1
|
Oka T, Li TC, Yonemitsu K, Ami Y, Suzaki Y, Kataoka M, Doan YH, Okemoto-Nakamura Y, Kobayashi T, Saito H, Mita T, Tokuoka E, Shibata S, Yoshida T, Takagi H. Propagating and banking genetically diverse human sapovirus strains using a human duodenal cell line: investigating antigenic differences between strains. J Virol 2024; 98:e0063924. [PMID: 39132992 PMCID: PMC11406923 DOI: 10.1128/jvi.00639-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/02/2024] [Indexed: 08/13/2024] Open
Abstract
There are four genogroups and 18 genotypes of human sapoviruses (HuSaVs) responsible for acute gastroenteritis. To comprehend their antigenic and virological differences, it is crucial to obtain viral stocks of the different strains. Previously, we utilized the human duodenum-derived cell line HuTu80, and glycocholate, a conjugated bile acid, to replicate and propagate GI.1, GI.2, and GII.3 HuSaVs (H. Takagi et al., Proc Natl Acad Sci U S A 117:32078-32085, 2020, https://10.1073/pnas.2007310117). First, we investigated the impact of HuTu80 passage number on HuSaV propagation. Second, we demonstrated that taurocholate improved the initial replication success rate and viral RNA levels in fecal specimens relative to glycocholate. By propagating 15 HuSaV genotypes (GI.1-7, GII.1-5, -8, and GV.1-2) and accomplishing preparation of viral stocks containing 1.0 × 109 to 3.4 × 1011 viral genomic copies/mL, we found that all strains required bile acids for replication, with GII.4 showing strict requirements for taurocholate. The deduced VP1 sequences of the viruses during the scale-up of serial passaged virus cultures were either identical or differed by only two amino acids from the original sequences in feces. In addition, we purified virions from nine strains of different genotypes and used them as immunogens for antiserum production. Enzyme-linked immunosorbent assays (ELISAs) using rabbit and guinea pig antisera for each of the 15 strains of different genotypes revealed distinct antigenicity among the propagating viruses across genogroups and differences between genotypes. Acquisition of biobanked viral resources and determination of key culture conditions will be valuable to gain insights into the common mechanisms of HuSaV infection. IMPORTANCE The control of human sapovirus, which causes acute gastroenteritis in individuals of all ages, is challenging because of its association with outbreaks similar to those caused by human norovirus. The establishment of conditions for efficient viral propagation of various viral strains is essential for understanding the infection mechanism and identifying potential control methods. In this study, two critical factors for human sapovirus propagation in a conventional human duodenal cell line were identified, and 15 strains of different genotypes that differed at the genetic and antigenic levels were isolated and used to prepare virus stocks. The preparation of virus stocks has not been successful for noroviruses, which belong to the same family as sapoviruses. Securing virus stocks of multiple human sapovirus strains represents a significant advance toward establishing a reliable experimental system that does not depend on limited virus-positive fecal material.
Collapse
Affiliation(s)
- Tomoichiro Oka
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tian-Cheng Li
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kenzo Yonemitsu
- Research Center for Biosafety, Laboratory Animal and Pathogen Bank, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yasushi Ami
- Research Center for Biosafety, Laboratory Animal and Pathogen Bank, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yuriko Suzaki
- Research Center for Biosafety, Laboratory Animal and Pathogen Bank, National Institute of Infectious Diseases, Tokyo, Japan
| | - Michiyo Kataoka
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yen Hai Doan
- Center for Emergency Preparedness and Response, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yuko Okemoto-Nakamura
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takayuki Kobayashi
- Division of Virology, Fukuoka Institute of Health and Environmental Sciences, Fukuoka, Japan
| | - Hiroyuki Saito
- Department of Microbiology, Akita Prefectural Research Center for Public Health and Environment, Akita, Japan
| | - Tetsuo Mita
- Shimane Prefectural Meat Inspection Center, Shimane, Japan
| | - Eisuke Tokuoka
- Department of Microbiology, Kumamoto Prefectural Institute of Public Health and Environmental Science, Kumamoto, Japan
| | - Shinichiro Shibata
- Microbiology Department, Nagoya City Public Health Research Institute, Aichi, Japan
| | - Tetsuya Yoshida
- Infectious Diseases Division, Nagano Environmental Conservation Research Institute, Nagano, Japan
| | - Hirotaka Takagi
- Research Center for Biosafety, Laboratory Animal and Pathogen Bank, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
2
|
Bennett C, Hunt K, Butler F, Keaveney S, Fanning S, De Gascun C, Coughlan S, O'Gorman J. Detection of Hepatitis A RNA, Hepatitis E RNA, Human Adenovirus F DNA, and Norovirus RNA in Fresh and Frozen Berry Products at Point of Retail in Ireland. FOOD AND ENVIRONMENTAL VIROLOGY 2023; 15:246-254. [PMID: 37528267 PMCID: PMC10499670 DOI: 10.1007/s12560-023-09561-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/22/2023] [Indexed: 08/03/2023]
Abstract
Soft fruits are at particular risk of contamination with enteric viruses such as Hepatitis A virus (HAV), Hepatitis E Virus (HEV), Norovirus (NoV), Human Adenovirus (HAdV) and Sapovirus (SaV). The aim of this study was to investigate, for the first time, the presence of these biological agents in ready to eat (RTE) berries at point of retail in Ireland. A sampling strategy was designed in which RTE fresh and frozen strawberries and raspberries were purchased from five retailers between May and October 2018. Reverse Transcriptase Polymerase Chain Reaction (RT-qPCR) assays for HEV RNA, Nov RNA, SaV RNA, and human Adenovirus species F DNA (HAdV-F) were performed on 239 samples (25g portions). Viral nucleic acid was present in 6.7% (n = 16) of samples tested as follows: HAV RNA (n = 5), HAdV-F DNA (n = 5), HEV RNA (n = 3) and NoV GII RNA (n = 3). Sapovirus RNA was not detected in any product. No significant differences were found between berry type, fresh/frozen status, or supermarket source. This study suggests a risk that exists across all retail outlets however only low levels of nucleic acid ranging from 0 to 16 genome copies/g were present. Although these findings may reflect non-viable/non-infectious virus the continued provision of risk mitigation advice to consumers is warranted and further work is required to ensure control measures to reduce contamination are implemented and enforced.
Collapse
Affiliation(s)
- Charlene Bennett
- UCD-National Virus Reference Laboratory, University College Dublin, Belfield, Dublin, 4, Ireland.
| | - Kevin Hunt
- UCD-School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin, 4, Ireland
| | - Francis Butler
- UCD-School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin, 4, Ireland
| | | | - Séamus Fanning
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, Belfield, Dublin, 4, Ireland
| | - Cillian De Gascun
- UCD-National Virus Reference Laboratory, University College Dublin, Belfield, Dublin, 4, Ireland
| | - Suzie Coughlan
- UCD-National Virus Reference Laboratory, University College Dublin, Belfield, Dublin, 4, Ireland
| | - Joanne O'Gorman
- UCD-National Virus Reference Laboratory, University College Dublin, Belfield, Dublin, 4, Ireland
| |
Collapse
|
3
|
Maan HS, Chaurasia D, Kapoor G, Dave L, Siddiqui A, Pal S, Singh HO, Biswas D, Chowdhary R. Intestinal viral infections of nSARS-CoV2 in the Indian community: Risk of virus spread in India. J Med Virol 2022; 94:1315-1329. [PMID: 34825708 PMCID: PMC9015588 DOI: 10.1002/jmv.27480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/14/2021] [Accepted: 11/24/2021] [Indexed: 12/15/2022]
Abstract
In December 2019, novel severe acute respiratory syndrome coronavirus 2 (nSARS-CoV-2) virus outbreaks emerged from Wuhan, China, and spread all over the world, including India. Molecular diagnosis of Coronavirus Disease 2019 (COVID) 19 for densely and highly populated countries like India is time-consuming. A few reports have described the successful diagnosis of nSARS-CoV-2 virus from sewage and wastewater samples contaminated with fecal matter, suggesting the diagnosis of COVID 19 from the same to raise an alarm about the community transmission of virus for implementation of evacuation and lockdown strategies. So far, the association between the detection of virus and its concentration in stool samples with severity of the disease and the presence or absence of gastrointestinal symptoms have been rarely reported. We led the search utilizing multiple databases, specifically PubMed (Medline), EMBASE, and Google Scholar. We conducted a literature survey on gastrointestinal infection and the spread of this virus through fecal-oral transmission. Reports suggested that the existence and persistence of nSARS-CoV-2 in anal/rectal swabs and stool specimens for a longer period of time than in nasopharyngeal swabs provides a strong tenable outcome of gastrointestinal contamination and dissemination of this infection via potential fecal-oral transmission. This review may be helpful to conduct further studies to address the enteric involvement and excretion of nSARS-CoV-2 RNA in feces and control the community spread in both COVID-19 patients ahead of the onset of symptoms and in asymptomatic individuals through wastewater and sewage surveillance as an early indication of infection. The existence of the viral genome and active viral particle actively participate in genomic variations. Hence, we comprehended the enteric spread of different viruses amongst communities with special reference to nSARS-CoV-2.
Collapse
Affiliation(s)
- Harjeet S. Maan
- State Virology Laboratory, Department of MicrobiologyGandhi Medical CollegeBhopalMadhya PradeshIndia
| | - Deepti Chaurasia
- Department of MicrobiologyGandhi Medical CollegeBhopalMadhya PradeshIndia
| | - Garima Kapoor
- Department of MicrobiologyGandhi Medical CollegeBhopalMadhya PradeshIndia
| | - Lokendra Dave
- Department of Respiratory MedicineGandhi Medical CollegeBhopalMadhya PradeshIndia
| | - Arshi Siddiqui
- Department of BiotechnologyBarkatullah UniversityBhopalMadhya PradeshIndia
| | - Savita Pal
- Department of BiochemistryCentral Drug Research InstituteLucknowUttar PradeshIndia
| | - Hari O. Singh
- Division of Molecular Biology, Indian Council of Medical ResearchNational AIDS Research InstitutePuneMaharashtraIndia
| | - Debasis Biswas
- Department of MicrobiologyAll India Institute of Medical Sciences BhopalBhopalMadhya PradeshIndia
| | - Rashmi Chowdhary
- Department of BiochemistryAll India Institute of Medical Sciences BhopalBhopalMadhya PradeshIndia
| |
Collapse
|
4
|
Song K, Lin X, Liu Y, Ji F, Zhang L, Chen P, Zhao C, Song Y, Tao Z, Xu A. Detection of Human Sapoviruses in Sewage in China by Next Generation Sequencing. FOOD AND ENVIRONMENTAL VIROLOGY 2021; 13:270-280. [PMID: 33755873 PMCID: PMC7985922 DOI: 10.1007/s12560-021-09469-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
Human sapovirus (SaV) is an important causative agent of nonbacterial gastroenteritis in humans. However, little is known about its circulation in China. To study the prevalence and diversity of human SaV genotypes circulating in eastern China, a 3-year environmental surveillance combined with next generation sequencing (NGS) technology was conducted. A total of 36 raw sewage samples were collected from January 2017 to December 2019 in Jinan and processed. Thirty-five (97.22%) samples were positive for human SaV genome in quantitative RT-PCR assay; 33 (91.67%) samples were positive in nested RT-PCR assay on partial capsid VP1 sequence and all amplicons were further analyzed separately by NGS. Among those, ten genotypes belonging to the genogroups of GI, GII, GIV, and GV were identified by NGS, including 4 major genotypes (GI.2, GI.1, GV.1 and GI.3) and 6 uncommon genotypes (GII.5, GII.1, GII.NA1, GII.3, GI.6 and GIV.1). A temporal switch of predominant genotype was observed from GI.2 to GI.1 around June 2019. Local and foreign sequences clustered together in some branches according to phylogenetic analysis, indicating frequent transmission of various lineages in different regions of the world. Environmental surveillance provides a comprehensive picture of human SaV in China. NGS-based environmental surveillance improves our knowledge on human SaV circulating in communities greatly and should be encouraged as a sensitive surveillance tool.
Collapse
Affiliation(s)
- Ke Song
- Department of Microbiology, School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhuaxi Road, Jinan, 250012, People's Republic of China
| | - Xiaojuan Lin
- Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong Center for Disease Control and Prevention, No. 16992 Jingshi Road, Jinan, 250014, People's Republic of China
| | - Yao Liu
- Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong Center for Disease Control and Prevention, No. 16992 Jingshi Road, Jinan, 250014, People's Republic of China
| | - Feng Ji
- Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong Center for Disease Control and Prevention, No. 16992 Jingshi Road, Jinan, 250014, People's Republic of China
| | - Li Zhang
- Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong Center for Disease Control and Prevention, No. 16992 Jingshi Road, Jinan, 250014, People's Republic of China
| | - Peng Chen
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, 44-1 Wenhuaxi Road, Jinan, 250012, People's Republic of China
| | - Chenxu Zhao
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhuaxi Road, Jinan, 250012, People's Republic of China
| | - Yanyan Song
- Department of Microbiology, School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhuaxi Road, Jinan, 250012, People's Republic of China.
| | - Zexin Tao
- Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong Center for Disease Control and Prevention, No. 16992 Jingshi Road, Jinan, 250014, People's Republic of China.
| | - Aiqiang Xu
- Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong Center for Disease Control and Prevention, No. 16992 Jingshi Road, Jinan, 250014, People's Republic of China
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhuaxi Road, Jinan, 250012, People's Republic of China
| |
Collapse
|
5
|
Kitajima M, Ahmed W, Bibby K, Carducci A, Gerba CP, Hamilton KA, Haramoto E, Rose JB. SARS-CoV-2 in wastewater: State of the knowledge and research needs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:139076. [PMID: 32758929 PMCID: PMC7191289 DOI: 10.1016/j.scitotenv.2020.139076] [Citation(s) in RCA: 491] [Impact Index Per Article: 122.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 04/26/2020] [Accepted: 04/26/2020] [Indexed: 04/13/2023]
Abstract
The ongoing global pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been a Public Health Emergency of International Concern, which was officially declared by the World Health Organization. SARS-CoV-2 is a member of the family Coronaviridae that consists of a group of enveloped viruses with single-stranded RNA genome, which cause diseases ranging from common colds to acute respiratory distress syndrome. Although the major transmission routes of SARS-CoV-2 are inhalation of aerosol/droplet and person-to-person contact, currently available evidence indicates that the viral RNA is present in wastewater, suggesting the need to better understand wastewater as potential sources of epidemiological data and human health risks. Here, we review the current knowledge related to the potential of wastewater surveillance to understand the epidemiology of COVID-19, methodologies for the detection and quantification of SARS-CoV-2 in wastewater, and information relevant for human health risk assessment of SARS-CoV-2. There has been growing evidence of gastrointestinal symptoms caused by SARS-CoV-2 infections and the presence of viral RNA not only in feces of infected individuals but also in wastewater. One of the major challenges in SARS-CoV-2 detection/quantification in wastewater samples is the lack of an optimized and standardized protocol. Currently available data are also limited for conducting a quantitative microbial risk assessment (QMRA) for SARS-CoV-2 exposure pathways. However, modeling-based approaches have a potential role to play in reducing the impact of the ongoing COVID-19 outbreak. Furthermore, QMRA parameters obtained from previous studies on relevant respiratory viruses help to inform risk assessments of SARS-CoV-2. Our understanding on the potential role of wastewater in SARS-CoV-2 transmission is largely limited by knowledge gaps in its occurrence, persistence, and removal in wastewater. There is an urgent need for further research to establish methodologies for wastewater surveillance and understand the implications of the presence of SARS-CoV-2 in wastewater.
Collapse
Affiliation(s)
- Masaaki Kitajima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan.
| | - Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Kyle Bibby
- Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46556, USA
| | - Annalaura Carducci
- Department of Biology, University of Pisa, Via S. Zeno, 35-39, I-56123 Pisa, Italy
| | - Charles P Gerba
- Department of Environmental Science and Water & Energy Sustainable Technology (WEST) Center, The University of Arizona, 2959 W Calle Agua Nueva, Tucson, AZ 85745, USA
| | - Kerry A Hamilton
- School of Sustainable Engineering and the Built Environment and The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Joan B Rose
- Department of Fisheries and Wildlife, Michigan State University, 480 Wilson Road, East Lansing, MI 48824, USA
| |
Collapse
|
6
|
Sakagami A, Ueki Y, Dapat C, Saito M, Oshitani H. Genetic analysis of sapoviruses detected in outbreaks and sporadic cases of acute gastroenteritis in Miyagi Prefecture, Japan. J Clin Virol 2020; 132:104648. [PMID: 33038625 DOI: 10.1016/j.jcv.2020.104648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/12/2020] [Accepted: 09/16/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Human sapovirus (SaV) causes sporadic and endemic acute gastroenteritis worldwide. However, little is known about the relationship between the mode of transmission and genetic characteristics of SaV. OBJECTIVE To investigate the molecular characteristics of SaV-associated acute gastroenteritis among sporadic cases, foodborne, and nonfoodborne outbreaks. STUDY DESIGN We performed a systematic review of publications and genetic analysis of SaV in fecal specimens from 98 outpatients with acute gastroenteritis, 32 stool samples from 8 foodborne outbreaks, and 63 stool samples from 23 nonfoodborne outbreaks in Miyagi Prefecture, Japan from 1993 and between 2004 and 2020. Reverse transcription polymerase chain reaction (RT-PCR) was employed for the detection of SaV, and the partial capsid gene was sequenced for genotyping and phylogenetic analysis. RESULTS The overall detection rate of SaV in sporadic cases, foodborne, and nonfoodborne outbreaks was 5.8, 1.7, and 4.3%, respectively. Genotypic analysis revealed GI.1 to be the predominant genotype in sporadic cases (31.5%) and nonfoodborne outbreaks (52.1%), whereas it was not detected in foodborne outbreaks. Some outbreaks occurred following sporadic cases with the same genotype. CONCLUSIONS The distribution of SaV genotypes was different between foodborne outbreaks and other settings. The effective SaV infection control may differ depending on the genomic characteristics.
Collapse
Affiliation(s)
- Akie Sakagami
- Department of Virology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan; Department of Microbiology, Miyagi Prefectural Institute of Public Health and Environment, 4-7-2 Saiwai-cho, Miyagino-ku, Sendai, Miyagi 983-0836, Japan
| | - Yo Ueki
- Department of Microbiology, Miyagi Prefectural Institute of Public Health and Environment, 4-7-2 Saiwai-cho, Miyagino-ku, Sendai, Miyagi 983-0836, Japan
| | - Clyde Dapat
- Department of Virology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Mayuko Saito
- Department of Virology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan.
| | - Hitoshi Oshitani
- Department of Virology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| |
Collapse
|
7
|
Oka T, Yamamoto SP, Iritani N, Sato S, Tatsumi C, Mita T, Yahiro S, Shibata S, Wu FT, Takagi H. Polymerase chain reaction primer sets for the detection of genetically diverse human sapoviruses. Arch Virol 2020; 165:2335-2340. [PMID: 32719956 PMCID: PMC7383071 DOI: 10.1007/s00705-020-04746-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 06/22/2020] [Indexed: 11/29/2022]
Abstract
Sapoviruses are increasingly being recognized as pathogens associated with gastroenteritis in humans. Human sapoviruses are currently assigned to 18 genotypes (GI.1-7, GII.1-8, GIV.1, and GV.1-2) based on the sequence of the region encoding the major structural protein. In this study, we evaluated 11 polymerase chain reaction (PCR) assays using published and newly designed/modified primers and showed that four PCR assays with different primer combinations amplified all of the tested human sapovirus genotypes using either synthetic DNA or cDNA prepared from human sapovirus-positive fecal specimens. These assays can be used as improved broadly reactive screening tests or as tools for molecular characterization of human sapoviruses.
Collapse
Affiliation(s)
- Tomoichiro Oka
- Department of Virology II, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama-shi, Tokyo, 208-0011, Japan.
| | - Seiji P Yamamoto
- Division of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| | - Nobuhiro Iritani
- Division of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| | - Shigenori Sato
- Division of Virology and Medical Zoology, Chiba Prefectural Institute of Public Health, Chiba, Japan
| | - Chika Tatsumi
- Division of Virology, Shimane Prefectural Institute of Public Health and Environmental Science, Shimane, Japan
| | - Tetsuo Mita
- Division of Virology, Shimane Prefectural Institute of Public Health and Environmental Science, Shimane, Japan
| | - Shunsuke Yahiro
- Department of Microbiology, Kumamoto Prefectural Institute of Public Health and Environmental Science, Kumamoto, Japan
| | - Shinichiro Shibata
- Microbiology Department, Nagoya City Public Health Research Institute, Aichi, Japan
| | - Fang-Tzy Wu
- Center for Research, Diagnostics and Vaccine Development, Taiwan Centers for Disease Control, Taipei, Taiwan
| | - Hirotaka Takagi
- Management Department of Biosafety and Laboratory Animal, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
8
|
Pietsch C, Liebert UG. Intrahost viral evolution during chronic sapovirus infections. J Clin Virol 2019; 113:1-7. [DOI: 10.1016/j.jcv.2019.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/22/2018] [Accepted: 02/04/2019] [Indexed: 12/27/2022]
|
9
|
Human Sapovirus among Outpatients with Acute Gastroenteritis in Spain: A One-Year Study. Viruses 2019; 11:v11020144. [PMID: 30744057 PMCID: PMC6409837 DOI: 10.3390/v11020144] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/06/2019] [Accepted: 02/07/2019] [Indexed: 02/06/2023] Open
Abstract
Viral agents of human gastroenteritis affect people of all ages across the globe. As a mainly self-limiting disease, it is difficult to evaluate the real prevalence of etiological agents circulating in each region. Many of the analyzed outbreaks are caused by viruses of the family Caliciviridae, especially the genus Norovirus (NoV). Most studies have focused on other enteric viruses, leaving sapovirus (SaV) underestimated as an important emerging human threat. This one-year study analyzed clinical samples from hospital outpatients with acute gastroenteritis in Spain, with the aim of revealing the importance of human SaV as an emerging viral pathogen. A total of 2667 stools were tested using reverse transcription (RT)-qPCR to detect and quantify SaV. Sapovirus was detected in all age groups, especially in infants, children, and the elderly. The prevalence was 15.64% (417/2667), and was slightly higher in 0–2- and 3–5-year-olds (19.53% and 17.95%, respectively) and much lower in 13–18-year-olds (9.86%). Positive samples were detected throughout the year, with peaks of detection during autumn and the late winter to early spring months. The mean value for the quantified samples was 6.5 × 105 genome copies per gram of stool (GC/g) (range 2.4 × 103–6.6 × 1011 GC/g). RT-nested PCR and sequencing were used for further genotyping. Genetic characterization showed a predominance of genogroup I (GI), followed by GII and GIV. The detection of multiple genotypes suggests the circulation of different strains without any clear tendency. The results obtained suggest SaV as the second major gastroenteritis agent after NoV in the region.
Collapse
|
10
|
Hergens MP, Nederby Öhd J, Alm E, Askling HH, Helgesson S, Insulander M, Lagerqvist N, Svenungsson B, Tihane M, Tolfvenstam T, Follin P. Investigation of a food-borne outbreak of gastroenteritis in a school canteen revealed a variant of sapovirus genogroup V not detected by standard PCR, Sollentuna, Sweden, 2016. Euro Surveill 2017; 22:30543. [PMID: 28602163 PMCID: PMC5479987 DOI: 10.2807/1560-7917.es.2017.22.22.30543] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 01/10/2017] [Indexed: 01/19/2023] Open
Abstract
A food-borne outbreak of gastroenteritis with more than 650 suspected cases occurred in April 2016 in Sollentuna, Sweden. It originated in a school kitchen serving a total of 2,700 meals daily. Initial microbiological testing (for Campylobacter, Salmonella, Shigella, Yersinia, Giardia, Cryptosporidium, Entamoeba histolytica, adeno-, astro-, noro-, rota- and sapovirus) of stool samples from 15 symptomatic cases was negative, despite a clinical presentation suggestive of calicivirus. Analyses of the findings from both the Sollentuna municipality environmental team and a web-based questionnaire suggested that the source of the outbreak was the salad buffet served on 20 April, although no specific food item could be identified. Subsequent electron microscopic examination of stool samples followed by whole genome sequencing revealed a variant of sapovirus genogroup V. The virus was not detected using standard PCR screening. This paper describes the epidemiological outbreak investigation and findings leading to the discovery.
Collapse
Affiliation(s)
- Maria-Pia Hergens
- Department of Communicable Disease Control and Prevention, Stockholm County Council, Sweden
- Department of Medicine Solna, Infectious Disease Unit, Karolinska Institutet, Stockholm, Sweden
| | - Joanna Nederby Öhd
- Department of Communicable Disease Control and Prevention, Stockholm County Council, Sweden
| | - Erik Alm
- Public Health Agency of Sweden, Stockholm, Sweden
| | - Helena H Askling
- Department of Communicable Disease Control and Prevention, Stockholm County Council, Sweden
- Department of Medicine Solna, Infectious Disease Unit, Karolinska Institutet, Stockholm, Sweden
| | | | - Mona Insulander
- Department of Communicable Disease Control and Prevention, Stockholm County Council, Sweden
| | | | - Bo Svenungsson
- Department of Communicable Disease Control and Prevention, Stockholm County Council, Sweden
| | - Malin Tihane
- Department of Communicable Disease Control and Prevention, Stockholm County Council, Sweden
| | | | - Per Follin
- Department of Communicable Disease Control and Prevention, Stockholm County Council, Sweden
- Department of Medicine Solna, Infectious Disease Unit, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
11
|
Goyal SM, Cannon JL. Human and Animal Viruses in Food (Including Taxonomy of Enteric Viruses). VIRUSES IN FOODS 2016. [PMCID: PMC7122939 DOI: 10.1007/978-3-319-30723-7_2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In recent years, there has been an increase in the incidence of foodborne diseases worldwide, with viruses now being recognized as a major cause of these illnesses. The most common viruses implicated in foodborne disease are enteric viruses, which are found in the human gastrointestinal tract, excreted in human feces and transmitted by the fecal-oral route. Many different viruses are found in the gastrointestinal tract but not all are recognized as foodborne pathogens. The diseases caused by enteric viruses fall into three main types: gastroenteritis, enterically transmitted hepatitis, and illnesses that can affect other parts of the body such as the eye, the respiratory system and the central nervous system leading to conjunctivitis, poliomyelitis, meningitis and encephalitis. Viral pathogens excreted in human feces include noroviruses, sapoviruses, enteroviruses, adenoviruses, hepatitis A virus (HAV), hepatitis E virus (HEV), rotaviruses, and astroviruses. Most of these viruses have been associated with foodborne disease outbreaks. Noroviruses and HAV are commonly identified as foodborne causes of gastroenteritis and acute hepatitis, respectively.
Collapse
|
12
|
Fioretti J, Rocha M, Fumian T, Ginuino A, da Silva T, de Assis M, Rodrigues J, Carvalho-Costa F, Miagostovich M. Occurrence of human sapoviruses in wastewater and stool samples in Rio De Janeiro, Brazil. J Appl Microbiol 2016; 121:855-62. [DOI: 10.1111/jam.13205] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/08/2016] [Accepted: 06/13/2016] [Indexed: 11/30/2022]
Affiliation(s)
- J.M. Fioretti
- Laboratory of Comparative and Environmental Virology; Instituto Oswaldo Cruz; Fundação Oswaldo Cruz; Rio de Janeiro Brazil
| | - M.S. Rocha
- Laboratory of Comparative and Environmental Virology; Instituto Oswaldo Cruz; Fundação Oswaldo Cruz; Rio de Janeiro Brazil
| | - T.M. Fumian
- Laboratory of Comparative and Environmental Virology; Instituto Oswaldo Cruz; Fundação Oswaldo Cruz; Rio de Janeiro Brazil
| | - A. Ginuino
- Laboratory of Comparative and Environmental Virology; Instituto Oswaldo Cruz; Fundação Oswaldo Cruz; Rio de Janeiro Brazil
| | - T.P. da Silva
- Laboratory of Comparative and Environmental Virology; Instituto Oswaldo Cruz; Fundação Oswaldo Cruz; Rio de Janeiro Brazil
| | - M.R. de Assis
- Laboratory of Comparative and Environmental Virology; Instituto Oswaldo Cruz; Fundação Oswaldo Cruz; Rio de Janeiro Brazil
| | - J.de.S. Rodrigues
- Laboratory of Comparative and Environmental Virology; Instituto Oswaldo Cruz; Fundação Oswaldo Cruz; Rio de Janeiro Brazil
| | - F.A. Carvalho-Costa
- Laboratory of Epidemiology and Molecular Systematic; Instituto Oswaldo Cruz; Fundação Oswaldo Cruz; Rio de Janeiro Brazil
| | - M.P. Miagostovich
- Laboratory of Comparative and Environmental Virology; Instituto Oswaldo Cruz; Fundação Oswaldo Cruz; Rio de Janeiro Brazil
| |
Collapse
|
13
|
Murray TY, Nadan S, Page NA, Taylor MB. Diverse sapovirus genotypes identified in children hospitalised with gastroenteritis in selected regions of South Africa. J Clin Virol 2016; 76:24-9. [PMID: 26803285 DOI: 10.1016/j.jcv.2016.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 12/15/2015] [Accepted: 01/05/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND Sapoviruses (SaVs) are recognised as causative agents of gastroenteritis worldwide. However, data on the genetic diversity of this virus in Africa are lacking, particularly in the form of current long-term studies. OBJECTIVE To determine the genetic diversity of SaVs in children hospitalised with gastroenteritis in South Africa (SA). STUDY DESIGN From April 2009 to December 2013, SaVs were characterised from stool specimens from children hospitalised with gastroenteritis in four provinces of SA. RESULTS Fourteen different SaV genotypes were identified from the 221 strains that were characterised. Genogroup (G) IV predominated overall and was detected in 24% (53/221) of specimens. The other identified genotypes included six belonging to GI (GI.1-GI.3, GI.5, GI.6, and GI.7) and seven belonging to GII (GII.1-GII.7). CONCLUSION This study has provided the first comprehensive data on the genetic diversity of SaVs in a clinical setting in SA, contributing to the global knowledge of this virus.
Collapse
Affiliation(s)
- Tanya Y Murray
- Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia, 0007 Pretoria, South Africa.
| | - Sandrama Nadan
- Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia, 0007 Pretoria, South Africa; Centre for Enteric Diseases, National Institute for Communicable Diseases, Private Bag X4, Sandringham, 2131 Johannesburg, South Africa.
| | - Nicola A Page
- Centre for Enteric Diseases, National Institute for Communicable Diseases, Private Bag X4, Sandringham, 2131 Johannesburg, South Africa.
| | - Maureen B Taylor
- Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia, 0007 Pretoria, South Africa.
| |
Collapse
|
14
|
Prevalence and Genetic Diversity of Human Sapoviruses in Shellfish from Commercial Production Areas in Galicia, Spain. Appl Environ Microbiol 2015; 82:1167-1172. [PMID: 26655761 DOI: 10.1128/aem.02578-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 11/21/2015] [Indexed: 11/20/2022] Open
Abstract
The prevalence of human forms of Sapovirus, an emerging pathogen of human gastroenteritis, was investigated in an 18-month survey from class B mollusc-harvesting areas in two Galician rias (northwest Spain). The detection and quantification of Sapovirus was performed by reverse transcription-real-time PCR, according to the recently developed standard method ISO/TS 15216-1:2013, and genotyping by reverse transcription-nested PCR. The bivalve species studied were wild and cultured mussels (Mytilus galloprovincialis), clams (Venerupis philippinarum and Venerupis decussata), and cockles (Cerastoderma edule). Sapovirus was detected in 30 out of 168 samples (17.9%), with cockles being the species with the highest prevalence of positives (28.1%), followed by clams (22.6%), wild mussels (14.3%), and cultured mussels (12.9%). The estuary in the south of the region demonstrated a higher percentage of positive samples (21.8%) than the one in the north (14.4%). Viral contamination levels for the positive samples ranged between 1.9 × 10(3) and 1.4 × 10(5) RNA copies/g of digestive tissue. Thirteen Sapovirus sequences could be obtained based on partial capsid gene sequence and were classified into four genotypes: GI.1 (2 samples), GI.2 (8 samples), GIV.1 (2 samples), and GV.1 (1 sample).
Collapse
|
15
|
Abstract
Sapoviruses cause acute gastroenteritis in humans and animals. They belong to the genus Sapovirus within the family Caliciviridae. They infect and cause disease in humans of all ages, in both sporadic cases and outbreaks. The clinical symptoms of sapovirus gastroenteritis are indistinguishable from those caused by noroviruses, so laboratory diagnosis is essential to identify the pathogen. Sapoviruses are highly diverse genetically and antigenically. Currently, reverse transcription-PCR (RT-PCR) assays are widely used for sapovirus detection from clinical specimens due to their high sensitivity and broad reactivity as well as the lack of sensitive assays for antigen detection or cell culture systems for the detection of infectious viruses. Sapoviruses were first discovered in 1976 by electron microscopy in diarrheic samples of humans. To date, sapoviruses have also been detected from several animals: pigs, mink, dogs, sea lions, and bats. In this review, we focus on genomic and antigenic features, molecular typing/classification, detection methods, and clinical and epidemiological profiles of human sapoviruses.
Collapse
|
16
|
Iizuka S, Takai-Todaka R, Ohshiro H, Kitajima M, Wang Q, Saif LJ, Wakita T, Noda M, Katayama K, Oka T. Detection of multiple human sapoviruses from imported frozen individual clams. FOOD AND ENVIRONMENTAL VIROLOGY 2013; 5:119-125. [PMID: 23526313 DOI: 10.1007/s12560-013-9109-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 03/08/2013] [Indexed: 06/02/2023]
Abstract
Sapovirus (SaV), a member of the family Caliciviridae, is an important acute gastroenteritis pathogen in humans. Consumption of raw or inadequately cooked clams is one transmission route of human SaV. Sixty individual clams (Ruditapes philippinarum) were from market and tested for human SaVs using two nested reverse transcription-polymerase chain reaction (RT-PCR) assays, one of which was recently developed and effectively detected human SaV from environmental water samples. The nested RT-PCR effective for water samples showed a higher detection rate (68.3 %, 41 of 60 clams) than the other nested RT-PCR (43.3 %, 26 of 60 clams). Based on the sequence analysis of the partial capsid region, SaV strains detected in this study were classified into nine genotypes: GI.1, GI.3, GI.5, GI.6, GI.7, GII.3, GII.4, GIV.1, and GV.1. We demonstrated for the first time the presence of multiple genogroups and/or genotypes of SaV strains in the individual clams. Using a more sensitive assay such as we described to test individual clam samples will help to identify the source of a SaV-gastroenteritis outbreak.
Collapse
Affiliation(s)
- Setsuko Iizuka
- Division of Virology, Shimane Prefectural Institute of Public Health and Environmental Science, Shimane, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Prevalence of porcine noroviruses, molecular characterization of emerging porcine sapoviruses from finisher swine in the United States, and unified classification scheme for sapoviruses. J Clin Microbiol 2013; 51:2344-53. [PMID: 23678065 DOI: 10.1128/jcm.00865-13] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Noroviruses (NoVs) and sapoviruses (SaVs) are important human pathogens. Although the involvement of porcine NoVs in disease in pigs is unclear, they are genetically and antigenically closely related to human NoVs. Human NoV-like strains have been detected in pigs, raising public health concerns of potential interspecies transmission. Porcine SaVs are highly diverse and emerging in swine populations. Recently, at least three new genogroups of porcine SaVs have been proposed. In this study, we tested 413 pooled fecal samples collected from apparently healthy finisher pigs in North Carolina swine farms during 2009. Reverse transcription (RT)-PCR coupled hybridization assays were performed to detect known porcine NoVs. The overall prevalence of porcine NoVs determined was 18.9% based on this method. Samples were then tested by RT-PCR targeting the 5' end of the capsid region for genogroup II (GII) NoVs, a group which includes human NoVs, followed by sequence analysis. All NoVs identified belonged to typical porcine NoV genotypes, and no human NoV-like strains were detected in specimens from these pigs. Porcine NoV-negative samples (n = 335) were subsequently screened using universal calicivirus primers, and 17 SaV strains were confirmed by sequencing. Based on the partial RNA-dependent RNA polymerase (RdRp) region, they clustered with GIII, GVII, and GVIII and with currently unclassified SaVs. According to analysis of the complete capsid sequences, 7 representative strains clustered with GVII, GVIII, and GIX? SaVs. We tentatively classified SaVs into 14 genogroups based on the complete capsid protein VP1. In summary, porcine NoVs and highly divergent SaVs were present in North Carolina finisher pigs.
Collapse
|
18
|
Harada S, Oka T, Tokuoka E, Kiyota N, Nishimura K, Shimada Y, Ueno T, Ikezawa S, Wakita T, Wang Q, Saif LJ, Katayama K. A confirmation of sapovirus re-infection gastroenteritis cases with different genogroups and genetic shifts in the evolving sapovirus genotypes, 2002-2011. Arch Virol 2012; 157:1999-2003. [PMID: 22772483 DOI: 10.1007/s00705-012-1387-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 05/12/2012] [Indexed: 11/25/2022]
Abstract
Sapovirus (SaV) is an important pathogen that causes acute gastroenteritis in humans. Human SaV is highly diverse genetically and is classified into multiple genogroups and genotypes. At present, there is no clear evidence for gastroenteritis cases caused by re-infection with SaV. We found that two individuals were sequentially infected with SaVs of two different genogroups and had gastroenteritis after each infection, although in one of the subsequent cases, both SaV and norovirus were detected. We also found a genetic shift in SaVs from gastroenteritis outpatients in the same geographical location. Our results suggest that protective immunity may be at least genogroup-specific for SaV.
Collapse
Affiliation(s)
- Seiya Harada
- Kumamoto Prefectural Institute of Public Health and Environmental Science, Kumamoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
A foodborne outbreak of sapovirus linked to catered box lunches in Japan. Arch Virol 2012; 157:1995-7. [PMID: 22752792 DOI: 10.1007/s00705-012-1394-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 05/19/2012] [Indexed: 10/28/2022]
Abstract
Sapovirus (SaV) is a common cause of acute viral gastroenteritis worldwide, and SaV outbreaks have become more frequent in recent years. In January 2010, an outbreak of acute gastroenteritis due to SaV occurred in Aichi, Gifu and Mie Prefectures, Japan. The illness was strongly associated with eating a delivered box lunch prepared by one catering company. In total, 655 (17.1 %) of 3827 individuals developed gastroenteritic symptoms. SaV was detected in seven of the nine people who became ill and in seven of the 52 food handlers at the catering company, but all the tested samples were negative for norovirus and enteropathogenic bacteria. Sequence analysis of RT-PCR products indicated that the nucleotide sequences of SaV strains from the people who became ill and the food handlers were identical. The detected SaV strains were genogrouped as SaV genotype I.2. This was the largest foodborne outbreak of sapovirus in Japan.
Collapse
|
20
|
Moser O, Lück S, Dilloo D, Eis-Hübinger AM, Simon A. Sapovirus as a gastrointestinal pathogen in febrile pediatric patients with cancer. J Med Virol 2012; 83:2233-6. [PMID: 22012734 DOI: 10.1002/jmv.22219] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Human caliciviruses are the second most common cause of viral gastroenteritis after rotavirus in children. Unlike norovirus, sapovirus infection is less well characterized and defined in the clinical setting of gastrointestinal disease, and there are no reports of sapovirus infections in pediatric oncology patients receiving chemotherapy treatment. Stool samples from all pediatric oncology patients presenting with fever and diarrhea at one pediatric oncology unit were tested prospectively for sapovirus by real-time reverse transcription-PCR sapovirus genogrouping was performed by nested PCR. Sapovirus was detected in 2 of 100 stool specimens prospectively sampled from 58 symptomatic pediatric oncology inpatients between December 2008 and September 2009. Both patients received low-dose chemotherapy for their underlying conditions at the time of infection with sapovirus. Genogrouping of the viruses showed the presence of a GI.1 strain and GII.3 strain, unlike the most common GI.2 strain responsible for outbreaks in different European countries. The contribution of sapovirus infection to the morbidity of pediatric cancer patients and its potential for nosocomial spread is discussed. Sapovirus, an often unrecognized pathogen, should be considered along with other viruses in pediatric cancer patients suffering from gastrointestinal disease.
Collapse
|
21
|
Human sapovirus classification based on complete capsid nucleotide sequences. Arch Virol 2011; 157:349-52. [PMID: 22075918 DOI: 10.1007/s00705-011-1161-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 10/07/2011] [Indexed: 10/15/2022]
Abstract
The genetically diverse sapoviruses (SaVs) are a significant cause of acute human gastroenteritis. Human SaV surveillance is becoming more critical, and a better understanding of the diversity and distribution of the viral genotypes is needed. In this study, we analyzed 106 complete human SaV capsid nucleotide sequences to provide a better understanding of their diversity. Based on those results, we propose a novel standardized classification scheme that meets the requirements of the International Calicivirus Scientific Committee. We believe the classification scheme and strains described here will be of value for the molecular characterization and classification of newly detected SaV genotypes and for comparing data worldwide.
Collapse
|
22
|
González GG, Liprandi F, Ludert JE. Molecular epidemiology of enteric viruses in children with sporadic gastroenteritis in Valencia, Venezuela. J Med Virol 2011; 83:1972-82. [PMID: 21915873 DOI: 10.1002/jmv.22185] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2011] [Indexed: 01/20/2023]
Abstract
The epidemiology and clinical symptoms in infants and young children with acute sporadic viral gastroenteritis due to viral etiologies other than rotaviruses have not been studied thoroughly in developing countries. Fecal specimens from 480 children <5 years of age who were admitted to a large children's hospital in the city of Valencia, Venezuela, with acute diarrhea during January to December 2003 were collected and screened by ELISA and RT-PCR for rotavirus, adenovirus, norovirus, sapovirus, and astrovirus. Viral isolates were partially characterized by phylogenetic analysis. Norovirus viral load was determined by qRT-PCR. Viruses were identified in 205 (43%) of the 480 stool samples collected. Rotavirus was the virus detected most frequently (21%), followed by norovirus (13%), adenovirus (5%), sapovirus (3%), and astrovirus (2%). Viral infection rates were highest in the 6- to 11-month-old group (49%) and lowest in children >24 months old. Norovirus GII was more prevalent (90%) than GI (10%). Enteric adenovirus (serotypes 40/41) was present in 43% of the adenovirus-positive samples. Rotavirus infection caused more severe clinical symptoms than the other viruses detected, with more vomiting (84%) and dehydration (11%) that led to hospital admission of 20% of the children with acute gastroenteritis. Rotavirus and norovirus showed marked and opposite seasonal patterns. No association was observed between disease severity and viral load in children infected with norovirus. These results not only confirm the impact of rotavirus infection in Venezuela but also indicate that other enteric viruses, especially noroviruses, contribute significantly to sporadic acute gastroenteritis and to the burden of disease.
Collapse
Affiliation(s)
- Germán G González
- Laboratorio de Biología de Virus, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela.
| | | | | |
Collapse
|
23
|
Sdiri-Loulizi K, Hassine M, Gharbi-Khelifi H, Aouni Z, Chouchane S, Sakly N, Neji-Guédiche M, Pothier P, Ambert-Balay K, Aouni M. Molecular detection of genogroup I sapovirus in Tunisian children suffering from acute gastroenteritis. Virus Genes 2011; 43:6-12. [PMID: 21461589 DOI: 10.1007/s11262-011-0600-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 03/19/2011] [Indexed: 12/17/2022]
Abstract
This study investigated the prevalence of sapovirus infections in children with acute gastroenteritis in Monastir region, Tunisia, from January 2003 to April 2007. Sapovirus was characterized by sequence and phylogenetic analyses of the partial polymerase gene. From 788 fecal specimens tested, 6 (0.8%) were positive for sapovirus, of these, 4 (66.7%) were monoinfections. All sapovirus positive samples were detected in outpatient, contrary to norovirus which was significantly more frequent in hospitalized children than in outpatients (14.5 vs. 9.5%, P = 0.03). The mean age of children with sapovirus infections was 11 ± 5.56 months (range 6-19 months). Sapovirus isolates were detected in March and between September and December 2003. Fever, vomiting, abdominal pain, and dehydration were not observed in patients with sapovirus infections. Analysis of nucleotide and amino acid sequences revealed that all 6 Tunisian sapovirus strains clustered in the GGI/1 genotype and strains were identical in the region sequenced, sharing 90.2% nucleotide identity with the reference strain Sapporo/82/JP (U65427). This represents the first finding of sapovirus infections in North Africa and especially in Tunisia. The data indicate that, contrary to norovirus which can cause severe diarrhea and is an important etiologic agent in hospitalized cases, sapovirus causes mild gastroenteritis in Tunisian children.
Collapse
Affiliation(s)
- Khira Sdiri-Loulizi
- Laboratory of Infectious Diseases and Biological Agents, Faculty of Pharmacy, 5000, Monastir, Tunisia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Iizuka S, Oka T, Tabara K, Omura T, Katayama K, Takeda N, Noda M. Detection of sapoviruses and noroviruses in an outbreak of gastroenteritis linked genetically to shellfish. J Med Virol 2010; 82:1247-54. [DOI: 10.1002/jmv.21791] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
25
|
Detection and genetic analysis of human sapoviruses in river water in Japan. Appl Environ Microbiol 2010; 76:2461-7. [PMID: 20190080 DOI: 10.1128/aem.02739-09] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated the prevalence of sapoviruses (SaVs) in the Tamagawa River in Japan from April 2003 to March 2004 and performed genetic analysis of the SaV genes identified in river water. A total of 60 river water samples were collected from five sites along the river, and 500 ml was concentrated using the cation-coated filter method. By use of a real-time reverse transcription (RT)-PCR assay, 12 (20%) of the 60 samples were positive for SaV. SaV sequences were obtained from 15 (25%) samples, and a total of 30 SaV strains were identified using six RT-PCR assays followed by cloning and sequence analysis. A newly developed nested RT-PCR assay utilizing a broadly reactive forward primer showed the highest detection efficiency and amplified more diverse SaV genomes in the samples. SaV sequences were frequently detected from November to March, whereas none were obtained in April, July, September, or October. No SaV sequences were detected in the upstream portion of the river, whereas the midstream portion showed high positive rates. Based on phylogenetic analysis, SaV strains identified in the river water samples were classified into nine genotypes, namely, GI/1, GI/2, GI/3, GI/5, GI/untyped, GII/1, GII/2, GII/3, and GV/1. To our knowledge, this is the first study describing seasonal and spatial distributions and genetic diversity of SaVs in river water. A combination of real-time RT-PCR assay and newly developed nested RT-PCR assay is useful for identifying and characterizing SaV strains in a water environment.
Collapse
|
26
|
Yamashita Y, Ootsuka Y, Kondo R, Oseto M, Doi M, Miyamoto T, Ueda T, Kondo H, Tanaka T, Wakita T, Katayama K, Takeda N, Oka T. Molecular characterization of sapovirus detected in a gastroenteritis outbreak at a wedding hall. J Med Virol 2010; 82:720-6. [DOI: 10.1002/jmv.21646] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|