1
|
Mormin M, Rigonnot L, Chalumeau A, Miccio A, Fournier C, Pajanissamy S, Dewannieux M, Galy A. Cyclosporin H Improves the Transduction of CD34 + Cells with an Anti-Sickling Globin Vector, a Possible Therapeutic Approach for Sickle Cell Disease. Hum Gene Ther 2024. [PMID: 39504955 DOI: 10.1089/hum.2024.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024] Open
Abstract
Sickle cell disease (SCD) is a debilitating monogenic disease originating from mutations in the hemoglobin beta chain gene producing an abnormal hemoglobin HbS. The polymerization of HbS is responsible for the sickling of erythrocytes leading to anemia and vaso-occlusive events. Gene therapy is a promising treatment of SCD, and two different gene therapy drugs, using gene editing or gene transfer, have already reached the marketing stage. There is still a need to improve the efficacy of gene therapy in SCD, particularly when using anti-sickling beta-globin gene transfer strategies, which must outcompete the pathological HbS. One possibility is to increase transduction by inhibiting lentiviral restriction factors such as interferon-induced transmembrane proteins (IFITMs). This can be achieved by the addition of cyclosporin H (CsH) during the transduction process. This strategy was applied here in CD34+ hematopoietic progenitor and stem cells obtained from cord blood (CB). A first series of experiments with lentiviral vector coding for a green fluorescent protein (GFP) gene confirmed that the addition of CsH enhanced transgene expression levels and vector copy number per cell (VCN), while CD34+ cells remained viable and functional. Notably, the production of colony-forming cells (CFC) remained unaffected unless very high VCN values were reached. In a second step, CD34+ cells obtained from the CB of newborns with homozygous (n = 2) or heterozygous (n = 1) SCD mutations were transduced with the GLOBE-AS3 lentiviral vector coding for the HbAS3 anti-sickling beta globin. As with GFP, GLOBE-AS3 lentiviral transduction was clearly enhanced by CsH, leading to VCN > 2 and therapeutic levels of expression of the HbAS3. Moreover, the process did not affect the viability or functions of CFC. The combination of CB progenitors, the GLOBE-AS3 vector, and CsH is thus shown here to be a promising approach for the treatment of SCD.
Collapse
Affiliation(s)
| | - Luc Rigonnot
- Maternity/Obstetrics Unit, Centre Hospitalier Sud-Francilien, Corbeil-Essonnes, France
| | - Anne Chalumeau
- Institute Imagine, Inserm, Hopital Necker-Enfants Malades, Paris, France
| | - Annarita Miccio
- Institute Imagine, Inserm, Hopital Necker-Enfants Malades, Paris, France
| | | | | | | | - Anne Galy
- ART-TG, Inserm US35, Corbeil-Essonnes, France
| |
Collapse
|
2
|
Obeagu EI, Adias TC, Obeagu GU. Advancing life: innovative approaches to enhance survival in sickle cell anemia patients. Ann Med Surg (Lond) 2024; 86:6021-6036. [PMID: 39359845 PMCID: PMC11444627 DOI: 10.1097/ms9.0000000000002534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024] Open
Abstract
Sickle cell anemia (SCA) is a severe genetic disorder characterized by the production of abnormal hemoglobin S, leading to the formation of sickle-shaped red blood cells that cause chronic anemia, pain, and organ damage. This review explores recent innovative strategies aimed at improving survival rates and quality of life for SCA patients. Genetic therapies, particularly gene editing with CRISPR-Cas9 and gene therapy using lentiviral vectors, have shown significant potential in correcting the genetic defects responsible for SCA. Clinical trials demonstrate that these approaches can reduce sickle cell crises and minimize the need for blood transfusions by enabling the production of healthy red blood cells. Novel pharmacological treatments such as voxelotor, crizanlizumab, and L-glutamine provide additional mechanisms to prevent hemoglobin polymerization, reduce vaso-occlusive episodes, and decrease oxidative stress, respectively. These therapies offer new hope for patients, particularly those who do not respond adequately to existing treatments. Improved blood transfusion protocols, including automated red cell exchange and advanced donor-matching techniques, have enhanced the safety and efficacy of transfusions, reducing complications like alloimmunization. Comprehensive care models, integrating multidisciplinary care teams, patient education, and telemedicine, have further contributed to better disease management. By providing holistic care that addresses both medical and psychosocial needs, these models improve patient adherence to treatment and overall health outcomes. This review highlights the importance of these innovative strategies and calls for continued research and development to sustain and expand these advancements in SCA care.
Collapse
Affiliation(s)
| | - Teddy Charles Adias
- Department of Haematology and Blood Transfusion Science, Faculty of Medical Laboratory Science, Federal University Otuoke, Bayelsa State, Nigeria
| | | |
Collapse
|
3
|
Butt H, Tisdale JF. Gene therapies on the horizon for sickle cell disease: a clinician's perspective. Expert Rev Hematol 2024; 17:555-566. [PMID: 39076056 DOI: 10.1080/17474086.2024.2386366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/20/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024]
Abstract
INTRODUCTION Sickle cell disease (SCD) is a monogenic disorder that exerts several detrimental health effects on those affected, ultimately resulting in significant morbidity and early mortality. There are millions of individuals globally impacted by this disease. Research in gene therapy has been growing significantly over the past decade, now with two FDA approved products, aiming to find another cure for this complex disease. AREAS COVERED This perspective article aims to provide a clinician's insight into the current landscape of gene therapies, exploring the novel approaches, clinical advances, and potential impact on the management and prognosis of SCD. A comprehensive literature search encompassing databases such as PubMed, Web of Science and Google Scholar was employed. The search covered literature published from 1980 to 2024, focusing on SCD and curative therapy. EXPERT OPINION After careful evaluation of the risks and benefits associated with the use of gene therapy for affected patients, the need for a cure outweighs the risks associated with treatment in most cases of SCD. With advances in current technologies, gene therapies can increase access to cures for patients with SCD.
Collapse
Affiliation(s)
- Henna Butt
- Cellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Center for Cancer and Blood Disorders, Children's National Hospital, Washington, DC, USA
| | - John F Tisdale
- Cellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
4
|
Raghuraman A, Lawrence R, Shetty R, Avanthika C, Jhaveri S, Pichardo BV, Mujakari A. Role of gene therapy in sickle cell disease. Dis Mon 2024; 70:101689. [PMID: 38326171 DOI: 10.1016/j.disamonth.2024.101689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
BACKGROUND Gene therapy is an emerging treatment for sickle cell disease that works by replacing a defective gene with a healthy gene, allowing the body to produce normal red blood cells. This form of treatment has shown promising results in clinical trials, and is a promising alternative to traditional treatments. Gene therapy involves introducing a healthy gene into the body to replace a defective gene. The new gene can be delivered using a viral vector, which is a modified virus that carries the gene. The vector, carrying the healthy gene, is injected into the bloodstream. The healthy gene then enters the patient's cells and begins to produce normal hemoglobin, the protein in red blood cells that carries oxygen throughout the body. METHODOLOGY We conducted an all-language literature search on Medline, Cochrane, Embase, and Google Scholar until December 2022. The following search strings and Medical Subject Heading (MeSH) terms were used: "Sickle Cell," "Gene Therapy" and "Stem Cell Transplantation". We explored the literature on Sickle Cell Disease for its epidemiology, etiopathogenesis, the role of various treatment modalities and the risk-benefit ratio of gene therapy over conventional stem cell transplant. RESULTS Gene therapy can reduce or eliminate painful episodes, prevent organ damage, and raise the quality of life for those living with the disease. Additionally, gene therapy may reduce the need for blood transfusions and other traditional treatments. Gene therapy has the potential to improve the lives of those living with sickle cell disease, as well as reduce the burden of the disease on society.
Collapse
Affiliation(s)
| | - Rebecca Lawrence
- Richmond Gabriel University, College of Medicine, Saint Vincent and the Grenadines, United States
| | | | | | | | | | | |
Collapse
|
5
|
Chatzidavid S, Flevari P, Tombrou I, Anastasiadis G, Dimopoulou M. Pulmonary Hypertension in Sickle Cell Disease: Novel Findings of Gene Polymorphisms Related to Pathophysiology. Int J Mol Sci 2024; 25:4792. [PMID: 38732015 PMCID: PMC11084253 DOI: 10.3390/ijms25094792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Pulmonary hypertension (PH) is a progressive and potentially fatal complication of sickle cell disease (SCD), affecting 6-10% of adult SCD patients. Various mechanisms and theories have been evaluated to explain the pathophysiology of this disease. However, questions remain, particularly regarding the clinical heterogeneity of the disease in terms of symptoms, complications, and survival. Beyond the classical mechanisms that have been thoroughly investigated and include hemolysis, nitric oxide availability, endothelial disorders, thrombosis, and left heart failure, attention is currently focused on the potential role of genes involved in such processes. Potential candidate genes are investigated through next-generation sequencing, with the transforming growth factor-beta (TGF-β) pathway being the initial target. This field of research may also provide novel targets for pharmacologic agents in the future, as is already the case with idiopathic PH. The collection and processing of data and samples from multiple centers can yield reliable results that will allow a better understanding of SCD-related PH as a part of the disease's clinical spectrum. This review attempts to capture the most recent findings of studies on gene polymorphisms that have been associated with PH in SCD patients.
Collapse
Affiliation(s)
| | | | | | | | - Maria Dimopoulou
- Thalassemia and Sickle Cell Disease Unit, Center of Expertise in Rare Hematological Diseases (Hemoglobinopathies), Laikon General Hospital Member of EuroBlood NET, 16 Sevastoupoleos Str., 11526 Athens, Greece; (S.C.); (P.F.); (I.T.); (G.A.)
| |
Collapse
|
6
|
Mboowa G, Sserwadda I, Kanyerezi S, Tukwasibwe S, Kidenya B. The dawn of a cure for sickle cell disease through CRISPR-based treatment: A critical test of equity in public health genomics. Ann Hum Genet 2024. [PMID: 38517013 DOI: 10.1111/ahg.12558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/23/2024]
Abstract
Equity in access to genomic technologies, resources, and products remains a great challenge. This was evident especially during the coronavirus disease 2019 (COVID-19) pandemic when the majority of lower middle-income countries were unable to achieve at least 10% population vaccination coverage during initial COVID-19 vaccine rollouts, despite the rapid development of those vaccines. Sickle cell disease (SCD) is an inherited monogenic red blood cell disorder that affects hemoglobin, the protein that carries oxygen through the body. Globally, the African continent carries the highest burden of SCD with at least 240,000 children born each year with the disease. SCD has evolved from a treatable to a curable disease. Recently, the UK medical regulator approved its cure through clustered regularly interspaced short palindromic repeat (CRISPR)-based treatment, whereas the US Food and Drug Administration has equally approved two SCD gene therapies. This presents a remarkable opportunity to demonstrate equity in public health genomics. This CRISPR-based treatment is expensive and therefore, a need for an ambitious action to ensure that they are affordable and accessible where they are needed most and stand to save millions of lives.
Collapse
Affiliation(s)
- Gerald Mboowa
- The African Centre of Excellence in Bioinformatics and Data-Intensive Sciences, Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
- Africa Centres for Disease Control and Prevention, African Union Commission, Addis Ababa, Ethiopia
| | - Ivan Sserwadda
- The African Centre of Excellence in Bioinformatics and Data-Intensive Sciences, Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Stephen Kanyerezi
- The African Centre of Excellence in Bioinformatics and Data-Intensive Sciences, Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Stephen Tukwasibwe
- Infectious Diseases Research Collaboration, Kampala, Uganda
- School of Medicine, Uganda Christian University, Mukono, Uganda
| | - Benson Kidenya
- Department of Biochemistry and Molecular Biology, Weill Bugando School of Medicine, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| |
Collapse
|
7
|
Suhail M. Biophysical chemistry behind sickle cell anemia and the mechanism of voxelotor action. Sci Rep 2024; 14:1861. [PMID: 38253605 PMCID: PMC10803371 DOI: 10.1038/s41598-024-52476-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/19/2024] [Indexed: 01/24/2024] Open
Abstract
Sickle cell anemia disease has been a great challenge to the world in the present situation. It occurs only due to the polymerization of sickle hemoglobin (HbS) having Pro-Val-Glu typed mutation, while the polymerization does not occur in normal hemoglobin (HbA) having Pro-Glu-Glu peptides. It is also well confirmed that the oxygenated HbS (OHbS) does not participate in the polymerization, while the deoxygenated HbS (dHbS) does, which causes the shape of red blood cells sickled. After polymerization, the blood has a low oxygen affinity. Keeping this fact into consideration, only those drugs are being synthesized that stabilize the OHbS structure so that the polymerization of HbS can be stopped. The literature data showed no systematic description of the changes occurring during the OHbS conversion to dHbS before polymerization. Hence, an innovative reasonable study between HbA and HbS, when they convert into their deoxygenated forms, was done computationally. In this evaluation, physiochemical parameters in HbA/HbS before and after deoxygenation were studied and compared deeply. The computationally collected data was used to understand the abnormal behaviour of dHbS arising due to the replacement of Glu6 with Val6. Consequently, during the presented computational study, the changes occurring in HbS were found opposite/abnormal as compared to HbA after the deoxygenation of both. The mechanism of Voxelotor (GBT-440) action to stop the HbS polymerization was also explained with the help of computationally collected data. Besides, a comparative study between GBT-440 and another suggested drug was also done to know their antisickling strength. Additionally, the effect of pH, CO, CO2, and 2,3-diphosphoglycerate (2,3-DPG) on HbS structure was also studied computationally.
Collapse
Affiliation(s)
- Mohd Suhail
- Department of Chemistry, Siddhartha (PG) College, Aakhlor Kheri, Deoband (Saharanpur), Uttar Pradesh, 247554, India.
| |
Collapse
|
8
|
Ally M, Balandya E. Current challenges and new approaches to implementing optimal management of sickle cell disease in sub-Saharan Africa. Semin Hematol 2023; 60:192-199. [PMID: 37730472 PMCID: PMC10909340 DOI: 10.1053/j.seminhematol.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/01/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023]
Abstract
Sickle cell disease (SCD) is the most common life-threatening monogenic disorder in the world. The disease is highly prevalent in malaria endemic areas with over 75% of patients residing in Sub-Saharan Africa (SSA). It is estimated that, without proper care, up to 90% of children with SCD will not celebrate their fifth birthday. Early identification and enrolment into comprehensive care has been shown to reduce the morbidity and mortality related with SCD complications. However, due to resource constraints, the SSA is yet to implement universal newborn screening programs for SCD. Furthermore, care for patients with SCD in the region is hampered by the shortage of qualified healthcare workers, lack of guidelines for the clinical management of SCD, limited infrastructure for inpatient and outpatient care, and limited access to blood and disease modifying drugs such as Hydroxyurea which contribute to poor clinical outcomes. Curative options such as bone marrow transplant and gene therapy are expensive and not available in many SSA countries. In addressing these challenges, various initiatives are ongoing in SSA which aim to enhance awareness on SCD, improve patient identification and retention to care, harmonize the standards of care for SCD, improve the skills of healthcare workers and conduct research on pertinent areas in SCD in the SSA context. Fortifying these measures is paramount to improving the outcomes of SCD in SSA.
Collapse
Affiliation(s)
- Mwashungi Ally
- Sickle Pan African Research Consortium, Tanzania site Sickle Cell Program Department of Hematology and Blood Transfusion, Muhimbili University of Health and Allied Sciences Dar es Salaam Tanzania.
| | - Emmanuel Balandya
- Sickle Pan African Research Consortium, Tanzania site Sickle Cell Program Department of Hematology and Blood Transfusion, Muhimbili University of Health and Allied Sciences Dar es Salaam Tanzania
| |
Collapse
|
9
|
Hamzaoui A, Louhaichi S, Hamdi B. [Lung manifestations of sickle-cell disease]. Rev Mal Respir 2023:S0761-8425(23)00107-9. [PMID: 37059617 DOI: 10.1016/j.rmr.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 03/04/2023] [Indexed: 04/16/2023]
Abstract
Sickle-cell disease is an autosomal recessive genetic disorder of hemoglobin that causes systemic damage. Hypoxia is the main actor of sickle-cell disease. It initiates acutely the pathogenic cascade leading to tissue damages that in turn induce chronic hypoxia. Lung lesions represent the major risk of morbidity and mortality. Management of sickle-cell disease requires a tight collaboration between hematologists, intensivists and chest physicians. Recurrent episodes of thrombosis and hemolysis characterize the disease. New therapeutic protocols, associating hydroxyurea, transfusion program and stem cell transplantation in severe cases allow a prolonged survival until the fifth decade. However, recurrent pain, crisis, frequent hospital admissions due to infection, anemia or acute chest syndrome and chronic complications leading to organ deficiencies degrade the patients' quality of life. In low-income countries where the majority of sickle-cell patients are living, the disease is still associated with a high mortality in childhood. This paper focuses on acute chest syndrome and chronic lung manifestations.
Collapse
Affiliation(s)
- A Hamzaoui
- Pavillon B/LR19SP02, hôpital Abderrahmen-Mami, 2080 Ariana, Tunisie; Faculté de médecine de Tunis, 1006 Tunis, Tunisie.
| | - S Louhaichi
- Pavillon B/LR19SP02, hôpital Abderrahmen-Mami, 2080 Ariana, Tunisie; Faculté de médecine de Tunis, 1006 Tunis, Tunisie
| | - B Hamdi
- Pavillon B/LR19SP02, hôpital Abderrahmen-Mami, 2080 Ariana, Tunisie; Faculté de médecine de Tunis, 1006 Tunis, Tunisie
| |
Collapse
|
10
|
Adair JE, Androski L, Bayigga L, Bazira D, Brandon E, Dee L, Deeks S, Draz M, Dubé K, Dybul M, Gurkan U, Harlow E, Kityo C, Louella M, Malik P, Mathews V, McKemey A, Mugerwa H, Muyanja D, Olayiwola O, Orentas RJ, Popovski A, Sheehy J, Ssali F, Nsubuga MS, Tisdale JF, Verhoeyen E, Dropulić B. Towards access for all: 1st Working Group Report for the Global Gene Therapy Initiative (GGTI). Gene Ther 2023; 30:216-221. [PMID: 34493840 PMCID: PMC10113145 DOI: 10.1038/s41434-021-00284-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/09/2021] [Accepted: 07/21/2021] [Indexed: 11/09/2022]
Abstract
The gene and cell therapy field saw its first approved treatments in Europe in 2012 and the United States in 2017 and is projected to be at least a $10B USD industry by 2025. Despite this success, a massive gap exists between the companies, clinics, and researchers developing these therapeutic approaches, and their availability to the patients who need them. The unacceptable reality is a geographic exclusion of low-and middle-income countries (LMIC) in gene therapy development and ultimately the provision of gene therapies to patients in LMIC. This is particularly relevant for gene therapies to treat human immunodeficiency virus infection and hemoglobinopathies, global health crises impacting tens of millions of people primarily located in LMIC. Bridging this divide will require research, clinical and regulatory infrastructural development, capacity-building, training, an approval pathway and community adoption for success and sustainable affordability. In 2020, the Global Gene Therapy Initiative was formed to tackle the barriers to LMIC inclusion in gene therapy development. This working group includes diverse stakeholders from all sectors and has set a goal of introducing two gene therapy Phase I clinical trials in two LMIC, Uganda and India, by 2024. Here we report on progress to date for this initiative.
Collapse
Affiliation(s)
- Jennifer E Adair
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
- University of Washington, Seattle, WA, USA.
| | | | | | - Deus Bazira
- Georgetown University Medical Center, Washington, District of Columbia, USA
| | | | - Lynda Dee
- AIDS Action Baltimore, Baltimore, MD, USA
- amFAR Institute for HIV Cure Community Advisory Board, New York, NY, USA
- Delaney AIDS Research Enterprise Community Advisory Board, San Francisco, CA, USA
- Martin Delaney Collaboratory Community Advisory Board, Bethesda, MD, USA
| | - Steven Deeks
- University of California at San Francisco, San Francisco, CA, USA
| | - Mohamed Draz
- Case Western Reserve University, Cleveland, OH, USA
| | - Karine Dubé
- University of North Carolina, Chapel Hill, NC, USA
| | - Mark Dybul
- Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Umut Gurkan
- Case Western Reserve University, Cleveland, OH, USA
| | | | - Cissy Kityo
- Joint Clinical Research Centre, Kampala, Uganda
| | | | - Punam Malik
- Cincinnati Children's Medical Hospital, Cincinnati, OH, USA
| | | | | | | | | | | | - Rimas J Orentas
- University of Washington, Seattle, WA, USA
- Caring Cross, Gaithersburg, MD, USA
- Seattle Children's Research Institute, Seattle, WA, USA
| | | | | | | | | | - John F Tisdale
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Els Verhoeyen
- Université Côte d'Azur, INSERM, C3M, Nice, France
- CIRI, INSERM, Université Lyon, CNRS, ENS de Lyon, Lyon, France
| | | |
Collapse
|
11
|
Cordovil K. Glutamine and sickle cell disease in Brazilian scenario. THE NORTH AFRICAN JOURNAL OF FOOD AND NUTRITION RESEARCH 2023; 7:43-51. [DOI: 10.51745/najfnr.7.15.43-51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/27/2023] [Indexed: 08/05/2024]
Affiliation(s)
- Karen Cordovil
- Oswaldo Cruz Foundation, Sergio Arouca National School of Public Health, Postgraduate Epidemiology Program in Public Health, Leopoldo Bulhões street, 1480 - Manguinhos, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Ata F, Rahhal A, Malkawi L, Iqbal P, Khamees I, Alhiyari M, Yousaf Z, Qasim H, Alshurafa A, Sardar S, Javed S, Fernyhough L, Yassin M. Genotypic and Phenotypic Composition of Sickle Cell Disease in the Arab Population - A Systematic Review. Pharmgenomics Pers Med 2023; 16:133-144. [PMID: 36851992 PMCID: PMC9961577 DOI: 10.2147/pgpm.s391394] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/01/2023] [Indexed: 02/24/2023] Open
Abstract
Sickle cell disease (SCD) is a genetic disease influenced by ethnicity and regional differences in its clinical course. Recent advances in the management of SCD with newer therapies are being introduced to the Western population. However, many of these treatments are yet to be used in the Arabic SCD population. Understanding the genetic variations of SCD regionally is essential to anticipate the utilization of new treatments. This systematic review's main objective is to pool the available data on the genetic composition of SCD in the Arabic population. Data for 44,034 patients was extracted from 184 studies (11 case reports, 8 case series, 56 retrospectives, 107 prospective observational studies, and 2 clinical trials) using PubMed, Scopus, and Google Scholar. Male (49%) and female (51%) patients were equally reported wherever gender was available (N=13105). Various SCD genotypes were reported in a total of 14,257 patients, including Hb SS (77%) Hb Sβ0 (9.9%), and Hb Sβ+ (7.2%), while the rest of the genotypes, including HbSC, HbSD, HbSE, HbSO Arab, Hb S/α-Thal, Hb Sβ0 + α-Thal, and HBS Oman were individually reported in <4% of the cases. Major SCD complications in the Arab population included pain crises (48.25%) followed by neurological complications (33.46%), hepatobiliary complications (25.53%), musculoskeletal complications (24.73%), and hemolytic anemia (23.57%). The treatments reported for SCD included hydroxyurea (20%), blood transfusion (14.32%), and Deferasirox (3.03%). We did not find the use of stem cell transplantation or newer treatments such as L-Glutamine, Voxelotor, Crizanlizumab, or gene therapy reported in any of the studies included in our review. This review highlights the genetic makeup of SCD in Arab countries and its common phenotypic manifestations and will help direct further research on SCD in this region, especially concerning genetic therapy. Systematic Review Registration The protocol has been registered in the International Prospective Register of Systematic Reviews(PROSPERO):CRD42020218,666. https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=218666.
Collapse
Affiliation(s)
- Fateen Ata
- Department of Endocrinology, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Alaa Rahhal
- Department of Clinical Pharmacy, Hamad Medical Corporation, Doha, Qatar
| | - Lujain Malkawi
- Department of Internal Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Phool Iqbal
- Department of Internal Medicine, Metropolitan Hospital, New York, NY, USA
| | - Ibrahim Khamees
- Department of Internal Medicine, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Mousa Alhiyari
- Department of Internal Medicine, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Zohaib Yousaf
- Department of Internal Medicine, Reading Hospital - Tower Health, West Reading, PA, USA
| | - Hana Qasim
- Department of Internal Medicine, UMKC School of medicine, Kansas, MO, USA
| | - Awni Alshurafa
- Department of Medical Oncology /Hematology, National Centre for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Sundus Sardar
- Department of Medicine, Division of Nephrology, Pennsylvania State University College of Medicine, Hershey Medical Center, Hershey, PA, USA
| | - Saad Javed
- Department of Internal Medicine, Icahn school of medicine at Mount Sinai/Queens Hospital Center, New York, NY, USA
| | - Liam Fernyhough
- Department of Medical Oncology /Hematology, National Centre for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar.,Department of Medical Education, Weill Cornell Medicine - Qatar, Doha, Qatar
| | - Mohamed Yassin
- Department of Medical Oncology /Hematology, National Centre for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
13
|
The differentiation of human induced pluripotent stem cells into hematopoietic stem cells on 3D bone scaffold in a dynamic culture system. Tissue Cell 2023; 82:102044. [PMID: 36905860 DOI: 10.1016/j.tice.2023.102044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 02/19/2023]
Abstract
Hematopoietic stem cell transplantation is used for cell-based therapy for many hematological disorders. However, difficulty in finding proper donors has limited this source of stem cells. For clinical application, the generation of these cells from induced pluripotent stem cells (iPSs) is a fascinating and endless source. One of the experimental methods to generate HSCs from iPSs is the mimicking of the hematopoietic niche. In the current study, as the first phase of differentiation, embryoid bodies were formed from iPSs. They were then cultured in different dynamic conditions in order to determine the appropriate settings for their differentiation into HSCs. The dynamic culture was composed of DBM Scaffold with or without growth factor. After ten days, the specific HSC markers (CD34, CD133, CD31 and CD45) were assessed using flow-cytometry. Our findings demonstrated that the dynamic conditions were significantly suitable than static ones. In addition, in 3D scaffold and dynamic system the expression of CXCR4, as a homing marker, was increased. These results suggest that the 3D culture bioreactor with DBM scaffold could provide a new approach for differentiation of iPSs into HSCs. Moreover, this system could provide maximum mimicry of bone marrow niche.
Collapse
|
14
|
Sublingual Microcirculation Specificity of Sickle Cell Patients: Morphology of the Microvascular Bed, Blood Rheology, and Local Hemodynamics. Int J Mol Sci 2023; 24:ijms24043621. [PMID: 36835032 PMCID: PMC9967909 DOI: 10.3390/ijms24043621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
Patients with sickle cell disease (SCD) have poorly deformable red blood cells (RBC) that may impede blood flow into microcirculation. Very few studies have been able to directly visualize microcirculation in humans with SCD. Sublingual video microscopy was performed in eight healthy (HbAA genotype) and four sickle cell individuals (HbSS genotype). Their hematocrit, blood viscosity, red blood cell deformability, and aggregation were individually determined through blood sample collections. Their microcirculation morphology (vessel density and diameter) and microcirculation hemodynamics (local velocity, local viscosity, and local red blood cell deformability) were investigated. The De Backer score was higher (15.9 mm-1) in HbSS individuals compared to HbAA individuals (11.1 mm-1). RBC deformability, derived from their local hemodynamic condition, was lower in HbSS individuals compared to HbAA individuals for vessels < 20 μm. Despite the presence of more rigid RBCs in HbSS individuals, their lower hematocrit caused their viscosity to be lower in microcirculation compared to that of HbAA individuals. The shear stress for all the vessel diameters was not different between HbSS and HbAA individuals. The local velocity and shear rates tended to be higher in HbSS individuals than in HbAA individuals, notably so in the smallest vessels, which could limit RBC entrapment into microcirculation. Our study offered a novel approach to studying the pathophysiological mechanisms of SCD with new biological/physiological markers that could be useful for characterizing the disease activity.
Collapse
|
15
|
Solomon M, Liang C. Pseudotyped Viruses for Retroviruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1407:61-84. [PMID: 36920692 DOI: 10.1007/978-981-99-0113-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Since the discovery of retroviruses, their genome and replication strategies have been extensively studied, leading to the discovery of several unique features that make them invaluable vectors for virus pseudotyping, gene delivery, and gene therapy. Notably, retroviral vectors enable the integration of a gene of interest into the host genome, they can be used to stably transduce both dividing and nondividing cells, and they can deliver relatively large genes. Today, retroviral vectors are commonly used for many research applications and have become an active tool in gene therapy and clinical trials. This chapter will discuss the important features of the retroviral genome and replication cycle that are crucial for the development of retroviral vectors, the different retrovirus-based vector systems that are commonly used, and finally the research and clinical applications of retroviral vectors.
Collapse
Affiliation(s)
- Magan Solomon
- Lady Davis Institute, Jewish General Hospital, McGill Centre for Viral Diseases, Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada
| | - Chen Liang
- Lady Davis Institute, Jewish General Hospital, McGill Centre for Viral Diseases, Montreal, QC, Canada. .,Department of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
16
|
Zhu J, Li H, Aerbajinai W, Kumkhaek C, Pirooznia M, Saxena A, Dagur P, Chin K, Rodgers GP. Kruppel-like factor 1-GATA1 fusion protein improves the sickle cell disease phenotype in mice both in vitro and in vivo. Blood 2022; 140:2276-2289. [PMID: 36399071 PMCID: PMC9837447 DOI: 10.1182/blood.2021014877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 07/01/2022] [Indexed: 11/19/2022] Open
Abstract
Sickle cell disease (SCD) and β-thalassemia are among the most common genetic disorders worldwide, affecting global health and mortality. Hemoglobin A2 (HbA2, α2δ2) is expressed at a low level in adult blood due to the lack of the Kruppel-like factor 1 (KLF1) binding motif in the δ-globin promoter region. However, HbA2 is fully functional as an oxygen transporter, and could be a valid antisickling agent in SCD, as well as a substitute for hemoglobin A in β-thalassemia. We have previously demonstrated that KLF1-GATA1 fusion protein could interact with the δ-globin promoter and increase δ-globin expression in human primary CD34+ cells. We report the effects of 2 KLF1-GATA1 fusion proteins on hemoglobin expression, as well as SCD phenotypic correction in vitro and in vivo. Forced expression of KLF1-GATA1 fusion protein enhanced δ-globin gene and HbA2 expression, as well as reduced hypoxia-related sickling, in erythroid cells cultured from both human sickle CD34+ cells and SCD mouse hematopoietic stem cells (HSCs). The fusion proteins had no impact on erythroid cell differentiation, proliferation, and enucleation. Transplantation of highly purified SCD mouse HSCs expressing KLF1-GATA1 fusion protein into SCD mice lessened the severity of the anemia, reduced the sickling of red blood cells, improved SCD-related pathological alterations in spleen, kidney, and liver, and restored urine-concentrating ability in recipient mice. Taken together, these results indicate that the use of KLF1-GATA1 fusion constructs may represent a new gene therapy approach for hemoglobinopathies.
Collapse
Affiliation(s)
- Jianqiong Zhu
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Hongzhen Li
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Wulin Aerbajinai
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Chutima Kumkhaek
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Mehdi Pirooznia
- Bioinformatics and Systems Biology Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Ankit Saxena
- Flow Cytometry Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Pradeep Dagur
- Flow Cytometry Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Kyung Chin
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Griffin P. Rodgers
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
17
|
Egesa WI, Nakalema G, Waibi WM, Turyasiima M, Amuje E, Kiconco G, Odoch S, Kumbakulu PK, Abdirashid S, Asiimwe D. Sickle Cell Disease in Children and Adolescents: A Review of the Historical, Clinical, and Public Health Perspective of Sub-Saharan Africa and Beyond. Int J Pediatr 2022; 2022:3885979. [PMID: 36254264 PMCID: PMC9569228 DOI: 10.1155/2022/3885979] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/19/2022] [Indexed: 11/24/2022] Open
Abstract
Sickle cell disease (SCD) is an umbrella term for a group of life-long debilitating autosomal recessive disorders that are caused by a single-point mutation (Glu→Val) that results in polymerization of hemoglobin (Hb) and reversible sickle-shape deformation of erythrocytes. This leads to increased hemolysis of erythrocytes and microvascular occlusion, ischemia-reperfusion injury, and tissue infarction, ultimately causing multisystem end-organ complications. Sickle cell anemia (HbSS) is the most common and most severe genotype of SCD, followed by HbSC, HbSβ 0thalassemia, HbSβ+thalassemia, and rare and benign genotypes. Clinical manifestations of SCD occur early in life, are variable, and are modified by several genetic and environmental factors. Nearly 500 children with SCD continue to die prematurely every day, due to delayed diagnosis and/or lack of access to comprehensive care in sub-Saharan Africa (SSA), a trend that needs to be urgently reversed. Despite proven efficacy in developed countries, newborn screening programs are not universal in SSA. This calls for a consolidated effort to make this possible, through the use of rapid, accurate, and cheap point-of-care test kits which require minimal training. For almost two decades, hydroxyurea (hydroxycarbamide), a century-old drug, was the only disease-modifying therapy approved by the U.S. Food and Drug Administration. Recently, the list expanded to L-glutamine, crizanlizumab, and voxelotor, with several promising novel therapies in the pipeline. Despite its several limitations, hematopoietic stem cell transplant (HSCT) remains the only curative intervention for SCD. Meanwhile, recent advances in gene therapy trials offer a glimpse of hope for the near future, although its use maybe limited to developed countries for several decades.
Collapse
Affiliation(s)
- Walufu Ivan Egesa
- Department of Pediatrics, Nile International Hospital, Jinja District, Uganda
- Department of Pediatrics & Child Health, Faculty of Clinical Medicine & Dentistry, Kampala International University, Bushenyi District, Uganda
| | - Gloria Nakalema
- Department of Pediatrics & Child Health, Faculty of Clinical Medicine & Dentistry, Kampala International University, Bushenyi District, Uganda
- Department of Pediatrics, Luweero Hospital, Luwero District, Uganda
| | - William M. Waibi
- Department of Pediatrics & Child Health, Faculty of Clinical Medicine & Dentistry, Kampala International University, Bushenyi District, Uganda
| | - Munanura Turyasiima
- Department of Pediatrics & Child Health, Faculty of Clinical Medicine & Dentistry, Kampala International University, Bushenyi District, Uganda
- Standards Compliance Accreditation and Patient Protection (SCAPP) Department, Governance and Regulation Directorate, Ministry of Health, Kampala, Uganda
| | - Emmanuel Amuje
- Department of Pediatrics, Nile International Hospital, Jinja District, Uganda
| | - Gloria Kiconco
- Department of Pediatrics & Child Health, Faculty of Clinical Medicine & Dentistry, Kampala International University, Bushenyi District, Uganda
- Department of Pediatrics, Fort Portal Regional Referral Hospital, Kabarole District, Uganda
| | - Simon Odoch
- Department of Pediatrics & Child Health, Faculty of Clinical Medicine & Dentistry, Kampala International University, Bushenyi District, Uganda
| | - Patrick Kumbowi Kumbakulu
- Department of Pediatrics & Child Health, Faculty of Clinical Medicine & Dentistry, Kampala International University, Bushenyi District, Uganda
| | - Said Abdirashid
- Department of Pediatrics & Child Health, Faculty of Clinical Medicine & Dentistry, Kampala International University, Bushenyi District, Uganda
| | - Daniel Asiimwe
- Department of Surgery, Faculty of Clinical Medicine & Dentistry, Kampala International University, Bushenyi District, Uganda
- Department of Surgery, Holy Family Virika hospital, Kabarole District, Uganda
| |
Collapse
|
18
|
Snyder AB, Lakshmanan S, Hulihan MM, Paulukonis ST, Zhou M, Horiuchi SS, Abe K, Pope SN, Schieve LA. Surveillance for Sickle Cell Disease - Sickle Cell Data Collection Program, Two States, 2004-2018. MORBIDITY AND MORTALITY WEEKLY REPORT. SURVEILLANCE SUMMARIES (WASHINGTON, D.C. : 2002) 2022; 71:1-18. [PMID: 36201430 PMCID: PMC9552568 DOI: 10.15585/mmwr.ss7109a1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PROBLEM/CONDITION Sickle cell disease (SCD), an inherited blood disorder affecting an estimated 100,000 persons in the United States, is associated with multiple complications and reduced life expectancy. Complications of SCD can include anemia, debilitating acute and chronic pain, infection, acute chest syndrome, stroke, and progressive organ damage, including decreased cognitive function and renal failure. Early diagnosis, screenings and preventive interventions, and access to specialist health care can decrease illness and death. Population-based public health surveillance is critical to understanding the course and outcomes of SCD as well as the health care use, unmet health care needs, and gaps in essential services of the population affected by SCD. PERIOD COVERED 2004-2018. DESCRIPTION OF THE PROGRAM In 2015, CDC established the Sickle Cell Data Collection (SCDC) program to characterize the epidemiology of SCD in two states (California and Georgia). Previously, surveillance for SCD was conducted by two short-term projects: Registry and Surveillance System for Hemoglobinopathies (RuSH), which was conducted during 2010-2012 and included 2004-2008 data, and Public Health Research, Epidemiology, and Surveillance for Hemoglobinopathies (PHRESH), which was conducted during 2012-2014 and included 2004-2008 data. Both California and Georgia participated in RuSH and PHRESH, which guided the development of the SCDC methods and case definitions. SCDC is a population-based tracking system that uses comprehensive data linkages in state health systems. These linkages serve to synthesize and disseminate population-based, longitudinal data for persons identified with SCD from multiple sources using selected International Classification of Diseases, Ninth Revision, Clinical Modification, and Tenth Revision codes and laboratory results confirmed through state newborn screening (NBS) programs or clinic case reporting. Administrative and clinical data sources include state Medicaid and Children's Health Insurance Program databases, death certificates, NBS programs, hospital discharge and emergency department records, and clinical records or case reports. Data from multiple sources and years are linked and deduplicated so that states can analyze and report on SCD population prevalence, demographic characteristics, health care access and use, and health outcomes. The SCD case definition is based on an algorithm that classifies cases with laboratory confirmation as confirmed cases and those with a reported clinical diagnosis or three or more diagnostic codes over a 5-year period from an administrative data source as probable cases. In 2019, nine states (Alabama, California, Georgia, Indiana, Michigan, Minnesota, North Carolina, Tennessee, and Virginia) were funded as part of an SCDC capacity-building initiative. The newly funded states developed strategies for SCD case identification and data linkage similar to those used by California and Georgia. As of 2021, the SCDC program had expanded to 11 states with the addition of Colorado and Wisconsin. RESULTS During 2004-2018, the cumulative prevalence of confirmed and probable SCD cases identified in California and Georgia was 9,875 and 14,777 cases, respectively. The 2018 annual prevalence count was 6,027 cases for California and 9,141 for Georgia. Examination of prevalence counts by contributing data source during 2014-2018 revealed that each data source captured 16%-71% of cases in California and 17%-87% in Georgia; therefore, no individual source is sufficient to estimate statewide population prevalence. The proportion of pediatric SCD patients (children aged 0-18 years) was 27% in California and 40% in Georgia. The percentage of females with SCD in California and Georgia was 58% and 57%, respectively. Of the cases with SCD genotyping data available (n = 5,856), 63% of patients had sickle cell anemia. SCDC data have been used to directly apprise health care providers and policymakers about health care needs and gaps for patients with SCD. For example, an SCDC Georgia assessment indicated that 10% of babies born during 2004-2016 with SCD lived more than a 1-hour drive from any SCD specialty care option, and another 14% lived within a 1-hour drive of a periodic SCD specialty clinic only. Likewise, an SCDC California assessment indicated that during 2016-2018, most patients with SCD in Los Angeles County lived approximately 15-60 miles from hematologists experienced in SCD care. A surveillance capacity and performance assessment of all 11 SCDC states during 2020-2021 indicated that states differed in the availability of data sources used for SCD surveillance and the time frames for accessing each state data source. Nonetheless, methods for standardizing reporting were developed across all participating states. INTERPRETATION This report is the first comprehensive description of CDC's efforts in collaboration with participating states to establish, maintain, and expand SCD surveillance through the SCDC program to improve health outcomes for persons living with SCD. Findings from California and Georgia analyses highlighted a need for additional SCD specialty clinics. Despite different approaches, expansion of SCDC to multiple states was possible using standardized, rigorous methods developed across all participating states for reporting on disease prevalence, health care needs and use, and deaths. PUBLIC HEALTH ACTION Findings from surveillance can be used to improve and monitor care and outcomes for persons with SCD. These and other SCDC analyses have had a role in opening new SCD clinics, educating health care providers, developing state health care policies, and guiding new research initiatives. Public health officials can use this report as a guiding framework to plan or implement surveillance programs for persons with SCD. Both data-related activities (data sources; patient identifiers; and obtaining, transferring, and linking data) and the administrative considerations (stakeholder engagement, costs and resources, and long-term sustainability) are crucial to the success of these programs.
Collapse
|
19
|
Quach D, Jiao B, Basu A, Bender M, Hankins J, Ramsey S, Devine B. A landscape analysis and discussion of value of gene therapies for sickle cell disease. Expert Rev Pharmacoecon Outcomes Res 2022; 22:891-911. [PMID: 35363602 PMCID: PMC10783332 DOI: 10.1080/14737167.2022.2060823] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 03/29/2022] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Sickle cell disease (SCD) is a rare genetic disease with limited therapeutic options. Gene-based therapies are being investigated in clinical trials to evaluate their curative potential. The expected life-long benefits of one-time administration of genetically corrected stem cells present uncharted challenges in estimating value of these treatments. Our objective is to conduct a landscape analysis of clinical trials and prompt a discussion estimating the value of gene therapy as a therapeutic option for SCD. AREAS COVERED We searched Clinicaltrials.gov to identify and characterize clinical trials in gene therapies for SCD. We report available results and discuss current concerns and elements of value necessary to consider as these products come to market. EXPERT OPINION Gene therapies could represent a major advance in SCD treatment. Although clinical trials are ongoing, reports of serious adverse events have led to pause of these trials, emphasizing the need to prove long-term tolerability. Measured using the methods of health economic evaluation, we anticipate high up-front costs may be offset by potential life-long benefits of these treatments. During development and after treatment approval, attention should be focused on ensuring adequate availability and equitable access to emerging therapies in underserved areas and low-middle-income countries (LMIC).
Collapse
Affiliation(s)
- Dalyna Quach
- The Comparative Health Outcomes, Policy, and Economics (CHOICE) Institute, University of Washington
| | - Boshen Jiao
- The Comparative Health Outcomes, Policy, and Economics (CHOICE) Institute, University of Washington
| | - Anirban Basu
- The Comparative Health Outcomes, Policy, and Economics (CHOICE) Institute, University of Washington
- Department of Health Services, University of Washington, Seattle, Washington, United States
| | - M.A. Bender
- Division of Public Health Sciences and Hutchinson Institute for Cancer Outcomes Research, Fred Hutchinson Cancer Research Center, Seattle
- Department of Pediatrics, University of Washington, and Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle
| | - Jane Hankins
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Scott Ramsey
- Division of Public Health Sciences and Hutchinson Institute for Cancer Outcomes Research, Fred Hutchinson Cancer Research Center, Seattle
| | - Beth Devine
- The Comparative Health Outcomes, Policy, and Economics (CHOICE) Institute, University of Washington
- Department of Health Services, University of Washington, Seattle, Washington, United States
| |
Collapse
|
20
|
Palomarez A, Jha M, Medina Romero X, Horton RE. Cardiovascular consequences of sickle cell disease. BIOPHYSICS REVIEWS 2022; 3:031302. [PMID: 38505276 PMCID: PMC10903381 DOI: 10.1063/5.0094650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/11/2022] [Indexed: 03/21/2024]
Abstract
Sickle cell disease (SCD) is an inherited blood disorder caused by a single point mutation within the beta globin gene. As a result of this mutation, hemoglobin polymerizes under low oxygen conditions causing red blood cells to deform, become more adhesive, and increase in rigidity, which affects blood flow dynamics. This process leads to enhanced red blood cell interactions with the endothelium and contributes to vaso-occlusion formation. Although traditionally defined as a red blood cell disorder, individuals with SCD are affected by numerous clinical consequences including stroke, painful crisis episodes, bone infarctions, and several organ-specific complications. Elevated cardiac output, endothelium activation along with the sickling process, and the vaso-occlusion events pose strains on the cardiovascular system. We will present a review of the cardiovascular consequences of sickle cell disease and show connections with the vasculopathy related to SCD. We will also highlight biophysical properties and engineering tools that have been used to characterize the disease. Finally, we will discuss therapies for SCD and potential implications on SCD cardiomyopathy.
Collapse
Affiliation(s)
- Alexis Palomarez
- Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, Texas 77204, USA
| | - Manisha Jha
- Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, Texas 77204, USA
| | - Ximena Medina Romero
- Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, Texas 77204, USA
| | - Renita E. Horton
- Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, Texas 77204, USA
| |
Collapse
|
21
|
Cordovil K, Crivelli M, Calixto Lima L, S. Barbosa F, Fleury M. Predictive Equations Overestimated the Rest Energy Expenditure by Indirect Calorimetry in Adults with Sickle Cell Disease. THE NORTH AFRICAN JOURNAL OF FOOD AND NUTRITION RESEARCH 2022; 6:94-106. [DOI: 10.51745/najfnr.6.14.94-106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/17/2022] [Indexed: 08/05/2024]
Abstract
Background: Traditionally, hypermetabolism is described in sickle cell disease (SCD). Despite this, few studies have compared rest energy expenditure (REE) with estimated by predictive equations (EEE) in the assessment of adults with SCD. Aims: To compare REE values determined by indirect calorimetry (IC) with that EEE in adults with SCD. Subjects and Methods: A cross-sectional observational study was performed with 46 individuals over 34 years old in the treatment from two reference centers for SCD located in the city of Rio de Janeiro, Brazil. The dual-energy X-ray absorptiometry (DXA) and IC were used to assess BC and REE, respectively. Blood levels were measured to assess hemolytic and protein markers. Pearson’s correlation test was used in the univariate correlation. The Intraclass Correlation Coefficient (ICC) and the Bland-Altman analysis were used in the comparison between EEE and IC. P-values ≤ 0.05 were considered statistically significant. Results: Most participants were from the female sex, Hb SS genotype (80.4%) and with black color (52.2%). The mean age was 50 years old. Weight (r= 0.469; p=0,001), LM (r = 0.631; p=0.000), BMC (r = 0.508; p=0.000) and CRP(r=0.319; p = 0.002) correlated positively with the REE. There was no linear correlation between makers of hemolysis with REE. The REE was overestimated in the EEE when compared to IC (p<0.001). Conclusions: The prediction equations developed for healthy populations are not accurate enough to determine the energy requirements and more studies are needed to better understand how REE role in middle-aged and elderly adults with SCD.
Collapse
|
22
|
Liu B, Brendel C, Vinjamur DS, Zhou Y, Harris C, McGuinness M, Manis JP, Bauer DE, Xu H, Williams DA. Development of a double shmiR lentivirus effectively targeting both BCL11A and ZNF410 for enhanced induction of fetal hemoglobin to treat β-hemoglobinopathies. Mol Ther 2022; 30:2693-2708. [PMID: 35526095 PMCID: PMC9372373 DOI: 10.1016/j.ymthe.2022.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/01/2022] [Accepted: 05/03/2022] [Indexed: 10/18/2022] Open
Abstract
A promising treatment for β-hemoglobinopathies is the de-repression of γ-globin expression leading to increased fetal hemoglobin (HbF) by targeting BCL11A. Here, we aim to improve a lentivirus vector (LV) containing a single BCL11A shmiR (SS) to further increase γ-globin induction. We engineered a novel LV to express two shmiRs simultaneously targeting BCL11A and the γ-globin repressor ZNF410. Erythroid cells derived from human HSCs transduced with the double shmiR (DS) showed up to a 70% reduction of both BCL11A and ZNF410 proteins. There was a consistent and significant additional 10% increase in HbF compared to targeting BCL11A alone in erythroid cells. Erythrocytes differentiated from SCD HSCs transduced with the DS demonstrated significantly reduced in vitro sickling phenotype compared to the SS. Erythrocytes differentiated from transduced HSCs from β-thalassemia major patients demonstrated improved globin chain balance by increased γ-globin with reduced microcytosis. Reconstitution of DS-transduced cells from Berkeley SCD mice was associated with a statistically larger reduction in peripheral blood hemolysis markers compared with the SS vector. Overall, these results indicate that the DS LV targeting BCL11A and ZNF410 can enhance HbF induction for treating β-hemoglobinopathies and could be used as a model to simultaneously and efficiently target multiple gene products.
Collapse
Affiliation(s)
- Boya Liu
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Christian Brendel
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Stem Cell Institute, Harvard University, Boston, MA, USA
| | - Divya S Vinjamur
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Yu Zhou
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Chad Harris
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Meaghan McGuinness
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - John P Manis
- Department of Laboratory Medicine, Boston Children's Hospital, MA, USA
| | - Daniel E Bauer
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Stem Cell Institute, Harvard University, Boston, MA, USA
| | - Haiming Xu
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - David A Williams
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Stem Cell Institute, Harvard University, Boston, MA, USA.
| |
Collapse
|
23
|
Balamanikandan P, Bharathi SJ. A mathematical modelling to detect sickle cell anemia using Quantum graph theory and Aquila optimization classifier. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:10060-10077. [PMID: 36031983 DOI: 10.3934/mbe.2022470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Recently genetic disorders are the most common reason for human fatality. Sickle Cell anemia is a monogenic disorder caused by A-to-T point mutations in the β-globin gene which produces abnormal hemoglobin S (Hgb S) that polymerizes at the state of deoxygenation thus resulting in the physical deformation or erythrocytes sickling. This shortens the expectancy of human life. Thus, the early diagnosis and identification of sickle cell will aid the people in recognizing signs and to take treatments. The manual identification is a time consuming one and might outcome in the misclassification of count as there is millions of red blood cells in one spell. So as to overcome this, data mining approaches like Quantum graph theory model and classifier is effective in detecting sickle cell anemia with high precision rate. The proposed work aims at presenting a mathematical modeling using Quantum graph theory to extract elasticity properties and to distinguish them as normal cells and sickle cell anemia (SCA) in red blood cells. Initially, input DNA sequence is taken and the elasticity property features are extracted by using Quantum graph theory model at which the formation of spanning tree is made followed by graph construction and Hemoglobin quantization. After which, the extracted properties are optimized using Aquila optimization and classified using cascaded Long Short-Term memory (LSTM) to attain the classified outcome of sickle cell and normal cells. Finally, the performance assessment is made and the outcomes attained in terms of accuracy, precision, sensitivity, specificity, and AUC are compared with existing classifier to validate the proposed system effectiveness.
Collapse
Affiliation(s)
- P Balamanikandan
- Department of Mathematics, Thiagarajar College of Engineering, Madurai, Tamilnadu, India
| | - S Jeya Bharathi
- Department of Mathematics, Thiagarajar College of Engineering, Madurai, Tamilnadu, India
| |
Collapse
|
24
|
Alramadhani D, Aljahdali AS, Abdulmalik O, Pierce BD, Safo MK. Metabolic Reprogramming in Sickle Cell Diseases: Pathophysiology and Drug Discovery Opportunities. Int J Mol Sci 2022; 23:7448. [PMID: 35806451 PMCID: PMC9266828 DOI: 10.3390/ijms23137448] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 01/19/2023] Open
Abstract
Sickle cell disease (SCD) is a genetic disorder that affects millions of individuals worldwide. Chronic anemia, hemolysis, and vasculopathy are associated with SCD, and their role has been well characterized. These symptoms stem from hemoglobin (Hb) polymerization, which is the primary event in the molecular pathogenesis of SCD and contributes to erythrocyte or red blood cell (RBC) sickling, stiffness, and vaso-occlusion. The disease is caused by a mutation at the sixth position of the β-globin gene, coding for sickle Hb (HbS) instead of normal adult Hb (HbA), which under hypoxic conditions polymerizes into rigid fibers to distort the shapes of the RBCs. Only a few therapies are available, with the universal effectiveness of recently approved therapies still being monitored. In this review, we first focus on how sickle RBCs have altered metabolism and then highlight how this understanding reveals potential targets involved in the pathogenesis of the disease, which can be leveraged to create novel therapeutics for SCD.
Collapse
Affiliation(s)
- Dina Alramadhani
- Department of Medicinal Chemistry and the Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Anfal S. Aljahdali
- Department of Pharmaceutical Chemistry, King Abdulaziz University, Alsulaymanyah, Jeddah 21589, Saudi Arabia;
| | - Osheiza Abdulmalik
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
| | - B. Daniel Pierce
- Department of Biology, University of Richmond, Richmond, VA 23173, USA;
| | - Martin K. Safo
- Department of Medicinal Chemistry and the Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA;
| |
Collapse
|
25
|
Hematopoietic Stem Cell Gene-Addition/Editing Therapy in Sickle Cell Disease. Cells 2022; 11:cells11111843. [PMID: 35681538 PMCID: PMC9180595 DOI: 10.3390/cells11111843] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/29/2022] [Accepted: 06/02/2022] [Indexed: 12/17/2022] Open
Abstract
Autologous hematopoietic stem cell (HSC)-targeted gene therapy provides a one-time cure for various genetic diseases including sickle cell disease (SCD) and β-thalassemia. SCD is caused by a point mutation (20A > T) in the β-globin gene. Since SCD is the most common single-gene disorder, curing SCD is a primary goal in HSC gene therapy. β-thalassemia results from either the absence or the reduction of β-globin expression, and it can be cured using similar strategies. In HSC gene-addition therapy, patient CD34+ HSCs are genetically modified by adding a therapeutic β-globin gene with lentiviral transduction, followed by autologous transplantation. Alternatively, novel gene-editing therapies allow for the correction of the mutated β-globin gene, instead of addition. Furthermore, these diseases can be cured by γ-globin induction based on gene addition/editing in HSCs. In this review, we discuss HSC-targeted gene therapy in SCD with gene addition as well as gene editing.
Collapse
|
26
|
Ata F, Yousaf Z, Sardar S, Javed S, Iqbal P, Khamees I, Malkawi LS, Yassin MA. Protocol for "Genetic composition of sickle cell disease in the Arab population: A systematic review". Health Sci Rep 2022; 5:e450. [PMID: 35509404 PMCID: PMC9062566 DOI: 10.1002/hsr2.450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 10/17/2021] [Accepted: 11/09/2021] [Indexed: 11/18/2022] Open
Abstract
Background Sickle Cell Disease (SCD) is a global health issue in hematology with a progressively increasing prevalence. There are recent advances in the management of SCD, with new drugs being introduced. It is essential to analyze the genetic makeup of SCD regionally to anticipate the effectiveness of management modalities. This systematic review's main objectives are (a) to combine the existing knowledge of the genetic composition of SCD in the Arab population and (b) to analyze the various phenotypes of SCD prevalent in the Arab population. Methods We will perform a systematic review and search multiple electronic databases predefined search terms to identify eligible articles. Eligible studies should report findings on the genetic testing of Sickle Cell disease in the 22 Arab countries. Case reports, case series, observational studies with cross‐sectional or prospective research design, case‐control studies, and experimental studies will be included. Study quality will be independently evaluated by two reviewers using the statistical methodology and categories guided by the Cochrane Collaboration Handbook and PRISMA guidelines. Discussion This review will explore and integrate the evidence available on the various genotypes and phenotypes of SCD in the Arab population. By acquiring and summarizing data about the genetic and phenotypic variants of the SCD patient population, this study will add to the knowledge and help find more precise treatments. Systematic review registration The protocol is registered at the International Prospective Register of Systematic Reviews (PROSPERO; registration number: CRD42020218666).
Collapse
Affiliation(s)
- Fateen Ata
- Department of Internal Medicine Hamad General Hospital, Hamad Medical Corporation Doha Qatar
| | - Zohaib Yousaf
- Department of Internal Medicine Hamad General Hospital, Hamad Medical Corporation Doha Qatar
| | - Sundus Sardar
- Department of Internal Medicine Hamad General Hospital, Hamad Medical Corporation Doha Qatar
| | - Saad Javed
- Department of Internal Medicine Allama Iqbal Medical College Lahore Pakistan
| | - Phool Iqbal
- Department of Internal Medicine Hamad General Hospital, Hamad Medical Corporation Doha Qatar
| | - Ibraheem Khamees
- Department of Internal Medicine Hamad General Hospital, Hamad Medical Corporation Doha Qatar
| | - Lujain Salahaldeen Malkawi
- Department of Internal Medicine, Faculty of Medicine Jordan University of Science and Technology Irbid Jordan
| | - Mohamed A Yassin
- Department of Medical Oncology/Hematology National Centre for Cancer Care and Research, Hamad Medical Corporation Doha Qatar
| |
Collapse
|
27
|
Dua M, Bello-Manga H, Carroll YM, Galadanci AA, Ibrahim UA, King AA, Olanrewaju A, Estepp JH. Strategies to increase access to basic sickle cell disease care in low- and middle-income countries. Expert Rev Hematol 2022; 15:333-344. [PMID: 35400264 PMCID: PMC9442799 DOI: 10.1080/17474086.2022.2063116] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/04/2022] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Sickle cell disease (SCD) is the most common hemoglobinopathy in the world. Over 90% of those born with SCD live in low- and middle-income countries (LMICs), yet individuals in these settings have much poorer outcomes compared to those in high-income countries. AREAS COVERED This manuscript provides an in-depth review of the cornerstones of basic SCD care, the barriers to implementing these in LMICs, and strategies to increase access in these regions. Publications in English language, peer-reviewed, and edited from 2000 to 2021 were identified on PubMed. Google search was used for gray literature. EXPERT OPINION Outcomes for patients with SCD in high-income countries have improved over the last few decades due to the implementation of universal newborn screening programs and use of routine antimicrobial prophylaxis, increase in therapeutic and curative options, and the adoption of specific measures to decrease risk of stroke. This success has not translated to LMICs due to several reasons including resource constraints. A combination of several strategies is needed to increase access to basic SCD care for patients in these settings.
Collapse
Affiliation(s)
- Meghna Dua
- Department of Global Medicine, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Halima Bello-Manga
- Department of Hematology and Blood Transfusion, Barau Dikko Teaching Hospital/Kaduna State University, Nigeria
| | - Yvonne M. Carroll
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | | | | | - Allison A. King
- in Occupational Therapy, Departments of Pediatrics, Medicine and Surgery, Washington University School of MedicineProgram , St. Louis, USA
| | - Ayobami Olanrewaju
- Department of Global Medicine, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Jeremie H. Estepp
- Department of Global Medicine, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
28
|
Baoum AA. The fluorination effect on the transfection efficacy of cell penetrating peptide complexes. Plasmid 2022; 119-120:102619. [DOI: 10.1016/j.plasmid.2022.102619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/31/2022] [Indexed: 11/27/2022]
|
29
|
Al Barhi T, Wali Y, Al Sibai S, Al Balushi Z. Extensive porto-splenic venous thrombosis postsplenectomy in a sickle cell disease: a rare complication. BMJ Case Rep 2022; 15:e245085. [PMID: 35039344 PMCID: PMC8767996 DOI: 10.1136/bcr-2021-245085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2021] [Indexed: 11/04/2022] Open
Abstract
Hereditary haemoglobinopathies are common disorders in Oman. The most common haematological disorder among Omani population is sickle cell disease (SCD). The spleen is one of the organs that is affected early in the first decade of life in SCD patients. Splenectomy has shown a high success rate in improving the quality of life in SCD patients, through eliminating acute splenic sequestration crises, thus reducing the need for hospital admission and transfusion requirements. One of the rare complications of splenectomy is porto-splenic vein thrombosis. Multiple factors are responsible for this complication including: thermal and mechanical injury during ligation of splenic hilum, sudden increase in the platelet count and large spleen size. We report a rare case of extensive porto-splenic vein thrombosis that responded to early initiation of anticoagulation with resolution of the thrombosis and recanalisation.
Collapse
Affiliation(s)
| | - Yasser Wali
- Department of Child Health, Sultan Qaboos University, Muscat, Oman
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Sareyah Al Sibai
- Department of Surgery, Sultan Qaboos University Hospital, Muscat, Oman
| | - Zainab Al Balushi
- Department of Surgery, Sultan Qaboos University Hospital, Muscat, Oman
| |
Collapse
|
30
|
Shah N, Krishnamurti L. Evidence-Based Minireview: In young children with severe sickle cell disease, do the benefits of HLA-identical sibling donor HCT outweigh the risks? HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2021; 2021:190-195. [PMID: 34889371 PMCID: PMC8791135 DOI: 10.1182/hematology.2021000322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In case 1, a 14-month-old male child with sickle cell disease (SCD) was referred for evaluation for an allogeneic hematopoietic stem cell transplant (HCT). The patient had a history of dactylitis 3 times in his first year of life and febrile episodes twice at the consult. His 4-year-old sister was found to be human leukocyte antigen (HLA) identical. The patient was started on hydroxyurea (HU) at 2.5 years of age. His parents again sought consultation when he was 5 years old because of concerns about his medical condition. At the time, the patient had experienced 2 vaso-occlusive pain episodes (VOEs) requiring hospitalization during the previous 2 years. He had also experienced intermittent pain crises requiring rest at home for 2 to 3 days. The child has not attended school in person due to the COVID-19 pandemic. The family is considering HCT but is ambivalent about it because of potential toxicity. In case 2, an 8-year-old female child is 3 years out from HCT for SCD from her HLA-identical sibling. Before HCT, despite receiving HU, she had experienced >5 VOEs requiring hospitalization and 2 episodes of acute chest syndromes in the previous 3 years. She had also been missing almost 50 days of school days each year. After HCT, she is now attending school regularly and participating in all normal age-appropriate activities. The parents believe that HCT has been transformative in their child's life.
Collapse
Affiliation(s)
- Niketa Shah
- Section of Pediatric Hematology/Oncology/BMT, Yale School of Medicine, New Haven, CT
| | - Lakshmanan Krishnamurti
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, GA
| |
Collapse
|
31
|
Demirci S, Leonard A, Essawi K, Tisdale JF. CRISPR-Cas9 to induce fetal hemoglobin for the treatment of sickle cell disease. Mol Ther Methods Clin Dev 2021; 23:276-285. [PMID: 34729375 PMCID: PMC8526756 DOI: 10.1016/j.omtm.2021.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Genome editing is potentially a curative technique available to all individuals with β-hemoglobinopathies, including sickle cell disease (SCD). Fetal hemoglobin (HbF) inhibits sickle hemoglobin (HbS) polymerization, and it is well described that naturally occurring hereditary persistence of HbF (HPFH) alleviates disease symptoms; therefore, reawakening of developmentally silenced HbF in adult red blood cells (RBCs) has long been of interest as a therapeutic strategy. Recent advances in genome editing platforms, particularly with the use of CRISPR-Cas9, have paved the way for efficient HbF induction through the creation of artificial HPFH mutations, editing of transcriptional HbF silencers, and modulating epigenetic intermediates that govern HbF expression. Clinical trials investigating BCL11A enhancer editing in patients with β-hemoglobinopathies have demonstrated promising results, although follow-up is short and the number of patients treated to date is low. While practical, economic, and clinical challenges of genome editing are well recognized by the scientific community, potential solutions to overcome these hurdles are in development. Here, we review the recent progress and obstacles yet to be overcome for the most effective and feasible HbF reactivation practice using CRISPR-Cas9 genome editing as a curative strategy for patients with SCD.
Collapse
Affiliation(s)
- Selami Demirci
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20814, USA
| | - Alexis Leonard
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20814, USA
| | - Khaled Essawi
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20814, USA
- Department of Medical Laboratory Science, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - John F. Tisdale
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20814, USA
| |
Collapse
|
32
|
Karkoska K, McGann PT. How I approach disease-modifying therapy in children with sickle cell disease in an era of novel therapies. Pediatr Blood Cancer 2021; 68:e29363. [PMID: 34550643 DOI: 10.1002/pbc.29363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/19/2021] [Accepted: 09/06/2021] [Indexed: 11/06/2022]
Abstract
Finally,after decades of stagnation, the therapeutic landscape for sickle cell disease (SCD) is changing with an increasing number of novel therapeutics. Hydroxyurea remains the primary disease-modifying therapy and, when started early in life with maintenance of an optimal dose, can reduce many SCD-related complications. To complement hydroxyurea, there are a growing number of pharmacologic options with additional efforts focused on the development and optimization of curative therapies. Here, we review current treatment options and provide recommendations as to how to approach the treatment of children and adolescents within this evolving therapeutic landscape to allow for full and healthy lives.
Collapse
Affiliation(s)
- Kristine Karkoska
- Division of Hematology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Patrick T McGann
- Division of Hematology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
33
|
Booth A, Bonham V, Porteus M, Ormond KE. Treatment decision-making in sickle cell disease patients. J Community Genet 2021; 13:143-151. [PMID: 34735685 DOI: 10.1007/s12687-021-00562-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/27/2021] [Indexed: 11/28/2022] Open
Abstract
Sickle cell disease (SCD) is a blood disorder with few treatment options currently available. However, in recent years, there has been much progress toward developing new therapies and curative treatments to help patients with SCD. Stem cell transplant remains the only approved curative treatment for SCD, but new clinical trials are being initiated using gene therapy and gene editing. We surveyed patients with sickle cell disease (N=9) about attitudes toward stem cell transplant, gene therapy to add a new healthy gene, gene editing to up-regulate fetal hemoglobin, or gene editing to correct the point mutation. The participants read a fact sheet that included objective information on each curative treatment. When asked which curative treatment each participant would choose, all four options were selected at least once. The most highly selected treatment was gene correction gene editing (N=4). Participants generally agreed that the four treatment options are beneficial but were more mixed in their thoughts on whether the options are dangerous. Reasons for selecting a particular curative treatment were variable, but the most selected reasons were perception of a cure (N=4) or decreased severity (N=4), and not needing a donor (N=4). We are at the beginning stages of understanding how patients with SCD make decisions about curative treatments. Currently, patients may be interested in any of the four possibilities for curative treatments, with gene correction gene editing as the most popular choice. Reasons for choosing one treatment over another are mixed.
Collapse
Affiliation(s)
- A Booth
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - V Bonham
- National Human Genome Research Institute, Bethesda, MD, USA
| | - M Porteus
- Department of Pediatrics, Stanford School of Medicine, Stanford, CA, USA
| | - K E Ormond
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA. .,Stanford Center for Biomedical Ethics, Stanford School of Medicine, Stanford, CA, USA.
| |
Collapse
|
34
|
Rees HA, Minella AC, Burnett CA, Komor AC, Gaudelli NM. CRISPR-derived genome editing therapies: Progress from bench to bedside. Mol Ther 2021; 29:3125-3139. [PMID: 34619370 PMCID: PMC8572140 DOI: 10.1016/j.ymthe.2021.09.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 12/14/2022] Open
Abstract
The development of CRISPR-derived genome editing technologies has enabled the precise manipulation of DNA sequences within the human genome. In this review, we discuss the initial development and cellular mechanism of action of CRISPR nucleases and DNA base editors. We then describe factors that must be taken into consideration when developing these tools into therapeutic agents, including the potential for unintended and off-target edits when using these genome editing tools, and methods to characterize these types of edits. We finish by considering specific challenges associated with bringing a CRISPR-based therapy to the clinic, including manufacturing, regulatory oversight, and considerations for clinical trials that involve genome editing agents.
Collapse
|
35
|
Martelli F, Verachi P, Zingariello M, Mazzarini M, Vannucchi AM, Lonetti A, Bacci B, Sarli G, Migliaccio AR. hGATA1 Under the Control of a μLCR/β-Globin Promoter Rescues the Erythroid but Not the Megakaryocytic Phenotype Induced by the Gata1 low Mutation in Mice. Front Genet 2021; 12:720552. [PMID: 34707640 PMCID: PMC8542976 DOI: 10.3389/fgene.2021.720552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/24/2021] [Indexed: 11/13/2022] Open
Abstract
The phenotype of mice carrying the Gata1low mutation that decreases expression of Gata1 in erythroid cells and megakaryocytes, includes anemia, thrombocytopenia, hematopoietic failure in bone marrow and development of extramedullary hematopoiesis in spleen. With age, these mice develop myelofibrosis, a disease sustained by alterations in stem/progenitor cells and megakaryocytes. This study analyzed the capacity of hGATA1 driven by a μLCR/β-globin promoter to rescue the phenotype induced by the Gata1low mutation in mice. Double hGATA1/Gata1low/0 mice were viable at birth with hematocrits greater than those of their Gata1low/0 littermates but platelet counts remained lower than normal. hGATA1 mRNA was expressed by progenitor and erythroid cells from double mutant mice but not by megakaryocytes analyzed in parallel. The erythroid cells from hGATA1/Gata1low/0 mice expressed greater levels of GATA1 protein and of α- and β-globin mRNA than cells from Gata1low/0 littermates and a reduced number of them was in apoptosis. By contrast, hGATA1/Gata1low/0 megakaryocytes expressed barely detectable levels of GATA1 and their expression of acetylcholinesterase, Von Willebrand factor and platelet factor 4 as well as their morphology remained altered. In comparison with Gata1+/0 littermates, Gata1low/0 mice contained significantly lower total and progenitor cell numbers in bone marrow while the number of these cells in spleen was greater than normal. The presence of hGATA1 greatly increased the total cell number in the bone marrow of Gata1low/0 mice and, although did not affect the total cell number of the spleen which remained greater than normal, it reduced the frequency of progenitor cells in this organ. The ability of hGATA1 to rescue the hematopoietic functions of the bone marrow of the double mutants was confirmed by the observation that these mice survive well splenectomy and did not develop myelofibrosis with age. These results indicate that hGATA1 under the control of µLCR/β-globin promoter is expressed in adult progenitors and erythroid cells but not in megakaryocytes rescuing the erythroid but not the megakaryocyte defect induced by the Gata1low/0 mutation.
Collapse
Affiliation(s)
- Fabrizio Martelli
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Paola Verachi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Maria Zingariello
- Unit of Microscopic and Ultrastructural Anatomy, Department of Medicine, University Campus Bio-Medico, Rome, Italy
| | - Maria Mazzarini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Alessandro M Vannucchi
- Department of Clinical and Experimental Medicine, Center of Research and Innovation of Myeloproliferative neoplasms (CRIMM), AOU Careggi, University of Florence, Florence, Italy
| | - Annalisa Lonetti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Barbara Bacci
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Giuseppe Sarli
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Anna Rita Migliaccio
- Myeloproliferative Neoplasm Research Consortium, New York, NY, United States.,Department of Medicine and Surgery, University Campus Bio-Medico, Rome, Italy
| |
Collapse
|
36
|
Wang X, Ma C, Rodríguez Labrada R, Qin Z, Xu T, He Z, Wei Y. Recent advances in lentiviral vectors for gene therapy. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1842-1857. [PMID: 34708326 DOI: 10.1007/s11427-021-1952-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/19/2021] [Indexed: 02/05/2023]
Abstract
Lentiviral vectors (LVs), derived from human immunodeficiency virus, are powerful tools for modifying the genes of eukaryotic cells such as hematopoietic stem cells and neural cells. With the extensive and in-depth studies on this gene therapy vehicle over the past two decades, LVs have been widely used in both research and clinical trials. For instance, third-generation and self-inactive LVs have been used to introduce a gene with therapeutic potential into the host genome and achieve targeted delivery into specific tissue. When LVs are employed in leukemia, the transduced T cells recognize and kill the tumor B cells; in β-thalassemia, the transduced CD34+ cells express normal β-globin; in adenosine deaminase-deficient severe combined immunodeficiency, the autologous CD34+ cells express adenosine deaminase and realize immune reconstitution. Overall, LVs can perform significant roles in the treatment of primary immunodeficiency diseases, hemoglobinopathies, B cell leukemia, and neurodegenerative diseases. In this review, we discuss the recent developments and therapeutic applications of LVs. The safe and efficient LVs show great promise as a tool for human gene therapy.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Cuicui Ma
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Roberto Rodríguez Labrada
- Department Clinical Neurophysiology, Centre for the Research and Rehabilitation of Hereditary Ataxias, Holguín, 80100, Cuba
| | - Zhou Qin
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Xu
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Zhiyao He
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| | - Yuquan Wei
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
37
|
Senapati S, Upadhyaya A, Dhruw S, Giri D, Maiti P. Controlled DNA Delivery Using Poly(lactide) Nanoparticles and Understanding the Binding Interactions. J Phys Chem B 2021; 125:10009-10017. [PMID: 34436883 DOI: 10.1021/acs.jpcb.1c06520] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cationic polymer-based gene delivery vectors suffer from several limitations such as low DNA-loading capacity, poor transfection, toxicity, environmental degradations, etc. Again, very limited works are available addressing the binding interactions in detail at the atomic level explaining the loading capacity, protection ability against harsh environments, and controlled release behavior of the DNA-encapsulated vehicles. Here, a poly(l-lactide) (PLA) nanoparticle-based controlled DNA release system is proposed. The developed vehicle possesses a high DNA-loading capacity and can release the loaded DNA in a controlled manner. Spectroscopic, physicochemical, and molecular simulation techniques (AM1 and atomistic molecular dynamics) have been employed to understand the binding interactions between PLA and DNA molecules enabling high DNA loading, protection against external harsh environments, and controlled DNA release behavior. Methyl thiazolyl tetrazolium (MTT) assay experiments confirm the biocompatible nature of the vehicle. Cellular uptake efficiency and endo-lysosomal escape capabilities have been investigated against HeLA cells. This study, therefore, demonstrates the development of a promising nonviral DNA delivery vector and includes a detailed investigation of the atomic-level interaction behavior between PLA and DNA molecules.
Collapse
Affiliation(s)
- Sudipta Senapati
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221 005, India
| | - Anurag Upadhyaya
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Somnath Dhruw
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221 005, India
| | - Debaprasad Giri
- Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi 221 005, India
| | - Pralay Maiti
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221 005, India
| |
Collapse
|
38
|
Wang Y, Hu LF, Zhou TJ, Qi LY, Xing L, Lee J, Wang FZ, Oh YK, Jiang HL. Gene therapy strategies for rare monogenic disorders with nuclear or mitochondrial gene mutations. Biomaterials 2021; 277:121108. [PMID: 34478929 DOI: 10.1016/j.biomaterials.2021.121108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 08/19/2021] [Accepted: 08/26/2021] [Indexed: 12/26/2022]
Abstract
Rare monogenic disorders are a group of single-gene-mutated diseases that have a low incidence rate (less than 0.5‰) and eventually lead to patient disability and even death. Due to the relatively low number of people affected, these diseases typically fail to attract a great deal of commercial investment and research interest, and the affected patients thus have unmet medical needs. Advances in genomics biology, gene editing, and gene delivery can now offer potentially effective options for treating rare monogenic diseases. Herein, we review the application of gene therapy strategies (traditional gene therapy and gene editing) against various rare monogenic diseases with nuclear or mitochondrial gene mutations, including eye, central nervous system, pulmonary, systemic, and blood cell diseases. We summarize their pathologic features, address the barriers to gene delivery for these diseases, discuss available therapies in the clinic and in clinical trials, and sum up in-development gene delivery systems for various rare monogenic disorders. Finally, we elaborate the possible directions and outlook of gene therapy for rare monogenic disorders.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Li-Fan Hu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Tian-Jiao Zhou
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Lian-Yu Qi
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Lei Xing
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, 830054, China
| | - Jaiwoo Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Feng-Zhen Wang
- Department of Clinical Pharmacy, The First Clinical School of Xuzhou Medical University, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, China.
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, 830054, China; Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW Sickle cell disease (SCD), one of the most common genetic diseases in the world, is characterized by repeated episodes of hemolysis and vaso-occlusion. Hemolytic anemia is a risk factor for the development of pulmonary hypertension, and currently SCD-related pulmonary hypertension is classified as World Health Organization group 5 pulmonary hypertension. Patients with SCD-related pulmonary hypertension have unique hemodynamics, multiple comorbidities, and distinct phenotypes that may contribute to the development of pulmonary hypertension. RECENT FINDINGS SCD-related pulmonary hypertension is defined as a mean pulmonary artery pressure >20 mmHg, a pulmonary artery occlusion pressure ≤15 mmHg and relatively low pulmonary vascular resistance (>2 Wood units) rather than the traditional definition of ≥3 Wood units, an important distinction due to a baseline high-cardiac output state in the setting of chronic anemia and low vascular resistance. Diastolic dysfunction is frequently identified in this patient population and right heart catheterization is essential to determine if combined pre- and postcapillary pulmonary hypertension is present. Thromboembolism is common among patients with SCD, and screening for chronic thromboembolic pulmonary hypertension is essential. Data regarding advanced therapies are limited. Primary treatment options include targeting correction of their primary hemoglobinopathy as well as aggressive management of underlying comorbid conditions. SUMMARY SCD-related pulmonary hypertension is common among patients with SCD and is associated with increased mortality. A high index of suspicion is warranted during evaluation to identify all potential factors that may be contributing to disease.
Collapse
Affiliation(s)
- Clare C Prohaska
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University, Indianapolis, Indiana, USA
| | | |
Collapse
|
40
|
Zerra PE, Patel SR, Jajosky RP, Arthur CM, McCoy JW, Allen JWL, Chonat S, Fasano RM, Roback JD, Josephson CD, Hendrickson JE, Stowell SR. Marginal zone B cells mediate a CD4 T-cell-dependent extrafollicular antibody response following RBC transfusion in mice. Blood 2021; 138:706-721. [PMID: 33876205 PMCID: PMC8394907 DOI: 10.1182/blood.2020009376] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/30/2021] [Indexed: 01/07/2023] Open
Abstract
Red blood cell (RBC) transfusions can result in alloimmunization toward RBC alloantigens that can increase the probability of complications following subsequent transfusion. An improved understanding of the immune mechanisms that underlie RBC alloimmunization is critical if future strategies capable of preventing or even reducing this process are to be realized. Using the HOD (hen egg lysozyme [HEL] and ovalbumin [OVA] fused with the human RBC antigen Duffy) model system, we aimed to identify initiating immune factors that may govern early anti-HOD alloantibody formation. Our findings demonstrate that HOD RBCs continuously localize to the marginal sinus following transfusion, where they colocalize with marginal zone (MZ) B cells. Depletion of MZ B cells inhibited immunoglobulin M (IgM) and IgG anti-HOD antibody formation, whereas CD4 T-cell depletion only prevented IgG anti-HOD antibody development. HOD-specific CD4 T cells displayed similar proliferation and activation following transfusion of HOD RBCs into wild-type or MZ B-cell-deficient recipients, suggesting that IgG formation is not dependent on MZ B-cell-mediated CD4 T-cell activation. Moreover, depletion of follicular B cells failed to substantially impact the anti-HOD antibody response, and no increase in antigen-specific germinal center B cells was detected following HOD RBC transfusion, suggesting that antibody formation is not dependent on the splenic follicle. Despite this, anti-HOD antibodies persisted for several months following HOD RBC transfusion. Overall, these data suggest that MZ B cells can initiate and then contribute to RBC alloantibody formation, highlighting a unique immune pathway that can be engaged following RBC transfusion.
Collapse
Affiliation(s)
- Patricia E Zerra
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, and
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA and
| | - Seema R Patel
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA and
| | - Ryan Philip Jajosky
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, and
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and
| | - Connie M Arthur
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, and
| | - James W McCoy
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, and
| | - Jerry William Lynn Allen
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and
| | - Satheesh Chonat
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA and
| | - Ross M Fasano
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, and
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA and
| | - John D Roback
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, and
| | - Cassandra D Josephson
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, and
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA and
| | | | - Sean R Stowell
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and
| |
Collapse
|
41
|
Pavan AR, Dos Santos JL. Advances in Sickle Cell Disease Treatments. Curr Med Chem 2021; 28:2008-2032. [PMID: 32520675 DOI: 10.2174/0929867327666200610175400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/23/2020] [Accepted: 05/07/2020] [Indexed: 11/22/2022]
Abstract
Sickle Cell Disease (SCD) is an inherited disorder of red blood cells that is caused by a single mutation in the β -globin gene. The disease, which afflicts millions of patients worldwide mainly in low income countries, is characterized by high morbidity, mortality and low life expectancy. The new pharmacological and non-pharmacological strategies for SCD is urgent in order to promote treatments able to reduce patient's suffering and improve their quality of life. Since the FDA approval of HU in 1998, there have been few advances in discovering new drugs; however, in the last three years voxelotor, crizanlizumab, and glutamine have been approved as new therapeutic alternatives. In addition, new promising compounds have been described to treat the main SCD symptoms. Herein, focusing on drug discovery, we discuss new strategies to treat SCD that have been carried out in the last ten years to discover new, safe, and effective treatments. Moreover, non-pharmacological approaches, including red blood cell exchange, gene therapy and hematopoietic stem cell transplantation will be presented.
Collapse
Affiliation(s)
- Aline Renata Pavan
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, Brazil
| | - Jean Leandro Dos Santos
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
42
|
Musculoskeletal tissue engineering: Regional gene therapy for bone repair. Biomaterials 2021; 275:120901. [PMID: 34091300 DOI: 10.1016/j.biomaterials.2021.120901] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/24/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023]
Abstract
Bone loss associated with fracture nonunion, revision total joint arthroplasty (TJA), and pseudoarthrosis of the spine presents a challenging clinical scenario for the orthopaedic surgeon. Current treatment options including autograft, allograft, bone graft substitutes, and bone transport techniques are associated with significant morbidity, high costs, and prolonged treatment regimens. Unfortunately, these treatment strategies have proven insufficient to safely and consistently heal bone defects in the stringent biological environments often encountered in clinical cases of bone loss. The application of tissue engineering (TE) to musculoskeletal pathology has uncovered exciting potential treatment strategies for challenging bone loss scenarios in orthopaedic surgery. Regional gene therapy involves the local implantation of nucleic acids or genetically modified cells to direct specific protein expression, and has shown promise as a potential TE technique for the regeneration of bone. Preclinical studies in animal models have demonstrated the ability of regional gene therapy to safely and effectively heal critical sized bone defects which otherwise do not heal. The purpose of the present review is to provide a comprehensive overview of the current status of gene therapy applications for TE in challenging bone loss scenarios, with an emphasis on gene delivery methods and models, scaffold biomaterials, preclinical results, and future directions.
Collapse
|
43
|
Man Y, Maji D, An R, Ahuja SP, Little JA, Suster MA, Mohseni P, Gurkan UA. Microfluidic electrical impedance assessment of red blood cell-mediated microvascular occlusion. LAB ON A CHIP 2021; 21:1036-1048. [PMID: 33666615 PMCID: PMC8170703 DOI: 10.1039/d0lc01133a] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Alterations in the deformability of red blood cells (RBCs), occurring in hemolytic blood disorders such as sickle cell disease (SCD), contribute to vaso-occlusion and disease pathophysiology. There are few functional in vitro assays for standardized assessment of RBC-mediated microvascular occlusion. Here, we present the design, fabrication, and clinical testing of the Microfluidic Impedance Red Cell Assay (MIRCA) with embedded capillary network-based micropillar arrays and integrated electrical impedance measurement electrodes to address this need. The micropillar arrays consist of microcapillaries ranging from 12 μm to 3 μm, with each array paired with two sputtered gold electrodes to measure the impedance change of the array before and after sample perfusion through the microfluidic device. We define RBC occlusion index (ROI) and RBC electrical impedance index (REI), which represent the cumulative percentage occlusion and cumulative percentage impedance change, respectively. We demonstrate the promise of MIRCA in two common red cell disorders, SCD and hereditary spherocytosis. We show that the electrical impedance measurement reflects the microvascular occlusion, where REI significantly correlates with ROI that is obtained via high-resolution microscopy imaging of the microcapillary arrays. Further, we show that RBC-mediated microvascular occlusion, represented by ROI and REI, associates with clinical treatment outcomes and correlates with in vivo hemolytic biomarkers, lactate dehydrogenase (LDH) level and absolute reticulocyte count (ARC) in SCD. Impedance measurement obviates the need for high-resolution imaging, enabling future translation of this technology for widespread access, portable and point-of-care use. Our findings suggest that the presented microfluidic design and the integrated electrical impedance measurement provide a reproducible functional test for standardized assessment of RBC-mediated microvascular occlusion. MIRCA and the newly defined REI may serve as an in vitro therapeutic efficacy benchmark for assessing the clinical outcome of emerging RBC-modifying targeted and curative therapies.
Collapse
Affiliation(s)
- Yuncheng Man
- Mechanical and Aerospace Engineering Department, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Shafqat S, Tariq E, Parnes AD, Dasouki MJ, Ahmed SO, Hashmi SK. Role of gene therapy in Fanconi anemia: A systematic and literature review with future directions. Hematol Oncol Stem Cell Ther 2021; 14:290-301. [PMID: 33736979 DOI: 10.1016/j.hemonc.2021.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/24/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
Gene therapy (GT) has been reported to improve bone marrow function in individuals with Fanconi anemia (FA); however, its clinical application is still in the initial stages. We conducted this systematic review, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, to assess the long-term safety and clinical outcomes of GT in FA patients. Electronic searches from PubMed, Web of Science, Cochrane Library, and Google Scholar were conducted and full texts of articles meeting our inclusion criteria were reviewed. Three clinical trials were included, with a total of nine patients and mean age of 10.7 ± 5.7 years. All patients had lentiviral-mediated GT. A 1-year follow-up showed stabilization in blood lineages, without any serious adverse effects from GT. A metaregression analysis could not be conducted, as very little long-term follow-up data of patients was observed, and the median survival rate could not be calculated. Thus, we can conclude that GT seems to be a safe procedure in FA; however, further research needs to be conducted on the longitudinal clinical effects of GT in FA, for a better insight into its potential to become a standard form of treatment.
Collapse
Affiliation(s)
| | - Eleze Tariq
- Medical College, Aga Khan University, Karachi, Pakistan
| | - Aric D Parnes
- Division of Hematology, Brigham and Women's Hospital, Boston, MA, USA
| | - Majed J Dasouki
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Syed O Ahmed
- Department of Adult Hematology and Stem Cell Transplantation, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Shahrukh K Hashmi
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
45
|
Ogu UO, Badamosi NU, Camacho PE, Freire AX, Adams-Graves P. Management of Sickle Cell Disease Complications Beyond Acute Chest Syndrome. J Blood Med 2021; 12:101-114. [PMID: 33658881 PMCID: PMC7920619 DOI: 10.2147/jbm.s291394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/07/2021] [Indexed: 12/14/2022] Open
Abstract
Sickle cell disease results in numerous complications that can lead to significant morbidity and mortality. Amongst them, acute chest syndrome is the leading cause of mortality. As a result, most providers are in tune with this complication and well versed with management. As sickle cell patients now live longer, they face a multitude of other complications that if left unattended, can lead to significant morbidity and mortality as well. It is critical to look beyond acute chest syndrome and adopt a more comprehensive approach to the management of the sickle cell patient.
Collapse
Affiliation(s)
- Ugochi O Ogu
- Center for Sickle Cell Disease, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Nnenna U Badamosi
- Division of Pediatric Hematology and Oncology, Medical College of Georgia, Augusta, GA, USA
| | - Pamela E Camacho
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Amado X Freire
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Patricia Adams-Graves
- Center for Sickle Cell Disease, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
46
|
Papizan JB, Porter SN, Sharma A, Pruett-Miller SM. Therapeutic gene editing strategies using CRISPR-Cas9 for the β-hemoglobinopathies. J Biomed Res 2021; 35:115-134. [PMID: 33349624 PMCID: PMC8038529 DOI: 10.7555/jbr.34.20200096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
With advancements in gene editing technologies, our ability to make precise and efficient modifications to the genome is increasing at a remarkable rate, paving the way for scientists and clinicians to uniquely treat a multitude of previously irremediable diseases. CRISPR-Cas9, short for clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9, is a gene editing platform with the ability to alter the nucleotide sequence of the genome in living cells. This technology is increasing the number and pace at which new gene editing treatments for genetic disorders are moving toward the clinic. The β-hemoglobinopathies are a group of monogenic diseases, which despite their high prevalence and chronic debilitating nature, continue to have few therapeutic options available. In this review, we will discuss our existing comprehension of the genetics and current state of treatment for β-hemoglobinopathies, consider potential genome editing therapeutic strategies, and provide an overview of the current state of clinical trials using CRISPR-Cas9 gene editing.
Collapse
Affiliation(s)
- James B Papizan
- Department of Cellular and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.,Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shaina N Porter
- Department of Cellular and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.,Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Akshay Sharma
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shondra M Pruett-Miller
- Department of Cellular and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.,Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
47
|
Demirci S, Leonard A, Tisdale JF. Hematopoietic stem cells from pluripotent stem cells: Clinical potential, challenges, and future perspectives. Stem Cells Transl Med 2020; 9:1549-1557. [PMID: 32725882 PMCID: PMC7695636 DOI: 10.1002/sctm.20-0247] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/01/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022] Open
Abstract
The generation of hematopoietic stem cells (HSCs) from induced pluripotent stem cells (iPSCs) is an active and promising area of research; however, generating engraftable HSCs remains a major obstacle. Ex vivo HSC derivation from renewable sources such as iPSCs offers an experimental tool for studying developmental hematopoiesis, disease modeling, and drug discovery, and yields tremendous therapeutic potential for malignant and nonmalignant hematological disorders. Although initial attempts mostly recapitulated yolk sac primitive/definitive hematopoiesis with inability to engraft, recent advances suggest the feasibility of engraftable HSC derivation from iPSCs utilizing ectopic transcription factor expression. Strategic development for de novo HSC generation includes further investigations of HSC ontogeny, and elucidation of critical signaling pathways, epigenetic modulations, HSC and iPSC microenvironment, and cell-cell interactions that contribute to stem cell biology and function.
Collapse
Affiliation(s)
- Selami Demirci
- Cellular and Molecular Therapeutics BranchNational Heart Lung and Blood Institutes (NHLBI), National Institutes of Health (NIH)BethesdaMarylandUSA
| | - Alexis Leonard
- Cellular and Molecular Therapeutics BranchNational Heart Lung and Blood Institutes (NHLBI), National Institutes of Health (NIH)BethesdaMarylandUSA
| | - John F. Tisdale
- Cellular and Molecular Therapeutics BranchNational Heart Lung and Blood Institutes (NHLBI), National Institutes of Health (NIH)BethesdaMarylandUSA
| |
Collapse
|
48
|
Demirci S, Haro-Mora JJ, Leonard A, Drysdale C, Malide D, Keyvanfar K, Essawi K, Vizcardo R, Tamaoki N, Restifo NP, Tisdale JF, Uchida N. Definitive hematopoietic stem/progenitor cells from human embryonic stem cells through serum/feeder-free organoid-induced differentiation. Stem Cell Res Ther 2020; 11:493. [PMID: 33234163 PMCID: PMC7688003 DOI: 10.1186/s13287-020-02019-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/05/2020] [Indexed: 12/14/2022] Open
Abstract
Background Ex vivo production of hematopoietic stem/precursor cells (HSPCs) represents a promising versatile approach for blood disorders. Methods To derive definitive HSPCs from human embryonic stem cells (ESCs), we differentiated mesodermally specified embryoid bodies (EBs) on gelatin-coated plates in serum/feeder-free conditions. Results Seven-day EB maturation followed by an 8-day differentiation period on OP9 cells provided the highest number of definitive (CD34+ CD235a−, 69%, p < 0.01) and lowest number of primitive (CD34− CD235a+, 1.55%, p < 0.01) precursor cells along with the highest colony-forming units (149.8 ± 11.6, p < 0.01) in feeder-free conditions. Maximal HSPC fraction (CD34+ CD38− CD45RA− CD49f+ CD90+) was 7.6–8.9% after 10 days of hematopoietic differentiation with 14.5% adult β-globin expression following RBC differentiation. Myeloid and erythroid colonies were restricted strictly to the CD34+ CD43+ fraction (370.5 ± 65.7, p < 0.001), while the CD34− CD43+ fraction produced only a small number of colonies (21.6 ± 11.9). In addition, we differentiated the CD34+ CD43+ cells towards T-lymphocytes using the OP9/DLL1 co-culture system demonstrating double-positive T cells (CD4+ CD8+) with CD3+ expression displaying a broad T cell receptor (TCR) repertoire. Confocal imaging of organoid-like structures revealed a close association of CD31+ cells with CD34+ and CD43+ cells, suggesting a potential emergence of HSPCs through endothelial to hematopoietic transition. Furthermore, fluorescently labeled organoids exhibited the emergence of spherical non-attached cells from rare progenitors at the border of the organoid center. Conclusions In summary, definitive HSPCs can be derived from ESCs through a dynamic cellular process from an organoid-like structure, where erythroid progeny are capable of producing adult hemoglobin and lymphoid progeny shows a diverse TCR repertoire.
Collapse
Affiliation(s)
- Selami Demirci
- Sickle Cell Branch, National Heart Lung and Blood Institute (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), 9000 Rockville Pike, Bldg. 10, 9N112, Bethesda, MD, 20892, USA
| | - Juan J Haro-Mora
- Sickle Cell Branch, National Heart Lung and Blood Institute (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), 9000 Rockville Pike, Bldg. 10, 9N112, Bethesda, MD, 20892, USA
| | - Alexis Leonard
- Sickle Cell Branch, National Heart Lung and Blood Institute (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), 9000 Rockville Pike, Bldg. 10, 9N112, Bethesda, MD, 20892, USA
| | - Claire Drysdale
- Sickle Cell Branch, National Heart Lung and Blood Institute (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), 9000 Rockville Pike, Bldg. 10, 9N112, Bethesda, MD, 20892, USA
| | - Daniela Malide
- Light Microscopy Core Facility, NHLBI, NIH, Bethesda, MD, USA
| | | | - Khaled Essawi
- Sickle Cell Branch, National Heart Lung and Blood Institute (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), 9000 Rockville Pike, Bldg. 10, 9N112, Bethesda, MD, 20892, USA
| | - Raul Vizcardo
- National Cancer Institute, Center for Cancer Research, NIH, Bethesda, MD, USA
| | - Naritaka Tamaoki
- National Cancer Institute, Center for Cancer Research, NIH, Bethesda, MD, USA
| | - Nicholas P Restifo
- National Cancer Institute, Center for Cancer Research, NIH, Bethesda, MD, USA
| | - John F Tisdale
- Sickle Cell Branch, National Heart Lung and Blood Institute (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), 9000 Rockville Pike, Bldg. 10, 9N112, Bethesda, MD, 20892, USA.
| | - Naoya Uchida
- Sickle Cell Branch, National Heart Lung and Blood Institute (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), 9000 Rockville Pike, Bldg. 10, 9N112, Bethesda, MD, 20892, USA
| |
Collapse
|
49
|
Chen J, Lazarus HM, Dahi PB, Avecilla S, Giralt SA. Getting blood out of a stone: Identification and management of patients with poor hematopoietic cell mobilization. Blood Rev 2020; 47:100771. [PMID: 33213986 DOI: 10.1016/j.blre.2020.100771] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 07/15/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022]
Abstract
Hematopoietic cell transplantation (HCT) has become a primary treatment for many cancers. Nowadays, the primary source of hematopoietic cells is by leukapheresis collection of these cells from peripheral blood, after a forced egress of hematopoietic cells from marrow into blood circulation, a process known as "mobilization". In this process, mobilizing agents disrupt binding interactions between hematopoietic cells and marrow microenvironment to facilitate collection. As the first essential step of HCT, poor mobilization, i.e. failure to obtain a desired or required number of hematopoietic cell, is one of the major factors affecting engraftment or even precluding transplantation. This review summarizes the available mobilization regimens using granulocyte-colony stimulating factor (G-CSF) and plerixafor, as well as the current understanding of the factors that are associated with poor mobilization. Strategies to mobilize patients or healthy donors who failed previous mobilization are discussed. Multiple novel agents are under investigation and some of them have shown the potential to enhance the mobilization response to G-CSF and/or plerixafor. Further investigation of the risk factors including genetic factors will offer an opportunity to better understand the molecular mechanism of mobilization and help develop new therapeutic strategies for successful mobilizations.
Collapse
Affiliation(s)
- Jian Chen
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States; Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, United States
| | - Hillard M Lazarus
- Department of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Parastoo B Dahi
- Department of Medicine, Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Scott Avecilla
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Sergio A Giralt
- Department of Medicine, Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States.
| |
Collapse
|
50
|
Desine S, Hollister BM, Abdallah KE, Persaud A, Hull SC, Bonham VL. The Meaning of Informed Consent: Genome Editing Clinical Trials for Sickle Cell Disease. AJOB Empir Bioeth 2020; 11:195-207. [PMID: 33044907 PMCID: PMC7710006 DOI: 10.1080/23294515.2020.1818876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND A first therapeutic target of somatic genome editing (SGE) is sickle cell disease (SCD), the most commonly inherited blood disorders, affecting more than 100,000 individuals in the United States. Advancement of SGE is contingent on patient participation in first in human clinical trials. However, seriously ill patients may be vulnerable to overestimating the benefits of early phase studies while underestimating the risks. Therefore, ensuring potential clinical trial participants are fully informed prior to participating in a SGE clinical trial is critical. Methods: We conducted a mixed-methods study of adults with SCD as well as parents and physicians of individuals with SCD. Participants were asked to complete a genetic literacy survey, watch an educational video about genome editing, complete a two-part survey, and take part in focus group discussions. Focus groups addressed topics on clinical trials, ethics of gene editing, and what is not understood regarding gene editing. All focus groups were audio-recorded, transcribed, and analyzed using conventional content analysis techniques to identify major themes. Results: Our study examined the views of SCD stakeholders regarding what they want and need to know about genome editing to make an informed decision to participate in a SGE clinical trial. Prominent themes included stakeholders' desire to understand treatment side effects, mechanism of action of SGE, trial qualification criteria, and the impact of SGE on quality of life. In addition, some physicians expressed concerns about the extent to which their patients would understand concepts related to SGE; however, individuals with SCD demonstrated higher levels of genetic literacy than estimated by physicians. Conclusions: Designing ethically robust genome editing clinical trials for the SCD population will require, at a minimum, addressing the expressed information needs of the community through culturally sensitive engagement, so that they can make informed decisions to consider participation in clinical trials.
Collapse
Affiliation(s)
- Stacy Desine
- Social and Behavioral Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Brittany M. Hollister
- Social and Behavioral Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Khadijah E. Abdallah
- Social and Behavioral Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Anitra Persaud
- Social and Behavioral Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Sara Chandros Hull
- Department of Bioethics, Clinical Center, National Institutes of Health, Bethesda, MD
- Bioethics Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Vence L. Bonham
- Social and Behavioral Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|