1
|
Rosales RS, Risco D, García-Nicolás O, Pallarés FJ, Ramírez AS, Poveda JB, Nicholas RAJ, Salguero FJ. Differential Gene Expression in Porcine Lung Compartments after Experimental Infection with Mycoplasma hyopneumoniae. Animals (Basel) 2024; 14:1290. [PMID: 38731294 PMCID: PMC11083927 DOI: 10.3390/ani14091290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/20/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
Mycoplasma hyopneumoniae (Mhyo) is the causative agent of porcine enzootic pneumonia (EP), as well as one of the main pathogens involved in the porcine respiratory disease complex. The host-pathogen interaction between Mhyo and infected pigs is complex and not completely understood; however, improving the understanding of these intricacies is essential for the development of effective control strategies of EP. In order to improve our knowledge about this interaction, laser-capture microdissection was used to collect bronchi, bronchi-associated lymphoid tissue, and lung parenchyma from animals infected with different strains of Mhyo, and mRNA expression levels of different molecules involved in Mhyo infection (ICAM1, IL-8, IL-10, IL-23, IFN-α, IFN-γ, TGF-β, and TNF-α) were analyzed by qPCR. In addition, the quantification of Mhyo load in the different lung compartments and the scoring of macroscopic and microscopic lung lesions were also performed. Strain-associated differences in virulence were observed, as well as the presence of significant differences in expression levels of cytokines among lung compartments. IL-8 and IL-10 presented the highest upregulation, with limited differences between strains and lung compartments. IFN-α was strongly downregulated in BALT, implying a relevant role for this cytokine in the immunomodulation associated with Mhyo infections. IL-23 was also upregulated in all lung compartments, suggesting the potential involvement of a Th17-mediated immune response in Mhyo infections. Our findings highlight the relevance of Th1 and Th2 immune response in cases of EP, shedding light on the gene expression levels of key cytokines in the lung of pigs at a microscopic level.
Collapse
Affiliation(s)
- Rubén S. Rosales
- Instituto Universitario de Sanidad Animal y Seguridad Alimentaria (IUSA), Veterinary Faculty, University of Las Palmas de Gran Canaria, Trasmontaña s/n, 35416 Arucas, Spain; (R.S.R.); (A.S.R.); (J.B.P.)
| | - David Risco
- Unidad de Histología y Anatomía Patológica, Departamento de Medicina Animal, Veterinary Faculty, University of Extremadura, Avenida de la Universidad, s/n, 10003 Cáceres, Spain
| | - Obdulio García-Nicolás
- Institute of Virology and Immunology (IVI), Sensemattstrasse 293, 3147 Mittelhäusern, Switzerland;
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - Francisco J. Pallarés
- Pathology and Immunology Group (UCO-PIG), Department of Anatomy and Comparative Pathology and Toxicology, UIC Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, International Excellence Agrifood Campus “CeiA3”, 14001 Córdoba, Spain;
| | - Ana S. Ramírez
- Instituto Universitario de Sanidad Animal y Seguridad Alimentaria (IUSA), Veterinary Faculty, University of Las Palmas de Gran Canaria, Trasmontaña s/n, 35416 Arucas, Spain; (R.S.R.); (A.S.R.); (J.B.P.)
| | - José B. Poveda
- Instituto Universitario de Sanidad Animal y Seguridad Alimentaria (IUSA), Veterinary Faculty, University of Las Palmas de Gran Canaria, Trasmontaña s/n, 35416 Arucas, Spain; (R.S.R.); (A.S.R.); (J.B.P.)
| | | | - Francisco J. Salguero
- School of Veterinary Medicine, University of Surrey, Daphne Jackson Rd, Guildford GU2 7AL, UK;
| |
Collapse
|
2
|
Rodríguez F, Rosales RS, Ramírez AS, Poveda JB. Vaccination Upregulates Th1 Cytokines in the Lung of Pigs Experimentally Infected with Mycoplasma hyopneumoniae. Animals (Basel) 2023; 13:ani13030520. [PMID: 36766408 PMCID: PMC9913433 DOI: 10.3390/ani13030520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/13/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Mycoplasma hyopneumoniae (Mhy) is the causative agent of enzootic pneumonia, characterized by high morbidity and low mortality rates in intensive swine production systems. To better understand the mechanisms underlying the protection of an inactivated whole cell vaccine, we investigated the immunohistochemical differences in the cytokine expression in vaccinated and non-vaccinated pigs experimentally infected with Mhy. Four-week-old Mhy-negative pigs (n = 24) were allocated to negative control (n = 8), or one of two Mhy-infected groups: vaccinated (n = 8) and non-vaccinated (n = 8). Infection was carried out by a combination of trans-tracheal and aerosol route. Lung samples were processed for histopathological and immunohistochemical studies, by using antibodies against Mhy, IL1-α, IL1-β, IL-2, IL-4, IL-5, IL-6, Il-8, IL-10, IL-12p35, IL-13, IL-17A, TNF-α, IFN-γ, and CD-4 lymphocytes. Although all cytokines increased in both infected groups, IL-2, IL-12, and IFN-γ were significantly overexpressed in vaccinated pigs. These findings, in conjunction with the decrease of macroscopic and histological lesions in vaccinated animals, indicate the importance to enhance Th1 response in the immunization strategies to control Mhy infection.
Collapse
|
3
|
Zhang Y, Liu B, Said A, Xie J, Tian F, Cao Z, Chao Z, Li F, Li X, Li S, Liu H, Wang W. Regulatory functional role of NLRP3 inflammasome during Mycoplasma hyopneumoniae infection in swine. J Anim Sci 2023; 101:skad216. [PMID: 37351955 PMCID: PMC10406421 DOI: 10.1093/jas/skad216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/21/2023] [Indexed: 06/24/2023] Open
Abstract
Mycoplasma hyopneumoniae causes enzootic pneumonia, a highly contagious respiratory disease in swine that causes significant economic losses worldwide. It is unknown whether the nucleotide oligomerization domain-like receptor (NLR) family pyrin domain containing 3 (NLRP3) inflammasome regulates the immune response in swine during M. hyopneumoniae infection. The current study utilized an in vivo swine model of M. hyopneumoniae infection to investigate the regulatory functional role of the NLRP3 inflammasome during M. hyopneumoniae infection. Notable histopathological alterations were observed in M. hyopneumoniae-infected swine tissues, which were associated with an inflammatory response and disease progression. Swine M. hyopneumoniae infection was associated with an increase in the expression of the NLRP3 inflammasome, which stimulated pro-inflammatory cytokines such as tumor necrosis factor-alpha, interleukin 18, and interleukin 1 beta (IL-1β). The impact of the NLRP3 inhibitor, MCC950 on NLRP3 and pro-inflammatory cytokines in M. hyopneumoniae-infected swine was examined to investigate the relationship between the NLRP3 inflammasome and M. hyopneumoniae infection. Taken together, our findings provide strong evidence that the NLRP3 inflammasome plays a critical regulatory functional role in M. hyopneumoniae infection in swine.
Collapse
Affiliation(s)
- Yan Zhang
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou 571100, China
- Key Laboratory of Tropical Animal Breeding and Disease Research, Haikou 571100, China
| | - Bo Liu
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou 256600, China
- Lvdu Bio-Sciences &Technology Co. Ltd., Binzhou 256600, Shandong, China
| | - Abdelrahman Said
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Parasitology and Animal Diseases Department, National Research Center, Dokki, Giza, Egypt
| | - Jinwen Xie
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou 256600, China
| | - Fengrong Tian
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou 256600, China
| | - Zongxi Cao
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou 571100, China
- Key Laboratory of Tropical Animal Breeding and Disease Research, Haikou 571100, China
| | - Zhe Chao
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou 571100, China
- Key Laboratory of Tropical Animal Breeding and Disease Research, Haikou 571100, China
| | - Feng Li
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou 256600, China
- Shandong Academician Workstation, Binzhou 256600, Shandong, China
| | - Xin Li
- Xinjiang Agricultural University, Wulumuqi, Xinjiang, China
| | - Shuguang Li
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou 256600, China
| | - Hailong Liu
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou 571100, China
- Key Laboratory of Tropical Animal Breeding and Disease Research, Haikou 571100, China
| | - Wenxiu Wang
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou 256600, China
- Shandong Academician Workstation, Binzhou 256600, Shandong, China
| |
Collapse
|
4
|
Sonalio K, Almeida HMS, Mechler-Dreibi ML, Storino GY, Haesebrouck F, Maes D, de Oliveira LG. Influence of Mycoplasma hyopneumoniae natural infection on the respiratory microbiome diversity of finishing pigs. Vet Res 2022; 53:20. [PMID: 35303928 PMCID: PMC8932171 DOI: 10.1186/s13567-022-01038-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 02/10/2022] [Indexed: 11/10/2022] Open
Abstract
Mycoplasma (M.) hyopneumoniae interacts with the respiratory microbiota and facilitates colonization of other pathogens. The present study investigated the pulmonary and nasal microbiota of M. hyopneumoniae-infected and M. hyopneumoniae-free pigs. Sixty-six pigs from three commercial herds were selected at the end of the finishing phase: 44 originated from two M. hyopneumoniae-positive herds and 22 from a M. hyopneumoniae-negative farm. At the slaughterhouse, samples of nasal turbinate (NT) and bronchus-alveolar lavage fluid (BALF) were collected. DNA was extracted with a commercial kit and the infection status was confirmed by qPCR. All samples from the same herd were pooled, and next-generation sequencing based on the hypervariable region V3-V4 of the 16 s bacterial rDNA was performed. Data analysis included the taxonomic analysis, Alpha diversity indexes, and Principal coordinates analysis (Pcoa) using Jaccard, Bray-Curtis, Weighted Unifrac, and Unweighted Unifrac distances. All pigs from the infected herds tested PCR positive for M. hyopneumoniae, whereas all pigs from the negative farm were negative. There was a greater diversity of microorganisms in BALF when compared to NT samples in all the farms. BALF samples from infected animals showed higher abundance of M. hyopneumoniae than NT samples and a predominance of Pasteurella multocida among the main species identified, which was also abundant in the M. hyopneumoniae-free herd. PCoa diagrams indicated that for most of the samples, dissimilarity on bacterial composition was observed, regardless of infection status and sample type. Therefore, the lung microbiota was modulated by M. hyopneumoniae infection, which could play a role in the pathogenesis of M. hyopneumoniae-disease.
Collapse
Affiliation(s)
- Karina Sonalio
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, Brazil.,Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Henrique M S Almeida
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, Brazil
| | - Marina L Mechler-Dreibi
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, Brazil
| | - Gabriel Y Storino
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, Brazil
| | | | - Dominiek Maes
- Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Luís Guilherme de Oliveira
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, Brazil.
| |
Collapse
|
5
|
Nueangphuet P, Suwanruengsri M, Fuke N, Uemura R, Hirai T, Yamaguchi R. Neutrophil and M2-polarized Macrophage Infiltration, Expression of IL-8 and Apoptosis in Mycoplasma hyopneumoniae Pneumonia in Swine. J Comp Pathol 2021; 189:31-44. [PMID: 34886984 DOI: 10.1016/j.jcpa.2021.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/15/2021] [Accepted: 09/25/2021] [Indexed: 10/20/2022]
Abstract
Mycoplasma hyopneumoniae (Mhp) is the primary pathogen of porcine enzootic pneumonia (PEP). Consolidated lung tissue from the cranioventral lung lobes of 15 pigs with PEP was collected for quantitative polymerase chain reaction, histopathology and immunohistochemistry. Histopathology revealed the co-existence of bronchial-associated lymphoid tissue hyperplasia with intra-alveolar neutrophils and macrophage infiltration in lesions of suppurative bronchopneumonia. Immunolabelling of infiltrated macrophages with CD163/CD204 indicated the presence of M2-polarized macrophages. Mhp antigen was detected on respiratory epithelial cells and in phagocytosed neutrophils. The intensity of Mhp immunolabelling and number of CD163/CD204-positive macrophages were correlated with the Mhp load in lung tissue (r = 0.87, 0.56, P <0.05). IL-8 immunolabelling was mainly found in neutrophils and correlated with Mhp load, Mhp immunolabelling and histological lesion score (r = 0.70, 0.66, 0.64, P <0.05), respectively. Apoptosis was seen in intra-alveolar cells and was correlated with Mhp load (r = 0.62, P <0.05). It is postulated that IL-8 attracts neutrophils to the lesions, while M2-polarized macrophages are a major source of IL-10 and promote a Th2-type immune response.
Collapse
Affiliation(s)
- Phawut Nueangphuet
- Department of Veterinary Pathology, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Mathurot Suwanruengsri
- Department of Veterinary Pathology, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Naoyuki Fuke
- Department of Veterinary Pathology, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Ryoko Uemura
- Department of Animal Health, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Takuya Hirai
- Department of Veterinary Pathology, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Ryoji Yamaguchi
- Department of Veterinary Pathology, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan.
| |
Collapse
|
6
|
Kamminga T, Benis N, Martins Dos Santos V, Bijlsma JJE, Schaap PJ. Combined Transcriptome Sequencing of Mycoplasma hyopneumoniae and Infected Pig Lung Tissue Reveals Up-Regulation of Bacterial F1-Like ATPase and Down-Regulation of the P102 Cilium Adhesin in vivo. Front Microbiol 2020; 11:1679. [PMID: 32765473 PMCID: PMC7379848 DOI: 10.3389/fmicb.2020.01679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 06/26/2020] [Indexed: 12/21/2022] Open
Abstract
Mycoplasma hyopneumoniae (M. hyopneumoniae) causes enzootic pneumonia in pigs but it is still largely unknown which host-pathogen interactions enable persistent infection and cause disease. In this study, we analyzed the host and bacterial transcriptomes during infection using RNA sequencing. Comparison of the transcriptome of lung lesion tissue from infected pigs with lung tissue from non-infected animals, identified 424 differentially expressed genes (FDR < 0.01 and fold change > 1.5LOG2). These genes were part of the following major pathways of the immune system: interleukin signaling (type 4, 10, 13, and 18), regulation of Toll-like receptors by endogenous ligand and activation of C3 and C5 in the complement system. Besides analyzing the lung transcriptome, a sampling protocol was developed to obtain enough bacterial mRNA from infected lung tissue for RNA sequencing. This was done by flushing infected lobes in the lung, and subsequently enriching for bacterial RNA. On average, 2.2 million bacterial reads were obtained per biological replicate to analyze the bacterial in vivo transcriptome. We compared the in vivo bacterial transcriptome with the transcriptome of bacteria grown in vitro and identified 22 up-regulated and 30 down-regulated genes (FDR < 0.01 and fold change > 2LOG2). Six out of seven genes in the operon encoding the mycoplasma specific F1-like ATPase (MHP_RS02445-MHP_RS02475) and all genes in the operon MHP_RS01965-MHP_RS01990 with functions related to nucleotide metabolism, spermidine transport and glycerol-3-phoshate transport were up-regulated in vivo. Down-regulated in vivo were genes related to glycerol uptake, cilium adhesion (P102), cell division and myo-inositol metabolism. In addition to providing a novel method to isolate bacterial mRNA from infected lung, this study provided insights into changes in gene expression during infection, which could help development of novel treatment strategies against enzootic pneumonia caused by M. hyopneumoniae.
Collapse
Affiliation(s)
- Tjerko Kamminga
- Laboratory of Systems and Synthetic Biology, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Wageningen, Netherlands.,Bioprocess Technology and Support, MSD Animal Health, Boxmeer, Netherlands
| | - Nirupama Benis
- Laboratory of Systems and Synthetic Biology, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Wageningen, Netherlands
| | - Vitor Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Wageningen, Netherlands
| | | | - Peter J Schaap
- Laboratory of Systems and Synthetic Biology, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
7
|
Gauthier L, Babych M, Segura M, Bourgault S, Archambault D. Identification of a novel TLR5 agonist derived from the P97 protein of Mycoplasma hyopneumoniae. Immunobiology 2020; 225:151962. [PMID: 32747018 DOI: 10.1016/j.imbio.2020.151962] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/22/2020] [Accepted: 05/15/2020] [Indexed: 02/08/2023]
Abstract
By modulating specific immune responses against antigens, adjuvants are used in many vaccine preparations to enhance protective immunity. The C-terminal domain of the protein P97 (P97c) of Mycoplasma hyopneumoniae, which is the etiologic agent of porcine enzootic pneumonia, has been shown to increase the specific humoral response against an antigen when this antigen is merged with P97c and delivered by adenovectors. However, the immunostimulating mechanism of this protein remains unknown. In the present study, recombinantly expressed P97c triggered a concentration-dependent TLR5 activation and stimulates the production of interleukin-8 from HEK-Blue mTLR5 cells. Circular dichroism spectroscopy and prediction of 3-dimensional conformation exposed a relevant secondary and tertiary structural homology between P97c and flagellin, the known potent TLR5 agonist. P97c adjuvanticity was evaluated by fusing the conserved epitope of the ectodomain matrix 2 protein (M2e) of the influenza A virus to the protein. Mice immunized with P97c-3M2e revealed a high antibody titer against the M2e epitope associated with a mixed Th1/Th2 immune response. Overall, this study identifies a novel agonist of the pattern recognition receptor TLR5 and reveals that P97c is a potential adjuvant through the activation of the innate immune system.
Collapse
Affiliation(s)
- Laurie Gauthier
- Department of Biological Sciences, Université du Québec à Montréal, Montréal, Canada; Department of Chemistry, Université du Québec à Montréal, Montréal, Canada; The Swine and Poultry Infectious Diseases Research Centre (CRIPA), Saint-Hyacinthe, Canada; Quebec Network for Research on Protein Function, Engineering, and Applications, PROTEO, Québec, Canada; Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Canada
| | - Margaryta Babych
- Department of Chemistry, Université du Québec à Montréal, Montréal, Canada; Quebec Network for Research on Protein Function, Engineering, and Applications, PROTEO, Québec, Canada; Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Canada
| | - Mariela Segura
- The Swine and Poultry Infectious Diseases Research Centre (CRIPA), Saint-Hyacinthe, Canada; Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Canada
| | - Steve Bourgault
- Department of Chemistry, Université du Québec à Montréal, Montréal, Canada; The Swine and Poultry Infectious Diseases Research Centre (CRIPA), Saint-Hyacinthe, Canada; Quebec Network for Research on Protein Function, Engineering, and Applications, PROTEO, Québec, Canada; Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Canada.
| | - Denis Archambault
- Department of Biological Sciences, Université du Québec à Montréal, Montréal, Canada; The Swine and Poultry Infectious Diseases Research Centre (CRIPA), Saint-Hyacinthe, Canada; Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Canada.
| |
Collapse
|
8
|
Immunohistochemical and Ultrastructural Studies of Mycoplasma hyopneumoniae Strain in Naturally Infected Pigs in Nigeria. FOLIA VETERINARIA 2020. [DOI: 10.2478/fv-2020-0001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Enzootic pneumonia caused by hyopneumoniae (MHYO) remains a serious concern to the swine industry in many countries including Nigeria. MHYO strains isolated from pigs from different countries and geographical locations are known to vary in pathogenicity. There is a paucity of information on the pathogenicity of the MHYO strain affecting pigs in Nigeria. This study investigated the pathogenicity of the MHYO strain in naturally infected pigs using immunohisto-chemistry and electron microscopy. Two hundred and sixty four lungs of slaughtered pigs were randomly collected from abattoirs at Abeokuta, Ibadan and Lagos, in Southwest Nigeria. A sub-sample of 104 pneumonic and 20 apparently normal lungs was selected, processed for routine histopathological examination and immunohistochemistry, while 3 lung tissues samples were selected for ultrastructural studies. The most significant microscopic changes observed were suppurative broncho-interstitial pneumonia associated with varying degrees of lymphoid hyperplasia of the bronchus-associated lymphoid tissue (BALT) and thickened alveolar septa due to cellular infiltration consisting predominantly of neutrophils and a few mononuclear cells. Immunohistochemically, MHYO antigen was detected in 86/104 (82.69 %) of MHYO-infected lung tissues and typically exhibited a granular brown reaction on the bronchial and bronchiolar epithelial lining, mononuclear cells in the BALT and luminal cellular exudates within the airways. Transmission electron microscopy revealed numerous Mycoplasma organisms in the lumina of the airways, in between degenerated cilia, while a few Mycoplasmas were located within the alveoli. It was concluded that the MHYO strain detected in this study was pathogenic to pigs and capable of inducing pneumonia, and therefore implicated in the pathogenesis.
Collapse
|
9
|
Almeida HMS, Mechler-Dreibi ML, Sonálio K, Ferraz MES, Storino GY, Barbosa FO, Maes D, Montassier HJ, de Oliveira LG. Cytokine expression and Mycoplasma hyopneumoniae burden in the development of lung lesions in experimentally inoculated pigs. Vet Microbiol 2020; 244:108647. [PMID: 32402328 DOI: 10.1016/j.vetmic.2020.108647] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/28/2020] [Accepted: 03/17/2020] [Indexed: 12/19/2022]
Abstract
This study aimed to assess immunopathological factors and M. hyopneumoniae (M. hyo) load in macroscopic lesion formation at four timepoints after experimental infection of swine. To do this, 24 M. hyo-free pigs were divided into two groups: non-inoculated control (n = 8) and inoculated (n = 16). At day 0 post-infection (dpi), animals of infected group were intratracheally inoculated with 5 mL of lung inoculum containing 107 CCU (Color Changing Units) ∕mL of M. hyo strain 232, while control group was mock infected with 5 mL of sterilized Friis medium. At 14, 28, 42 and 56 dpi, four animals from the infected group and two from the control group were euthanized and necropsied. The extent of macroscopic lung lobe lesions was visually assessed, scored and lesion samples (qPCR, histopathology and gene expression) were collected. The macroscopic lesion score and estimated M. hyo load (in copies/μL) at the different timepoints were: 14 dpi: 18.5 %-1.55 × 103 copies∕μL; 28dpi: 15.8 %-8.4 × 103 copies∕μL; 42 dpi: 7.0 %-3.2 × 104 copies∕μL and 56 dpi: 6.3 %-1.11 × 105 copies∕μL; Significant and positive correlations between macroscopic lung lesion and the pathogen load were found (coefficient range: 0.77-0.99). The cytokine's IL-6 (0.73) and INF-γ (-0.69) gene expression were significantly (p < 0.05) correlated to macroscopic lung lesion score while IL-8, TNF- α, IL-1α and IL-1β were associated to other pathological effects such as losses in average daily weight gain and microscopic lesion score. The results provide a better understanding about the pathogenicity of M. hyo strain 232 and the host-pathogen interactions, which may be helpful for the development of new treatments or control measures.
Collapse
Affiliation(s)
- Henrique M S Almeida
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, Brazil
| | - Marina L Mechler-Dreibi
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, Brazil
| | - Karina Sonálio
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, Brazil
| | - Maria Eugênia S Ferraz
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, Brazil
| | - Gabriel Y Storino
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, Brazil
| | - Fernanda O Barbosa
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, Brazil
| | - Dominiek Maes
- Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Hélio J Montassier
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, Brazil
| | - Luis G de Oliveira
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, Brazil.
| |
Collapse
|
10
|
Leal Zimmer FMA, Moura H, Barr JR, Ferreira HB. Intracellular changes of a swine tracheal cell line infected with a Mycoplasma hyopneumoniae pathogenic strain. Microb Pathog 2019; 137:103717. [PMID: 31494300 DOI: 10.1016/j.micpath.2019.103717] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/13/2019] [Accepted: 09/04/2019] [Indexed: 12/20/2022]
Abstract
Mycoplasma hyopneumoniae is the etiological agent of enzootic pneumonia (EP), a widespread disease that causes major economic losses to the pig industry. The swine host response plays an important role in the outcome of M. hyopneumoniae infections. The whole proteome of newborn pig trachea (NPTr) epithelial cells infected with the M. hyopneumoniae pathogenic strain 7448 was analyzed using an LC-MS/MS approach to shed light on intracellular processes triggered in response to the pathogen. Overall, 853 swine protein species were identified, 156 of which were differentially represented in response to M. hyopneumoniae 7448 infection in comparison with non-infected control cells. These differentially represented proteins were categorized by function. Fifty-seven of them were assigned to the immune system and/or response to stimulus functional subcategories. Comparative expression analysis of these immune-related proteins in NPTr cells infected with attenuated or non-pathogenic mycoplasmas (M. hyopneumoniae J strain and M. flocculare, respectively) revealed proteins whose abundance was altered only in response to the pathogenic M. hyopneumoniae 7448 strain. Among these proteins, calcium homeostasis and endoplasmic reticulum stress-related biomarkers were detected, providing evidence of molecular mechanisms that might lead to swine cell apoptosis.
Collapse
Affiliation(s)
- Fernanda M A Leal Zimmer
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre, Rio Grande do Sul, Brazil
| | - Hercules Moura
- Biological Mass Spectrometry Laboratory, Clinical Chemistry Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - John R Barr
- Biological Mass Spectrometry Laboratory, Clinical Chemistry Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Henrique Bunselmeyer Ferreira
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
11
|
Fourour S, Marois-Créhan C, Martelet L, Fablet C, Kempf I, Gottschalk M, Segura M. Intra-Species and Inter-Species Differences in Cytokine Production by Porcine Antigen-Presenting Cells Stimulated by Mycoplasma hyopneumoniae, M. hyorhinis, and M. flocculare. Pathogens 2019; 8:pathogens8010034. [PMID: 30884861 PMCID: PMC6471550 DOI: 10.3390/pathogens8010034] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 02/03/2023] Open
Abstract
Mycoplasma hyorhinis and M. flocculare are commonly co-isolated with M. hyopneumoniae (primary agent of swine enzootic pneumonia) in gross pneumonia-like lesions, but their involvement in the disease process remains unknown. T cells play an immuno-pathological role during mycoplasmal infections. Dendritic cells (DCs) are major antigen-presenting cells involved in T cell activation and differentiation. In this study, we investigated cytokine (IL-6, IL-8, IL-10, IL-12, and TNF-α) production by porcine bone-marrow-derived DCs (BM-DCs) stimulated by M. hyopneumoniae, M. hyorhinis, and/or M. flocculare. Results showed that cytokine production levels were relatively homogenous for all evaluated M. hyopneumoniae strains in contrast to M. hyorhinis and M. flocculare strains. The most noteworthy inter-species differences were the overall (i) lower IL-12 production capacity of M. hyopneumoniae, and (ii) higher TNF-α production capacity of M. flocculare. Co-stimulation of BM-DCs showed that M. hyorhinis dominated the IL-12 production independently of its association with M. hyopneumoniae or M. flocculare. In addition, a decreased BM-DC production of TNF-α was generally observed in the presence of mycoplasma associations. Lastly, M. flocculare association with M. hyopneumoniae increased BM-DC ability to secrete IL-10. A higher cytotoxicity level in BM-DCs stimulated by M. hyorhinis was also observed. Overall, this study demonstrated that the combination of M. hyorhinis or M. flocculare with M. hyopneumoniae may participate to the modulation of the immune response that might affect the final disease outcome.
Collapse
Affiliation(s)
- Sarah Fourour
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané-Niort Laboratory, Mycoplasmology Bacteriology and Antimicrobial Resistance Unit, 22 440 Ploufragan, France.
- University of Brittany-Loire, Cité internationale 1 place Paul Ricoeur CS 54417, 35044 Rennes, France.
| | - Corinne Marois-Créhan
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané-Niort Laboratory, Mycoplasmology Bacteriology and Antimicrobial Resistance Unit, 22 440 Ploufragan, France.
- University of Brittany-Loire, Cité internationale 1 place Paul Ricoeur CS 54417, 35044 Rennes, France.
| | - Léa Martelet
- Swine and Poultry Infectious Diseases Research Center and Research Group on Infectious Diseases in Production Animals, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St., Saint-Hyacinthe, QC J2S 2M2, Canada.
| | - Christelle Fablet
- University of Brittany-Loire, Cité internationale 1 place Paul Ricoeur CS 54417, 35044 Rennes, France.
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané-Niort Laboratory, Epidemiology, Health and Welfare unit, 22440 Ploufragan, France.
| | - Isabelle Kempf
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané-Niort Laboratory, Mycoplasmology Bacteriology and Antimicrobial Resistance Unit, 22 440 Ploufragan, France.
- University of Brittany-Loire, Cité internationale 1 place Paul Ricoeur CS 54417, 35044 Rennes, France.
| | - Marcelo Gottschalk
- Swine and Poultry Infectious Diseases Research Center and Research Group on Infectious Diseases in Production Animals, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St., Saint-Hyacinthe, QC J2S 2M2, Canada.
| | - Mariela Segura
- Swine and Poultry Infectious Diseases Research Center and Research Group on Infectious Diseases in Production Animals, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St., Saint-Hyacinthe, QC J2S 2M2, Canada.
| |
Collapse
|
12
|
Mycoplasma hyopneumoniae resides intracellularly within porcine epithelial cells. Sci Rep 2018; 8:17697. [PMID: 30523267 PMCID: PMC6283846 DOI: 10.1038/s41598-018-36054-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/09/2018] [Indexed: 12/18/2022] Open
Abstract
Enzootic pneumonia incurs major economic losses to pork production globally. The primary pathogen and causative agent, Mycoplasma hyopneumoniae, colonises ciliated epithelium and disrupts mucociliary function predisposing the upper respiratory tract to secondary pathogens. Alleviation of disease is reliant on antibiotics, vaccination, and sound animal husbandry, but none are effective at eliminating M. hyopneumoniae from large production systems. Sustainable pork production systems strive to lower reliance on antibiotics but lack of a detailed understanding of the pathobiology of M. hyopneumoniae has curtailed efforts to develop effective mitigation strategies. M. hyopneumoniae is considered an extracellular pathogen. Here we show that M. hyopneumoniae associates with integrin β1 on the surface of epithelial cells via interactions with surface-bound fibronectin and initiates signalling events that stimulate pathogen uptake into clathrin-coated vesicles (CCVs) and caveosomes. These early events allow M. hyopneumoniae to exploit an intracellular lifestyle by commandeering the endosomal pathway. Specifically, we show: (i) using a modified gentamicin protection assay that approximately 8% of M. hyopneumoniae cells reside intracellularly; (ii) integrin β1 expression specifically co-localises with the deposition of fibronectin precisely where M. hyopneumoniae cells assemble extracellularly; (iii) anti-integrin β1 antibodies block entry of M. hyopneumoniae into porcine cells; and (iv) M. hyopneumoniae survives phagolysosomal fusion, and resides within recycling endosomes that are trafficked to the cell membrane. Our data creates a paradigm shift by challenging the long-held view that M. hyopneumoniae is a strict extracellular pathogen and calls for in vivo studies to determine if M. hyopneumoniae can traffic to extrapulmonary sites in commercially-reared pigs.
Collapse
|
13
|
Leal Zimmer FMDA, Paludo GP, Moura H, Barr JR, Ferreira HB. Differential secretome profiling of a swine tracheal cell line infected with mycoplasmas of the swine respiratory tract. J Proteomics 2018; 192:147-159. [PMID: 30176387 DOI: 10.1016/j.jprot.2018.08.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/06/2018] [Accepted: 08/29/2018] [Indexed: 12/22/2022]
Abstract
Mycoplasma hyopneumoniae and Mycoplasma flocculare are genetically similar. However, M. hyopneumoniae causes porcine enzootic pneumonia, while M. flocculare is a commensal bacterium. M. hyopneumoniae and M. flocculare do not penetrate their host cells, and secreted proteins are important for bacterium-host interplay. Thus, the secretomes of a swine trachea cell line (NPTr) infected with M. hyopneumoniae 7448 (a pathogenic strain), M. hyopneumoniae J (a non-pathogenic strain) and M. flocculare were compared to shed light in bacterium-host interactions. Medium from the cultures was collected, and secreted proteins were identified by a LC-MS/MS. Overall numbers of identified host and bacterial proteins were, respectively, 488 and 58, for NPTr/M. hyopneumoniae 7448; 371 and 67, for NPTr/M. hyopneumoniae J; and 203 and 81, for NPTr/M. flocculare. The swine cells revealed different secretion profiles in response to the infection with each M. hyopneumoniae strain or with M. flocculare. DAMPs and extracellular proteasome proteins, secreted in response to cell injury and death, were secreted by NPTr cells infected with M. hyopneumoniae 7448. All three mycoplasmas secreted virulence factors during NPTr infection, but M. hyopneumoniae 7448 secreted higher number of adhesins and hypothetical proteins, that may be related with pathogenicity. SIGNIFICANCE: The enzootic pneumonia caused by mycoplasmas of swine respiratory tract has economic loss consequences in pig industry due to antibiotic costs and pig weight loss. However, some genetically similar mycoplasmas are pathogenic while others, such as Mycoplasma hyopneumoniae and Mycoplasma flocculare, are non-pathogenic. Here, we conducted an infection assay between swine cells and pathogenic and non-pathogenic mycoplasmas to decipher secreted proteins during host-pathogen interaction. Mycoplasma response to cell infection was also observed. Our study provided new insights on secretion profile of swine cells in response to the infection with pathogenic and non-pathogenic mycoplasmas. It was possible to observe that pathogenic M. hyopneumoniae 7448 secreted known virulence factors and swine cells responded by inducing cell death. Otherwise, M. hyopneumoniae J and M. flocculare, non-pathogenic mycoplasmas, secreted a different profile of virulence factors in response to swine cells. Consequently, swine cells altered their secretome profile, but the changes were not sufficient to cause disease.
Collapse
Affiliation(s)
- Fernanda Munhoz Dos Anjos Leal Zimmer
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500 Porto Alegre, Rio Grande do Sul, Brazil
| | - Gabriela Prado Paludo
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500 Porto Alegre, Rio Grande do Sul, Brazil
| | - Hercules Moura
- Biological Mass Spectrometry Laboratory, Clinical Chemistry Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - John R Barr
- Biological Mass Spectrometry Laboratory, Clinical Chemistry Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Henrique Bunselmeyer Ferreira
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500 Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
14
|
|
15
|
Deblanc C, Delgado-Ortega M, Gorin S, Berri M, Paboeuf F, Berthon P, Herrler G, Meurens F, Simon G. Mycoplasma hyopneumoniae does not affect the interferon-related anti-viral response but predisposes the pig to a higher level of inflammation following swine influenza virus infection. J Gen Virol 2016; 97:2501-2515. [PMID: 27498789 DOI: 10.1099/jgv.0.000573] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In pigs, influenza A viruses and Mycoplasma hyopneumoniae (Mhp) are major contributors to the porcine respiratory disease complex. Pre-infection with Mhp was previously shown experimentally to exacerbate the clinical outcomes of H1N1 infection during the first week after virus inoculation. In order to better understand the interactions between these pathogens, we aimed to assess very early responses (at 5, 24 and 48 h) after H1N1 infection in pigs pre-infected or not with Mhp. Clinical signs and macroscopic lung lesions were similar in both infected groups at early times post-H1N1 infection; and Mhp pre-infection affected neither the influenza virus replication nor the IFN-induced antiviral responses in the lung. However, it predisposed the animals to a higher inflammatory response to H1N1 infection, as revealed by the massive infiltration of neutrophils and macrophages into the lungs and the increased production of pro-inflammatory cytokines (IL-6, IL-1β and TNF-α). Thus, it seems it is this marked inflammatory state that would play a role in exacerbating the clinical signs subsequent to H1N1 infection.
Collapse
Affiliation(s)
- Céline Deblanc
- Université Bretagne Loire, France.,ANSES, Laboratoire de Ploufragan-Plouzané, Unité Virologie Immunologie Porcines, Ploufragan, France
| | | | - Stéphane Gorin
- ANSES, Laboratoire de Ploufragan-Plouzané, Unité Virologie Immunologie Porcines, Ploufragan, France.,Université Bretagne Loire, France
| | | | - Frédéric Paboeuf
- Université Bretagne Loire, France.,ANSES, Service de Production de Porcs Assainis et d'Expérimentation, Ploufragan, France
| | | | - Georg Herrler
- Institut für Virologie, Tierärztliche Hochschule Hannover, Hannover, Germany
| | | | - Gaëlle Simon
- ANSES, Laboratoire de Ploufragan-Plouzané, Unité Virologie Immunologie Porcines, Ploufragan, France.,Université Bretagne Loire, France
| |
Collapse
|
16
|
Mycoplasma hyopneumoniae and Mycoplasma flocculare differential domains from orthologous surface proteins induce distinct cellular immune responses in mice. Vet Microbiol 2016; 190:50-57. [PMID: 27283856 DOI: 10.1016/j.vetmic.2016.05.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/13/2016] [Accepted: 05/16/2016] [Indexed: 11/23/2022]
Abstract
Mycoplasma hyopneumoniae and Mycoplasma flocculare are two genetically close species found in the swine respiratory tract. Despite their similarities, while M. hyopneumoniae is the causative agent of porcine enzootic pneumonia, M. flocculare is a commensal bacterium. Genomic and transcriptional comparative analyses so far failed to explain the difference in pathogenicity between these two species. We then hypothesized that such difference might be, at least in part, explained by amino acid sequence and immunological or functional differences between ortholog surface proteins. In line with that, it was verified that approximately 85% of the ortholog surface proteins from M. hyopneumoniae 7448 and M. flocculare present one or more differential domains. To experimentally assess possible immunological implications of this kind of difference, the extracellular differential domains from one pair of orthologous surface proteins (MHP7448_0612, from M. hyopneumoniae, and MF_00357, from M. flocculare) were expressed in E. coli and used to immunize mice. The recombinant polypeptides (rMHP61267-169 and rMF35767-196, respectively) induced distinct cellular immune responses. While, rMHP61267-169 induced both Th1 and Th2 responses, rMF35767-196 induced just an early pro-inflammatory response. These results indicate that immunological properties determined by differential domains in orthologous surface protein might play a role in pathogenicity, contributing to elicit specific and differential immune responses against each species.
Collapse
|
17
|
Sato T, Okamura T, Kojima-Shibata C, Kadowaki H, Suzuki E, Uenishi H, Suzuki K. Correlated response of peripheral blood cytokines with selection for reduced mycoplasma pneumonia of swine lesions in Landrace pigs. Anim Sci J 2015; 87:477-83. [PMID: 26429759 DOI: 10.1111/asj.12462] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 03/30/2015] [Accepted: 04/15/2015] [Indexed: 11/30/2022]
Abstract
Mycoplasma pneumonia of swine (MPS) is responsible for significant economic losses in the swine industry. We selected Landrace pigs for reduced MPS pulmonary lesions over five generations, and measured concentrations of the following cytokines: interleukin (IL)-10, IL-13, IL-17, tumor necrosis factor (TNF)-α and interferon (IFN)-γ to estimate their correlation with MPS lesions. Sheep red blood cells (SRBC) were injected twice intramuscularly at 70 and 95 kg body weight. Blood serum samples were collected after 1 week of secondary SRBC inoculation and cytokine concentrations were analyzed by ELISA. Genetic parameters and breeding values were estimated. The heritability estimates of IL-10, IL-13, IL-17, TNF-α and IFN-γ were 0.20 ± 0.06, 0.12 ± 0.06, 0.27 ± 0.07, 0.20 ± 0.10 and 0.05 ± 0.03, respectively. Genetic correlations of IL-17 and TNF-α with pulmonary MPS lesions were high (-0.86 ± 0.13 and 0.69 ± 0.29, respectively) and those of IFN-γ and IL-13 with MPS lesions were moderately negative (-0.45). Through selection, the breeding values of IL-17 and IFN-γ increased substantially and those of TNF-α decreased. These results suggest that innate and cellular immunity are more important for the suppression of pulmonary lesions in MPS than humoral-mediated immunity, such as antibody response.
Collapse
Affiliation(s)
- Takumi Sato
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Toshihiro Okamura
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | | | - Hiroshi Kadowaki
- Miyagi Prefecture Animal Industry Experiment Station, Miyagi, Japan
| | - Eisaku Suzuki
- Miyagi Prefecture Animal Industry Experiment Station, Miyagi, Japan
| | - Hirohide Uenishi
- Genome Research Department, National Institute of Agrobiological Science, Tsukuba, Japan
| | - Keiichi Suzuki
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
18
|
Raymond BBA, Djordjevic S. Exploitation of plasmin(ogen) by bacterial pathogens of veterinary significance. Vet Microbiol 2015; 178:1-13. [PMID: 25937317 DOI: 10.1016/j.vetmic.2015.04.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/07/2015] [Accepted: 04/09/2015] [Indexed: 01/31/2023]
Abstract
The plasminogen (Plg) system plays an important homeostatic role in the degradation of fibrin clots, extracellular matrices and tissue barriers important for cellular migration, as well as the promotion of neurotransmitter release. Plg circulates in plasma at physiologically high concentrations (150-200μg ml(-1)) as an inactive proenzyme. Proteins enriched in lysine and other positively charged residues (histidine and arginine) as well as glycosaminoglycans and gangliosides bind Plg. The binding interaction initiates a structural adjustment to the bound Plg that facilitates cleavage by proteases (plasminogen activators tPA and uPA) that activate Plg to the active serine protease plasmin. Both pathogenic and commensal bacteria capture Plg onto their cell surface and promote its conversion to plasmin. Many microbial Plg-binding proteins have been described underpinning the importance this process plays in how bacteria interact with their hosts. Bacteria exploit the proteolytic capabilities of plasmin by (i) targeting the mammalian fibrinolytic system and degrading fibrin clots, (ii) remodeling the extracellular matrix and generating bioactive cleavage fragments of the ECM that influence signaling pathways, (iii) activating matrix metalloproteinases that assist in the destruction of tissue barriers and promote microbial metastasis and (iv) destroying immune effector molecules. There has been little focus on the exploitation of the fibrinolytic system by veterinary pathogens. Here we describe several pathogens of veterinary significance that possess adhesins that bind plasmin(ogen) onto their cell surface and promote its activation to plasmin. Cumulative data suggests that these attributes provide pathogenic and commensal bacteria with a means to colonize and persist within the host environment.
Collapse
Affiliation(s)
- Benjamin B A Raymond
- The ithree Institute, University of Technology, Sydney, PO Box 123, Broadway, NSW 2007, Australia
| | - Steven Djordjevic
- The ithree Institute, University of Technology, Sydney, PO Box 123, Broadway, NSW 2007, Australia.
| |
Collapse
|
19
|
Batista Linhares M, Belloy L, Origgi FC, Lechner I, Segner H, Ryser-Degiorgis MP. Investigating the role of free-ranging wild boar (Sus scrofa) in the re-emergence of enzootic pneumonia in domestic pig herds: a pathological, prevalence and risk-factor study. PLoS One 2015; 10:e0119060. [PMID: 25747151 PMCID: PMC4352045 DOI: 10.1371/journal.pone.0119060] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 01/09/2015] [Indexed: 11/28/2022] Open
Abstract
Enzootic pneumonia (EP) caused by Mycoplasma hyopneumoniae has a significant economic impact on domestic pig production. A control program carried out from 1999 to 2003 successfully reduced disease occurrence in domestic pigs in Switzerland, but recurrent outbreaks suggested a potential role of free-ranging wild boar (Sus scrofa) as a source of re-infection. Since little is known on the epidemiology of EP in wild boar populations, our aims were: (1) to estimate the prevalence of M. hyopneumoniae infections in wild boar in Switzerland; (2) to identify risk factors for infection in wild boar; and (3) to assess whether infection in wild boar is associated with the same gross and microscopic lesions typical of EP in domestic pigs. Nasal swabs, bronchial swabs and lung samples were collected from 978 wild boar from five study areas in Switzerland between October 2011 and May 2013. Swabs were analyzed by qualitative real time PCR and a histopathological study was conducted on lung tissues. Risk factor analysis was performed using multivariable logistic regression modeling. Overall prevalence in nasal swabs was 26.2% (95% CI 23.3–29.3%) but significant geographical differences were observed. Wild boar density, occurrence of EP outbreaks in domestic pigs and young age were identified as risk factors for infection. There was a significant association between infection and lesions consistent with EP in domestic pigs. We have concluded that M. hyopneumoniae is widespread in the Swiss wild boar population, that the same risk factors for infection of domestic pigs also act as risk factors for infection of wild boar, and that infected wild boar develop lesions similar to those found in domestic pigs. However, based on our data and the outbreak pattern in domestic pigs, we propose that spillover from domestic pigs to wild boar is more likely than transmission from wild boar to pigs.
Collapse
Affiliation(s)
- Mainity Batista Linhares
- Centre for Fish and Wildlife Health (FIWI), Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Luc Belloy
- Institut Galli-Valerio, Laboratoire d’Analyses vétérinaires, Département du Territoire et de l’Environnement, Lausanne, Switzerland
| | - Francesco C. Origgi
- Centre for Fish and Wildlife Health (FIWI), Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Isabel Lechner
- Veterinary Public Health Institute, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Helmut Segner
- Centre for Fish and Wildlife Health (FIWI), Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | |
Collapse
|
20
|
Petrov A, Beer M, Blome S. Development and validation of a harmonized TaqMan-based triplex real-time RT-PCR protocol for the quantitative detection of normalized gene expression profiles of seven porcine cytokines. PLoS One 2014; 9:e108910. [PMID: 25268123 PMCID: PMC4182501 DOI: 10.1371/journal.pone.0108910] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 08/29/2014] [Indexed: 12/25/2022] Open
Abstract
Dysregulation of cytokine responses plays a major role in the pathogenesis of severe and life-threatening infectious diseases like septicemia or viral hemorrhagic fevers. In pigs, diseases like African and classical swine fever are known to show exaggerated cytokine releases. To study these responses and their impact on disease severity and outcome in detail, reliable, highly specific and sensitive methods are needed. For cytokine research on the molecular level, real-time RT-PCRs have been proven to be suitable. Yet, the currently available and most commonly used SYBR Green I assays or heterogeneous gel-based RT-PCRs for swine show a significant lack of specificity and sensitivity. The latter is however absolutely essential for an accurate quantification of rare cytokine transcripts as well as for detection of small changes in gene expressions. For this reason, a harmonized TaqMan-based triplex real-time RT-PCR protocol for the quantitative detection of normalized gene expression profiles of seven porcine cytokines was designed and validated within the presented study. Cytokines were chosen to represent different immunological pathways and targets known to be involved in the pathogenesis of the above mentioned porcine diseases, namely interleukin (IL)-1β, IL-2, IL-4, IL-6, IL-8, tumor necrosis factor (TNF)-α and interferon (IFN)-α. Beta-Actin and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) served as reference genes for normalization. For absolute quantification a synthetic standard plasmid was constructed comprising all target cytokines and reference genes within a single molecule allowing the generation of positive control RNA. The standard as well as positive RNAs from samples, and additionally more than 400 clinical samples, which were collected from animal trials, were included in the validation process to assess analytical sensitivity and applicability under routine conditions. The resulting assay allows the reliable assessment of gene expression profiles and provides a broad applicability to any kind of immunological research in swine.
Collapse
Affiliation(s)
- Anja Petrov
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Insel Riems, Greifswald, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Insel Riems, Greifswald, Germany
| | - Sandra Blome
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Insel Riems, Greifswald, Germany
- * E-mail:
| |
Collapse
|
21
|
Jorge S, de Oliveira NR, Marchioro SB, Fisch A, Gomes CK, Hartleben CP, Conceição FR, Dellagostin OA. The Mycoplasma hyopneumoniae recombinant heat shock protein P42 induces an immune response in pigs under field conditions. Comp Immunol Microbiol Infect Dis 2014; 37:229-36. [DOI: 10.1016/j.cimid.2014.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 07/01/2014] [Accepted: 07/02/2014] [Indexed: 01/19/2023]
|
22
|
Pomorska-Mól M, Kwit K, Markowska-Daniel I, Kowalski C, Pejsak Z. Local and systemic immune response in pigs during subclinical and clinical swine influenza infection. Res Vet Sci 2014; 97:412-21. [PMID: 25000875 DOI: 10.1016/j.rvsc.2014.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 05/26/2014] [Accepted: 06/08/2014] [Indexed: 11/18/2022]
Abstract
Local and systemic immune responses in pigs intranasally (IN) and intratracheally (IT) inoculated with swine influenza virus (SIV) were studied. No clinical signs were observed in IN-inoculated pigs, while IT-inoculated pigs developed typical signs of influenza. Significantly higher titres of specific antibodies and changes of haematological parameters were found only in IT-inoculated pigs. Because positive correlations between viral titre, local cytokine concentration, and lung pathology have been observed, we hypothesise that both viral load and the local secretion of cytokines play a role in the induction of lung lesions. It could be that a higher replication of SIV stimulates immune cells to secrete higher amounts of cytokines. The results of the present study indicate that pathogenesis of SIV is dependent on both, the damage caused to the lung parenchyma directly by virus, and the effects on the cells of the host's immune system.
Collapse
Affiliation(s)
- M Pomorska-Mól
- Department of Swine Diseases, National Veterinary Research Institute, 24-100 Pulawy, Poland.
| | - K Kwit
- Department of Swine Diseases, National Veterinary Research Institute, 24-100 Pulawy, Poland
| | - I Markowska-Daniel
- Department of Swine Diseases, National Veterinary Research Institute, 24-100 Pulawy, Poland
| | - C Kowalski
- Department of Pharmacology, Faculty of Veterinary Medicine, University of Life Sciences, 20-033 Lublin, Poland
| | - Z Pejsak
- Department of Swine Diseases, National Veterinary Research Institute, 24-100 Pulawy, Poland
| |
Collapse
|
23
|
Evaluation of recombinant Mycoplasma hyopneumoniae P97/P102 paralogs formulated with selected adjuvants as vaccines against mycoplasmal pneumonia in pigs. Vaccine 2014; 32:4333-41. [PMID: 24930717 DOI: 10.1016/j.vaccine.2014.06.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 05/14/2014] [Accepted: 06/02/2014] [Indexed: 01/15/2023]
Abstract
Pig responses to recombinant subunit vaccines containing fragments of eight multifunctional adhesins of the Mycoplasma hyopneumoniae (Mhp) P97/P102 paralog family formulated with Alhydrogel(®) or Montanide™ Gel01 were compared with a commercial bacterin following experimental challenge. Pigs, vaccinated intramuscularly at 9, 12 and 15 weeks of age with either of the recombinant formulations (n=10 per group) or Suvaxyn(®) M. hyo (n=12), were challenged with Mhp strain Hillcrest at 17 weeks of age. Unvaccinated, challenged pigs (n=12) served as a control group. Coughing was assessed daily. Antigen-specific antibody responses were monitored by ELISA in serum and tracheobronchial lavage fluid (TBLF), while TBLF was also assayed for cytokine responses (ELISA) and bacterial load (qPCR). At slaughter, gross and histopathology of lungs were quantified and damage to epithelial cilia in the porcine trachea was evaluated by scanning electron microscopy. Suvaxyn(®) M. hyo administration induced significant serological responses against Mhp strain 232 whole cell lysates (wcl) and recombinant antigen F3P216, but not against the remaining vaccine subunit antigens. Alhydrogel(®) and Montanide™ Gel01-adjuvanted antigen induced significant antigen-specific IgG responses, with the latter adjuvant eliciting comparable Mhp strain 232 wcl specific IgG responses to Suvaxyn(®) M. hyo. No significant post-vaccination antigen-specific mucosal responses were detected with the recombinant vaccinates. Suvaxyn(®) M. hyo was superior in reducing clinical signs, lung lesion severity and bacterial load but the recombinant formulations offered comparable protection against cilial damage. Lower IL-1β, TNF-α and IL-6 responses after challenge were associated with reduced lung lesion severity in Suvaxyn(®) M. hyo vaccinates, while elevated pathology scores in recombinant vaccinates corresponded to cytokine levels that were similarly elevated as in unvaccinated pigs. This study highlights the need for continued research into protective antigens and vaccination strategies that will prevent Mhp colonisation and establishment of infection.
Collapse
|
24
|
Shimazu T, Borjigin L, Katayama Y, Li M, Satoh T, Watanabe K, Kitazawa H, Roh SG, Aso H, Kazuo K, Suda Y, Sakuma A, Nakajo M, Suzuki K. Genetic selection for resistance to mycoplasmal pneumonia of swine (MPS) in the Landrace line influences the expression of soluble factors in blood after MPS vaccine sensitization. Anim Sci J 2013; 85:365-73. [PMID: 24329865 DOI: 10.1111/asj.12158] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 09/04/2013] [Indexed: 11/29/2022]
Abstract
We recently developed a Landrace line that is resistant to mycoplasmal pneumonia of swine (MPS) infection by genetic selection for five generations, and we reported that the immunophenotype of this line is different from that of the non-selected line in terms of changes in peripheral blood leukocyte population after MPS vaccination. This study followed up previous findings demonstrating changes in soluble factors in blood, namely, hormones, Mycoplasma hyopneumoniae-specific immunoglobulin G (IgG), and cytokines. These two lines were injected with MPS vaccine on days -7 and 0 after blood sampling on those days, and blood samples were collected on days -14, -7, 0, 2, 7 and 14. We found changes in the levels of many hormones and cytokines in both lines. However, we found that only growth hormone (GH) and interferon (IFN)-γ levels were statistically different between these two lines. GH concentration was reduced (day 0) and IFN-γ concentration was increased (day 14) in the MPS-selected line compared with the non-selected line, despite unchanged IFN-γ messenger RNA expression in blood cells. Although detailed mechanisms underlying these phenotypes remain unsolved, these traits would be useful to improve MPS resistance in pig production and provide an insight into MPS infection.
Collapse
Affiliation(s)
- Tomoyuki Shimazu
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Haemophilus parasuis subunit vaccines based on native proteins with affinity to porcine transferrin prevent the expression of proinflammatory chemokines and cytokines in pigs. Clin Dev Immunol 2013; 2013:132432. [PMID: 24348673 PMCID: PMC3856127 DOI: 10.1155/2013/132432] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/22/2013] [Accepted: 09/27/2013] [Indexed: 11/17/2022]
Abstract
The expression of chemokines (CCL-2 and CXCL-8) and cytokines (IL-1α, IL-1β, IL-6, TNF-α, and IL-10) was evaluated by RT-qPCR in colostrum-deprived pigs vaccinated and challenged with Haemophilus parasuis serovar 5. Two vaccines containing native proteins with affinity to porcine transferrin (NPAPTim and NPAPTit) were tested, along with two control groups: one inoculated with PBS instead of antigen (challenge group (CHG)), and another one nonimmunized and noninfected (blank group). The use of NPAPTim and NPAPTit resulted in complete protection against H. parasuis (no clinical signs and/or lesions), and both vaccines were capable of avoiding the expression of the proinflammatory molecules to levels similar to physiological values in blank group. However, overexpression of all proinflammatory molecules was observed in CHG group, mainly in the target infection tissues (brain, lungs, and spleen). High expression of CCL-2, CXCL-8, IL-1α, IL-1β, and IL-6 can be considered one of the characteristics of H. parasuis infection by serovar 5.
Collapse
|
26
|
Shimazu T, Borjigin L, Katayama Y, Li M, Satoh T, Watanabe K, Kitazawa H, Roh SG, Aso H, Katoh K, Suda Y, Sakuma A, Nakajo M, Suzuki K. Immunological characterization of peripheral blood leukocytes using vaccine for mycoplasmal pneumonia of swine (MPS) in swine line selected for resistance to MPS. Anim Sci J 2013; 84:683-92. [PMID: 23607374 DOI: 10.1111/asj.12058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Accepted: 01/21/2013] [Indexed: 01/22/2023]
Abstract
This study was conducted to evaluate immunological changes in peripheral blood leukocytes in pigs that were genetically selected for their improved resistance to mycoplasmal pneumonia of swine (MPS), using MPS vaccine as an antigen. Twelve castrated MPS-selected Landrace pigs were compared with the same number of pigs from a nonselected line by using a time-course analysis at the hematological level. After the second sensitization with MPS vaccine, the percentages of B cells, CD4(+) T cells, and natural killer (NK) cells in total leukocytes were lower in the selected line than in the nonselected line, whereas the percentage of granulocytes in total leukocytes increased in the MPS-selected line. We also assessed the proliferative ability of peripheral blood mononuclear cells (PBMCs) stimulated with Mycoplasma hyopneumoniae, lipopolysaccharide or concanavalin A, and found that although the proliferative ability of the PBMC was not different between the two lines at a steady state, the nonselected line showed a significantly higher proliferative ability after sensitization with MPS vaccine than the selected line regardless of antigens used. These results thus indicate that the selection of pigs on the basis of MPS resistance changes their immunophenotype, and would give us beneficial information for the prevention of MPS infection.
Collapse
Affiliation(s)
- Tomoyuki Shimazu
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Woolley LK, Fell SA, Djordjevic SP, Eamens GJ, Jenkins C. Plasmin activity in the porcine airways is enhanced during experimental infection with Mycoplasma hyopneumoniae, is positively correlated with proinflammatory cytokine levels and is ameliorated by vaccination. Vet Microbiol 2013; 164:60-6. [PMID: 23490555 DOI: 10.1016/j.vetmic.2013.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 02/05/2013] [Accepted: 02/07/2013] [Indexed: 11/19/2022]
Abstract
In Mycoplasma hyopneumoniae (Mhp) infection of swine, the host immune response is considered a major driver of lung pathology; however the underlying inflammatory mechanisms are not well understood. The serine protease plasmin is being increasingly recognised as a significant player in inflammatory processes. Here we compare plasmin activity in tracheobronchial lavage fluid (TBLF) from pigs experimentally challenged with Mhp that were either unvaccinated (n=10), or vaccinated with the commercial vaccine Suvaxyn(®) M.hyo (n=10). TBLF collected immediately prior to challenge and at 21 d and 35 d post-challenge was also assayed for levels of proinflammatory cytokines (TNF-α, IL-1β and IL-6), and for bacterial load (by qPCR). Clinical signs, pathology, cytokine analyses and qPCR all indicated that vaccinated pigs had significantly reduced disease relative to unvaccinated animals. Plasmin activity increased significantly in TBLF collected at 21 d post-challenge compared to pre-challenge TBLF in unvaccinated (P<0.01), but not vaccinated animals (P>0.05). A significant correlation was observed between bacterial load and plasmin activity in the 21 d (r=0.66; P<0.01) and the 35 d post-challenge samples, (r=0.62; P<0.01). Plasmin activity was also significantly correlated with levels of TNF-α, IL-1β and IL-6 at 21 d (r=0.78, P<0.0001; r=0.77, P<0.0001; r=0.64, P<0.005) and with TNF-α and IL-1β at 35 d post-challenge (r=0.77, P<0.0001; r=0.74, P<0.0005). Our results indicate that plasminogen is activated to plasmin in the respiratory tract of pigs as part of the host inflammatory response to Mhp infection and that this effect is ameliorated by vaccination.
Collapse
Affiliation(s)
- Lauren K Woolley
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Woodbridge Road, Menangle, NSW 2568, Australia
| | | | | | | | | |
Collapse
|
28
|
Marchioro SB, Maes D, Flahou B, Pasmans F, Del Pozo Sacristán R, Vranckx K, Melkebeek V, Cox E, Wuyts N, Haesebrouck F. Local and systemic immune responses in pigs intramuscularly injected with an inactivated Mycoplasma hyopneumoniae vaccine. Vaccine 2013; 31:1305-11. [PMID: 23306368 DOI: 10.1016/j.vaccine.2012.12.068] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Revised: 11/21/2012] [Accepted: 12/24/2012] [Indexed: 10/27/2022]
Abstract
The immune response induced by intramuscular administration of a commercial inactivated Mycoplasma hyopneumonie whole-cell vaccine (Suvaxyn(®)MH One) was investigated in conventional M. hyopneumoniae-free pigs. The animals were assigned randomly to two groups: non-vaccinated and vaccinated. Pigs in the vaccinated group were injected intramuscularly with the vaccine at 7 days of age, whereas non-vaccinated pigs received physiological saline solution (PBS). Pigs were euthanized and necropsied at 30, 36 and 58 days of age. Blood, bronchoalveolar lavage (BAL) fluid, spleen, lung and bronchial lymph nodes (BLN) were collected. Serum and BAL fluid were tested for the presence of antibodies by ELISA. Monomorphonuclear cells from the peripheral blood and tissues were isolated to quantify the T cell subsets by flow cytometry, and cytokine production by ELIspot and ELISA. Antibodies against M. hyopneumoniae were detected in serum of most vaccinated pigs at 30 days of age. M. hyopneumoniae specific IgG, IgM and IgA were detected in BAL fluid from vaccinated animals, but not from control animals. Significantly higher numbers of IL-12 secreting cells were observed in the lung at day 58 in the vaccinated than in the non-vaccinated group (p<0.05). The number of IL-10 secreting cells from BLN was also higher in the vaccinated group at day 58 (p<0.05). After restimulation in vitro, lymphocytes from BLN and lungs secreted significantly higher levels of IL-12 in the vaccinated group at day 58. These results show that the vaccine induced both systemic and mucosal cellular and humoral immune responses.
Collapse
Affiliation(s)
- Silvana Beutinger Marchioro
- Department of Pathology, Bacteriology and Avian Diseases, Ghent University, Faculty of Veterinary Medicine, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Evaluation of clinical, histological and immunological changes and qPCR detection of Mycoplasma hyopneumoniae in tissues during the early stages of mycoplasmal pneumonia in pigs after experimental challenge with two field isolates. Vet Microbiol 2012; 161:186-95. [PMID: 22863144 DOI: 10.1016/j.vetmic.2012.07.025] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 07/16/2012] [Accepted: 07/16/2012] [Indexed: 11/21/2022]
Abstract
Differences in Mycoplasma hyopneumoniae strain virulence and infection patterns will affect experimental challenge systems used to evaluate vaccine efficacy. Two strains (Hillcrest and Beaufort) were assessed by experimental pig challenge for their ability to induce clinical and pathological lesions and cytokine responses. Tracheobronchial lavage fluid (TBLF) was collected before and 17-18 days after challenge with Hillcrest (n=8), Beaufort (n=8) or no organisms (n=3). Coughing was assessed twice daily, and at slaughter 21 (n=9) or 28 (n=10) days post-challenge, gross and histopathology of lungs were quantified and a quantitative PCR (mhp183 qPCR) was applied to detect M. hyopneumoniae DNA in tissues and TBLF. Hillcrest was clearly superior to Beaufort in its ability to induce coughing and pneumonic lesions. At 17-18 days, interleukin (IL)-1β and IL-6 concentrations in TBLF were only significantly higher (8.7 and 5.1 fold respectively) than controls (P<0.001) in Hillcrest-challenged pigs. Lungs of all Hillcrest-challenged pigs were qPCR positive at either slaughter date, but only at day 28 in Beaufort-challenged pigs. M. hyopneumoniae DNA was highest in concentration in lungs 21 days after Hillcrest challenge, and was detected in the spleen, kidney and/or liver of Hillcrest-challenged pigs, but not in Beaufort pigs. While M. hyopneumoniae DNA concentration in TBLF was elevated following Hillcrest and Beaufort challenge, there was no significant difference in mean mycoplasmal DNA concentration detected in TBLF from pigs challenged with either isolate (P>0.05). Thus a suitable challenge strain, coupled with lung pathology and cytokine assays, are valuable in assessing post-challenge responses. Assessment of M. hyopneumoniae DNA in lung and abdominal tissues by mhp183 qPCR, in conjunction with histopathology, were valuable in confirming M. hyopneumoniae infection.
Collapse
|
30
|
Narahara H, Sakai E, Katayama M, Ohtomo Y, Yamamoto K, Takemoto M, Aso H, Ohwada S, Mohri Y, Nishimori K, Isogai E, Yamaguchi T, Fukuda T. Immunological characteristics and response to lipopolysaccharide of mouse lines selectively bred with natural and acquired immunities. Anim Sci J 2012; 83:367-74. [PMID: 22574788 DOI: 10.1111/j.1740-0929.2011.00980.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Genetic improvement of resistance to infectious diseases is a challenging goal in animal breeding. Infection resistance involves multiple immunological characteristics, including natural and acquired immunity. In the present study, we developed an experimental model based on genetic selection, to improve immunological phenotypes. We selectively established three mouse lines based on phagocytic activity, antibody production and the combination of these two phenotypes. We analyzed the immunological characteristics of these lines using a lipopolysaccharide (LPS), which is one of the main components of Gram-negative bacteria. An intense immunological reaction was induced in each of the three mouse lines. Severe loss of body weight and liver damage were observed, and a high level of cytokine messenger RNA was detected in the liver tissue. The mouse line established using a combination of the two selection standards showed unique characteristics relative to the mouse lines selected on the basis of a single phenotype. Our results indicate that genetic selection and breeding is effective, even for immunological phenotypes with a relatively low heritability. Thus, it may be possible to improve resistance to infectious diseases by means of genetic selection.
Collapse
Affiliation(s)
- Hiroki Narahara
- Laboratory of Animal Breeding and Genetics, Graduate School of Agricultural Science, Tohoku University, Aoba, Sendai, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Islam MA, Cinar MU, Uddin MJ, Tholen E, Tesfaye D, Looft C, Schellander K. Expression of Toll-like receptors and downstream genes in lipopolysaccharide-induced porcine alveolar macrophages. Vet Immunol Immunopathol 2012; 146:62-73. [PMID: 22365308 DOI: 10.1016/j.vetimm.2012.02.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 01/19/2012] [Accepted: 02/01/2012] [Indexed: 01/02/2023]
Abstract
The aim of the present study was to determine the age-related kinetic changes of Toll-like receptors (TLRs) and downstream genes expression, and secretion of cytokine in lipopolysaccharide (LPS) stimulated porcine alveolar macrophages (AM). For this purpose, AMs were isolated from 5-day-old newborn piglets and 120-day-old young pigs. mRNA expression and cytokine measurement was determined by quantitative real-time PCR and ELISA, respectively. First, AMs were incubated for 24 h in the absence or presence of increasing concentrations of LPS. Results showed the up-regulation of TLRs 2, 4, 5 and 9 mRNA from all concentrations of LPS used, as compared to non-stimulated cells, and TLR4 was the highest expression in both ages (P<0.05). Furthermore, quantitative analysis demonstrated increased expression of mRNAs encoding TLRs 2, 4, 5 and 9, LBP, CD14, MD2, MyD88, IRAK4 and TRAF6 in both ages in a time-dependant manner (P<0.05). Overall, LPS inducible mRNA for TLR4, LBP, CD14 and MyD88 had higher expression in newborn piglets compared with those of young pigs (P<0.05). The level of cytokine protein IL6 and TNFα in supernatant fluid significantly varied with time of incubation and age of animals. Their concentration increased immediately at 1 h after LPS stimulation and remained significantly higher up to 48 h in both ages. Production of pro-inflammatory cytokine protein IL6 and TNFα in supernatant was significantly higher in young pigs than those of piglets. This study suggests that differential age-related changes in the expression of TLRs and downstream genes, and pro-inflammatory cytokine could contribute to a different age-related innate immune response during pulmonary infection. Further investigation is warranted to determine the precise effects of LPS on porcine AMs by means of a functional study across a wider age range.
Collapse
Affiliation(s)
- Mohammad Ariful Islam
- Institute of Animal Science, University of Bonn, Endenicher Allee 15, 53115 Bonn, Germany.
| | | | | | | | | | | | | |
Collapse
|
32
|
Damte D, Lee SJ, Hwang MH, Gebru E, Choi MJ, Lee JS, Cheng H, Park SC. Inflammatory responses toMycoplasma hyopneumoniaein murine alveolar macrophage cell lines. N Z Vet J 2011; 59:185-90. [DOI: 10.1080/00480169.2011.579553] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
33
|
Mycoplasma hyopneumoniae induces pro-inflammatory cytokine and nitric oxide production through NFκB and MAPK pathways in RAW264.7 cells. Vet Res Commun 2010; 35:21-34. [PMID: 21104123 DOI: 10.1007/s11259-010-9447-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2010] [Indexed: 10/18/2022]
Abstract
In the present study, we confirmed the ability of M. hyopneumoniae to induce the secretion of large amount of proinflammatory cytokine and nitric oxide (NO) in murine macrophage RAW 264.7 cells. Moreover, M. hyopneumoniae-induced activation of the MAPK and NF-кB pathways by phosphorylation of ERK1/2, p38 and JNK/SAPK and by dissociation of IκB from NF-κB. Translocation of transcription factor NF-κB and its binding was confirmed through western blot and electromobility shift assay. From these results, we further hypothesized that these signal proteins were involved in M. hyopneumoniae-induced proinflammatory cytokines and NO productions in macrophages. Hence, we utilized specific blockers of MAPK and NF-κB to investigate the signaling pathway involvement in cytokine and NO production through pharmacological approaches. The results demonstrated significant inhibition of TNF-α, IL-1β, IL-6 and NO by MAPK inhibitors. NF-κB inhibitor PDTC significantly inhibited IL-1β and NO production. These findings contribute to the understanding of the mechanisms of immune reactivity and may ultimately prove useful in the development of new therapeutic strategies. In summary, we found critical evidence for the involvement of NF-κB and MAPK signaling pathways in the upregulation of proinflammatory cytokine and NO induced by M. hyopneumoniae.
Collapse
|
34
|
Mapping of quantitative trait loci for mycoplasma and tetanus antibodies and interferon-gamma in a porcine F(2) Duroc x Pietrain resource population. Mamm Genome 2010; 21:409-18. [PMID: 20567833 DOI: 10.1007/s00335-010-9269-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 05/28/2010] [Indexed: 12/30/2022]
Abstract
The aim of the present study was to detect quantitative trait loci (QTL) for innate and adaptive immunity in pigs. For this purpose, a Duroc x Pietrain F(2) resource population (DUPI) with 319 offspring was used to map QTL for the immune traits blood antibodies and interferon-gamma using 122 microsatellites covering all autosomes. Antibodies response to Mycoplasma hyopneumoniae and tetanus toxoid vaccine and the interferon-gamma (IFNG) serum concentration were measured at three different time points and were used as phenotypes. The differences of antibodies and interferon concentration between different time points were also used for the linkage mapping. Line-cross and imprinting QTL analysis, including two-QTL, were performed using QTL Express. A total of 30 QTL (12, 6, and 12 for mycoplasma, tetanus antibody, and IFNG, respectively) were identified at the 5% chromosome-wide-level significant, of which 28 were detected by line-cross and 2 by imprinting model. In addition, two QTL were identified on chromosome 5 using the two-QTL approach where both loci were in repulsion phase. Most QTL were detected on pig chromosomes 2, 5, 11, and 18. Antibodies were increased over time and immune traits were found to be affected by sex, litter size, parity, and month of birth. The results demonstrated that antibody and IFNG concentration are influenced by multiple chromosomal areas. The flanking markers of the QTL identified for IFNG on SSC5 did incorporate the position of the porcine IFNG gene. The detected QTL will allow further research in these QTL regions for candidate genes and their utilization in selection to improve the immune response and disease resistance in pig.
Collapse
|
35
|
Histopathological and Immunohistochemical Findings in the Lungs of Pigs Infected Experimentally with Mycoplasma hyopneumoniae. J Comp Pathol 2009; 140:260-70. [DOI: 10.1016/j.jcpa.2008.12.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Accepted: 12/06/2008] [Indexed: 11/23/2022]
|
36
|
de la Fuente AJM, Ferri EFR, Tejerina F, Frandoloso R, Martínez SM, Martín CBG. Cytokine expression in colostrum-deprived pigs immunized and challenged with Haemophilus parasuis. Res Vet Sci 2009; 87:47-52. [PMID: 19181353 DOI: 10.1016/j.rvsc.2008.12.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 11/25/2008] [Accepted: 12/28/2008] [Indexed: 11/29/2022]
Abstract
The expression of several cytokines in spleen, pharyngeal lymph nodes, lung and brain after different immunization procedures and a challenge with 5 x 10(9) CFU of Haemophilus parasuis was compared. Five groups of colostrum-deprived pigs were used: vaccinated with (I) a bacterin, (II) an outer-membrane-protein-vaccine, (III) a recombinant transferring-binding protein B, (IV) exposed to a total dose of 10(5) CFU, and (V) not previously immunized. All pigs in groups III and V died, while all animals in group I, most of group IV and half of group II survived until the end of the experiment. IL-1alpha was found in significantly higher levels (p<0.05) in spleen, lymph nodes and brain of dead pigs, which could be explained by the major severity of lesions in these animals. However, IL-4, IL-10, TNF-alpha and IFN-gamma were expressed in significantly higher levels by survivors (for all the four cytokines in lymph nodes; for IL-4, IL-10 and TNF-alpha in spleen; for IL-4, TNF-alpha and IFN-gamma in lung, and only for TNF-alpha in brain), thus suggesting a role of these four cytokines in the adaptive response, which might contribute to protection against H. parasuis infection.
Collapse
Affiliation(s)
- A J Martín de la Fuente
- Department of Animal Health, Section of Microbiology and Immunology, University of León, 24007-León, Spain
| | | | | | | | | | | |
Collapse
|
37
|
Zelnickova P, Leva L, Stepanova H, Kovaru F, Faldyna M. Age-dependent changes of proinflammatory cytokine production by porcine peripheral blood phagocytes. Vet Immunol Immunopathol 2008; 124:367-78. [PMID: 18534689 DOI: 10.1016/j.vetimm.2008.04.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 04/04/2008] [Accepted: 04/23/2008] [Indexed: 11/19/2022]
Abstract
The aim of the present study was to determine postnatal ontogeny of proinflammatory cytokines IL-1beta, IL-8 and TNF-alpha production by in vitro stimulated porcine blood leukocytes. Four age categories of pigs were chosen. Cytokine production was determined using intracellular flow cytometry. It was found that IL-8 and TNF-alpha production by blood monocytes significantly increased during the postnatal period while production of IL-1beta remained unchanged. In blood neutrophils, the IL-8 production increased only during the postnatal period, while the levels of TNF-alpha and IL-1beta were undetectable during the whole postnatal period. Generally, the most intensive changes in cytokine production occurred before weaning. The production of low levels of cytokines by monocytes and neutrophils from young pigs was not caused by a delayed cytokine response because the cytokine production after 8-h stimulation was lower than that after 4-h stimulation in all age categories. The ontogenetical changes showed the same trends when two different stimulators (LPS, heat-inactivated E. coli) were used, suggesting that the ontogenetical changes are not caused by a simple defect in one signalling pathway, but it is probably a more complex process. No differences in cytokine production between the whole blood and the isolated cells supplemented with newborn or adult serum were found. Thus the ability of newborn monocytes and neutrophils to produce proinflammatory cytokines was not decreased due to the influence of composition of the microenvironment, where the cells were present. In conclusion, the ability of porcine blood leukocytes to produce cytokines develops during postnatal life.
Collapse
Affiliation(s)
- Petra Zelnickova
- Department of Immunology, Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic
| | | | | | | | | |
Collapse
|
38
|
Meyns T, Maes D, Calus D, Ribbens S, Dewulf J, Chiers K, de Kruif A, Cox E, Decostere A, Haesebrouck F. Interactions of highly and low virulent Mycoplasma hyopneumoniae isolates with the respiratory tract of pigs. Vet Microbiol 2007; 120:87-95. [PMID: 17123752 DOI: 10.1016/j.vetmic.2006.10.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 10/02/2006] [Accepted: 10/04/2006] [Indexed: 11/30/2022]
Abstract
Mycoplasma hyopneumoniae is the etiological agent of swine enzootic pneumonia, a chronic nonfatal disease affecting pigs of all ages. To obtain better insight in the mechanisms responsible for differences in virulence between highly and low virulent M. hyopneumoniae isolates, 23 caesarean-derived, colostrum-deprived piglets were randomly assigned to three groups. Groups 1 and 2 consisted of nine animals each, which were intratracheally inoculated at 1 week of age with a highly or a low virulent isolate of M. hyopneumoniae, respectively. The remaining five animals were inoculated with sterile culture medium. Animals were euthanized at 5, 10, 15 and 28 days post-inoculation (DPI). Animals inoculated with the highly virulent isolate had more neutrophils in BAL fluid at 10, 15 and 28DPI compared to the other groups. At 10 and 15DPI, animals in the highly virulent group had significantly higher concentrations of TNF-alpha in BAL fluid. IL-1beta concentration in this group was higher at 5 and 28DPI compared to the other groups. From 10DPI onwards, significantly higher titres of M. hyopneumoniae were detected in the BAL fluid of animals inoculated with the highly virulent isolate compared to animals inoculated with the low virulent isolate. Additionally, the in vitro generation time of the highly virulent M. hyopneumoniae isolate was significantly shorter than that of the low virulent isolate. The present study indicates that the difference in pathogenicity between the highly and low virulent isolates is associated with a faster in vitro growth, a higher capacity to multiply in the lungs and the induction of a more severe inflammation process by the highly virulent isolate.
Collapse
Affiliation(s)
- T Meyns
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Rodríguez F, Quesada O, Poveda JB, Fernández A, Lorenzo H. Immunohistochemical Detection of Interleukin-12 and Interferon-γ in Pigs Experimentally Infected with Mycoplasma hyopneumoniae. J Comp Pathol 2007; 136:79-82. [PMID: 17258224 DOI: 10.1016/j.jcpa.2006.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Accepted: 11/02/2006] [Indexed: 10/23/2022]
Abstract
The expression of interleukin-12 (IL-12) and interferon-gamma (IFN-gamma) was examined immunohistochemically in the lungs of pigs aged 21 days infected experimentally with Mycoplasma hyopneumoniae (Mh). Ten pigs were inoculated intranasally with Mh and killed in pairs weekly from 7 to 35 days post-infection (dpi). Immunolabelling for IL-12 and IFN-gamma was usually associated with inflammation, particularly in macrophages and lymphocytes in the thickened alveolar septa and in the hyperplastic bronchus-associated lymphoid tissue (BALT). Cells positive for both cytokines were detected at 7 dpi, their numbers increasing at 14 and 21 dpi, and slightly decreasing thereafter. The results suggest that IL-12 and IFN-gamma play a role in pulmonary defence mechanisms against Mh infection.
Collapse
Affiliation(s)
- F Rodríguez
- Department of Comparative Pathology, Veterinary Faculty, University of Las Palmas de Gran Canaria, Trasmontaña s/n, 35416 Arucas, Gran Canaria, Spain.
| | | | | | | | | |
Collapse
|