1
|
Campi R, De Santis A, Colombo P, Scarpazza P, Masseroli M. Machine learning-based forecast of Helmet-CPAP therapy failure in Acute Respiratory Distress Syndrome patients. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2025; 260:108574. [PMID: 39787918 DOI: 10.1016/j.cmpb.2024.108574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND AND OBJECTIVE Helmet-Continuous Positive Airway Pressure (H-CPAP) is a non-invasive respiratory support that is used for the treatment of Acute Respiratory Distress Syndrome (ARDS), a severe medical condition diagnosed when symptoms like profound hypoxemia, pulmonary opacities on radiography, or unexplained respiratory failure are present. It can be classified as mild, moderate or severe. H-CPAP therapy is recommended as the initial treatment approach for mild ARDS. Even though the efficacy of H-CPAP in managing patients with moderate-to-severe hypoxemia remains unclear, its use has increased for these cases in response to the emergence of the COVID-19 Pandemic. Using the electronic medical records (EMR) from the Pulmonology Department of Vimercate Hospital, in this study we develop and evaluate a Machine Learning (ML) system able to predict the failure of H-CPAP therapy on ARDS patients. METHODS The Vimercate Hospital EMR provides demographic information, blood tests, and vital parameters of all hospitalizations of patients who are treated with H-CPAP and diagnosed with ARDS. This data is used to create a dataset of 622 records and 38 features, with 70%-30% split between training and test sets. Different ML models such as SVM, XGBoost, Neural Network, Random Forest, and Logistic Regression are iteratively trained in a cross-validation fashion. We also apply a feature selection algorithm to improve predictions quality and reduce the number of features. RESULTS AND CONCLUSIONS The SVM and Neural Network models proved to be the most effective, achieving final accuracies of 95.19% and 94.65%, respectively. In terms of F1-score, the models scored 88.61% and 87.18%, respectively. Additionally, the SVM and XGBoost models performed well with a reduced number of features (23 and 13, respectively). The PaO2/FiO2 Ratio, C-Reactive Protein, and O2 Saturation resulted as the most important features, followed by Heartbeats, White Blood Cells, and D-Dimer, in accordance with the clinical scientific literature.
Collapse
Affiliation(s)
- Riccardo Campi
- Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Piazza Leonardo Da Vinci 32, Milano, MI, 20133, Italy.
| | - Antonio De Santis
- Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Piazza Leonardo Da Vinci 32, Milano, MI, 20133, Italy.
| | - Paolo Colombo
- Azienda Socio Sanitaria Territoriale della Brianza, Via Santi Cosma e Damiano 10, Vimercate, MB, 20871, Italy.
| | - Paolo Scarpazza
- Azienda Socio Sanitaria Territoriale della Brianza, Via Santi Cosma e Damiano 10, Vimercate, MB, 20871, Italy.
| | - Marco Masseroli
- Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Piazza Leonardo Da Vinci 32, Milano, MI, 20133, Italy.
| |
Collapse
|
2
|
Xiong Y, Gao Y, Qi Y, Zhi Y, Xu J, Wang K, Yang Q, Wang C, Zhao M, Meng X. Accuracy of artificial intelligence algorithms in predicting acute respiratory distress syndrome: a systematic review and meta-analysis. BMC Med Inform Decis Mak 2025; 25:44. [PMID: 39875868 PMCID: PMC11776246 DOI: 10.1186/s12911-025-02869-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 01/14/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) is a serious threat to human life. Hence, early and accurate diagnosis and treatment are crucial for patient survival. This meta-analysis evaluates the accuracy of artificial intelligence in the early diagnosis of ARDS and provides guidance for future research and applications. METHODS A search on PubMed, Embase, Cochrane, Web of Science, CNKI, Wanfang, Chinese Biomedical Literature (CBM), and VIP databases was systematically conducted, from their establishment to November 2023, to obtain eligible studies for the analysis and evaluation of the predictive effect of AI on ARDS. The retrieved literature was screened according to inclusion and exclusion criteria, the quality of the included studies was assessed using QUADAS-2, and the included studies were statistically analyzed. RESULTS Among the 2, 996 studies, 33 were included in this meta-analysis, which showed that the pooled sensitivity of AI in predicting ARDS was 0.81 (0.76-0.85), the pooled specificity was 0.88 (0.84-0.91), and the area under the receiver operating characteristic curve (AUC) was 0.91 (0.88-0.93). The analyzed studies included 28 models, with a pooled sensitivity of 0.79 (0.76-0.82), a pooled specificity of 0.85 (0.83-0.88), and an AUC of 0.89 (0.86-0.91). In the subgroup analysis, the pooled AUC of the AI models ANN, CNN, LR, RF, SVM, and XGB were 0.86 (0.83-0.89), 0.91 (0.88-0.93), 0.86 (0.83-0.89), and 0.89 (0.86-0.91), 0.90 (0.87-0.92), 0.93 (0.90-0.95), respectively. In an additional subgroup analysis, we evaluated the predictive performance of the AI models trained using different predictors. This meta-analysis was registered in PROSPERO (CRD42023491546). CONCLUSION AI has good sensitivity and specificity for predicting ARDS, indicating a high clinical application value. Algorithmic models such as CNN, SVM, and XGB have improved prediction performance. The subgroup analysis revealed that the model trained using images combined with other predictors had the best predictive performance.
Collapse
Affiliation(s)
- Yaxin Xiong
- Department of Critical Care Medicine, First Affiliated Hospital of Harbin Medical University, Heilongjiang, China
| | - Yuan Gao
- Department of Critical Care Medicine, First Affiliated Hospital of Harbin Medical University, Heilongjiang, China
| | - Yucheng Qi
- Department of Critical Care Medicine, First Affiliated Hospital of Harbin Medical University, Heilongjiang, China
| | - Yingfei Zhi
- Department of Critical Care Medicine, First Affiliated Hospital of Harbin Medical University, Heilongjiang, China
| | - Jia Xu
- Department of Critical Care Medicine, First Affiliated Hospital of Harbin Medical University, Heilongjiang, China
| | - Kuo Wang
- Department of Critical Care Medicine, First Affiliated Hospital of Harbin Medical University, Heilongjiang, China
| | - Qiuyue Yang
- Department of Critical Care Medicine, First Affiliated Hospital of Harbin Medical University, Heilongjiang, China
| | - Changsong Wang
- Department of Critical Care Medicine, First Affiliated Hospital of Harbin Medical University, Heilongjiang, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, Heilongjiang, China
| | - Mingyan Zhao
- Department of Critical Care Medicine, First Affiliated Hospital of Harbin Medical University, Heilongjiang, China.
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, Heilongjiang, China.
| | - Xianglin Meng
- Department of Critical Care Medicine, First Affiliated Hospital of Harbin Medical University, Heilongjiang, China.
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, Heilongjiang, China.
| |
Collapse
|
3
|
Hannon DM, Syed JDA, McNicholas B, Madden M, Laffey JG. The development of a C5.0 machine learning model in a limited data set to predict early mortality in patients with ARDS undergoing an initial session of prone positioning. Intensive Care Med Exp 2024; 12:103. [PMID: 39540987 PMCID: PMC11564488 DOI: 10.1186/s40635-024-00682-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/06/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Acute Respiratory Distress Syndrome (ARDS) has a high morbidity and mortality. One therapy that can decrease mortality is ventilation in the prone position (PP). Patients undergoing PP are amongst the sickest, and there is a need for early identification of patients at particularly high risk of death. These patients may benefit from an in-depth review of treatment or consideration of rescue therapies. We report the development of a machine learning model trained to predict early mortality in patients undergoing prone positioning as part of the management of their ARDS. METHODS Prospectively collected clinical data were analysed retrospectively from a single tertiary ICU. The records of patients who underwent an initial session of prone positioning whilst receiving invasive mechanical ventilation were identified (n = 131). The decision to perform prone positioning was based on the criteria in the PROSEVA study. A C5.0 classifier algorithm with adaptive boosting was trained on data gathered before, during, and after initial proning. Data was split between training (85% of data) and testing (15% of data). Hyperparameter tuning was achieved through a grid-search using a maximal entropy configuration. Predictions for 7-day mortality after initial proning session were made on the training and testing data. RESULTS The model demonstrated good performance in predicting 7-day mortality (AUROC: 0.89 training, 0.78 testing). Seven variables were used for prediction. Sensitivity was 0.80 and specificity was 0.67 on the testing data set. Patients predicted to survive had 13.3% mortality, while those predicted to die had 66.67% mortality. Among patients in whom the model predicted patient would survive to day 7 based on their response, mortality at day 7 was 13.3%. Conversely, if the model predicted the patient would not survive to day 7, mortality was 66.67%. CONCLUSIONS This proof-of-concept study shows that with a limited data set, a C5.0 classifier can predict 7-day mortality from a number of variables, including the response to initial proning, and identify a cohort at significantly higher risk of death. This can help identify patients failing conventional therapies who may benefit from a thorough review of their management, including consideration of rescue treatments, such as extracorporeal membrane oxygenation. This study shows the potential of a machine learning model to identify ARDS patients at high risk of early mortality following PP. This information can guide clinicians in tailoring treatment strategies and considering rescue therapies. Further validation in larger cohorts is needed.
Collapse
Affiliation(s)
- David M Hannon
- Department of Anaesthesia, Galway University Hospital, and School of Medicine, University of Galway, Galway, Ireland
- Anaesthesia and Intensive Care Medicine, School of Medicine, University of Galway, Galway, Ireland
| | - Jaffar David Abbas Syed
- Department of Anaesthesia, Galway University Hospital, and School of Medicine, University of Galway, Galway, Ireland
| | - Bairbre McNicholas
- Department of Anaesthesia, Galway University Hospital, and School of Medicine, University of Galway, Galway, Ireland
- Anaesthesia and Intensive Care Medicine, School of Medicine, University of Galway, Galway, Ireland
| | - Michael Madden
- School of Computer Science, University of Galway, Galway, Ireland
| | - John G Laffey
- Department of Anaesthesia, Galway University Hospital, and School of Medicine, University of Galway, Galway, Ireland.
- Anaesthesia and Intensive Care Medicine, School of Medicine, University of Galway, Galway, Ireland.
| |
Collapse
|
4
|
Rubulotta F, Bahrami S, Marshall DC, Komorowski M. Machine Learning Tools for Acute Respiratory Distress Syndrome Detection and Prediction. Crit Care Med 2024; 52:1768-1780. [PMID: 39133071 DOI: 10.1097/ccm.0000000000006390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Machine learning (ML) tools for acute respiratory distress syndrome (ARDS) detection and prediction are increasingly used. Therefore, understanding risks and benefits of such algorithms is relevant at the bedside. ARDS is a complex and severe lung condition that can be challenging to define precisely due to its multifactorial nature. It often arises as a response to various underlying medical conditions, such as pneumonia, sepsis, or trauma, leading to widespread inflammation in the lungs. ML has shown promising potential in supporting the recognition of ARDS in ICU patients. By analyzing a variety of clinical data, including vital signs, laboratory results, and imaging findings, ML models can identify patterns and risk factors associated with the development of ARDS. This detection and prediction could be crucial for timely interventions, diagnosis and treatment. In summary, leveraging ML for the early prediction and detection of ARDS in ICU patients holds great potential to enhance patient care, improve outcomes, and contribute to the evolving landscape of precision medicine in critical care settings. This article is a concise definitive review on artificial intelligence and ML tools for the prediction and detection of ARDS in critically ill patients.
Collapse
Affiliation(s)
- Francesca Rubulotta
- Department of Critical Care Medicine, McGill University, Montreal, QC, Canada
| | - Sahar Bahrami
- Department of Critical Care Medicine, McGill University, Montreal, QC, Canada
| | - Dominic C Marshall
- Division of Anaesthetics, Pain Medicine, and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Matthieu Komorowski
- Division of Anaesthetics, Pain Medicine, and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
5
|
Matos J, Gallifant J, Chowdhury A, Economou-Zavlanos N, Charpignon ML, Gichoya J, Celi LA, Nazer L, King H, Wong AKI. A Clinician's Guide to Understanding Bias in Critical Clinical Prediction Models. Crit Care Clin 2024; 40:827-857. [PMID: 39218488 DOI: 10.1016/j.ccc.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
This narrative review focuses on the role of clinical prediction models in supporting informed decision-making in critical care, emphasizing their 2 forms: traditional scores and artificial intelligence (AI)-based models. Acknowledging the potential for both types to embed biases, the authors underscore the importance of critical appraisal to increase our trust in models. The authors outline recommendations and critical care examples to manage risk of bias in AI models. The authors advocate for enhanced interdisciplinary training for clinicians, who are encouraged to explore various resources (books, journals, news Web sites, and social media) and events (Datathons) to deepen their understanding of risk of bias.
Collapse
Affiliation(s)
- João Matos
- University of Porto (FEUP), Porto, Portugal; Institute for Systems and Computer Engineering, Technology and Science (INESC TEC), Porto, Portugal; Laboratory for Computational Physiology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jack Gallifant
- Laboratory for Computational Physiology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Critical Care, Guy's and St Thomas' NHS Trust, London, UK
| | - Anand Chowdhury
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University, Durham, NC, USA
| | | | - Marie-Laure Charpignon
- Institute for Data Systems and Society, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Judy Gichoya
- Department of Radiology, Emory University, Atlanta, GA, USA
| | - Leo Anthony Celi
- Laboratory for Computational Physiology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Lama Nazer
- Department of Pharmacy, King Hussein Cancer Center, Amman, Jordan
| | - Heather King
- Durham VA Health Care System, Health Services Research and Development, Center of Innovation to Accelerate Discovery and Practice Transformation (ADAPT), Durham, NC, USA; Department of Population Health Sciences, Duke University, Durham, NC, USA; Division of General Internal Medicine, Duke University, Duke University School of Medicine, Durham, NC, USA
| | - An-Kwok Ian Wong
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University, Durham, NC, USA; Department of Biostatistics and Bioinformatics, Duke University, Division of Translational Biomedical Informatics, Durham, NC, USA.
| |
Collapse
|
6
|
Zhang H, Qian D, Zhang X, Meng P, Huang W, Gu T, Fan Y, Zhang Y, Wang Y, Yu M, Yuan Z, Chen X, Zhao Q, Ruan Z. Tree-based ensemble machine learning models in the prediction of acute respiratory distress syndrome following cardiac surgery: a multicenter cohort study. J Transl Med 2024; 22:772. [PMID: 39148090 PMCID: PMC11325832 DOI: 10.1186/s12967-024-05395-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/12/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) after cardiac surgery is a severe respiratory complication with high mortality and morbidity. Traditional clinical approaches may lead to under recognition of this heterogeneous syndrome, potentially resulting in diagnosis delay. This study aims to develop and external validate seven machine learning (ML) models, trained on electronic health records data, for predicting ARDS after cardiac surgery. METHODS This multicenter, observational cohort study included patients who underwent cardiac surgery in the training and testing cohorts (data from Nanjing First Hospital), as well as those patients who had cardiac surgery in a validation cohort (data from Shanghai General Hospital). The number of important features was determined using the sliding windows sequential forward feature selection method (SWSFS). We developed a set of tree-based ML models, including Decision Tree, GBDT, AdaBoost, XGBoost, LightGBM, Random Forest, and Deep Forest. Model performance was evaluated using the area under the receiver operating characteristic curve (AUC) and Brier score. The SHapley Additive exPlanation (SHAP) techinque was employed to interpret the ML model. Furthermore, a comparison was made between the ML models and traditional scoring systems. ARDS is defined according to the Berlin definition. RESULTS A total of 1996 patients who had cardiac surgery were included in the study. The top five important features identified by the SWSFS were chronic obstructive pulmonary disease, preoperative albumin, central venous pressure_T4, cardiopulmonary bypass time, and left ventricular ejection fraction. Among the seven ML models, Deep Forest demonstrated the best performance, with an AUC of 0.882 and a Brier score of 0.809 in the validation cohort. Notably, the SHAP values effectively illustrated the contribution of the 13 features attributed to the model output and the individual feature's effect on model prediction. In addition, the ensemble ML models demonstrated better performance than the other six traditional scoring systems. CONCLUSIONS Our study identified 13 important features and provided multiple ML models to enhance the risk stratification for ARDS after cardiac surgery. Using these predictors and ML models might provide a basis for early diagnostic and preventive strategies in the perioperative management of ARDS patients.
Collapse
Affiliation(s)
- Hang Zhang
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 Xinsongjiang Road, Shanghai, 201620, China
| | - Dewei Qian
- Department of Cardiovascular Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 85 Wujin Road, Shanghai, 200080, China
| | - Xiaomiao Zhang
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 Xinsongjiang Road, Shanghai, 201620, China
| | - Peize Meng
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 Xinsongjiang Road, Shanghai, 201620, China
| | - Weiran Huang
- Qing Yuan Research Institute, SEIEE, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Tongtong Gu
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
| | - Yongliang Fan
- Department of Cardiovascular Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 85 Wujin Road, Shanghai, 200080, China
| | - Yi Zhang
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 Xinsongjiang Road, Shanghai, 201620, China
| | - Yuchen Wang
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 Xinsongjiang Road, Shanghai, 201620, China
| | - Min Yu
- Department of Cardiovascular Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 85 Wujin Road, Shanghai, 200080, China
| | - Zhongxiang Yuan
- Department of Cardiovascular Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 85 Wujin Road, Shanghai, 200080, China
| | - Xin Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, China.
| | - Qingnan Zhao
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 Xinsongjiang Road, Shanghai, 201620, China.
| | - Zheng Ruan
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 Xinsongjiang Road, Shanghai, 201620, China.
| |
Collapse
|
7
|
Ding N, Nath T, Damarla M, Gao L, Hassoun PM. Early predictive values of clinical assessments for ARDS mortality: a machine-learning approach. Sci Rep 2024; 14:17853. [PMID: 39090217 PMCID: PMC11294575 DOI: 10.1038/s41598-024-68653-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 07/26/2024] [Indexed: 08/04/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a devastating critical care syndrome with significant morbidity and mortality. The objective of this study was to evaluate the predictive values of dynamic clinical indices by developing machine-learning (ML) models for early and accurate clinical assessment of the disease prognosis of ARDS. We conducted a retrospective observational study by applying dynamic clinical data collected in the ARDSNet FACTT Trial (n = 1000) to ML-based algorithms for predicting mortality. In order to compare the significance of clinical features dynamically, we further applied the random forest (RF) model to nine selected clinical parameters acquired at baseline and day 3 independently. An RF model trained using clinical data collected at day 3 showed improved performance and prognostication efficacy (area under the curve [AUC]: 0.84, 95% CI: 0.78-0.89) compared to baseline with an AUC value of 0.72 (95% CI: 0.65-0.78). Mean airway pressure (MAP), bicarbonate, age, platelet count, albumin, heart rate, and glucose were the most significant clinical indicators associated with mortality at day 3. Thus, clinical features collected early (day 3) improved performance of integrative ML models with better prognostication for mortality. Among these, MAP represented the most important feature for ARDS patients' early risk stratification.
Collapse
Affiliation(s)
- Ning Ding
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle, Baltimore, MD, 21224-6821, USA
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tanmay Nath
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Mahendra Damarla
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, 1830 East Monument St, Baltimore, MD, 21287, USA
| | - Li Gao
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle, Baltimore, MD, 21224-6821, USA.
| | - Paul M Hassoun
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, 1830 East Monument St, Baltimore, MD, 21287, USA.
| |
Collapse
|
8
|
Gandomi A, Wu P, Clement DR, Xing J, Aviv R, Federbush M, Yuan Z, Jing Y, Wei G, Hajizadeh N. ARDSFlag: an NLP/machine learning algorithm to visualize and detect high-probability ARDS admissions independent of provider recognition and billing codes. BMC Med Inform Decis Mak 2024; 24:195. [PMID: 39014417 PMCID: PMC11250933 DOI: 10.1186/s12911-024-02573-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/11/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Despite the significance and prevalence of acute respiratory distress syndrome (ARDS), its detection remains highly variable and inconsistent. In this work, we aim to develop an algorithm (ARDSFlag) to automate the diagnosis of ARDS based on the Berlin definition. We also aim to develop a visualization tool that helps clinicians efficiently assess ARDS criteria. METHODS ARDSFlag applies machine learning (ML) and natural language processing (NLP) techniques to evaluate Berlin criteria by incorporating structured and unstructured data in an electronic health record (EHR) system. The study cohort includes 19,534 ICU admissions in the Medical Information Mart for Intensive Care III (MIMIC-III) database. The output is the ARDS diagnosis, onset time, and severity. RESULTS ARDSFlag includes separate text classifiers trained using large training sets to find evidence of bilateral infiltrates in radiology reports (accuracy of 91.9%±0.5%) and heart failure/fluid overload in radiology reports (accuracy 86.1%±0.5%) and echocardiogram notes (accuracy 98.4%±0.3%). A test set of 300 cases, which was blindly and independently labeled for ARDS by two groups of clinicians, shows that ARDSFlag generates an overall accuracy of 89.0% (specificity = 91.7%, recall = 80.3%, and precision = 75.0%) in detecting ARDS cases. CONCLUSION To our best knowledge, this is the first study to focus on developing a method to automate the detection of ARDS. Some studies have developed and used other methods to answer other research questions. Expectedly, ARDSFlag generates a significantly higher performance in all accuracy measures compared to those methods.
Collapse
Affiliation(s)
- Amir Gandomi
- Frank G. Zarb School of Business, Hofstra University, Hempstead, NY, USA.
- Institute of Health System Science, Feinstein Institute for Medical Research, Manhasset, NY, USA.
| | - Phil Wu
- AiD Technologies, Stony Brook, NY, USA
| | - Daniel R Clement
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA
| | - Jinyan Xing
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | | | - Matthew Federbush
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA
| | - Zhiyong Yuan
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yajun Jing
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guangyao Wei
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Negin Hajizadeh
- Institute of Health System Science, Feinstein Institute for Medical Research, Manhasset, NY, USA
| |
Collapse
|
9
|
Ottewill C, Gleeson M, Kerr P, Hale EM, Costello RW. Digital health delivery in respiratory medicine: adjunct, replacement or cause for division? Eur Respir Rev 2024; 33:230251. [PMID: 39322260 PMCID: PMC11423130 DOI: 10.1183/16000617.0251-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 07/31/2024] [Indexed: 09/27/2024] Open
Abstract
Digital medicine is already well established in respiratory medicine through remote monitoring digital devices which are used in the day-to-day care of patients with asthma, COPD and sleep disorders. Image recognition software, deployed in thoracic radiology for many applications including lung cancer screening, is another application of digital medicine. Used as clinical decision support, this software will soon become part of day-to-day practice once concerns regarding generalisability have been addressed. Embodied in the electronic health record, digital medicine also plays a substantial role in the day-to-day clinical practice of respiratory medicine. Given the considerable work the electronic health record demands from clinicians, the next tangible impact of digital medicine may be artificial intelligence that aids administration, makes record keeping easier and facilitates better digital communication with patients. Future promises of digital medicine are based on their potential to analyse and characterise the large amounts of digital clinical data that are collected in routine care. Offering the potential to predict outcomes and personalise therapy, there is much to be excited by in this new epoch of innovation. However, these digital tools are by no means a silver bullet. It remains uncertain whether, let alone when, the promises of better models of personalisation and prediction will translate into clinically meaningful and cost-effective products for clinicians.
Collapse
Affiliation(s)
- Ciara Ottewill
- Department of Respiratory Medicine, Beaumont Hospital and RCSI University of Medicine and Health Science, Dublin, Ireland
- Bon Secours Hospital, Dublin, Ireland
| | - Margaret Gleeson
- Department of Respiratory Medicine, Beaumont Hospital and RCSI University of Medicine and Health Science, Dublin, Ireland
| | - Patrick Kerr
- Department of Respiratory Medicine, Beaumont Hospital and RCSI University of Medicine and Health Science, Dublin, Ireland
| | - Elaine Mac Hale
- Department of Respiratory Medicine, Beaumont Hospital and RCSI University of Medicine and Health Science, Dublin, Ireland
| | - Richard W Costello
- Department of Respiratory Medicine, Beaumont Hospital and RCSI University of Medicine and Health Science, Dublin, Ireland
| |
Collapse
|
10
|
Tran TK, Tran MC, Joseph A, Phan PA, Grau V, Farmery AD. A systematic review of machine learning models for management, prediction and classification of ARDS. Respir Res 2024; 25:232. [PMID: 38834976 DOI: 10.1186/s12931-024-02834-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/04/2024] [Indexed: 06/06/2024] Open
Abstract
AIM Acute respiratory distress syndrome or ARDS is an acute, severe form of respiratory failure characterised by poor oxygenation and bilateral pulmonary infiltrates. Advancements in signal processing and machine learning have led to promising solutions for classification, event detection and predictive models in the management of ARDS. METHOD In this review, we provide systematic description of different studies in the application of Machine Learning (ML) and artificial intelligence for management, prediction, and classification of ARDS. We searched the following databases: Google Scholar, PubMed, and EBSCO from 2009 to 2023. A total of 243 studies was screened, in which, 52 studies were included for review and analysis. We integrated knowledge of previous work providing the state of art and overview of explainable decision models in machine learning and have identified areas for future research. RESULTS Gradient boosting is the most common and successful method utilised in 12 (23.1%) of the studies. Due to limitation of data size available, neural network and its variation is used by only 8 (15.4%) studies. Whilst all studies used cross validating technique or separated database for validation, only 1 study validated the model with clinician input. Explainability methods were presented in 15 (28.8%) of studies with the most common method is feature importance which used 14 times. CONCLUSION For databases of 5000 or fewer samples, extreme gradient boosting has the highest probability of success. A large, multi-region, multi centre database is required to reduce bias and take advantage of neural network method. A framework for validating with and explaining ML model to clinicians involved in the management of ARDS would be very helpful for development and deployment of the ML model.
Collapse
Affiliation(s)
- Tu K Tran
- Department of Engineering and Science, University of Oxford, Oxford, UK.
- Nuffield Department of Clinical Neurosciences, Oxford Institute of Biomedical Engineering, University of Oxford, Oxford, UK.
| | - Minh C Tran
- Nuffield Division of Anaesthetics, University of Oxford, Oxford, UK
| | - Arun Joseph
- Nuffield Division of Anaesthetics, University of Oxford, Oxford, UK
| | - Phi A Phan
- Nuffield Division of Anaesthetics, University of Oxford, Oxford, UK
| | - Vicente Grau
- Department of Engineering and Science, University of Oxford, Oxford, UK
| | - Andrew D Farmery
- Nuffield Division of Anaesthetics, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neurosciences, Oxford Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| |
Collapse
|
11
|
Lin S, Yang M, Liu C, Wang Z, Long X. A pretrain-finetune approach for improving model generalizability in outcome prediction of acute respiratory distress syndrome patients. Int J Med Inform 2024; 186:105397. [PMID: 38507979 DOI: 10.1016/j.ijmedinf.2024.105397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/20/2023] [Accepted: 02/25/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Early prediction of acute respiratory distress syndrome (ARDS) of critically ill patients in intensive care units (ICUs) has been intensively studied in the past years. Yet a prediction model trained on data from one hospital might not be well generalized to other hospitals. It is therefore essential to develop an accurate and generalizable ARDS prediction model adaptive to different hospital or medical centers. METHODS We analyzed electronic medical records of 200,859 and 50,920 hospitalized patients within 24 h after being diagnosed with ARDS from the Philips eICU Institute (eICU-CRD) and the Medical Information Mart for Intensive Care (MIMIC-IV) dataset, respectively. Patients were sorted into three groups, including rapid death, long stay, and recovery, based on their condition or outcome between 24 and 72 h after ARDS diagnosis. To improve prediction performance and generalizability, a "pretrain-finetune" approach was applied, where we pretrained models on the eICU-CRD dataset and performed model finetuning using only a part (35%) of the MIMIC-IV dataset, and then tested the finetuned models on the remaining data from the MIMIC-IV dataset. Well-known machine-learning algorithms, including logistic regression, random forest, extreme gradient boosting, and multilayer perceptron neural networks, were employed to predict ARDS outcomes. Prediction performance was evaluated using the area under the receiver-operating characteristic curve (AUC). RESULTS Results show that, in general, multilayer perceptron neural networks outperformed the other models. The use of pretrain-finetune yielded improved performance in predicting ARDS outcomes achieving a micro-AUC of 0.870 for the MIMIC-IV dataset, an improvement of 0.046 over the pretrain model. CONCLUSIONS The proposed pretrain-finetune approach can effectively improve model generalizability from one to another dataset in ARDS prediction.
Collapse
Affiliation(s)
- Songlu Lin
- Instrument Science and Electrical Engineering, Jilin University, Changchun, China; Biomedical Diagnostics Lab, Department of Electrical Engineering, Eindhoven University of Technology, the Netherlands
| | - Meicheng Yang
- Biomedical Diagnostics Lab, Department of Electrical Engineering, Eindhoven University of Technology, the Netherlands; State Key Laboratory of Digital Medical Engineering, School of Instrument Science and Engineering, Southeast University, Nanjing, China
| | - Chengyu Liu
- State Key Laboratory of Digital Medical Engineering, School of Instrument Science and Engineering, Southeast University, Nanjing, China
| | - Zhihong Wang
- Instrument Science and Electrical Engineering, Jilin University, Changchun, China
| | - Xi Long
- Biomedical Diagnostics Lab, Department of Electrical Engineering, Eindhoven University of Technology, the Netherlands
| |
Collapse
|
12
|
Liu P, Li XJ, Zhang T, Huang YH. Comparison between XGboost model and logistic regression model for predicting sepsis after extremely severe burns. J Int Med Res 2024; 52:3000605241247696. [PMID: 38698505 PMCID: PMC11067675 DOI: 10.1177/03000605241247696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/28/2024] [Indexed: 05/05/2024] Open
Abstract
OBJECTIVE To compare an Extreme Gradient Boosting (XGboost) model with a multivariable logistic regression (LR) model for their ability to predict sepsis after extremely severe burns. METHODS For this observational study, patient demographic and clinical information were collected from medical records. The two models were evaluated using area under curve (AUC) of the receiver operating characteristic (ROC) curve. RESULTS Of the 103 eligible patients with extremely severe burns, 20 (19%) were in the sepsis group, and 83 (81%) in the non-sepsis group. The LR model showed that age, admission time, body index (BI), fibrinogen, and neutrophil to lymphocyte ratio (NLR) were risk factors for sepsis. Comparing AUC of the ROC curves, the XGboost model had a higher predictive performance (0.91) than the LR model (0.88). The SHAP visualization tool indicated fibrinogen, NLR, BI, and age were important features of sepsis in patients with extremely severe burns. CONCLUSIONS The XGboost model was superior to the LR model in predictive efficacy. Results suggest that, fibrinogen, NLR, BI, and age were correlated with sepsis after extremely severe burns.
Collapse
Affiliation(s)
- Peng Liu
- Department of Burn and Plastic, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Xiao-Jian Li
- Department of Burn and Plastic, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Tao Zhang
- Department of Burn and Plastic, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Yi-Hui Huang
- Department of Pediatric Medicine, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| |
Collapse
|
13
|
Yang P, Sjoding MW. Acute Respiratory Distress Syndrome: Definition, Diagnosis, and Routine Management. Crit Care Clin 2024; 40:309-327. [PMID: 38432698 DOI: 10.1016/j.ccc.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Acute respiratory distress syndrome (ARDS) is an acute inflammatory lung injury characterized by severe hypoxemic respiratory failure, bilateral opacities on chest imaging, and low lung compliance. ARDS is a heterogeneous syndrome that is the common end point of a wide variety of predisposing conditions, with complex pathophysiology and underlying mechanisms. Routine management of ARDS is centered on lung-protective ventilation strategies such as low tidal volume ventilation and targeting low airway pressures to avoid exacerbation of lung injury, as well as a conservative fluid management strategy.
Collapse
Affiliation(s)
- Philip Yang
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University, 6335 Hospital Parkway, Physicians Plaza Suite 310, Johns Creek, GA 30097, USA.
| | - Michael W Sjoding
- Division of Pulmonary and Critical Care Medicine, University of Michigan, 2800 Plymouth Road, NCRC, Building 16, G027W, Ann Arbor, MI 48109, USA
| |
Collapse
|
14
|
Cysneiros A, Galvão T, Domingues N, Jorge P, Bento L, Martin-Loeches I. ARDS Mortality Prediction Model Using Evolving Clinical Data and Chest Radiograph Analysis. Biomedicines 2024; 12:439. [PMID: 38398041 PMCID: PMC10886631 DOI: 10.3390/biomedicines12020439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
INTRODUCTION Within primary ARDS, SARS-CoV-2-associated ARDS (C-ARDS) emerged in late 2019, reaching its peak during the subsequent two years. Recent efforts in ARDS research have concentrated on phenotyping this heterogeneous syndrome to enhance comprehension of its pathophysiology. METHODS AND RESULTS A retrospective study was conducted on C-ARDS patients from April 2020 to February 2021, encompassing 110 participants with a mean age of 63.2 ± 11.92 (26-83 years). Of these, 61.2% (68) were male, and 25% (17) experienced severe ARDS, resulting in a mortality rate of 47.3% (52). Ventilation settings, arterial blood gases, and chest X-ray (CXR) were evaluated on the first day of invasive mechanical ventilation and between days two and three. CXR images were scrutinized using a convolutional neural network (CNN). A binary logistic regression model for predicting C-ARDS mortality was developed based on the most influential variables: age, PaO2/FiO2 ratio (P/F) on days one and three, CNN-extracted CXR features, and age. Initial performance assessment on test data (23 patients out of the 110) revealed an area under the receiver operating characteristic (ROC) curve of 0.862 with a 95% confidence interval (0.654-0.969). CONCLUSION Integrating data available in all intensive care units enables the prediction of C-ARDS mortality by utilizing evolving P/F ratios and CXR. This approach can assist in tailoring treatment plans and initiating early discussions to escalate care and extracorporeal life support. Machine learning algorithms for imaging classification can uncover otherwise inaccessible patterns, potentially evolving into another form of ARDS phenotyping. The combined features of these algorithms and clinical variables demonstrate superior performance compared to either element alone.
Collapse
Affiliation(s)
- Ana Cysneiros
- Nova Medical School, Universidade de Lisboa, 1649-004 Lisbon, Portugal;
- Unidade de Urgência Médica, Hospital de São José, Centro Hospitalar Universitário Lisboa Central, 1169-050 Lisbon, Portugal
| | - Tiago Galvão
- Instituto Politécnico de Lisboa/Instituto Superior de Engenharia de Lisboa, 1959-007 Lisbon, Portugal; (T.G.); (N.D.); (P.J.)
| | - Nuno Domingues
- Instituto Politécnico de Lisboa/Instituto Superior de Engenharia de Lisboa, 1959-007 Lisbon, Portugal; (T.G.); (N.D.); (P.J.)
| | - Pedro Jorge
- Instituto Politécnico de Lisboa/Instituto Superior de Engenharia de Lisboa, 1959-007 Lisbon, Portugal; (T.G.); (N.D.); (P.J.)
| | - Luis Bento
- Nova Medical School, Universidade de Lisboa, 1649-004 Lisbon, Portugal;
- Unidade de Urgência Médica, Hospital de São José, Centro Hospitalar Universitário Lisboa Central, 1169-050 Lisbon, Portugal
| | | |
Collapse
|
15
|
Su L, Liu S, Long Y, Chen C, Chen K, Chen M, Chen Y, Cheng Y, Cui Y, Ding Q, Ding R, Duan M, Gao T, Gu X, He H, He J, Hu B, Hu C, Huang R, Huang X, Jiang H, Jiang J, Lan Y, Li J, Li L, Li L, Li W, Li Y, Lin J, Luo X, Lyu F, Mao Z, Miao H, Shang X, Shang X, Shang Y, Shen Y, Shi Y, Sun Q, Sun W, Tang Z, Wang B, Wang H, Wang H, Wang L, Wang L, Wang S, Wang Z, Wang Z, Wei D, Wu J, Wu Q, Xing X, Yang J, Yang X, Yu J, Yu W, Yu Y, Yuan H, Zhai Q, Zhang H, Zhang L, Zhang M, Zhang Z, Zhao C, Zheng R, Zhong L, Zhou F, Zhu W. Chinese experts' consensus on the application of intensive care big data. Front Med (Lausanne) 2024; 10:1174429. [PMID: 38264049 PMCID: PMC10804886 DOI: 10.3389/fmed.2023.1174429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 11/09/2023] [Indexed: 01/25/2024] Open
Abstract
The development of intensive care medicine is inseparable from the diversified monitoring data. Intensive care medicine has been closely integrated with data since its birth. Critical care research requires an integrative approach that embraces the complexity of critical illness and the computational technology and algorithms that can make it possible. Considering the need of standardization of application of big data in intensive care, Intensive Care Medicine Branch of China Health Information and Health Care Big Data Society, Standard Committee has convened expert group, secretary group and the external audit expert group to formulate Chinese Experts' Consensus on the Application of Intensive Care Big Data (2022). This consensus makes 29 recommendations on the following five parts: Concept of intensive care big data, Important scientific issues, Standards and principles of database, Methodology in solving big data problems, Clinical application and safety consideration of intensive care big data. The consensus group believes this consensus is the starting step of application big data in the field of intensive care. More explorations and big data based retrospective research should be carried out in order to enhance safety and reliability of big data based models of critical care field.
Collapse
Affiliation(s)
- Longxiang Su
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Shengjun Liu
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yun Long
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Chaodong Chen
- Department of Surgical Intensive Critical Unit, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Kai Chen
- Department of Critical Care Medicine, Fujian Provincial Key Laboratory of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fujian Provincial Center for Critical Care Medicine, Fuzhou, Fujian, China
| | - Ming Chen
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Yaolong Chen
- Evidence-based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yisong Cheng
- Department of Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Yating Cui
- Department of Critical Care Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Qi Ding
- Department of Surgical Intensive Critical Unit, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Renyu Ding
- Department of Intensive Care Unit, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Meili Duan
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Tao Gao
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Xiaohua Gu
- Department of Critical Care Medicine, Northern Jiangsu People’s Hospital; Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Hongli He
- Intensive Care Unit, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine of University of Electronic Science and Technology, Chengdu, China
| | - Jiawei He
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Bo Hu
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chang Hu
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Rui Huang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiaobo Huang
- Intensive Care Unit, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine of University of Electronic Science and Technology, Chengdu, China
| | - Huizhen Jiang
- Department of Information Center, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Jiang
- Department of Critical Care Medicine, Chongqing General Hospital, Chongqing, China
| | - Yunping Lan
- Intensive Care Unit, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine of University of Electronic Science and Technology, Chengdu, China
| | - Jun Li
- Department of Critical Care Medicine, Fujian Provincial Key Laboratory of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fujian Provincial Center for Critical Care Medicine, Fuzhou, Fujian, China
| | - Linfeng Li
- Medical Data Research Institute, Chongqing Medical University, Chongqing, China
| | - Lu Li
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wenxiong Li
- Department of Surgical Intensive Critical Unit, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Yongzai Li
- Information Network Center, QiLu Hospital, ShanDong University, Jinan, China
| | - Jin Lin
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xufei Luo
- Evidence-based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Feng Lyu
- Department of Computer Science and Engineering, Central South University, Changsha, China
| | - Zhi Mao
- Department of Critical Care Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - He Miao
- Department of Intensive Care Unit, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaopu Shang
- Department of Information Management, Beijing Jiaotong University, Beijing, China
| | - Xiuling Shang
- Department of Critical Care Medicine, Fujian Provincial Key Laboratory of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fujian Provincial Center for Critical Care Medicine, Fuzhou, Fujian, China
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuwen Shen
- Intensive Care Unit of Cardiovascular Surgery Department, Qilu Hospital of Shandong University, Jinan, China
| | - Yinghuan Shi
- National Institute of Healthcare Data Science, Nanjing University, Nanjing, China
| | - Qihang Sun
- British Chinese Society of Health Informatics, Beijing, China
| | - Weijun Sun
- Faculty of Automation, Guangdong University of Technology, Guangzhou, China
| | - Zhiyun Tang
- Department of Intensive Care Unit, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Emergency and Intensive Care Unit Center, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Bo Wang
- Department of Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Haijun Wang
- Department of Intensive Care Unit, National Cancer Center/National Clinical Research Center, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongliang Wang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Li Wang
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences; School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Luhao Wang
- Department of Critical Care Medicine, Sun Yat-Sen University First Affiliated Hospital, Guangzhou, China
| | - Sicong Wang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhanwen Wang
- Intensive Care Unit, XiangYa Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiang Ya Hospital, Central South University, Changsha, China
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiang Ya Hospital, Central South University, Changsha, China
| | - Zhong Wang
- Department of Intensive Care Unit, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Dong Wei
- National Institute of Healthcare Data Science, Nanjing University, Nanjing, China
| | - Jianfeng Wu
- Intensive Care Unit, XiangYa Hospital, Central South University, Changsha, China
| | - Qin Wu
- Department of Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Xuezhong Xing
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences; School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Jin Yang
- Department of Critical Care Medicine, Chongqing General Hospital, Chongqing, China
| | - Xianghong Yang
- Department of Intensive Care Unit, National Cancer Center/National Clinical Research Center, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiangquan Yu
- Department of Critical Care Medicine, Northern Jiangsu People’s Hospital; Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Wenkui Yu
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Yuan Yu
- Intensive Care Unit of Cardiovascular Surgery Department, Qilu Hospital of Shandong University, Jinan, China
| | - Hao Yuan
- Department of Critical Care Medicine, Sun Yat-Sen University First Affiliated Hospital, Guangzhou, China
| | - Qian Zhai
- National Institute of Healthcare Data Science, Nanjing University, Nanjing, China
| | - Hao Zhang
- Department of Intensive Care Unit, National Cancer Center/National Clinical Research Center, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lina Zhang
- Intensive Care Unit, XiangYa Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiang Ya Hospital, Central South University, Changsha, China
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiang Ya Hospital, Central South University, Changsha, China
| | - Meng Zhang
- Department of Critical Care Medicine, Chongqing General Hospital, Chongqing, China
| | - Zhongheng Zhang
- Department of Emergency Medicine, Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chunguang Zhao
- Intensive Care Unit, XiangYa Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiang Ya Hospital, Central South University, Changsha, China
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiang Ya Hospital, Central South University, Changsha, China
| | - Ruiqiang Zheng
- Department of Critical Care Medicine, Northern Jiangsu People’s Hospital; Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Lei Zhong
- Department of Intensive Care Unit, National Cancer Center/National Clinical Research Center, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Feihu Zhou
- Department of Critical Care Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Weiguo Zhu
- Department of General Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
16
|
Chen Y, Guo DZ, Zhu CL, Ren SC, Sun CY, Wang Y, Wang JF. The implication of targeting PD-1:PD-L1 pathway in treating sepsis through immunostimulatory and anti-inflammatory pathways. Front Immunol 2023; 14:1323797. [PMID: 38193090 PMCID: PMC10773890 DOI: 10.3389/fimmu.2023.1323797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/29/2023] [Indexed: 01/10/2024] Open
Abstract
Sepsis currently remains a major contributor to mortality in the intensive care unit (ICU), with 48.9 million cases reported globally and a mortality rate of 22.5% in 2017, accounting for almost 20% of all-cause mortality worldwide. This highlights the urgent need to improve the understanding and treatment of this condition. Sepsis is now recognized as a dysregulation of the host immune response to infection, characterized by an excessive inflammatory response and immune paralysis. This dysregulation leads to secondary infections, multiple organ dysfunction syndrome (MODS), and ultimately death. PD-L1, a co-inhibitory molecule expressed in immune cells, has emerged as a critical factor in sepsis. Numerous studies have found a significant association between the expression of PD-1/PD-L1 and sepsis, with a particular focus on PD-L1 expressed on neutrophils recently. This review explores the role of PD-1/PD-L1 in immunostimulatory and anti-inflammatory pathways, illustrates the intricate link between PD-1/PD-L1 and sepsis, and summarizes current therapeutic approaches against PD-1/PD-L1 in the treatment and prognosis of sepsis in preclinical and clinical studies.
Collapse
Affiliation(s)
- Yu Chen
- School of Basic Medicine, Naval Medical University, Shanghai, China
| | - De-zhi Guo
- School of Basic Medicine, Naval Medical University, Shanghai, China
| | - Cheng-long Zhu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Shi-chun Ren
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chen-yan Sun
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yi Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jia-feng Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
17
|
Wei T, Peng S, Li X, Li J, Gu M, Li X. Critical evaluation of established risk prediction models for acute respiratory distress syndrome in adult patients: A systematic review and meta-analysis. J Evid Based Med 2023; 16:465-476. [PMID: 38058055 DOI: 10.1111/jebm.12565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/22/2023] [Indexed: 12/08/2023]
Abstract
AIM To assess the performance of validated prediction models for acute respiratory distress syndrome (ARDS) by systematic review and meta-analysis. METHODS Eight databases (Medline, CINAHL, Embase, The Cochrane Library, CNKI, WanFang Data, Sinomed, and VIP) were searched up to March 26, 2023. Studies developed and validated a prediction model for ARDS in adult patients were included. Items on study design, incidence, derivation methods, predictors, discrimination, and calibration were collected. The risk of bias was assessed by the Prediction model Risk of Bias Assessment Tool. Models with a reported area under the curve of the receiver operating characteristic (AUC) metric were analyzed. RESULTS A total of 25 studies were retrieved, including 48 unique prediction models. Discrimination was reported in all studies, with AUC ranging from 0.701 to 0.95. Emerged AUC value of the logistic regression model was 0.837 (95% CI: 0.814 to 0.859). Besides, the value in the ICU group was 0.856 (95% CI: 0.812 to 0.899), the acute pancreatitis group was 0.863 (95% CI: 0.844 to 0.882), and the postoperation group was 0.835 (95% CI: 0.808 to 0.861). In total, 24 of the included studies had a high risk of bias, which was mostly due to the improper methods in predictor screening (13/24), model calibration assessment (9/24), and dichotomization of continuous predictors (6/24). CONCLUSIONS This study shows that most prediction models for ARDS are at high risk of bias, and the discrimination ability of the model is excellent. Adherence to standardized guidelines for model development is necessary to derive a prediction model of value to clinicians.
Collapse
Affiliation(s)
- Tao Wei
- Anesthesiology Department, Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China
| | - Siyi Peng
- The Early Clinical Trial Center in The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China
| | - Xuying Li
- Department of Nursing, Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China
| | - Jinhua Li
- Department of Nursing, Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China
| | - Mengdan Gu
- Anesthesiology Department, Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China
| | - Xiaoling Li
- Anesthesiology Department, Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China
| |
Collapse
|
18
|
Khalpey Z, Wilson P, Suri Y, Culbert H, Deckwa J, Khalpey A, Rozell B. Leveling Up: A Review of Machine Learning Models in the Cardiac ICU. Am J Med 2023; 136:979-984. [PMID: 37343909 DOI: 10.1016/j.amjmed.2023.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/23/2023]
Abstract
Machine learning has emerged as a significant tool to augment the medical decision-making process. Studies have steadily accrued detailing algorithms and models designed using machine learning to predict and anticipate pathologic states. The cardiac intensive care unit is an area where anticipation is crucial in the division between life and death. In this paper, we aim to review important studies describing the utility of machine learning algorithms to describe the future of artificial intelligence in the cardiac intensive care unit, especially in regards to the prediction of successful ventilatory weaning, acute respiratory distress syndrome, arrhythmia, and acute kidney injury.
Collapse
Affiliation(s)
- Zain Khalpey
- Division of Cardiothoracic Surgery, Heart and Vascular Institute, HonorHealth, Scottsdale, Ariz.
| | | | - Yash Suri
- University of Arizona College of Medicine, Tucson
| | | | | | | | | |
Collapse
|
19
|
Rojas JC, Teran M, Umscheid CA. Clinician Trust in Artificial Intelligence: What is Known and How Trust Can Be Facilitated. Crit Care Clin 2023; 39:769-782. [PMID: 37704339 DOI: 10.1016/j.ccc.2023.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Predictive analytics based on artificial intelligence (AI) offer clinicians the opportunity to leverage big data available in electronic health records (EHR) to improve clinical decision-making, and thus patient outcomes. Despite this, many barriers exist to facilitating trust between clinicians and AI-based tools, limiting its current impact. Potential solutions are available at both the local and national level. It will take a broad and diverse coalition of stakeholders, from health-care systems, EHR vendors, and clinical educators to regulators, researchers and the patient community, to help facilitate this trust so that the promise of AI in health care can be realized.
Collapse
Affiliation(s)
- Juan C Rojas
- Department of Internal Medicine, Rush University, 1725 West Harrison Street, Suite 010, Chicago, IL 60612, USA.
| | - Mario Teran
- Agency for Healthcare Research and Quality, 5600 Fishers Lane, Mail Stop 06E53A, Rockville, MD 20857, USA
| | - Craig A Umscheid
- Agency for Healthcare Research and Quality, 5600 Fishers Lane, Mail Stop 06E53A, Rockville, MD 20857, USA
| |
Collapse
|
20
|
Jang W, Choi YS, Kim JY, Yon DK, Lee YJ, Chung SH, Kim CY, Yeo SG, Lee J. Artificial Intelligence-Driven Respiratory Distress Syndrome Prediction for Very Low Birth Weight Infants: Korean Multicenter Prospective Cohort Study. J Med Internet Res 2023; 25:e47612. [PMID: 37428525 PMCID: PMC10366668 DOI: 10.2196/47612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/04/2023] [Accepted: 06/14/2023] [Indexed: 07/11/2023] Open
Abstract
BACKGROUND Respiratory distress syndrome (RDS) is a disease that commonly affects premature infants whose lungs are not fully developed. RDS results from a lack of surfactant in the lungs. The more premature the infant is, the greater is the likelihood of having RDS. However, even though not all premature infants have RDS, preemptive treatment with artificial pulmonary surfactant is administered in most cases. OBJECTIVE We aimed to develop an artificial intelligence model to predict RDS in premature infants to avoid unnecessary treatment. METHODS In this study, 13,087 very low birth weight infants who were newborns weighing less than 1500 grams were assessed in 76 hospitals of the Korean Neonatal Network. To predict RDS in very low birth weight infants, we used basic infant information, maternity history, pregnancy/birth process, family history, resuscitation procedure, and test results at birth such as blood gas analysis and Apgar score. The prediction performances of 7 different machine learning models were compared, and a 5-layer deep neural network was proposed in order to enhance the prediction performance from the selected features. An ensemble approach combining multiple models from the 5-fold cross-validation was subsequently developed. RESULTS Our proposed ensemble 5-layer deep neural network consisting of the top 20 features provided high sensitivity (83.03%), specificity (87.50%), accuracy (84.07%), balanced accuracy (85.26%), and area under the curve (0.9187). Based on the model that we developed, a public web application that enables easy access for the prediction of RDS in premature infants was deployed. CONCLUSIONS Our artificial intelligence model may be useful for preparations for neonatal resuscitation, particularly in cases involving the delivery of very low birth weight infants, as it can aid in predicting the likelihood of RDS and inform decisions regarding the administration of surfactant.
Collapse
Affiliation(s)
- Woocheol Jang
- Biomedical Engineering, Kyung Hee University, Yongin-si, Republic of Korea
| | - Yong Sung Choi
- Department of Pediatrics, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| | - Ji Yoo Kim
- Department of Pediatrics, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| | - Dong Keon Yon
- Department of Pediatrics, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| | - Young Joo Lee
- Department of Obstetrics and Gynecology, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| | - Sung-Hoon Chung
- Department of Pediatrics, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| | - Chae Young Kim
- Department of Pediatrics, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| | - Seung Geun Yeo
- Department of Otorhinolaryngology Head and Neck Surgery, Kyung Hee University Medical Center, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Jinseok Lee
- Biomedical Engineering, Kyung Hee University, Yongin-si, Republic of Korea
| |
Collapse
|
21
|
Barakat CS, Sharafutdinov K, Busch J, Saffaran S, Bates DG, Hardman JG, Schuppert A, Brynjólfsson S, Fritsch S, Riedel M. Developing an Artificial Intelligence-Based Representation of a Virtual Patient Model for Real-Time Diagnosis of Acute Respiratory Distress Syndrome. Diagnostics (Basel) 2023; 13:2098. [PMID: 37370993 PMCID: PMC10297554 DOI: 10.3390/diagnostics13122098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/10/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Acute Respiratory Distress Syndrome (ARDS) is a condition that endangers the lives of many Intensive Care Unit patients through gradual reduction of lung function. Due to its heterogeneity, this condition has been difficult to diagnose and treat, although it has been the subject of continuous research, leading to the development of several tools for modeling disease progression on the one hand, and guidelines for diagnosis on the other, mainly the "Berlin Definition". This paper describes the development of a deep learning-based surrogate model of one such tool for modeling ARDS onset in a virtual patient: the Nottingham Physiology Simulator. The model-development process takes advantage of current machine learning and data-analysis techniques, as well as efficient hyperparameter-tuning methods, within a high-performance computing-enabled data science platform. The lightweight models developed through this process present comparable accuracy to the original simulator (per-parameter R2 > 0.90). The experimental process described herein serves as a proof of concept for the rapid development and dissemination of specialised diagnosis support systems based on pre-existing generalised mechanistic models, making use of supercomputing infrastructure for the development and testing processes and supported by open-source software for streamlined implementation in clinical routines.
Collapse
Affiliation(s)
- Chadi S. Barakat
- Jülich Supercomputing Centre, Forschungszentrum Jülich, 52428 Jülich, Germany
- School of Engineering and Natural Science, University of Iceland, 107 Reykjavik, Iceland
- SMITH Consortium of the German Medical Informatics Initiative, 07747 Leipzig, Germany
| | - Konstantin Sharafutdinov
- SMITH Consortium of the German Medical Informatics Initiative, 07747 Leipzig, Germany
- Joint Research Centre for Computational Biomedicine, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Josefine Busch
- Jülich Supercomputing Centre, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Sina Saffaran
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK
| | - Declan G. Bates
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK
| | | | - Andreas Schuppert
- SMITH Consortium of the German Medical Informatics Initiative, 07747 Leipzig, Germany
- Joint Research Centre for Computational Biomedicine, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Sigurður Brynjólfsson
- School of Engineering and Natural Science, University of Iceland, 107 Reykjavik, Iceland
| | - Sebastian Fritsch
- Jülich Supercomputing Centre, Forschungszentrum Jülich, 52428 Jülich, Germany
- SMITH Consortium of the German Medical Informatics Initiative, 07747 Leipzig, Germany
- Department of Intensive Care Medicine, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Morris Riedel
- Jülich Supercomputing Centre, Forschungszentrum Jülich, 52428 Jülich, Germany
- School of Engineering and Natural Science, University of Iceland, 107 Reykjavik, Iceland
- SMITH Consortium of the German Medical Informatics Initiative, 07747 Leipzig, Germany
| |
Collapse
|
22
|
To Establish an Early Prediction Model for Acute Respiratory Distress Syndrome in Severe Acute Pancreatitis Using Machine Learning Algorithm. J Clin Med 2023; 12:jcm12051718. [PMID: 36902504 PMCID: PMC10002486 DOI: 10.3390/jcm12051718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/05/2023] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
OBJECTIVE To develop binary and quaternary classification prediction models in patients with severe acute pancreatitis (SAP) using machine learning methods, so that doctors can evaluate the risk of patients with acute respiratory distress syndrome (ARDS) and severe ARDS at an early stage. METHODS A retrospective study was conducted on SAP patients hospitalized in our hospital from August 2017 to August 2022. Logical Regression (LR), Random Forest (RF), Support Vector Machine (SVM), Decision Tree (DT), and eXtreme Gradient Boosting (XGB) were used to build the binary classification prediction model of ARDS. Shapley Additive explanations (SHAP) values were used to interpret the machine learning model, and the model was optimized according to the interpretability results of SHAP values. Combined with the optimized characteristic variables, four-class classification models, including RF, SVM, DT, XGB, and Artificial Neural Network (ANN), were constructed to predict mild, moderate, and severe ARDS, and the prediction effects of each model were compared. RESULTS The XGB model showed the best effect (AUC = 0.84) in the prediction of binary classification (ARDS or non-ARDS). According to SHAP values, the prediction model of ARDS severity was constructed with four characteristic variables (PaO2/FiO2, APACHE II, SOFA, AMY). Among them, the overall prediction accuracy of ANN is 86%, which is the best. CONCLUSIONS Machine learning has a good effect in predicting the occurrence and severity of ARDS in SAP patients. It can also provide a valuable tool for doctors to make clinical decisions.
Collapse
|
23
|
Sharafutdinov K, Fritsch SJ, Iravani M, Ghalati PF, Saffaran S, Bates DG, Hardman JG, Polzin R, Mayer H, Marx G, Bickenbach J, Schuppert A. Computational Simulation of Virtual Patients Reduces Dataset Bias and Improves Machine Learning-Based Detection of ARDS from Noisy Heterogeneous ICU Datasets. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2023; 5:611-620. [PMID: 39184970 PMCID: PMC11342939 DOI: 10.1109/ojemb.2023.3243190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 08/27/2024] Open
Abstract
Goal: Machine learning (ML) technologies that leverage large-scale patient data are promising tools predicting disease evolution in individual patients. However, the limited generalizability of ML models developed on single-center datasets, and their unproven performance in real-world settings, remain significant constraints to their widespread adoption in clinical practice. One approach to tackle this issue is to base learning on large multi-center datasets. However, such heterogeneous datasets can introduce further biases driven by data origin, as data structures and patient cohorts may differ between hospitals. Methods: In this paper, we demonstrate how mechanistic virtual patient (VP) modeling can be used to capture specific features of patients' states and dynamics, while reducing biases introduced by heterogeneous datasets. We show how VP modeling can be used for data augmentation through identification of individualized model parameters approximating disease states of patients with suspected acute respiratory distress syndrome (ARDS) from observational data of mixed origin. We compare the results of an unsupervised learning method (clustering) in two cases: where the learning is based on original patient data and on data derived in the matching procedure of the VP model to real patient data. Results: More robust cluster configurations were observed in clustering using the model-derived data. VP model-based clustering also reduced biases introduced by the inclusion of data from different hospitals and was able to discover an additional cluster with significant ARDS enrichment. Conclusions: Our results indicate that mechanistic VP modeling can be used to significantly reduce biases introduced by learning from heterogeneous datasets and to allow improved discovery of patient cohorts driven exclusively by medical conditions.
Collapse
Affiliation(s)
- Konstantin Sharafutdinov
- Institute for Computational BiomedicineRWTH Aachen University52062AachenGermany
- Joint Research Center for Computational BiomedicineRWTH Aachen University52062AachenGermany
- SMITH Consortium of the German Medical Informatics Initiative04103LeipzigGermany
| | - Sebastian Johannes Fritsch
- SMITH Consortium of the German Medical Informatics Initiative04103LeipzigGermany
- Department of Intensive Care MedicineUniversity Hospital RWTH Aachen52056AachenGermany
- Juelich Supercomputing CentreForschungszentrum Juelich52428JuelichGermany
| | - Mina Iravani
- Institute for Computational BiomedicineRWTH Aachen University52062AachenGermany
- Joint Research Center for Computational BiomedicineRWTH Aachen University52062AachenGermany
- SMITH Consortium of the German Medical Informatics Initiative04103LeipzigGermany
| | - Pejman Farhadi Ghalati
- Institute for Computational BiomedicineRWTH Aachen University52062AachenGermany
- Joint Research Center for Computational BiomedicineRWTH Aachen University52062AachenGermany
| | - Sina Saffaran
- School of EngineeringUniversity of WarwickCV4 7ALCoventryU.K.
| | - Declan G. Bates
- School of EngineeringUniversity of WarwickCV4 7ALCoventryU.K.
| | | | - Richard Polzin
- Institute for Computational BiomedicineRWTH Aachen University52062AachenGermany
- Joint Research Center for Computational BiomedicineRWTH Aachen University52062AachenGermany
- SMITH Consortium of the German Medical Informatics Initiative04103LeipzigGermany
| | - Hannah Mayer
- SMITH Consortium of the German Medical Informatics Initiative04103LeipzigGermany
- Systems Pharmacology & MedicineBayer AG51368LeverkusenGermany
| | - Gernot Marx
- SMITH Consortium of the German Medical Informatics Initiative04103LeipzigGermany
- Department of Intensive Care MedicineUniversity Hospital RWTH Aachen52056AachenGermany
| | - Johannes Bickenbach
- SMITH Consortium of the German Medical Informatics Initiative04103LeipzigGermany
- Department of Intensive Care MedicineUniversity Hospital RWTH Aachen52056AachenGermany
| | - Andreas Schuppert
- Institute for Computational BiomedicineRWTH Aachen University52062AachenGermany
- Joint Research Center for Computational BiomedicineRWTH Aachen University52062AachenGermany
- SMITH Consortium of the German Medical Informatics Initiative04103LeipzigGermany
| |
Collapse
|
24
|
Discriminating Acute Respiratory Distress Syndrome from other forms of respiratory failure via iterative machine learning. INTELLIGENCE-BASED MEDICINE 2023; 7:100087. [PMID: 36624822 PMCID: PMC9812471 DOI: 10.1016/j.ibmed.2023.100087] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/22/2022] [Accepted: 01/04/2023] [Indexed: 01/06/2023]
Abstract
Acute Respiratory Distress Syndrome (ARDS) is associated with high morbidity and mortality. Identification of ARDS enables lung protective strategies, quality improvement interventions, and clinical trial enrolment, but remains challenging particularly in the first 24 hours of mechanical ventilation. To address this we built an algorithm capable of discriminating ARDS from other similarly presenting disorders immediately following mechanical ventilation. Specifically, a clinical team examined medical records from 1263 ICU-admitted, mechanically ventilated patients, retrospectively assigning each patient a diagnosis of "ARDS" or "non-ARDS" (e.g., pulmonary edema). Exploiting data readily available in the clinical setting, including patient demographics, laboratory test results from before the initiation of mechanical ventilation, and features extracted by natural language processing of radiology reports, we applied an iterative pre-processing and machine learning framework. The resulting model successfully discriminated ARDS from non-ARDS causes of respiratory failure (AUC = 0.85) among patients meeting Berlin criteria for severe hypoxia. This analysis also highlighted novel patient variables that were informative for identifying ARDS in ICU settings.
Collapse
|
25
|
Saab A, Abi Khalil C, Jammal M, Saikali M, Lamy JB. Early Prediction of All-Cause Clinical Deterioration in General Wards Patients: Development and Validation of a Biomarker-Based Machine Learning Model Derived From Rapid Response Team Activations. J Patient Saf 2022; 18:578-586. [PMID: 35985042 DOI: 10.1097/pts.0000000000001069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The aim of the study is to evaluate the performance of a biomarker-based machine learning (ML) model (not including vital signs) derived from reviewed rapid response team (RRT) activations in predicting all-cause deterioration in general wards patients. DESIGN This is a retrospective single-institution study. All consecutive adult patients' cases on noncritical wards identified by RRT calls occurring at least 24 hours after patient admission, between April 2018 and June 2020, were included. The cases were reviewed and labeled for clinical deterioration by a multidisciplinary expert consensus panel. A supervised learning approach was adopted based on a set of biomarkers and demographic data available in the patient's electronic medical record (EMR). SETTING The setting is a 250-bed tertiary university hospital with a basic EMR, with adult (>18 y) patients on general wards. PATIENTS The study analyzed the cases of 514 patients for which the RRT was activated. Rapid response teams were extracted from the hospital telephone log data. Two hundred eighteen clinical deterioration cases were identified in these patients after expert chart review and complemented by 146 "nonevent" cases to build the training and validation data set. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS The best performance was achieved with the random forests algorithm, with a maximal area under the receiver operating curve of 0.90 and F1 score of 0.85 obtained at prediction time T0-6h, slightly decreasing but still acceptable (area under the receiver operating curve, >0.8; F1 score, >0.75) at T0-42h. The system outperformed most classical track-and-trigger systems both in terms of prediction performance and prediction horizon. CONCLUSIONS In hospitals with a basic EMR, a biomarker-based ML model could be used to predict clinical deterioration in general wards patients earlier than classical track-and-trigger systems, thus enabling appropriate clinical interventions for patient safety and improved outcomes.
Collapse
Affiliation(s)
| | | | - Mouin Jammal
- Department of Internal Medicine, Faculty of Medical Sciences, Saint Joseph University, Beirut, Lebanon
| | | | - Jean-Baptiste Lamy
- From the LIMICS, Université Sorbonne Paris Nord, INSERM, UMR 1142, Bobigny, France
| |
Collapse
|
26
|
Rashid M, Ramakrishnan M, Chandran VP, Nandish S, Nair S, Shanbhag V, Thunga G. Artificial intelligence in acute respiratory distress syndrome: A systematic review. Artif Intell Med 2022; 131:102361. [DOI: 10.1016/j.artmed.2022.102361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 11/02/2022]
|
27
|
Shen J, Casie Chetty S, Shokouhi S, Maharjan J, Chuba Y, Calvert J, Mao Q. Massive external validation of a machine learning algorithm to predict pulmonary embolism in hospitalized patients. Thromb Res 2022; 216:14-21. [DOI: 10.1016/j.thromres.2022.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 10/18/2022]
|
28
|
Sheu RK, Chen LC, Wu CL, Pardeshi MS, Pai KC, Huang CC, Chen CY, Chen WC. Multi-Modal Data Analysis for Pneumonia Status Prediction Using Deep Learning (MDA-PSP). Diagnostics (Basel) 2022; 12:diagnostics12071706. [PMID: 35885612 PMCID: PMC9317409 DOI: 10.3390/diagnostics12071706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/27/2022] [Accepted: 07/09/2022] [Indexed: 11/30/2022] Open
Abstract
Evaluating several vital signs and chest X-ray (CXR) reports regularly to determine the recovery of the pneumonia patients at general wards is a challenge for doctors. A recent study shows the identification of pneumonia by the history of symptoms and signs including vital signs, CXR, and other clinical parameters, but they lack predicting the recovery status after starting treatment. The goal of this paper is to provide a pneumonia status prediction system for the early affected patient’s discharge from the hospital within 7 days or late discharge more than 7 days. This paper aims to design a multimodal data analysis for pneumonia status prediction using deep learning classification (MDA-PSP). We have developed a system that takes an input of vital signs and CXR images of the affected patient with pneumonia from admission day 1 to day 3. The deep learning then classifies the health status improvement or deterioration for predicting the possible discharge state. Therefore, the scope is to provide a highly accurate prediction of the pneumonia recovery on the 7th day after 3-day treatment by the SHAP (SHapley Additive exPlanation), imputation, adaptive imputation-based preprocessing of the vital signs, and CXR image feature extraction using deep learning based on dense layers-batch normalization (BN) with class weights for the first 7 days’ general ward patient in MDA-PSP. A total of 3972 patients with pneumonia were enrolled by de-identification with an adult age of 71 mean ± 17 sd and 64% of them were male. After analyzing the data behavior, appropriate improvement measures are taken by data preprocessing and feature vectorization algorithm. The deep learning method of Dense-BN with SHAP features has an accuracy of 0.77 for vital signs, 0.92 for CXR, and 0.75 for the combined model with class weights. The MDA-PSP hybrid method-based experiments are proven to demonstrate higher prediction accuracy of 0.75 for pneumonia patient status. Henceforth, the hybrid methods of machine and deep learning for pneumonia patient discharge are concluded to be a better approach.
Collapse
Affiliation(s)
- Ruey-Kai Sheu
- Department of Computer Science, Tunghai University, Taichung 407224, Taiwan; (R.-K.S.); (K.-C.P.); (C.-C.H.); (C.-Y.C.); (W.-C.C.)
| | - Lun-Chi Chen
- Department of Computer Science, Tunghai University, Taichung 407224, Taiwan; (R.-K.S.); (K.-C.P.); (C.-C.H.); (C.-Y.C.); (W.-C.C.)
- Correspondence: ; Tel.: +886-04-2359-0415
| | - Chieh-Liang Wu
- Department of Critical Care Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan;
- Department of Industrial Engineering and Enterprise Information, Tunghai University, Taichung 407224, Taiwan
- Department of Automatic Control Engineering, Feng Chia University, Taichung 407102, Taiwan
| | | | - Kai-Chih Pai
- Department of Computer Science, Tunghai University, Taichung 407224, Taiwan; (R.-K.S.); (K.-C.P.); (C.-C.H.); (C.-Y.C.); (W.-C.C.)
| | - Chien-Chung Huang
- Department of Computer Science, Tunghai University, Taichung 407224, Taiwan; (R.-K.S.); (K.-C.P.); (C.-C.H.); (C.-Y.C.); (W.-C.C.)
- Department of Critical Care Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan;
| | - Chia-Yu Chen
- Department of Computer Science, Tunghai University, Taichung 407224, Taiwan; (R.-K.S.); (K.-C.P.); (C.-C.H.); (C.-Y.C.); (W.-C.C.)
| | - Wei-Cheng Chen
- Department of Computer Science, Tunghai University, Taichung 407224, Taiwan; (R.-K.S.); (K.-C.P.); (C.-C.H.); (C.-Y.C.); (W.-C.C.)
| |
Collapse
|
29
|
Wu J, Liu C, Xie L, Li X, Xiao K, Xie G, Xie F. Early prediction of moderate-to-severe condition of inhalation-induced acute respiratory distress syndrome via interpretable machine learning. BMC Pulm Med 2022; 22:193. [PMID: 35550064 PMCID: PMC9098141 DOI: 10.1186/s12890-022-01963-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 04/21/2022] [Indexed: 12/02/2022] Open
Abstract
Background Several studies have investigated the correlation between physiological parameters and the risk of acute respiratory distress syndrome (ARDS), in addition, etiology-associated heterogeneity in ARDS has become an emerging topic quite recently; however, the intersection between the two, which is early prediction of target conditions in etiology-specific ARDS, has not been well-studied. We aimed to develop and validate a machine-learning model for the early prediction of moderate-to-severe condition of inhalation-induced ARDS. Methods Clinical expertise was applied with data-driven analysis. Using data from electronic intensive care units (retrospective derivation cohort) and the three most accessible vital signs (i.e. heart rate, temperature, and respiratory rate) together with feature engineering, we applied a random forest approach during the time window of 90 h that ended 6 h prior to the onset of moderate-to-severe respiratory failure (the ratio of partial pressure of arterial oxygen to fraction of inspired oxygen ≤ 200 mmHg). Results The trained random forest classifier was validated using two independent validation cohorts, with an area under the curve of 0.9127 (95% confidence interval 0.8713–0.9542) and 0.9026 (95% confidence interval 0.8075–1), respectively. A Stable and Interpretable RUle Set (SIRUS) was used to extract rules from the RF to provide guidelines for clinicians. We identified several predictive factors, including resp_96h_6h_min < 9, resp_96h_6h_mean ≥ 16.1, HR_96h_6h_mean ≥ 102, and temp_96h_6h_max > 100, that could be used for predicting inhalation-induced ARDS (moderate-to-severe condition) 6 h prior to onset in critical care units. (‘xxx_96h_6h_min/mean/max’: the minimum/mean/maximum values of the xxx vital sign collected during a 90 h time window beginning 96 h prior to the onset of ARDS and ending 6 h prior to the onset from every recorded blood gas test). Conclusions This newly established random forest‑based interpretable model shows good predictive ability for moderate-to-severe inhalation-induced ARDS and may assist clinicians in decision-making, as well as facilitate the enrolment of patients in prevention programmes to improve their outcomes. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-022-01963-7.
Collapse
Affiliation(s)
- Junwei Wu
- Library of Graduate School, Chinese People's Liberation Army General Hospital, Beijing, 100853, China
| | - Chao Liu
- Ping An Healthcare Technology, Beijing, China.,Yidu Cloud Technology Inc, Beijing, China
| | - Lixin Xie
- College of Pulmonary and Critical Care Medicine, Chinese People's Liberation Army General Hospital, Beijing, 100853, China
| | - Xiang Li
- Ping An Healthcare Technology, Beijing, China
| | - Kun Xiao
- College of Pulmonary and Critical Care Medicine, Chinese People's Liberation Army General Hospital, Beijing, 100853, China
| | - Guotong Xie
- Ping An Healthcare Technology, Beijing, China. .,Ping An Health Cloud Company Limited, Beijing, China. .,Ping An International Smart City Technology Co., Ltd., Beijing, China.
| | - Fei Xie
- College of Pulmonary and Critical Care Medicine, Chinese People's Liberation Army General Hospital, Beijing, 100853, China.
| |
Collapse
|
30
|
Bishara A, Maze EH, Maze M. Considerations for the implementation of machine learning into acute care settings. Br Med Bull 2022; 141:15-32. [PMID: 35107127 DOI: 10.1093/bmb/ldac001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/01/2022] [Indexed: 11/14/2022]
Abstract
INTRODUCTION Management of patients in the acute care setting requires accurate diagnosis and rapid initiation of validated treatments; therefore, this setting is likely to be an environment in which cognitive augmentation of the clinician's provision of care with technology rooted in artificial intelligence, such as machine learning (ML), is likely to eventuate. SOURCES OF DATA PubMed and Google Scholar with search terms that included ML, intensive/critical care unit, electronic health records (EHR), anesthesia information management systems and clinical decision support were the primary sources for this report. AREAS OF AGREEMENT Different categories of learning of large clinical datasets, often contained in EHRs, are used for training in ML. Supervised learning uses algorithm-based models, including support vector machines, to pair patients' attributes with an expected outcome. Unsupervised learning uses clustering algorithms to define to which disease grouping a patient's attributes most closely approximates. Reinforcement learning algorithms use ongoing environmental feedback to deterministically pursue likely patient outcome. AREAS OF CONTROVERSY Application of ML can result in undesirable outcomes over concerns related to fairness, transparency, privacy and accountability. Whether these ML technologies irrevocably change the healthcare workforce remains unresolved. GROWING POINTS Well-resourced Learning Health Systems are likely to exploit ML technology to gain the fullest benefits for their patients. How these clinical advantages can be extended to patients in health systems that are neither well-endowed, nor have the necessary data gathering technologies, needs to be urgently addressed to avoid further disparities in healthcare.
Collapse
Affiliation(s)
- Andrew Bishara
- Department of Anesthesia and Perioperative Care, University of California San Francisco, 1001 Potrero Avenue San Francisco, CA 94110, USA.,Bakar Computational Health Sciences Institute, University of California San Francisco, 490 Illinois Street, San Francisco, CA 94143, USA
| | - Elijah H Maze
- Departments of Computer Science and Mathematics, University of Michigan, Bob and Betty Beyster Building, 2260 Hayward Street Ann Arbor, MI 48109, USA
| | - Mervyn Maze
- Department of Anesthesia and Perioperative Care, University of California San Francisco, 1001 Potrero Avenue San Francisco, CA 94110, USA.,Center for Cerebrovascular Research, Building 10, Zuckerberg San Francisco General, 1001 Potrero Avenue, San Francisco, CA 94110, USA
| |
Collapse
|
31
|
Hong N, Liu C, Gao J, Han L, Chang F, Gong M, Su L. State of the Art of Machine Learning-Enabled Clinical Decision Support in Intensive Care Units: Literature Review. JMIR Med Inform 2022; 10:e28781. [PMID: 35238790 PMCID: PMC8931648 DOI: 10.2196/28781] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/02/2021] [Accepted: 12/01/2021] [Indexed: 12/23/2022] Open
Abstract
Background Modern clinical care in intensive care units is full of rich data, and machine learning has great potential to support clinical decision-making. The development of intelligent machine learning–based clinical decision support systems is facing great opportunities and challenges. Clinical decision support systems may directly help clinicians accurately diagnose, predict outcomes, identify risk events, or decide treatments at the point of care. Objective We aimed to review the research and application of machine learning–enabled clinical decision support studies in intensive care units to help clinicians, researchers, developers, and policy makers better understand the advantages and limitations of machine learning–supported diagnosis, outcome prediction, risk event identification, and intensive care unit point-of-care recommendations. Methods We searched papers published in the PubMed database between January 1980 and October 2020. We defined selection criteria to identify papers that focused on machine learning–enabled clinical decision support studies in intensive care units and reviewed the following aspects: research topics, study cohorts, machine learning models, analysis variables, and evaluation metrics. Results A total of 643 papers were collected, and using our selection criteria, 97 studies were found. Studies were categorized into 4 topics—monitoring, detection, and diagnosis (13/97, 13.4%), early identification of clinical events (32/97, 33.0%), outcome prediction and prognosis assessment (46/97, 47.6%), and treatment decision (6/97, 6.2%). Of the 97 papers, 82 (84.5%) studies used data from adult patients, 9 (9.3%) studies used data from pediatric patients, and 6 (6.2%) studies used data from neonates. We found that 65 (67.0%) studies used data from a single center, and 32 (33.0%) studies used a multicenter data set; 88 (90.7%) studies used supervised learning, 3 (3.1%) studies used unsupervised learning, and 6 (6.2%) studies used reinforcement learning. Clinical variable categories, starting with the most frequently used, were demographic (n=74), laboratory values (n=59), vital signs (n=55), scores (n=48), ventilation parameters (n=43), comorbidities (n=27), medications (n=18), outcome (n=14), fluid balance (n=13), nonmedicine therapy (n=10), symptoms (n=7), and medical history (n=4). The most frequently adopted evaluation metrics for clinical data modeling studies included area under the receiver operating characteristic curve (n=61), sensitivity (n=51), specificity (n=41), accuracy (n=29), and positive predictive value (n=23). Conclusions Early identification of clinical and outcome prediction and prognosis assessment contributed to approximately 80% of studies included in this review. Using new algorithms to solve intensive care unit clinical problems by developing reinforcement learning, active learning, and time-series analysis methods for clinical decision support will be greater development prospects in the future.
Collapse
Affiliation(s)
- Na Hong
- Digital Health China Technologies Ltd Co, Beijing, China
| | - Chun Liu
- Digital Health China Technologies Ltd Co, Beijing, China
| | - Jianwei Gao
- Digital Health China Technologies Ltd Co, Beijing, China
| | - Lin Han
- Digital Health China Technologies Ltd Co, Beijing, China
| | | | - Mengchun Gong
- Digital Health China Technologies Ltd Co, Beijing, China
| | - Longxiang Su
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
32
|
Ma RN, He YX, Bai FP, Song ZP, Chen MS, Li M. Machine Learning Model for Predicting Acute Respiratory Failure in Individuals With Moderate-to-Severe Traumatic Brain Injury. Front Med (Lausanne) 2022; 8:793230. [PMID: 35004766 PMCID: PMC8739486 DOI: 10.3389/fmed.2021.793230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/01/2021] [Indexed: 11/30/2022] Open
Abstract
Background: There is a high incidence of acute respiratory failure (ARF) in moderate or severe traumatic brain injury (M-STBI), worsening outcomes. This study aimed to design a predictive model for ARF. Methods: Adult patients with M-STBI [3 ≤ Glasgow Coma Scale (GCS) ≤ 12] with a definite history of brain trauma and abnormal head on CT images, obtained from September 2015 to May 2017, were included. Patients with age >80 years or <18 years, multiple injuries with TBI upon admission, or pregnancy (in women) were excluded. Two models based on machine learning extreme gradient boosting (XGBoost) or logistic regression, respectively, were developed for predicting ARF within 48 h upon admission. These models were evaluated by out-of-sample validation. The samples were assigned to the training and test sets at a ratio of 3:1. Results: In total, 312 patients were analyzed including 132 (42.3%) patients who had ARF. The GCS and the Marshall CT score, procalcitonin (PCT), and C-reactive protein (CRP) on admission significantly predicted ARF. The novel machine learning XGBoost model was superior to logistic regression model in predicting ARF [area under the receiver operating characteristic (AUROC) = 0.903, 95% CI, 0.834–0.966 vs. AUROC = 0.798, 95% CI, 0.697–0.899; p < 0.05]. Conclusion: The XGBoost model could better predict ARF in comparison with logistic regression-based model. Therefore, machine learning methods could help to develop and validate novel predictive models.
Collapse
Affiliation(s)
- Rui Na Ma
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospitals of Fourth Military Medical University, Xi'an, China
| | - Yi Xuan He
- Neurocritical Care Unit, Department of Neurosurgery, The Second Affiliated Hospitals of Fourth Military Medical University, Xi'an, China
| | - Fu Ping Bai
- Department of Neurosurgery, Lin Fen Center Hospital, Lin Fen, China
| | - Zhi Peng Song
- Neurocritical Care Unit, Department of Neurosurgery, The Second Affiliated Hospitals of Fourth Military Medical University, Xi'an, China
| | - Ming Sheng Chen
- Neurocritical Care Unit, Department of Neurosurgery, The Second Affiliated Hospitals of Fourth Military Medical University, Xi'an, China
| | - Min Li
- Neurocritical Care Unit, Department of Neurosurgery, The Second Affiliated Hospitals of Fourth Military Medical University, Xi'an, China
| |
Collapse
|
33
|
Lam C, Thapa R, Maharjan J, Rahmani K, Tso CF, Singh NP, Casie Chetty S, Mao Q. Multi-Task Learning with Recurrent Neural Networks for ARDS Prediction using only EHR Data: Model Development and Validation Study (Preprint). JMIR Med Inform 2022; 10:e36202. [PMID: 35704370 PMCID: PMC9244659 DOI: 10.2196/36202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/07/2022] [Accepted: 05/02/2022] [Indexed: 11/24/2022] Open
Abstract
Background Acute respiratory distress syndrome (ARDS) is a condition that is often considered to have broad and subjective diagnostic criteria and is associated with significant mortality and morbidity. Early and accurate prediction of ARDS and related conditions such as hypoxemia and sepsis could allow timely administration of therapies, leading to improved patient outcomes. Objective The aim of this study is to perform an exploration of how multilabel classification in the clinical setting can take advantage of the underlying dependencies between ARDS and related conditions to improve early prediction of ARDS in patients. Methods The electronic health record data set included 40,703 patient encounters from 7 hospitals from April 20, 2018, to March 17, 2021. A recurrent neural network (RNN) was trained using data from 5 hospitals, and external validation was conducted on data from 2 hospitals. In addition to ARDS, 12 target labels for related conditions such as sepsis, hypoxemia, and COVID-19 were used to train the model to classify a total of 13 outputs. As a comparator, XGBoost models were developed for each of the 13 target labels. Model performance was assessed using the area under the receiver operating characteristic curve. Heat maps to visualize attention scores were generated to provide interpretability to the neural networks. Finally, cluster analysis was performed to identify potential phenotypic subgroups of patients with ARDS. Results The single RNN model trained to classify 13 outputs outperformed the individual XGBoost models for ARDS prediction, achieving an area under the receiver operating characteristic curve of 0.842 on the external test sets. Models trained on an increasing number of tasks resulted in improved performance. Earlier prediction of ARDS nearly doubled the rate of in-hospital survival. Cluster analysis revealed distinct ARDS subgroups, some of which had similar mortality rates but different clinical presentations. Conclusions The RNN model presented in this paper can be used as an early warning system to stratify patients who are at risk of developing one of the multiple risk outcomes, hence providing practitioners with the means to take early action.
Collapse
Affiliation(s)
- Carson Lam
- Dascena, Inc, Houston, TX, United States
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Pai KC, Chao WC, Huang YL, Sheu RK, Chen LC, Wang MS, Lin SH, Yu YY, Wu CL, Chan MC. Artificial intelligence–aided diagnosis model for acute respiratory distress syndrome combining clinical data and chest radiographs. Digit Health 2022; 8:20552076221120317. [PMID: 35990108 PMCID: PMC9386858 DOI: 10.1177/20552076221120317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/29/2022] [Indexed: 11/28/2022] Open
Abstract
Objective The aim of this study was to develop an artificial intelligence–based model to detect the presence of acute respiratory distress syndrome (ARDS) using clinical data and chest X-ray (CXR) data. Method The transfer learning method was used to train a convolutional neural network (CNN) model with an external image dataset to extract the image features. Then, the last layer of the model was fine-tuned to determine the probability of ARDS. The clinical data were trained using three machine learning algorithms—eXtreme Gradient Boosting (XGB), random forest (RF), and logistic regression (LR)—to estimate the probability of ARDS. Finally, ensemble-weighted methods were proposed that combined the image model and the clinical data model to estimate the probability of ARDS. An analysis of the importance of clinical features was performed to explore the most important features in detecting ARDS. A gradient-weighted class activation mapping (Grad-CAM) model was used to explain what our CNN sees and understands when making a decision. Results The proposed ensemble-weighted methods improved the performances of the ARDS classifiers (XGB + CNN, area under the curve [AUC] = 0.916; RF + CNN, AUC = 0.920; LR + CNN, AUC = 0.920; XGB + RF + LR + CNN, AUC = 0.925). In addition, the ML model using clinical data to present the top 15 important features to identify the risk factors of ARDS. Conclusion This study developed combined machine learning models with clinical data and CXR images to detect ARDS. According to the results of the Shapley Additive exPlanations values and the Grad-CAM techniques, an explicable ARDS diagnosis model is suitable for a real-life scenario.
Collapse
Affiliation(s)
- Kai-Chih Pai
- College of Engineering, Tunghai University, Taichung, Taiwan
| | - Wen-Cheng Chao
- Department of Critical Care Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- College of Medicine, National Chung Hsing University, Taichung, Taiwan
- Department of Automatic Control Engineering, Feng Chia University, Taichung, Taiwan
| | - Yu-Len Huang
- Department of Computer Science, Tunghai University, Taichung, Taiwan
| | - Ruey-Kai Sheu
- Department of Computer Science, Tunghai University, Taichung, Taiwan
| | - Lun-Chi Chen
- College of Engineering, Tunghai University, Taichung, Taiwan
| | - Min-Shian Wang
- Artificial Intelligence Studio, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Shau-Hung Lin
- DDS-THU Artificial Intelligence Center, Tunghai University, Taichung, Taiwan
| | - Yu-Yi Yu
- Division of Critical Care and Respiratory Therapy, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Institute of Emergency and Critical Care Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chieh-Liang Wu
- Department of Critical Care Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- College of Medicine, National Chung Hsing University, Taichung, Taiwan
- Department of Automatic Control Engineering, Feng Chia University, Taichung, Taiwan
| | - Ming-Cheng Chan
- College of Medicine, National Chung Hsing University, Taichung, Taiwan
- Division of Critical Care and Respiratory Therapy, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| |
Collapse
|
35
|
Dagli MM, Rajesh A, Asaad M, Butler CE. The Use of Artificial Intelligence and Machine Learning in Surgery: A Comprehensive Literature Review. Am Surg 2021:31348211065101. [PMID: 34958252 DOI: 10.1177/00031348211065101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Interest in the use of artificial intelligence (AI) and machine learning (ML) in medicine has grown exponentially over the last few years. With its ability to enhance speed, precision, and efficiency, AI has immense potential, especially in the field of surgery. This article aims to provide a comprehensive literature review of artificial intelligence as it applies to surgery and discuss practical examples, current applications, and challenges to the adoption of this technology. Furthermore, we elaborate on the utility of natural language processing and computer vision in improving surgical outcomes, research, and patient care.
Collapse
Affiliation(s)
| | - Aashish Rajesh
- Department of Surgery, 14742University of Texas Health Science Center, San Antonio, TX, USA
| | - Malke Asaad
- Department of Plastic & Reconstructive Surgery, 571198the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Charles E Butler
- Department of Plastic & Reconstructive Surgery, 571198the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
36
|
Singhal L, Garg Y, Yang P, Tabaie A, Wong AI, Mohammed A, Chinthala L, Kadaria D, Sodhi A, Holder AL, Esper A, Blum JM, Davis RL, Clifford GD, Martin GS, Kamaleswaran R. eARDS: A multi-center validation of an interpretable machine learning algorithm of early onset Acute Respiratory Distress Syndrome (ARDS) among critically ill adults with COVID-19. PLoS One 2021; 16:e0257056. [PMID: 34559819 PMCID: PMC8462682 DOI: 10.1371/journal.pone.0257056] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/21/2021] [Indexed: 01/08/2023] Open
Abstract
We present an interpretable machine learning algorithm called ‘eARDS’ for predicting ARDS in an ICU population comprising COVID-19 patients, up to 12-hours before satisfying the Berlin clinical criteria. The analysis was conducted on data collected from the Intensive care units (ICU) at Emory Healthcare, Atlanta, GA and University of Tennessee Health Science Center, Memphis, TN and the Cerner® Health Facts Deidentified Database, a multi-site COVID-19 EMR database. The participants in the analysis consisted of adults over 18 years of age. Clinical data from 35,804 patients who developed ARDS and controls were used to generate predictive models that identify risk for ARDS onset up to 12-hours before satisfying the Berlin criteria. We identified salient features from the electronic medical record that predicted respiratory failure among this population. The machine learning algorithm which provided the best performance exhibited AUROC of 0.89 (95% CI = 0.88–0.90), sensitivity of 0.77 (95% CI = 0.75–0.78), specificity 0.85 (95% CI = 085–0.86). Validation performance across two separate health systems (comprising 899 COVID-19 patients) exhibited AUROC of 0.82 (0.81–0.83) and 0.89 (0.87, 0.90). Important features for prediction of ARDS included minimum oxygen saturation (SpO2), standard deviation of the systolic blood pressure (SBP), O2 flow, and maximum respiratory rate over an observational window of 16-hours. Analyzing the performance of the model across various cohorts indicates that the model performed best among a younger age group (18–40) (AUROC = 0.93 [0.92–0.94]), compared to an older age group (80+) (AUROC = 0.81 [0.81–0.82]). The model performance was comparable on both male and female groups, but performed significantly better on the severe ARDS group compared to the mild and moderate groups. The eARDS system demonstrated robust performance for predicting COVID19 patients who developed ARDS at least 12-hours before the Berlin clinical criteria, across two independent health systems.
Collapse
Affiliation(s)
- Lakshya Singhal
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Yash Garg
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Philip Yang
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Azade Tabaie
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - A. Ian Wong
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Akram Mohammed
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Lokesh Chinthala
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Dipen Kadaria
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Amik Sodhi
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Andre L. Holder
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Annette Esper
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - James M. Blum
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Anaesthesia, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Robert L. Davis
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Gari D. Clifford
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Greg S. Martin
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Rishikesan Kamaleswaran
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
37
|
Sayed M, Riaño D, Villar J. Predicting Duration of Mechanical Ventilation in Acute Respiratory Distress Syndrome Using Supervised Machine Learning. J Clin Med 2021; 10:jcm10173824. [PMID: 34501270 PMCID: PMC8432117 DOI: 10.3390/jcm10173824] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/16/2021] [Accepted: 08/23/2021] [Indexed: 12/03/2022] Open
Abstract
Background: Acute respiratory distress syndrome (ARDS) is an intense inflammatory process of the lungs. Most ARDS patients require mechanical ventilation (MV). Few studies have investigated the prediction of MV duration over time. We aimed at characterizing the best early scenario during the first two days in the intensive care unit (ICU) to predict MV duration after ARDS onset using supervised machine learning (ML) approaches. Methods: For model description, we extracted data from the first 3 ICU days after ARDS diagnosis from patients included in the publicly available MIMIC-III database. Disease progression was tracked along those 3 ICU days to assess lung severity according to Berlin criteria. Three robust supervised ML techniques were implemented using Python 3.7 (Light Gradient Boosting Machine (LightGBM); Random Forest (RF); and eXtreme Gradient Boosting (XGBoost)) for predicting MV duration. For external validation, we used the publicly available multicenter database eICU. Results: A total of 2466 and 5153 patients in MIMIC-III and eICU databases, respectively, received MV for >48 h. Median MV duration of extracted patients was 6.5 days (IQR 4.4–9.8 days) in MIMIC-III and 5.0 days (IQR 3.0–9.0 days) in eICU. LightGBM was the best model in predicting MV duration after ARDS onset in MIMIC-III with a root mean square error (RMSE) of 6.10–6.41 days, and it was externally validated in eICU with RMSE of 5.87–6.08 days. The best early prediction model was obtained with data captured in the 2nd day. Conclusions: Supervised ML can make early and accurate predictions of MV duration in ARDS after onset over time across ICUs. Supervised ML models might have important implications for optimizing ICU resource utilization and high acute cost reduction of MV.
Collapse
Affiliation(s)
- Mohammed Sayed
- Department of Computer Engineering, Universitat Rovira i Virgili, Av. Paisos Catalans 26, 43007 Tarragona, Spain; (M.S.); (D.R.)
| | - David Riaño
- Department of Computer Engineering, Universitat Rovira i Virgili, Av. Paisos Catalans 26, 43007 Tarragona, Spain; (M.S.); (D.R.)
| | - Jesús Villar
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain
- Multidisciplinary Organ Dysfunction Evaluation Research Network, Research Unit, Hospital Universitario Dr. Negrín, Barranco de la Ballena s/n, 4th Floor-South Wing, 35019 Las Palmas de Gran Canaria, Spain
- Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, 38 Shuter St., Toronto, ON M5B 1A6, Canada
- Correspondence:
| |
Collapse
|
38
|
Lam C, Tso CF, Green-Saxena A, Pellegrini E, Iqbal Z, Evans D, Hoffman J, Calvert J, Mao Q, Das R. Semi-supervised deep learning from time series clinical data for acute respiratory distress syndrome prediction: model development and validation study. JMIR Form Res 2021; 5:e28028. [PMID: 34398784 PMCID: PMC8447921 DOI: 10.2196/28028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/18/2021] [Accepted: 08/01/2021] [Indexed: 11/23/2022] Open
Abstract
Background A high number of patients who are hospitalized with COVID-19 develop acute respiratory distress syndrome (ARDS). Objective In response to the need for clinical decision support tools to help manage the next pandemic during the early stages (ie, when limited labeled data are present), we developed machine learning algorithms that use semisupervised learning (SSL) techniques to predict ARDS development in general and COVID-19 populations based on limited labeled data. Methods SSL techniques were applied to 29,127 encounters with patients who were admitted to 7 US hospitals from May 1, 2019, to May 1, 2021. A recurrent neural network that used a time series of electronic health record data was applied to data that were collected when a patient’s peripheral oxygen saturation level fell below the normal range (<97%) to predict the subsequent development of ARDS during the remaining duration of patients’ hospital stay. Model performance was assessed with the area under the receiver operating characteristic curve and area under the precision recall curve of an external hold-out test set. Results For the whole data set, the median time between the first peripheral oxygen saturation measurement of <97% and subsequent respiratory failure was 21 hours. The area under the receiver operating characteristic curve for predicting subsequent ARDS development was 0.73 when the model was trained on a labeled data set of 6930 patients, 0.78 when the model was trained on the labeled data set that had been augmented with the unlabeled data set of 16,173 patients by using SSL techniques, and 0.84 when the model was trained on the entire training set of 23,103 labeled patients. Conclusions In the context of using time-series inpatient data and a careful model training design, unlabeled data can be used to improve the performance of machine learning models when labeled data for predicting ARDS development are scarce or expensive.
Collapse
Affiliation(s)
- Carson Lam
- Dascena, Inc., 12333 Sowden Rd Ste B PMB 65148, Houston, US
| | - Chak Foon Tso
- Dascena, Inc., 12333 Sowden Rd Ste B PMB 65148, Houston, US
| | | | | | - Zohora Iqbal
- Dascena, Inc., 12333 Sowden Rd Ste B PMB 65148, Houston, US
| | - Daniel Evans
- Dascena, Inc., 12333 Sowden Rd Ste B PMB 65148, Houston, US
| | - Jana Hoffman
- Dascena, Inc., 12333 Sowden Rd Ste B PMB 65148, Houston, US
| | - Jacob Calvert
- Dascena, Inc., 12333 Sowden Rd Ste B PMB 65148, Houston, US
| | - Qingqing Mao
- Dascena, Inc., 12333 Sowden Rd Ste B PMB 65148, Houston, US
| | - Ritankar Das
- Dascena, Inc., 12333 Sowden Rd Ste B PMB 65148, Houston, US
| |
Collapse
|
39
|
Generalization in Clinical Prediction Models: The Blessing and Curse of Measurement Indicator Variables. Crit Care Explor 2021; 3:e0453. [PMID: 34235453 PMCID: PMC8238368 DOI: 10.1097/cce.0000000000000453] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Supplemental Digital Content is available in the text. OBJECTIVE: Specific factors affecting generalizability of clinical prediction models are poorly understood. Our main objective was to investigate how measurement indicator variables affect external validity in clinical prediction models for predicting onset of vasopressor therapy. DESIGN: We fit logistic regressions on retrospective cohorts to predict vasopressor onset using two classes of variables: seemingly objective clinical variables (vital signs and laboratory measurements) and more subjective variables denoting recency of measurements. SETTING: Three cohorts from two tertiary-care academic hospitals in geographically distinct regions, spanning general inpatient and critical care settings. PATIENTS: Each cohort consisted of adult patients (age greater than or equal to 18 yr at time of hospitalization), with lengths of stay between 6 and 600 hours, and who did not receive vasopressors in the first 6 hours of hospitalization or ICU admission. Models were developed on each of the three derivation cohorts and validated internally on the derivation cohort and externally on the other two cohorts. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: The prevalence of vasopressors was 0.9% in the general inpatient cohort and 12.4% and 11.5% in the two critical care cohorts. Models utilizing both classes of variables performed the best in-sample, with C-statistics for predicting vasopressor onset in 4 hours of 0.862 (95% CI, 0.844–0.879), 0.822 (95% CI, 0.793–0.852), and 0.889 (95% CI, 0.880–0.898). Models solely using the subjective variables denoting measurement recency had poor external validity. However, these practice-driven variables helped adjust for differences between the two hospitals and led to more generalizable models using clinical variables. CONCLUSIONS: We developed and externally validated models for predicting the onset of vasopressors. We found that practice-specific features denoting measurement recency improved local performance and also led to more generalizable models if they are adjusted for during model development but discarded at validation. The role of practice-specific features such as measurement indicators in clinical prediction modeling should be carefully considered if the goal is to develop generalizable models.
Collapse
|
40
|
Sharma M, Taweesedt PT, Surani S. Utilizing Artificial Intelligence in Critical Care: Adding A Handy Tool to Our Armamentarium. Cureus 2021; 13:e15531. [PMID: 34268051 PMCID: PMC8266146 DOI: 10.7759/cureus.15531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2021] [Indexed: 11/06/2022] Open
Abstract
We have witnessed rapid advancement in technology over the last few decades. With the advent of artificial intelligence (AI), newer avenues have opened for researchers. AI has added an entirely new dimension to this technological boom. Researchers in medical science have been excited about the tantalizing prospect of utilizing AI for the benefit of patient care. Lately, we have come across studies trying to test and validate various models based on AI to improve patient care strategies in critical care medicine as well. Thus, in this review, we will attempt to succinctly review current literature discussing AI in critical care medicine and analyze its future utility based on prevailing evidence.
Collapse
Affiliation(s)
- Munish Sharma
- Internal Medicine, Corpus Christi Medical Center, Corpus Christi, USA
| | | | - Salim Surani
- Internal Medicine, Corpus Christi Medical Center, Corpus Christi, USA
- Internal Medicine, University of North Texas, Dallas, USA
| |
Collapse
|
41
|
Rogers P, Wang D, Lu Z. Medical Information Mart for Intensive Care: A Foundation for the Fusion of Artificial Intelligence and Real-World Data. Front Artif Intell 2021; 4:691626. [PMID: 34136802 PMCID: PMC8201087 DOI: 10.3389/frai.2021.691626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/18/2021] [Indexed: 01/27/2023] Open
Affiliation(s)
- Paul Rogers
- Division of Bioinformatics and Biostatistics, FDA National Center for Toxicological Research, Jefferson, AR, United States
| | - Dong Wang
- Division of Bioinformatics and Biostatistics, FDA National Center for Toxicological Research, Jefferson, AR, United States
| | - Zhiyuan Lu
- Division of Bioinformatics and Biostatistics, FDA National Center for Toxicological Research, Jefferson, AR, United States
| |
Collapse
|
42
|
Sayed M, Riaño D, Villar J. Novel criteria to classify ARDS severity using a machine learning approach. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2021; 25:150. [PMID: 33879214 PMCID: PMC8056190 DOI: 10.1186/s13054-021-03566-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/05/2021] [Indexed: 12/15/2022]
Abstract
Background Usually, arterial oxygenation in patients with the acute respiratory distress syndrome (ARDS) improves substantially by increasing the level of positive end-expiratory pressure (PEEP). Herein, we are proposing a novel variable [PaO2/(FiO2xPEEP) or P/FPE] for PEEP ≥ 5 to address Berlin’s definition gap for ARDS severity by using machine learning (ML) approaches. Methods We examined P/FPE values delimiting the boundaries of mild, moderate, and severe ARDS. We applied ML to predict ARDS severity after onset over time by comparing current Berlin PaO2/FiO2 criteria with P/FPE under three different scenarios. We extracted clinical data from the first 3 ICU days after ARDS onset (N = 2738, 1519, and 1341 patients, respectively) from MIMIC-III database according to Berlin criteria for severity. Then, we used the multicenter database eICU (2014–2015) and extracted data from the first 3 ICU days after ARDS onset (N = 5153, 2981, and 2326 patients, respectively). Disease progression in each database was tracked along those 3 ICU days to assess ARDS severity. Three robust ML classification techniques were implemented using Python 3.7 (LightGBM, RF, and XGBoost) for predicting ARDS severity over time. Results P/FPE ratio outperformed PaO2/FiO2 ratio in all ML models for predicting ARDS severity after onset over time (MIMIC-III: AUC 0.711–0.788 and CORR 0.376–0.566; eICU: AUC 0.734–0.873 and CORR 0.511–0.745). Conclusions The novel P/FPE ratio to assess ARDS severity after onset over time is markedly better than current PaO2/FiO2 criteria. The use of P/FPE could help to manage ARDS patients with a more precise therapeutic regimen for each ARDS category of severity. Supplementary Information The online version contains supplementary material available at 10.1186/s13054-021-03566-w.
Collapse
Affiliation(s)
- Mohammed Sayed
- Banzai Research Group On Artificial Intelligence, Department of Computer Engineering, Universitat Rovira I Virgili, Av Paisos Catalans 26, 43007, Tarragona, Spain.
| | - David Riaño
- Banzai Research Group On Artificial Intelligence, Department of Computer Engineering, Universitat Rovira I Virgili, Av Paisos Catalans 26, 43007, Tarragona, Spain.
| | - Jesús Villar
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain. .,Multidisciplinary Organ Dysfunction Evaluation Research Network, Research Unit, Hospital Universitario Dr Negrín, Barranco de la Ballena s/n, 4th Floor -South Wing, 35019, Las Palmas de Gran Canaria, Spain. .,Keenan Research Center for Biomedical Science at the Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, ON, Canada.
| |
Collapse
|
43
|
Nakamori Y, Park EJ, Shimaoka M. Immune Deregulation in Sepsis and Septic Shock: Reversing Immune Paralysis by Targeting PD-1/PD-L1 Pathway. Front Immunol 2021; 11:624279. [PMID: 33679715 PMCID: PMC7925640 DOI: 10.3389/fimmu.2020.624279] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/29/2020] [Indexed: 12/13/2022] Open
Abstract
Sepsis remains a major problem for human health worldwide, thereby manifesting high rates of morbidity and mortality. Sepsis, once understood as a monophasic sustained hyperinflammation, is currently recognized as a dysregulated host response to infection, with both hyperinflammation and immunoparalysis occurring simultaneously from the earliest stages of sepsis, involving multiple organ dysfunctions. Despite the recent progress in the understanding of the pathophysiology underlying sepsis, no specific treatment to restore immune dysregulation in sepsis has been validated in clinical trials. In recent years, treatment for immune checkpoints such as the programmed cell death protein 1/programmed death ligand (PD-1/PD-L) pathway in tumor-infiltrating T-lymphocytes has been successful in the field of cancer immune therapy. As immune-paralysis in sepsis involves exhausted T-lymphocytes, future clinical applications of checkpoint inhibitors for sepsis are expected. In addition, the functions of PD-1/PD-L on innate lymphoid cells and the role of exosomal forms of PD-L1 warrant further research. Looking back on the history of repeatedly failed clinical trials of immune modulatory therapies for sepsis, sepsis must be recognized as a difficult disease entity for performing clinical trials. A major obstacle that could prevent effective clinical trials of drug candidates is the disease complexity and heterogeneities; clinically diagnosed sepsis could contain multiple sepsis subgroups that suffer different levels of hyper-inflammation and immune-suppression in distinct organs. Thus, the selection of appropriate more homogenous sepsis subgroup is the key for testing the clinical efficacy of experimental therapies targeting specific pathways in either hyperinflammation and/or immunoparalysis. An emerging technology such as artificial intelligence (AI) may help to identify an immune paralysis subgroup who would best be treated by PD-1/PD-L1 pathway inhibitors.
Collapse
Affiliation(s)
- Yuki Nakamori
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Mie, Japan
| | - Eun Jeong Park
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Mie, Japan
| | - Motomu Shimaoka
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Mie, Japan
| |
Collapse
|
44
|
Transfer learning with chest X-rays for ER patient classification. Sci Rep 2020; 10:20900. [PMID: 33262425 PMCID: PMC7708466 DOI: 10.1038/s41598-020-78060-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/17/2020] [Indexed: 12/19/2022] Open
Abstract
One of the challenges with urgent evaluation of patients with acute respiratory distress syndrome (ARDS) in the emergency room (ER) is distinguishing between cardiac vs infectious etiologies for their pulmonary findings. We conducted a retrospective study with the collected data of 171 ER patients. ER patient classification for cardiac and infection causes was evaluated with clinical data and chest X-ray image data. We show that a deep-learning model trained with an external image data set can be used to extract image features and improve the classification accuracy of a data set that does not contain enough image data to train a deep-learning model. An analysis of clinical feature importance was performed to identify the most important clinical features for ER patient classification. The current model is publicly available with an interface at the web link: http://nbttranslationalresearch.org/.
Collapse
|
45
|
Zhang Z, Navarese EP, Zheng B, Meng Q, Liu N, Ge H, Pan Q, Yu Y, Ma X. Analytics with artificial intelligence to advance the treatment of acute respiratory distress syndrome. J Evid Based Med 2020; 13:301-312. [PMID: 33185950 DOI: 10.1111/jebm.12418] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 10/21/2020] [Indexed: 02/05/2023]
Abstract
Artificial intelligence (AI) has found its way into clinical studies in the era of big data. Acute respiratory distress syndrome (ARDS) or acute lung injury (ALI) is a clinical syndrome that encompasses a heterogeneous population. Management of such heterogeneous patient population is a big challenge for clinicians. With accumulating ALI datasets being publicly available, more knowledge could be discovered with sophisticated analytics. We reviewed literatures with big data analytics to understand the role of AI for improving the caring of patients with ALI/ARDS. Many studies have utilized the electronic medical records (EMR) data for the identification and prognostication of ARDS patients. As increasing number of ARDS clinical trials data is open to public, secondary analysis on these combined datasets provide a powerful way of finding solution to clinical questions with a new perspective. AI techniques such as Classification and Regression Tree (CART) and artificial neural networks (ANN) have also been successfully used in the investigation of ARDS problems. Individualized treatment of ARDS could be implemented with a support from AI as we are now able to classify ARDS into many subphenotypes by unsupervised machine learning algorithms. Interestingly, these subphenotypes show different responses to a certain intervention. However, current analytics involving ARDS have not fully incorporated information from omics such as transcriptome, proteomics, daily activities and environmental conditions. AI technology is assisting us to interpret complex data of ARDS patients and enable us to further improve the management of ARDS patients in future with individual treatment plans.
Collapse
Affiliation(s)
- Zhongheng Zhang
- Department of Emergency Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Eliano Pio Navarese
- Interventional Cardiology and Cardiovascular Medicine Research, Department of Cardiology and Internal Medicine, Nicolaus Copernicus University, Bydgoszcz, Poland
- Faculty of Medicine, University of Alberta, Edmonton, Canada
| | - Bin Zheng
- Department of Surgery, 2D, Walter C Mackenzie Health Sciences Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Qinghe Meng
- Department of Surgery, State University of New York Upstate Medical University, Syracuse, New York
| | - Nan Liu
- Programme in Health Services and Systems Research, Duke-NUS Medical School, Singapore
| | - Huiqing Ge
- Department of Respiratory Care, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qing Pan
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Yuetian Yu
- Department of Critical Care Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xuelei Ma
- Department of biotherapy, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|