responsive controlled release formulations is a potential method of improving pesticide utilization efficiency and alleviating current pesticide-related environmental pollution. In this study, a self-destruction redox-responsive pesticide delivery system using biodegradable disulfide-bond-bridged mesoporous organosilica (DMON) nanoparticles as the porous carriers and coordination complexes of gallic acid (GA) and Fe(III) ions as the capping agents were established for controlling prochloraz (PRO) release. The GA-Fe(III) complexes deposited onto the surface of DMON nanoparticles could effectively improve the light stability of prochloraz. Due to the decomposition of GA-Fe(III) complexes, the nano-vehicles had excellent redox-responsive performance under the reducing environments generated by the fungus. The spreadability of PRO@DMON-GA-Fe(III) nanoparticles on the rice leaves was increased due to the hydrogen bonds between GA and rice leaves. Compared with prochloraz emulsifiable concentrate, PRO@DMON-GA-Fe(III) nanoparticles showed better fungicidal activity against Magnaporthe oryzae with a longer duration under the same concentration of prochloraz. More importantly, DMON-GA-Fe(III) nanocarriers did not observe obvious toxicity to the growth of rice seedlings. Considering non-toxic organic solvents and excellent antifungal activity, redox-responsive pesticide controlled release systems with self-destruction properties have great application prospects in the field of plant disease management.
Collapse
|
21
|
Nanosheet-Facilitated Spray Delivery of dsRNAs Represents a Potential Tool to Control Rhizoctonia solani Infection. Int J Mol Sci 2022; 23:ijms232112922. [DOI: 10.3390/ijms232112922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
Rhizoctonia solani is one of the important pathogenic fungi causing several serious crop diseases, such as maize and rice sheath blight. Current methods used to control the disease mainly depend on spraying fungicides because there is no immunity or high resistance available in crops. Spraying double-strand RNA (dsRNA) for induced-gene silencing (SIGS) is a new potentially sustainable and environmentally friendly tool to control plant diseases. Here, we found that fluorescein-labelled EGFP-dsRNA could be absorbed by R. solani in co-incubation. Furthermore, three dsRNAs, each targeting one of pathogenicity-related genes, RsPG1, RsCATA, and RsCRZ1, significantly downregulated the transcript levels of the target genes after co-incubation, leading to a significant reduction in the pathogenicity of the fungus. Only the spray of RsCRZ1 dsRNA, but not RsPG1 or RsCATA dsRNA, affected fungal sclerotium formation. dsRNA stability on leaf surfaces and its efficiency in entering leaf cells were significantly improved when dsRNAs were loaded on layered double hydroxide (LDH) nanosheets. Notably, the RsCRZ1-dsRNA-LDH approach showed stronger and more lasting effects than using RsCRZ1-dsRNA alone in controlling pathogen development. Together, this study provides a new potential method to control crop diseases caused by R. solani.
Collapse
|
22
|
Kaur H, Siwal SS, Chauhan G, Saini AK, Kumari A, Thakur VK. Recent advances in electrochemical-based sensors amplified with carbon-based nanomaterials (CNMs) for sensing pharmaceutical and food pollutants. CHEMOSPHERE 2022; 304:135182. [PMID: 35667504 DOI: 10.1016/j.chemosphere.2022.135182] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/18/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
Foodborne-related infections due to additives and pollutants pose a considerable task for food processing enterprises. Therefore, the competent, cost-effective, and quick investigation of nutrition additives and contaminants is essential to reduce the threat of public fitness problems. The electrochemical sensor (ECS) shows facile and potent analytical approaches desirable for food protection and quality inspection over traditional methods. The consequence of a broad display of nanomaterials has paved the path for their relevance in designing high-performance ECSs appliances for medical diagnostics and conditions and food protection. This review article has discussed the importance of electrochemical-based sensors amplified with carbon-based nanomaterials (CNMs). Initially, we have demonstrated the types of pharmaceutical and food/agriculture pollutants (such as pesticides, heavy metals, antibiotics and other medical drugs) present in water. Subsequently, we have compiled the information on electrochemical techniques (such as voltammetric and electrochemical impedance spectroscopy) and their crucial parameters for detecting pollutants. Further, the applications of CNMs for sensing pharmaceutical and food pollutants have been demonstrated in detail. Finally, the topic has been concluded with existing challenges and future prospects.
Collapse
Affiliation(s)
- Harjot Kaur
- Department of Chemistry, M.M. Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana, 133207, India
| | - Samarjeet Singh Siwal
- Department of Chemistry, M.M. Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana, 133207, India.
| | - Gunjan Chauhan
- Department of Chemistry, M.M. Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana, 133207, India
| | - Adesh Kumar Saini
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana, 133207, India
| | - Anita Kumari
- Department of Chemistry, GGDSD College Rajpur (Palampur), Himachal Pradesh University, Shimla, 176061, India
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, Edinburgh, EH9 3JG, UK; School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun, Uttarakhand, India; Centre for Research & Development, Chandigarh University, Mohali, 140413, Punjab, India.
| |
Collapse
|
23
|
Chen H, Zhi H, Feng B, Cui B, Zhao X, Sun C, Wang Y, Cui H, Zhang B, Zeng Z. Thermo-Responsive Quaternary Ammonium Chitosan Nanocapsules with On-Demand Controlled Pesticide Release and Maximally Synergistic Biological Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7653-7661. [PMID: 35698843 DOI: 10.1021/acs.jafc.2c01791] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Pesticides play an important role in pest control. However, they can be limited due to low utilization efficiency, causing substantial losses to the environment and ecological damage. Nanotechnology is an active area of research regarding encapsulation of pesticides for sustainable pest control. Here, we developed intelligent formulations of avermectin (Av) quaternary ammonium chitosan surfactant (QACS) nanocapsules (i.e., Av-Th@QACS) with on-demand controlled release properties, toward ambient temperature and maximal synergistic biological activity of Av and QACS. The Av-Th@QACS regulated the quantity of pesticide release in accordance with the ambient temperature changes and, insofar as this release is a means of responding to variations in pest populations, maximized the synergistic activity. In addition, the Av-Th@QACS were highly adhesive to crop leaves as a result of the prolonged retention time on the crop leaves. Therefore, Av-Th@QACS exhibited greater control against aphids at 35 °C than at 15 and 25 °C. Compared with commercial formulations, Av-Th@QACS was more toxic at 35 °C and less toxic at 15 °C. Thus, researchers can apply Av-Th@QACS as intelligent nanopesticides with an on-demand, controlled release and synergistic biological activity and, in so doing, prolong pesticide duration and improve the utilization efficiency.
Collapse
Affiliation(s)
- Hongyan Chen
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Heng Zhi
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Boyuan Feng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Bo Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Xiang Zhao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Changjiao Sun
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Yan Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Haixin Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, North Carolina 27858, United States
| | - Zhanghua Zeng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| |
Collapse
|
24
|
Hadden M, Martinez-Martin D, Yong KT, Ramaswamy Y, Singh G. Recent Advancements in the Fabrication of Functional Nanoporous Materials and Their Biomedical Applications. MATERIALS 2022; 15:ma15062111. [PMID: 35329563 PMCID: PMC8950633 DOI: 10.3390/ma15062111] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 01/27/2023]
Abstract
Functional nanoporous materials are categorized as an important class of nanostructured materials because of their tunable porosity and pore geometry (size, shape, and distribution) and their unique chemical and physical properties as compared with other nanostructures and bulk counterparts. Progress in developing a broad spectrum of nanoporous materials has accelerated their use for extensive applications in catalysis, sensing, separation, and environmental, energy, and biomedical areas. The purpose of this review is to provide recent advances in synthesis strategies for designing ordered or hierarchical nanoporous materials of tunable porosity and complex architectures. Furthermore, we briefly highlight working principles, potential pitfalls, experimental challenges, and limitations associated with nanoporous material fabrication strategies. Finally, we give a forward look at how digitally controlled additive manufacturing may overcome existing obstacles to guide the design and development of next-generation nanoporous materials with predefined properties for industrial manufacturing and applications.
Collapse
Affiliation(s)
- Matthew Hadden
- The School of Biomedical Engineering, The University of Sydney, Sydney, NSW 2006, Australia; (M.H.); (D.M.-M.); (K.-T.Y.)
| | - David Martinez-Martin
- The School of Biomedical Engineering, The University of Sydney, Sydney, NSW 2006, Australia; (M.H.); (D.M.-M.); (K.-T.Y.)
- Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Ken-Tye Yong
- The School of Biomedical Engineering, The University of Sydney, Sydney, NSW 2006, Australia; (M.H.); (D.M.-M.); (K.-T.Y.)
- Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Yogambha Ramaswamy
- The School of Biomedical Engineering, The University of Sydney, Sydney, NSW 2006, Australia; (M.H.); (D.M.-M.); (K.-T.Y.)
- Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
- Correspondence: (Y.R.); (G.S.)
| | - Gurvinder Singh
- The School of Biomedical Engineering, The University of Sydney, Sydney, NSW 2006, Australia; (M.H.); (D.M.-M.); (K.-T.Y.)
- Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
- Correspondence: (Y.R.); (G.S.)
| |
Collapse
|