1
|
do Espírito Santo MESF, Frascino BF, Mattos LMM, Pires DC, de Oliveira SSC, Menezes LB, Braz BF, Santeli RE, Santos ALS, Horn A, Fernandes C, Pereira MD. Mitigating methylglyoxal-induced glycation stress: the protective role of iron, copper, and manganese coordination compounds in Saccharomyces cerevisiae. Biochem J 2024; 481:1771-1786. [PMID: 39535908 DOI: 10.1042/bcj20240390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/23/2024] [Accepted: 11/13/2024] [Indexed: 11/16/2024]
Abstract
Glycation-induced stress (G-iS) is a physiological phenomenon that leads to the formation of advanced glycation end-products, triggering detrimental effects such as oxidative stress, inflammation, and damage to intracellular structures, tissues, and organs. This process is particularly relevant because it has been associated with various human pathologies, including cancer, neurodegenerative diseases, and diabetes. As therapeutic alternatives, coordination compounds with antioxidant activity show promising potential due to their versatility in attenuating oxidative stress and inflammation. Herein, we investigated the antioxidant-related protective potential of a series of complexes: [Cu(II)(BMPA)Cl2] (1), [Fe(III)(BMPA)Cl3] (2), and [Cl(BMPA)MnII-(μ-Cl)2-MnII(BMPA)-(μ-Cl)- MnII(BMPA)(Cl)2]•5H2O (3), all synthesized with the ligand bis-(2-pyridylmethyl)amine (BMPA) in Saccharomyces cerevisiae exposed to G-iS caused by methylglyoxal (MG). Pre- treatment with complexes 1-3 proved highly effective, increasing yeast tolerance to G-iS and attenuating mitochondrial dysfunction. This observed phenotype appears to result from a reduction in intracellular oxidation, lipid peroxidation levels, and glycation. Additionally, an increase in the activity of the antioxidant enzymes superoxide dismutase and catalase was observed following treatment with complexes 1-3. Notably, although complexes 1-3 provided significant protection against oxidative stress induced by H2O2 and menadione, their protective role was more effective against MG-induced glycation stress. Our results indicate that these complexes possess both antiglycation and antioxidant properties, warranting further investigation as potential interventions for mitigating glycation and oxidative stress-related pathologies.
Collapse
Affiliation(s)
- Maria Eduarda S F do Espírito Santo
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Rede de Micologia, RJ, FAPERJ, Rio de Janeiro, Brazil
| | - Bárbara F Frascino
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Rede de Micologia, RJ, FAPERJ, Rio de Janeiro, Brazil
| | - Larissa M M Mattos
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Rede de Micologia, RJ, FAPERJ, Rio de Janeiro, Brazil
| | - Daniele C Pires
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Rede de Micologia, RJ, FAPERJ, Rio de Janeiro, Brazil
| | - Simone S C de Oliveira
- Rede de Micologia, RJ, FAPERJ, Rio de Janeiro, Brazil
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucas B Menezes
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Bernardo F Braz
- Departamento de Química Analítica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ricardo E Santeli
- Departamento de Química Analítica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - André L S Santos
- Rede de Micologia, RJ, FAPERJ, Rio de Janeiro, Brazil
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adolfo Horn
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Christiane Fernandes
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Marcos D Pereira
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Rede de Micologia, RJ, FAPERJ, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Widowati W, Darsono L, Utomo HS, Sabrina AHN, Natariza MR, Valentinus Tarigan AC, Waluyo NW, Gleyriena AM, Siahaan BH, Oktaviani R. Antidiabetic and hepatoprotection effect of butterfly pea flower ( Clitoria ternatea L.) through antioxidant, anti-inflammatory, lower LDH, ACP, AST, and ALT on diabetes mellitus and dyslipidemia rat. Heliyon 2024; 10:e29812. [PMID: 38681657 PMCID: PMC11053275 DOI: 10.1016/j.heliyon.2024.e29812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/05/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024] Open
Abstract
This study explores the antidiabetic and hepatoprotective potential of Butterfly pea flower extract (Clitoria ternatea L.) (CTE) in diabetic and dyslipidemia rat models. Diabetes Mellitus (DM) is a chronic metabolic disorder marked by high levels of blood glucose, which can cause dyslipidemia and liver damage as a result of oxidative stress. CTE, a natural substance, is recognized for its positive attributes, such as anti-inflammatory, antioxidant, anti-diabetic, anti-dyslipidemia, antibiotic, and liver tissue protection capabilities. Dyslipidemia was induced in rats using a high-fat diet (HFD) and propylthiouracil (PTU) for 28 days. DM was induced using streptozotocin (STZ) and nicotinamide (NA). Rats were treated with varying doses of CTE for 28 days, along with glibenclamide and simvastatin. The research showed that CTE raised the levels of SOD, CAT, and liver proteins while lowering the levels of MDA, LDH, ACP, AST, ALT, IL-1β, and CRP in rats with DM and dyslipidemia. This suggests that CTE might be useful for treating DM.
Collapse
Affiliation(s)
- Wahyu Widowati
- Faculty of Medicine, Maranatha Christian University, Bandung, 40164, West Java, Indonesia
| | - Lusiana Darsono
- Faculty of Medicine, Maranatha Christian University, Bandung, 40164, West Java, Indonesia
| | - Herry S. Utomo
- Louisiana State University (LSU) AgCenter, H. Rouse Caffey Rice Research Station Rayne, LA, USA
| | | | - Maria Rizka Natariza
- Faculty of Medicine, Maranatha Christian University, Bandung, 40164, West Java, Indonesia
| | | | - Novaldo Wahid Waluyo
- Faculty of Medicine, Maranatha Christian University, Bandung, 40164, West Java, Indonesia
| | | | - Berlian Haifa Siahaan
- Faculty of Medicine, Maranatha Christian University, Bandung, 40164, West Java, Indonesia
| | - Reza Oktaviani
- Faculty of Medicine, Maranatha Christian University, Bandung, 40164, West Java, Indonesia
| |
Collapse
|
3
|
Berdaweel IA, Monroe TB, Alowaisi AA, Mahoney JC, Liang IC, Berns KA, Gao D, McLendon JM, Anderson EJ. Iron scavenging and suppression of collagen cross-linking underlie antifibrotic effects of carnosine in the heart with obesity. Front Pharmacol 2024; 14:1275388. [PMID: 38348353 PMCID: PMC10859874 DOI: 10.3389/fphar.2023.1275388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/13/2023] [Indexed: 02/15/2024] Open
Abstract
Oral consumption of histidyl dipeptides such as l-carnosine has been suggested to promote cardiometabolic health, although therapeutic mechanisms remain incompletely understood. We recently reported that oral consumption of a carnosine analog suppressed markers of fibrosis in liver of obese mice, but whether antifibrotic effects of carnosine extend to the heart is not known, nor are the mechanisms by which carnosine is acting. Here, we investigated whether oral carnosine was able to mitigate the adverse cardiac remodeling associated with diet induced obesity in a mouse model of enhanced lipid peroxidation (i.e., glutathione peroxidase 4 deficient mice, GPx4+/-), a model which mimics many of the pathophysiological aspects of metabolic syndrome and T2 diabetes in humans. Wild-type (WT) and GPx4+/-male mice were randomly fed a standard (CNTL) or high fat high sucrose diet (HFHS) for 16 weeks. Seven weeks after starting the diet, a subset of the HFHS mice received carnosine (80 mM) in their drinking water for duration of the study. Carnosine treatment led to a moderate improvement in glycemic control in WT and GPx4+/-mice on HFHS diet, although insulin sensitivity was not significantly affected. Interestingly, while our transcriptomic analysis revealed that carnosine therapy had only modest impact on global gene expression in the heart, carnosine substantially upregulated cardiac GPx4 expression in both WT and GPx4+/-mice on HFHS diet. Carnosine also significantly reduced protein carbonyls and iron levels in myocardial tissue from both genotypes on HFHS diet. Importantly, we observed a robust antifibrotic effect of carnosine therapy in hearts from mice on HFHS diet, which further in vitro experiments suggest is due to carnosine's ability to suppress collagen-cross-linking. Collectively, this study reveals antifibrotic potential of carnosine in the heart with obesity and illustrates key mechanisms by which it may be acting.
Collapse
Affiliation(s)
- Islam A. Berdaweel
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, United States
- Department of Clinical Pharmacy, College of Pharmacy, Yarmouk University, Irbid, Jordan
| | - T. Blake Monroe
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, United States
| | - Amany A. Alowaisi
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, United States
- Department of Clinical Pharmacy, College of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Jolonda C. Mahoney
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, United States
| | - I-Chau Liang
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, United States
| | - Kaitlyn A. Berns
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, United States
| | - Dylan Gao
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, United States
| | - Jared M. McLendon
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Ethan J. Anderson
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, United States
- Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
4
|
Singh P, Walia V, Verma PK. Hypoglycemia and anxiolysis mediated by levofloxacin treatment in diabetic rats. J Diabetes Metab Disord 2023; 22:1197-1209. [PMID: 37975146 PMCID: PMC10638278 DOI: 10.1007/s40200-023-01234-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/03/2023] [Indexed: 11/19/2023]
Abstract
Purpose The present study was designed to determine the effect of levofloxacin (LVX) treatment on the blood glucose level, insulin sensitivity, anxiety level, nitrite and MDA level of STZ induced diabetic rats. Methods Wistar rats were used in the present study. The rats were made diabetic by the administration of single dose of STZ (45 mg/kg, i.p.) and NAD (50 mg/kg, i.p.). The rats with the blood glucose level greater than 200 mg/dl were considered as diabetic (confirmed at day-3 of STZ-NAD administration). The non-diabetic rats were considered as control and received saline.Diabetic rats received metformin (50 mg/kg, p.o.) and LVX (20, 25, 30 and 35 mg/kg, i.p.) daily for 14 days (starting from the day at which STZ was injected). Following administration on 14th day,the blood sample was collected and the rats were subjected to behavioral assays for the determination of locomotor activity and anxiety level. Plasma was separated and used for the estimation ofnitrite and malondialdehyde (MDA)level. On 15th day OGTT was performed in the overnight fasted rats for the assessment of insulin sensitivity. Results The results obtained suggested that the administration of STZ-NAD induced the hyperglycemia at day-3 of administration. Diabetic rats displayed the significant increase in blood glucose, anxiety related behavior, MDA level while significant decrease in the insulin sensitivity and plasma nitrite level. Daily administration of metformin to the diabetic rats decreased the blood glucose level, increased the time spent at the center of open field, reversed the anxiety related behavior in LDT and EPM, did not affect the plasma nitrite level, decreased the plasma MDA level, decreased the fasting glucose level and AUC in OGTT assay. LVX (30 and 35 mg/kg) treatment significantly decreased the blood glucose level of diabetic rats. LVX (20, 25 and 30 mg/kg) treatment significantly decreased the number of square crossing while LVX (20, 25, 30 and 35) treatment significantly increased the time spent at the center of the field by the diabetic rats. LVX (20 and 35 mg/kg) treatment significantly reversed the STZ induced anxiety in LDT while LVX (20, 30 and 35 mg/kg) treatment significantly reversed the STZ induced anxiety in EPM test. LVX (20, 25 and 35 mg/kg) treatment significantly increased the plasma nitrite level and LVX (20-35 mg/kg) treatment significantly decreased the MDA level of diabetic rats. Further only LVX (35 mg/kg) treatment significantly decreased the fasting glucose level and increased the AUC of diabetic rats. Conclusion In conclusion, STZ-NAD administration increased the blood glucose level, anxiety related behavior, decreased the plasma nitrite and increased the MDA level. LVX administration potentiated the diabetogenic effects of STZ-NAD in rats. Daily administration of LVX decreased the blood glucose level of diabetic rats. LVX administration alleviated the STZ induced anxiety in OFT, LDT and EPM test. LVX administration increased the plasma nitrite level and decreased the lipid peroxidation in diabetic rats. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-023-01234-0.
Collapse
Affiliation(s)
- Poonam Singh
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001 Haryana India
| | - Vaibhav Walia
- SGT College of Pharmacy, SGT University, Gurugram, Haryana India
| | - Prabhakar Kumar Verma
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001 Haryana India
| |
Collapse
|
5
|
Amankwa CE, Kodati B, Donkor N, Acharya S. Therapeutic Potential of Antioxidants and Hybrid TEMPOL Derivatives in Ocular Neurodegenerative Diseases: A Glimpse into the Future. Biomedicines 2023; 11:2959. [PMID: 38001960 PMCID: PMC10669210 DOI: 10.3390/biomedicines11112959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/15/2023] [Accepted: 10/21/2023] [Indexed: 11/26/2023] Open
Abstract
Reactive oxygen species play a significant role in the pathogenesis of various ocular neurodegenerative diseases especially glaucoma, age-related macular degeneration (AMD), and ocular ischemic stroke. Increased oxidative stress and the accumulation of ROS have been implicated in the progression of these diseases. As a result, there has been growing interest in exploring potential therapeutic and prophylactic strategies involving exogenous antioxidants. In recent years, there have been significant advancements in the development of synthetic therapeutic antioxidants for targeting reactive oxygen species (ROS) in neurodegenerative diseases. One area of focus has been the development of hybrid TEMPOL derivatives. In the context of ocular diseases, the application of next-generation hybrid TEMPOL antioxidants may offer new avenues for neuroprotection. By targeting ROS and reducing oxidative stress in the retina and optic nerve, these compounds have the potential to preserve retinal ganglion cells and trabecular meshwork and protect against optic nerve damage, mitigating irreversible blindness associated with these diseases. This review seeks to highlight the potential impact of hybrid TEMPOL antioxidants and their derivatives on ocular neurodegenerative disorders.
Collapse
Affiliation(s)
- Charles E. Amankwa
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (C.E.A.); (B.K.); (N.D.)
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Bindu Kodati
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (C.E.A.); (B.K.); (N.D.)
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Nina Donkor
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (C.E.A.); (B.K.); (N.D.)
- Department of Pharmaceutical Science, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Suchismita Acharya
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (C.E.A.); (B.K.); (N.D.)
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
6
|
Jhuo JY, Tong ZJ, Ku PH, Cheng HW, Wang HT. Acrolein induces mitochondrial dysfunction and insulin resistance in muscle and adipose tissues in vitro and in vivo. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122380. [PMID: 37625774 DOI: 10.1016/j.envpol.2023.122380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/05/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023]
Abstract
Type 2 diabetes mellitus (DM) is a common chronic condition characterized by persistent hyperglycemia and is associated with insulin resistance (IR) in critical glucose-consuming tissues, including skeletal muscle and adipose tissue. Oxidative stress and mitochondrial dysfunction are known to play key roles in IR. Acrolein is a reactive aldehyde found in the diet and environment that is generated as a fatty acid product through the glucose autooxidation process under hyperglycemic conditions. Our previous studies have shown that acrolein impairs insulin sensitivity in normal and diabetic mice, and this effect can be reversed by scavenging acrolein. This study demonstrated that acrolein increased oxidative stress and inhibited mitochondrial respiration in differentiated C2C12 myotubes and differentiated 3T3-L1 adipocytes. As a result, insulin signaling pathways were inhibited, leading to reduced glucose uptake. Treatment with acrolein scavengers, N-acetylcysteine, or carnosine ameliorated mitochondrial dysfunction and inhibited insulin signaling. Additionally, an increase in acrolein expression correlated with mitochondrial dysfunction in the muscle and adipose tissues of diabetic mice. These findings suggest that acrolein-induced mitochondrial dysfunction contributes to IR, and scavenging acrolein is a potential therapeutic approach for treating IR.
Collapse
Affiliation(s)
- Jia-Yu Jhuo
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Zhen-Jie Tong
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Pei-Hsuan Ku
- Department of Life Sciences and the Institute of Genome Science, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Hsiao-Wei Cheng
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Hsiang-Tsui Wang
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC; Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC; Doctor Degree Program in Toxicology, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
7
|
Johnston TP, Edwards G, Koulen P. Synergism of mechanisms underlying early-stage changes in retina function in male hyperglycemic db/db mice in the absence and presence of chemically-induced dyslipidemia. Sci Rep 2023; 13:17347. [PMID: 37833428 PMCID: PMC10576038 DOI: 10.1038/s41598-023-44446-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023] Open
Abstract
The study was designed to quantify retina function in a spontaneous mutation mouse model of diabetes, in which sustained dyslipidemia was induced chemically. The goal of the study was to identify if dyslipidemia in the presence of hyperglycemia resulted in either a synergistic, or a merely additive, exacerbation of retinal and visual dysfunctions in diabetes. Two cohorts of mice, male C57BL/6 and C57BL/KsJ-db/db mice were divided into two groups each. One group of each strain received the triblock copolymer, poloxamer 407 (P-407), administered by intraperitoneal injection ("WT P-407" and "db/db P-407" groups) with saline as a control in the remaining two groups ("WT" and "db/db" groups). Blood glucose, total cholesterol (TC) and total triglyceride (TG) levels were quantified using enzyme-based colorimetric assays. Retina function was measured using electroretinography (ERG) and visual acuity was determined by behaviorally assessing parameters of the optomotor reflex. TC and TG levels were normal in both saline controls (WT) and db/db mice but were significantly elevated in the WT P-407 group (p < 0.01 for TC; p < 0.001 for TG), while levels of the same lipids were further elevated in the db/db P-407 group when compared to the WT P-407 group levels (p < 0.001 for both TC and TG). Behavioral assessment of the optomotor reflex indicated reduced visual acuity for the db/db P-407 group when compared to either the WT P-407 or the db/db groups (p < 0.001, p < 0.0001). ERG measurements of scotopic retina function showed a significant decline in the scotopic b-wave amplitude of the WT P-407 animals (p < 0.01) and a further reduction for the db/db P-407 group when compared to controls (p < 0.0001). Very significant, strong correlations between scotopic b-wave amplitude and implicit time to TC (r = - 0.8376, p = < 0.0001 and r = 0.7069, p = 0.0022, respectively) and TG levels (r = - 0.8554, p = < 0.0001 and r = 0.7150, p = 0.0019, respectively) were found. Dyslipidemia in the presence of hyperglycemia synergistically exacerbated the severity of retinal dysfunction in diabetes. P-407 administration significantly elevated plasma TC and TG levels in male wild-type (WT) and diabetic mice (db/db), but the resulting hyperlipidemia was more significantly pronounced in the diabetic mice. While elevated plasma lipid and blood glucose levels were individually correlated with a decline in retinal function, the combination of both exacerbated retinal dysfunction. This model of combined hyperglycemia and dyslipidemia can be used to dissect individual contributions of features of the metabolic syndrome to the pathogenesis of retinal dysfunction in diabetes.
Collapse
Affiliation(s)
- Thomas P Johnston
- Department of Ophthalmology, Vision Research Center, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, 64108, USA
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri - Kansas City, Kansas City, MO, 64108, USA
| | - Genea Edwards
- Department of Ophthalmology, Vision Research Center, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, 64108, USA
| | - Peter Koulen
- Department of Ophthalmology, Vision Research Center, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, 64108, USA.
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, USA.
| |
Collapse
|
8
|
Phoswa WN, Mokgalaboni K. Comprehensive Overview of the Effects of Amaranthus and Abelmoschus esculentus on Markers of Oxidative Stress in Diabetes Mellitus. Life (Basel) 2023; 13:1830. [PMID: 37763234 PMCID: PMC10532493 DOI: 10.3390/life13091830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
The use of medicinal plants in the management of diabetes mellitus (DM) is extensively reported. However, there is still very limited information on the role of these plants as markers of oxidative stress in DM. This current review evaluated the effect of Amaranthus spinosus, Amaranthus hybridus, and Abelmoschus esculentus on markers of oxidative stress in rodent models of DM. Current findings indicate that these plants have the potential to reduce prominent markers of oxidative stress, such as serum malondialdehyde and thiobarbituric acid-reactive substances, while increasing enzymes that act as antioxidants, such as superoxide dismutase, catalase, glutathione, and glutathione peroxidase. This may reduce reactive oxygen species and further ameliorate oxidative stress in DM. Although the potential benefits of these plants are acknowledged in rodent models, there is still a lack of evidence showing their efficacy against oxidative stress in diabetic patients. Therefore, we recommend future clinical studies in DM populations, particularly in Africa, to evaluate the potential effects of these plants. Such studies would contribute to enhancing our understanding of the significance of incorporating these plants into dietary practices for the prevention and management of DM.
Collapse
Affiliation(s)
- Wendy N. Phoswa
- Department of Life and Consumer Sciences, University of South Africa (UNISA), Science Campus, Private Bag X6, Florida, Roodepoort 1710, South Africa;
| | | |
Collapse
|
9
|
Tuell DS, Los EA, Ford GA, Stone WL. The Role of Natural Antioxidant Products That Optimize Redox Status in the Prevention and Management of Type 2 Diabetes. Antioxidants (Basel) 2023; 12:1139. [PMID: 37371869 DOI: 10.3390/antiox12061139] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 06/29/2023] Open
Abstract
The worldwide prevalence of type 2 diabetes (T2D) and prediabetes is rapidly increasing, particularly in children, adolescents, and young adults. Oxidative stress (OxS) has emerged as a likely initiating factor in T2D. Natural antioxidant products may act to slow or prevent T2D by multiple mechanisms, i.e., (1) reducing mitochondrial oxidative stress, (2) preventing the damaging effects of lipid peroxidation, and (3) acting as essential cofactors for antioxidant enzymes. Natural antioxidant products should also be evaluated in the context of the complex physiological processes that modulate T2D-OxS such as glycemic control, postprandial OxS, the polyol pathway, high-calorie, high-fat diets, exercise, and sleep. Minimizing processes that induce chronic damaging OxS and maximizing the intake of natural antioxidant products may provide a means of preventing or slowing T2D progression. This "optimal redox" (OptRedox) approach also provides a framework in which to discuss the potential benefits of natural antioxidant products such as vitamin E, vitamin C, beta-carotene, selenium, and manganese. Although there is a consensus that early effective intervention is critical for preventing or reversing T2D progression, most research has focused on adults. It is critical, therefore, that future research include pediatric populations.
Collapse
Affiliation(s)
- Dawn S Tuell
- Department of Pediatrics, Quillen College of Medicine, Johnson City, TN 37614, USA
| | - Evan A Los
- Department of Pediatrics, Quillen College of Medicine, Johnson City, TN 37614, USA
| | - George A Ford
- Department of Pediatrics, Quillen College of Medicine, Johnson City, TN 37614, USA
| | - William L Stone
- Department of Pediatrics, Quillen College of Medicine, Johnson City, TN 37614, USA
| |
Collapse
|
10
|
Kabach I, Bouchmaa N, Zouaoui Z, Ennoury A, El Asri S, Laabar A, Oumeslakht L, Cacciola F, El Majdoub YO, Mondello L, Zyad A, Nhiri N, Nhiri M, Ben Mrid R. Phytochemical profile and antioxidant capacity, α-amylase and α-glucosidase inhibitory activities of Oxalis pes-caprae extracts in alloxan-induced diabetic mice. Biomed Pharmacother 2023; 160:114393. [PMID: 36774725 DOI: 10.1016/j.biopha.2023.114393] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Diabetes and its complications are closely correlated with chronic hyperglycemia, causing severe oxidative stress and leading to glycation reaction with formation of advanced glycation end products. However, medicinal plants are still a source of inspiration for the discovery of new treatments of several diseases, including diabetes. The present study was aimed to evaluate the antioxidant and antidiabetic properties of Oxalis pes-caprae flowers extract in alloxan-induced diabetic mice. The phytochemical and antioxidant activities of both aqueous and methanolic extracts were assessed by in-vitro testing such as free radical scavenging assays (DPPH and ABTS+), ferrous ions (Fe2+) chelating activity and reducing power assay. Additionally, the detection of Amadori products and advanced glycation end products was used to determine the antiglycation potential. α-glucosidase and α-amylase inhibitory assessment was employed to determine the antidiabetic effect, while alloxan-induced diabetic mice were used to measure the in-vivo activities of antioxidants and carbohydrates enzymes. The effect of the methanolic extract on body weight and blood glucose level of extract-treated diabetic mice were also investigated. Among the tested extract, the methanolic extract was the richest in phenolic compounds which is directly related with their remarkable antioxidant, enzyme inhibitory and antiglycation activity. The oral administration of the two doses of Oxalis pes-caprae flowers (150 mg/kg and 250 mg/kg) daily for 3 weeks resulted in hypoglycemic effect compared to the reference drug, glibenclamide (10 mg/kg). Furthermore, the extract was shown to significantly increase the activities of antioxidants and glycolysis enzymes in the liver, kidney and spleen of diabetic mice, compared to diabetic control group. Therefore, Oxalis pes-caprae extract effectively exhibited hypoglycemic and antidiabetic effects as indicated by in-vitro and in-vivo studies, confirming the protective effects on hyperglycemia and oxidative damage.
Collapse
Affiliation(s)
- Imad Kabach
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, BP 416, 90000 Tangier, Morocco
| | - Najat Bouchmaa
- Institute of Biological Sciences (ISSB-P), UM6P-Faculty of Medical Sciences (UM6P-FMS), Mohammed VI Polytechnic University, Ben-Guerir, Morocco; Team of Experimental Oncology and Natural Substances, Cellular and Molecular Immuno-pharmacology, Faculty of Science and Technology, Sultan Moulay Slimane University, Beni-Mellal, Morocco
| | - Zakia Zouaoui
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, BP 416, 90000 Tangier, Morocco
| | - Abdelhamid Ennoury
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, BP 416, 90000 Tangier, Morocco
| | - Sara El Asri
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, BP 416, 90000 Tangier, Morocco
| | - Abdelmounaim Laabar
- Laboratory of Pharmacology and Toxicology, Biopharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, University Mohammed V of Rabat, Morocco
| | - Loubna Oumeslakht
- Institute of Biological Sciences (ISSB-P), UM6P-Faculty of Medical Sciences (UM6P-FMS), Mohammed VI Polytechnic University, Ben-Guerir, Morocco
| | - Francesco Cacciola
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy.
| | - Yassine Oulad El Majdoub
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - Luigi Mondello
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy; Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; Department of Sciences and Technologies for Human and Environment, University Campus Bio-Medico of Rome, 00128 Rome, Italy
| | - Abdelmajid Zyad
- Team of Experimental Oncology and Natural Substances, Cellular and Molecular Immuno-pharmacology, Faculty of Science and Technology, Sultan Moulay Slimane University, Beni-Mellal, Morocco
| | - Naima Nhiri
- Institute for the Chemistry of Natural Substances, CNRS, Paris Saclay University, 91190 Gif-Sur-Yvette, France
| | - Mohamed Nhiri
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, BP 416, 90000 Tangier, Morocco
| | - Reda Ben Mrid
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, BP 416, 90000 Tangier, Morocco; Institute of Biological Sciences (ISSB-P), UM6P-Faculty of Medical Sciences (UM6P-FMS), Mohammed VI Polytechnic University, Ben-Guerir, Morocco.
| |
Collapse
|
11
|
Aureliano M, De Sousa-Coelho AL, Dolan CC, Roess DA, Crans DC. Biological Consequences of Vanadium Effects on Formation of Reactive Oxygen Species and Lipid Peroxidation. Int J Mol Sci 2023; 24:ijms24065382. [PMID: 36982458 PMCID: PMC10049017 DOI: 10.3390/ijms24065382] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
Lipid peroxidation (LPO), a process that affects human health, can be induced by exposure to vanadium salts and compounds. LPO is often exacerbated by oxidation stress, with some forms of vanadium providing protective effects. The LPO reaction involves the oxidation of the alkene bonds, primarily in polyunsaturated fatty acids, in a chain reaction to form radical and reactive oxygen species (ROS). LPO reactions typically affect cellular membranes through direct effects on membrane structure and function as well as impacting other cellular functions due to increases in ROS. Although LPO effects on mitochondrial function have been studied in detail, other cellular components and organelles are affected. Because vanadium salts and complexes can induce ROS formation both directly and indirectly, the study of LPO arising from increased ROS should include investigations of both processes. This is made more challenging by the range of vanadium species that exist under physiological conditions and the diverse effects of these species. Thus, complex vanadium chemistry requires speciation studies of vanadium to evaluate the direct and indirect effects of the various species that are present during vanadium exposure. Undoubtedly, speciation is important in assessing how vanadium exerts effects in biological systems and is likely the underlying cause for some of the beneficial effects reported in cancerous, diabetic, neurodegenerative conditions and other diseased tissues impacted by LPO processes. Speciation of vanadium, together with investigations of ROS and LPO, should be considered in future biological studies evaluating vanadium effects on the formation of ROS and on LPO in cells, tissues, and organisms as discussed in this review.
Collapse
Affiliation(s)
- Manuel Aureliano
- Faculdade de Ciências e Tecnologia (FCT), Universidade do Algarve, 8005-139 Faro, Portugal
- CCMar, Universidade do Algarve, 8005-139 Faro, Portugal
- Correspondence: (M.A.); (D.C.C.); Tel.: +351-289-900-805 (M.A.)
| | - Ana Luísa De Sousa-Coelho
- Escola Superior de Saúde, Universidade do Algarve (ESSUAlg), 8005-139 Faro, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), 8005-139 Faro, Portugal
| | - Connor C. Dolan
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Deborah A. Roess
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Debbie C. Crans
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
- Cellular and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA
- Correspondence: (M.A.); (D.C.C.); Tel.: +351-289-900-805 (M.A.)
| |
Collapse
|
12
|
李 丽, 谢 晓, 吴 贇, 闫 福. [Advances in Research on the Mechanism of Association Between Periodontitis and Diabetes Mellitus]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2023; 54:71-76. [PMID: 36647646 PMCID: PMC10409046 DOI: 10.12182/20230160203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Indexed: 01/18/2023]
Abstract
Periodontitis and diabetes mellitus are both chronic diseases with a rather high prevalence and they are closely associated with each other. On one hand, diabetes mellitus poses as a risk factor for periodontitis. On the other hand, periodontitis has a negative impact on glucose control in diabetic patients. The two-way relationship has aroused a lot of research interest in recent years. Herein, approaching the issue by looking at the effect of periodontitis on diabetes, we summarized the mechanism of the traditional periodontal pocket-blood circulation pathway and reviewed the role of the oral-gut axis in the mechanism, which has been proposed in recent years. In addition, regarding the impact of diabetes on periodontitis, we summarized new findings concerning changes in oral microbiota, abnormal levels of cytokines and adipokines, oxidative stress, unbalanced osteogenic and osteoclastic activities, and the accumulation of advanced glycation end-products. We hope this paper will be helpful for further studies on the mechanism of association between periodontitis and diabetes.
Collapse
Affiliation(s)
- 丽丽 李
- 南京大学医学院附属口腔医院 牙周病科 (南京 210008)Department of Periodontology, Nangjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - 晓婷 谢
- 南京大学医学院附属口腔医院 牙周病科 (南京 210008)Department of Periodontology, Nangjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - 贇 吴
- 南京大学医学院附属口腔医院 牙周病科 (南京 210008)Department of Periodontology, Nangjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - 福华 闫
- 南京大学医学院附属口腔医院 牙周病科 (南京 210008)Department of Periodontology, Nangjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, China
| |
Collapse
|
13
|
Supplementing Diets with Agriophyllum squarrosum Reduced Blood Lipids, Enhanced Immunity and Anti-Inflammatory Capacities, and Mediated Lipid Metabolism in Tan Lambs. Animals (Basel) 2022; 12:ani12243486. [PMID: 36552407 PMCID: PMC9774518 DOI: 10.3390/ani12243486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/19/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
Agriophyllum squarrosum (sand rice), a widespread desert plant, possesses anti-hyperglycemic and anti-inflammatory properties, and has been used in traditional Chinese medicine for many years. However, its effects on ruminants are unknown. To fill this gap, we examined the effects of A. squarrosum on the immune and anti-inflammatory responses of lambs. A total of 23, 6-month-old Tan ewe-lambs (27.6 ± 0.47 kg) were divided into four groups and offered a basic diet (C—control), or a diet that contained 10%, 20%, or 30% A. squarrosum, on a dry matter basis, for 128 days. Serum concentrations of total cholesterol were lower (p = 0.004) in the 30% supplemented lambs than controls, while concentrations of high-density lipoprotein cholesterol were lower (p = 0.006) in the 10% and 20%, but not in 30% supplemented lambs than controls. Serum-cortisol concentrations were lower (p = 0.012) in the 30% supplemented lambs and free fatty acid concentrations were higher in the 10% and 20% supplemented lambs than in control lambs (p < 0.001). Supplementation with A. squarrosum decreased (p < 0.05) the area of adipocytes in subcutaneous adipose tissue, but there was no difference between the 20% and 30% diets. Conversely, the area in visceral adipose tissue (VAT) increased (p < 0.05), especially for the 10% and 20% supplemented diets. Supplementation with A. squarrosum also enriched immune and anti-inflammatory related and lipid and glucose-metabolic pathways and associated differentially expressed gene expressions in adipose tissue. A total of 10 differential triacylglycerol, 34 differential phosphatidylcholines and seven differential phosphatidylethanolamines decreased in the diet with 30% supplementation, when compared to the other diets. Finally, adipocyte-differentiation genes, and immune and inflammatory response-related gene expression levels decreased in lamb adipocytes cultured with an aqueous A. squarrosum extract. In conclusion, supplementing lamb diets with A. squarrosum reduced blood lipids, enhanced immunity and anti-inflammatory capacities, and mediated lipid metabolism in adipose tissue and adipocytes of Tan lambs. A level of approximately 10% is recommended, but further research is required to determine the precise optimal level.
Collapse
|
14
|
Kaur S, Garg N, Rubal R, Dhiman M. Correlative study on heavy metal-induced oxidative stress and hypertension among the rural population of Malwa Region of Punjab, India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:90948-90963. [PMID: 35881282 DOI: 10.1007/s11356-022-20850-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Heavy metal-induced toxicity contributes to the progression of various metabolic disorders and possible mechanisms involved in disease progression are not well established. In this study, the correlation of heavy metal exposure and hypertension have been demonstrated. The results showed that in hypertensive subjects, the lipid profiles (triglycerides, LDL-C, HDL-C, and total cholesterol) and cardiac markers (CK-MB and LDH) were altered abruptly. As a consequence of heavy- induced oxidative stress, the oxidants (TBARS and protein carbonyls) and antioxidants (SOD, GSH, and TAC) were significantly increased and decreased, respectively in hypertension subjects. The concentrations of heavy metals (Pb, Cd, and As) exceeded the permissible limits in hypertensive subjects. The Nrf-2 genotyping indicated that heavy metals may induce mutations at molecular level. The results of correlation analysis revealed that the heavy metals interact with cellular components and interfere with metabolic processes which then results in disturbed lipid profile, enhanced oxidative stress, and reduced antioxidant status. The current study systematically estimated the association of hair and nail heavy metal concentrations with hypertension among the population residing in the Malwa region of Punjab. The proposed study highlighted that heavy metals act as a silent risk factor in the hypertension progression in the population of Malwa region. Future studies are required to confirm current findings and further scrutinize the effect of heavy metals exposure in early adulthood, early, and late mid-life to develop metabolic complications such as hypertension.
Collapse
Affiliation(s)
- Sukhchain Kaur
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Neha Garg
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Rubal Rubal
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Monisha Dhiman
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India.
| |
Collapse
|
15
|
Detrimental Effects of Lipid Peroxidation in Type 2 Diabetes: Exploring the Neutralizing Influence of Antioxidants. Antioxidants (Basel) 2022; 11:antiox11102071. [PMID: 36290794 PMCID: PMC9598619 DOI: 10.3390/antiox11102071] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Lipid peroxidation, including its prominent byproducts such as malondialdehyde (MDA) and 4-hydroxy-2-nonenal (4-HNE), has long been linked with worsened metabolic health in patients with type 2 diabetes (T2D). In fact, patients with T2D already display increased levels of lipids in circulation, including low-density lipoprotein-cholesterol and triglycerides, which are easily attacked by reactive oxygen molecules to give rise to lipid peroxidation. This process severely depletes intracellular antioxidants to cause excess generation of oxidative stress. This consequence mainly drives poor glycemic control and metabolic complications that are implicated in the development of cardiovascular disease. The current review explores the pathological relevance of elevated lipid peroxidation products in T2D, especially highlighting their potential role as biomarkers and therapeutic targets in disease severity. In addition, we briefly explain the implication of some prominent antioxidant enzymes/factors involved in the blockade of lipid peroxidation, including termination reactions that involve the effect of antioxidants, such as catalase, coenzyme Q10, glutathione peroxidase, and superoxide dismutase, as well as vitamins C and E.
Collapse
|
16
|
Black HS. A Synopsis of the Associations of Oxidative Stress, ROS, and Antioxidants with Diabetes Mellitus. Antioxidants (Basel) 2022; 11:2003. [PMID: 36290725 PMCID: PMC9598123 DOI: 10.3390/antiox11102003] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 07/30/2023] Open
Abstract
The Greek physician, Aretaios, coined the term "diabetes" in the 1st Century A.D. "Mellitus" arose from the observation that the urine exhibits a sweetness due to its elevated glucose levels. Diabetes mellitus (DM) accounted for 6.7 million deaths globally in 2021 with expenditures of USD 966 billion. Mortality is predicted to rise nearly 10-fold by 2030. Oxidative stress, an imbalance between the generation and removal of reactive oxygen species (ROS), is implicated in the pathophysiology of diabetes. Whereas ROS are generated in euglycemic, natural insulin-regulated glucose metabolism, levels are regulated by factors that regulate cellular respiration, e.g., the availability of NAD-linked substrates, succinate, and oxygen; and antioxidant enzymes that maintain the cellular redox balance. Only about 1-2% of total oxygen consumption results in the formation of superoxide anion and hydrogen peroxide under normal reduced conditions. However, under hyperglycemic conditions, about 10% of the respiratory oxygen consumed may be lost as free radicals. Under hyperglycemic conditions, the two-reaction polyol pathway is activated. Nearly 30% of blood glucose can flux through this pathway-a major path contributing to NADH/NAD+ redox imbalance. Under these conditions, protein glycation and lipid peroxidation increase, and inflammatory cytokines are formed, leading to the further formation of ROS. As mitochondria are the major site of intracellular ROS, these organelles are subject to the deleterious effects of ROS themselves and eventually become dysfunctional-a milestone in Metabolic Syndrome (MetS) of which insulin resistance and diabetes predispose to cardiovascular disease.
Collapse
Affiliation(s)
- Homer S Black
- Department of Dermatology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
17
|
Sulaiman N, Sintang M, Mantihal S, Zaini H, Munsu E, Mamat H, Kanagaratnam S, Jahurul M, Pindi W. Balancing functional and health benefits of food products formulated with palm oil as oil sources. Heliyon 2022; 8:e11041. [PMID: 36303903 PMCID: PMC9593283 DOI: 10.1016/j.heliyon.2022.e11041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 03/23/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022] Open
Abstract
Palm oil (PO) is widely utilised in the food industry and consumed in large quantities by humans. Owing to its bioactive components, such as fatty acids, carotenoids, vitamin E, and phenolic compounds, PO has been utilised for generations. However, public concern about their adverse effects on human health is growing. A literature search was conducted to identify fractionated palm oil processing techniques, proof of their health advantages, and potential food applications. Refined palm oil (RPO) is made from crude palm oil (CPO) and can be fractionated into palm olein (POl) and palm stearin (PS). Fractional crystallisation, dry fractionation, and solvent fractionation are the three basic fractionation procedures used in the PO industry. The composition of triacylglycerols and fatty acids in refined and fractionated palm oil and other vegetable oils is compared to elucidate the triacylglycerols and fatty acids that may be important in product development. It is well proven that RPO, POl, and PS extends the oil's shelf life in the food business. These oils have a more significant saturated fat content and antioxidant compounds than some vegetable oils, such as olive and coconut oils, making them more stable. Palm olein and stearin are also superior shortening agents and frying mediums for baking goods and meals. Furthermore, when ingested modestly daily, palm oils, especially RPO and POl, provide health benefits such as cardioprotective, antidiabetic, anti-inflammatory, and antithrombotic effects. Opportunities exist for fractionated palm oil to become a fat substitute; however, nutrition aspects need to be considered in further developing the market.
Collapse
Affiliation(s)
- N.S. Sulaiman
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - M.D. Sintang
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - S. Mantihal
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - H.M. Zaini
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - E. Munsu
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - H. Mamat
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - S. Kanagaratnam
- Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - M.H.A. Jahurul
- Department of Agriculture, University of Arkansas, 1200 North University Dr., M/S 4913, Pine Bluff, AR 71601, United States
| | - W. Pindi
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
18
|
Tong ZJ, Kuo CW, Yen PC, Lin CC, Tsai MT, Lu SH, Chang YP, Liu WS, Tsou HH, Cheng HW, Wang HT. Acrolein plays a culprit role in the pathogenesis of diabetic nephropathy in vitro and in vivo. Eur J Endocrinol 2022; 187:579-592. [PMID: 36001357 DOI: 10.1530/eje-22-0493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/24/2022] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Diabetic nephropathy (DN), also known as diabetic kidney disease (DKD), is a major chronic complication of diabetes and is the most frequent cause of kidney failure globally. A better understanding of the pathophysiology of DN would lead to the development of novel therapeutic options. Acrolein, an α,β-unsaturated aldehyde, is a common dietary and environmental pollutant. DESIGN The role of acrolein and the potential protective action of acrolein scavengers in DN were investigated using high-fat diet/ streptozotocin-induced DN mice and in vitro DN cellular models. METHODS Acrolein-protein conjugates (Acr-PCs) in kidney tissues were examined using immunohistochemistry. Renin-angiotensin system (RAS) and downstream signaling pathways were analyzed using quantitative RT-PCR and Western blot analyses. Acr-PCs in DN patients were analyzed using an established Acr-PC ELISA system. RESULTS We found an increase in Acr-PCs in kidney cells using in vivo and in vitro DN models. Hyperglycemia activated the RAS and downstream MAPK pathways, increasing inflammatory cytokines and cellular apoptosis in two human kidney cell lines (HK2 and HEK293). A similar effect was induced by acrolein. Furthermore, acrolein scavengers such as N-acetylcysteine, hydralazine, and carnosine could ameliorate diabetes-induced kidney injury. Clinically, we also found increased Acr-PCs in serum samples or kidney tissues of DKD patients compared to normal volunteers, and the Acr-PCs were negatively correlated with kidney function. CONCLUSIONS These results together suggest that acrolein plays a role in the pathogenesis of DN and could be a diagnostic marker and effective therapeutic target to ameliorate the development of DN.
Collapse
Affiliation(s)
- Zhen-Jie Tong
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chin-Wei Kuo
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Po-Cheng Yen
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chih-Ching Lin
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ming-Tsun Tsai
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shing-Hwa Lu
- Department of Urology, Taipei Veterans General Hospital, Taoyuan Branch, Taoyuan, Taiwan
- Department of Urology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Ping Chang
- Division of Nephrology, Taoyuan Branch of Taipei Veterans General Hospital, Taoyuan, Taiwan
- Department of Healthcare Information and Management, Ming Chuan University, Taoyuan, Taiwan
- Department of Business Administration, Ming Chuan University, Taipei, Taiwan
| | - Wen-Sheng Liu
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Nephrology, Department of Medicine, Taipei City Hospital, Zhongxing Branch, Taipei, Taiwan
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei, Taiwan
- College of Science and Engineering, Fu Jen Catholic University, New Taipei City, Taiwan
- Department of Special Education, University of Taipei, Taipei, Taiwan
| | - Han-Hsing Tsou
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Kim Forest Enterprise Co., Ltd., Taipei, Taiwan
| | - Hsiao-Wei Cheng
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsiang-Tsui Wang
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Toxicology, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
19
|
Chikoti S, Najiya U, Sumanlatha G, Jahan P. Cytokine gene variants of TNF-α and IL-10 in the propensity of type 2 diabetes in south Indian population. J Diabetes Complications 2022; 36:108304. [PMID: 36148706 DOI: 10.1016/j.jdiacomp.2022.108304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/14/2022] [Accepted: 09/02/2022] [Indexed: 10/14/2022]
Abstract
Chronic inflammation plays an important role in type 2 diabetes mellitus (T2DM), a common endocrinological pro-inflammatory disorder associated with insulin resistance. The objective of the present study is to see individual and combined effect of TNF-α (rs361525, rs1800629) and IL-10 (rs1800872, rs1800896) genes on T2DM susceptibility The genotyping was carried out in 200 T2DM patients and 200 healthy controls by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) using suitable primers. The results shown that TNF-α (GA of rs361525 & rs1800629) and IL-10 (AA of rs1800872 & GA of rs1800896) genes are significantly linked with T2DM development. The presence of AA-GA genotype combination for both TNF-α and IL-10 genes were elevating the risk of T2DM. Moreover, individuals bearing haplotypes AAAA, AACA and AAAG experience the increased risk of T2DM. Furthermore, gene-gene interaction analysis shown that TNF-α (GA of rs361525 & rs1800896) gene redundantly confer 3.4-fold elevated risk for T2DM. In gene-environment interaction, GA of TNF-α -1800896, W/H ratio and TG/HDL ratio were redundantly interacted each other and increase the risk of T2DM by 67-times. In conclusion, our results reveal that there is a significant association between foresaid TNF-α, IL-10 gene promoter polymorphisms and T2DM development. To the best of our knowledge this study is the first of its kind in the literature reporting the epistatic association of TNF-α (rs1800629G/A) gene with TG/HDL ratio and W/H ratio over IL-10 gene polymorphisms for T2DM susceptibility among south Indians.
Collapse
Affiliation(s)
- Swetha Chikoti
- Department of Genetics, Osmania University, Hyderabad, India
| | - Umme Najiya
- Department of Genetics, Osmania University, Hyderabad, India
| | | | - Parveen Jahan
- School of Sciences, Maulana Azad National Urdu University, Hyderabad, India.
| |
Collapse
|
20
|
Liu L, Li A, Xu Q, Wang Q, Han F, Xu C, Liu Z, Xu D, Xu D. The association between urine elements and fasting glucose levels in a community-based elderly people in Beijing. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:30102-30113. [PMID: 34997492 DOI: 10.1007/s11356-021-17948-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Epidemiological studies have demonstrated that various kinds of urinary element concentrations were different between healthy, prediabetes, and diabetes patients. Meanwhile, many studies have explored the relationship between element concentration and fasting blood glucose (FBG), but the association between joint exposure to co-existing elements and FBG level has not been well understood. The study explored the associations of joint exposure to co-existing urinary elements with FBG level in a cross-sectional design. 275 retired elderly people were recruited from Beijing, China. The questionnaire survey was conducted, and biological samples were collected. The generalized linear model (GLM) and two-phase Bayesian kernel machine regression (BKMR) model were used to perform in-depth association analysis between urinary elements and FBG. The GLM analysis showed that Zn, Sr, and Cd were significantly correlated with the FBG level, under control potential confounding factors. The BKMR analysis demonstrated 8 elements (Zn, Se, Fe, Cr, Ni, Cd, Mn, and Al) had a higher influence on FBG (posterior inclusion probabilities > 0.1). Further intensive analyses result of the BKMR model indicated that the overall estimated exposure of 8 elements was positively correlated with the FBG level and was statistically significant when all creatinine-adjusted element concentrations were at their 65th percentile. Meanwhile, the BKMR analysis showed that Cd and Zn had a statistically significant association with FBG levels when other co-existing elements were controlled at different levels (25th, 50th, or 75th percentile), respectively. The results of the GLM and BKMR model were inconsistent. The BKMR model could flexibly calculate the joint exposure to co-existing elements, evaluate the possible interaction effects and nonlinear correlations. The meaningful conclusions were found that it was difficult to get by traditional methods. This study will provide methodological reference and experimental evidence for the association between joint exposure to co-existing elements and FBG in elderly people.
Collapse
Affiliation(s)
- Liu Liu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- Chaoyang District Center for Disease Control and Prevention, Beijing, China
| | - Ang Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, China
- Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Qun Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, China
- Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Qin Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Feng Han
- Chinese Center for Disease Control and Prevention, The National Institute for Occupational Health and Poison Control, Beijing, China
| | - Chunyu Xu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhe Liu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dongqun Xu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China.
| | - Donggang Xu
- Beijing Institute of Basic Medical Sciences, Beijing, China.
| |
Collapse
|
21
|
Ciccone L, Petrarolo G, Barsuglia F, Fruchart-Gaillard C, Cassar Lajeunesse E, Adewumi AT, Soliman MES, La Motta C, Orlandini E, Nencetti S. Nature-Inspired O-Benzyl Oxime-Based Derivatives as New Dual-Acting Agents Targeting Aldose Reductase and Oxidative Stress. Biomolecules 2022; 12:448. [PMID: 35327641 PMCID: PMC8946157 DOI: 10.3390/biom12030448] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 02/04/2023] Open
Abstract
Aldose reductase (ALR2) is the enzyme in charge of developing cellular toxicity caused by diabetic hyperglycemia, which in turn leads to the generation of reactive oxygen species triggering oxidative stress. Therefore, inhibiting ALR2 while pursuing a concomitant anti-oxidant activity through dual-acting agents is now recognized as the gold standard treatment for preventing or at least delaying the progression of diabetic complications. Herein we describe a novel series of (E)-benzaldehyde O-benzyl oximes 6a-e, 7a-e, 8a-e, and 9-11 as ALR2 inhibitors endowed with anti-oxidant properties. Inspired by the natural products, the synthesized derivatives are characterized by a different polyhydroxy substitution pattern on their benzaldehyde fragment, which proved crucial for both the enzyme inhibitory activity and the anti-oxidant capacity. Derivatives (E)-2,3,4-trihydroxybenzaldehyde O-(3-methoxybenzyl) oxime (7b) and (E)-2,3,4-trihydroxybenzaldehyde O-(4-methoxybenzyl) oxime (8b) turned out to be the most effective dual-acting products, proving to combine the best ALR2 inhibitory properties with significant anti-oxidant efficacy.
Collapse
Affiliation(s)
- Lidia Ciccone
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (L.C.); (G.P.); (F.B.)
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris Saclay, Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA), Institut National de Recherche pour l’Agricolture, l’Alimentation et l’Environment (INRAE), SIMoS, 91191 Gif-sur-Yvette, France; (C.F.-G.); (E.C.L.)
- Centre for Instrumentation Sharing, University of Pisa (CISUP), Lungarno Pacinotti 43, 56126 Pisa, Italy;
| | - Giovanni Petrarolo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (L.C.); (G.P.); (F.B.)
| | - Francesca Barsuglia
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (L.C.); (G.P.); (F.B.)
| | - Carole Fruchart-Gaillard
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris Saclay, Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA), Institut National de Recherche pour l’Agricolture, l’Alimentation et l’Environment (INRAE), SIMoS, 91191 Gif-sur-Yvette, France; (C.F.-G.); (E.C.L.)
| | - Evelyne Cassar Lajeunesse
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris Saclay, Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA), Institut National de Recherche pour l’Agricolture, l’Alimentation et l’Environment (INRAE), SIMoS, 91191 Gif-sur-Yvette, France; (C.F.-G.); (E.C.L.)
| | - Adeniyi T. Adewumi
- Molecular Bio-Computation and Drug Design Laboratory, School of Health Science, Westville Campus, University of KwaZulu-Natal, Durban 4001, South Africa; (A.T.A.); (M.E.S.S.)
| | - Mahmoud E. S. Soliman
- Molecular Bio-Computation and Drug Design Laboratory, School of Health Science, Westville Campus, University of KwaZulu-Natal, Durban 4001, South Africa; (A.T.A.); (M.E.S.S.)
| | - Concettina La Motta
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (L.C.); (G.P.); (F.B.)
- Centre for Instrumentation Sharing, University of Pisa (CISUP), Lungarno Pacinotti 43, 56126 Pisa, Italy;
| | - Elisabetta Orlandini
- Centre for Instrumentation Sharing, University of Pisa (CISUP), Lungarno Pacinotti 43, 56126 Pisa, Italy;
- Department of Earth Sciences, University of Pisa, Via Santa Maria 53, 56126 Pisa, Italy
- Research Center “E. Piaggio”, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy
| | - Susanna Nencetti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (L.C.); (G.P.); (F.B.)
- Centre for Instrumentation Sharing, University of Pisa (CISUP), Lungarno Pacinotti 43, 56126 Pisa, Italy;
| |
Collapse
|
22
|
Al-maqati TN, Gazwani AM, Taha M, Almusabi S, Elnagi EA, Maawadh RM, Alqahtani AA, Alkhalaf FS, Almish M, Alqahtani FA, Al Naam YA. The impact of age, gender and fasting blood glucose on serum lipid profile at tertiary care hospital: a retrospective study. ACTA BIO-MEDICA : ATENEI PARMENSIS 2022; 93:e2022341. [PMID: 36533771 PMCID: PMC9828901 DOI: 10.23750/abm.v93i6.13194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/28/2022] [Indexed: 01/21/2023]
Abstract
BACKGROUND AND AIM This relatively large retrospective study explores the impact of age, gender and fasting blood glucose level on lipid profile. It has been known that many factors could influence the lipid profile. It is crucial to investigate these relationships as dyslipidemia has been linked to many critical diseases such as cardiovascular disease. Methods:Data of 3115 individuals were collected include the age, gender, total serum cholesterol, high-density lipoprotein (HDL), low-density lipoproteins (LDL), triglyceride (TGL) and fasting glucose levels at King Fahad Military Medical Complex's Clinical Chemistry Laboratory, Dhahran, from January 2019 to July 2019. Results: The results shows that people who were 65 years or older had significant association with total cholesterol (p<0.001), LDL (p-value= 0.001) and triglycerides (p-value= 0.001). Regarding gender, women, in general, are 1.2 times more likely to have hypercholesterolemia than men. Diabetes was significantly associated with all lipid profile parameters. Conclusions: There is a variable association between lipid profile with age, gender, and fasting glucose.
Collapse
Affiliation(s)
- Thekra N. Al-maqati
- Clinical Laboratory Sciences Department, Prince Sultan Military College of Health Sciences, Dammam, Saudi Arabia
| | - Ali M. Gazwani
- Clinical Laboratory Sciences Department, Prince Sultan Military College of Health Sciences, Dammam, Saudi Arabia
| | - Murtada Taha
- Clinical Laboratory Sciences Department, Prince Sultan Military College of Health Sciences, Dammam, Saudi Arabia
| | - Saleh Almusabi
- Clinical Laboratory Sciences Department, Prince Sultan Military College of Health Sciences, Dammam, Saudi Arabia
| | - Elmoeiz A. Elnagi
- Clinical Laboratory Sciences Department, Prince Sultan Military College of Health Sciences, Dammam, Saudi Arabia
| | - Rawan M. Maawadh
- Clinical Laboratory Sciences Department, Prince Sultan Military College of Health Sciences, Dammam, Saudi Arabia
| | | | - Faisal Salem Alkhalaf
- Clinical Laboratory Sciences Department, Prince Sultan Military College of Health Sciences, Dammam, Saudi Arabia
| | - Mohammed Almish
- Clinical Laboratory Sciences Department, Prince Sultan Military College of Health Sciences, Dammam, Saudi Arabia
| | - Faten Abdullah Alqahtani
- Clinical Laboratory Sciences Department, Prince Sultan Military College of Health Sciences, Dammam, Saudi Arabia
| | - Yaser A. Al Naam
- Clinical Laboratory Sciences Department, Prince Sultan Military College of Health Sciences, Dammam, Saudi Arabia
| |
Collapse
|
23
|
KHALIL N, ALFARIS NA, ALTAMIMI JZ. Potential health effects of tomato (lycopersicon esculentum) juice and hypoglycemic amelioration in the atherogenic indices between diabetic animal models. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.88222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Mokgalaboni K, Ntamo Y, Ziqubu K, Nyambuya TM, Nkambule BB, Mazibuko-Mbeje SE, Gabuza KB, Chellan N, Tiano L, Dludla PV. Curcumin supplementation improves biomarkers of oxidative stress and inflammation in conditions of obesity, type 2 diabetes and NAFLD: updating the status of clinical evidence. Food Funct 2021; 12:12235-12249. [PMID: 34847213 DOI: 10.1039/d1fo02696h] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Oxidative stress and inflammation remain the major complications implicated in the development and progression of metabolic complications, including obesity, type 2 diabetes (T2D) and nonalcoholic fatty liver disease (NAFLD). In fact, due to their abundant antioxidant and anti-inflammatory properties, there is a general interest in understanding the therapeutic effects of some major food-derived bioactive compounds like curcumin against diverse metabolic diseases. Hence, a systematic search, through prominent online databases such as MEDLINE, Scopus, and Google Scholar was done focusing on randomized controlled trials (RCTs) reporting on the impact of curcumin supplementation in individuals with diverse metabolic complications, including obesity, T2D and NAFLD. Summarized findings suggest that curcumin supplementation can significantly reduce blood glucose and triglycerides levels, including markers of liver function like alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in patients with T2D and NAFLD. Importantly, this effect was consistent with the reduction of predominant markers of oxidative stress and inflammation, such as the levels of malonaldehyde (MDA), tumor necrosis factor-alpha (TNF-α), high sensitivity C-reactive protein (hs-CRP) and monocyte chemoattractant protein-1 (MCP-1) in these patients. Although RCTs suggest that curcumin is beneficial in ameliorating some metabolic complications, future research is still necessary to enhance its absorption and bioavailability profile, while also optimizing the most effective therapeutic doses.
Collapse
Affiliation(s)
- Kabelo Mokgalaboni
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Yonela Ntamo
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa.
| | - Khanyisani Ziqubu
- Department of Biochemistry, North-West University, Mmabatho 2745, South Africa
| | - Tawanda M Nyambuya
- Department of Health Sciences, Namibia University of Science and Technology, Windhoek 9000, Namibia
| | - Bongani B Nkambule
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | | | - Kwazikwakhe B Gabuza
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Nireshni Chellan
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa. .,Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - Phiwayinkosi V Dludla
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa.
| |
Collapse
|
25
|
The Effect of Dietary Supplements on Oxidative Stress in Pregnant Women with Gestational Diabetes Mellitus: A Network Meta-Analysis. Nutrients 2021; 13:nu13072284. [PMID: 34209454 PMCID: PMC8308478 DOI: 10.3390/nu13072284] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/16/2021] [Accepted: 06/23/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) exacerbates the oxidative stress status of the pregnant women. Τo improve the oxidative stress status, several therapeutic interventions have been suggested. The aim of this network meta-analysis is to assess the effect of different dietary supplements on the oxidative stress status in pregnant women with GDM. METHODS A network meta-analysis of randomized control trials was performed comparing the changes delta (Δ) in total antioxidant capacity (TAC) and concentration of malondialdehyde (MDA) as primary outcomes, following different therapeutic interventions with dietary supplements in pregnant women with GDM. Four electronic databases and grey literature sources were searched. The secondary outcomes were other markers of oxidative stress. RESULTS The meta-analysis included 16 studies of 1173 women with GDM. Regarding ΔTAC: probiotics and omega-3 with vitamin E were superior to placebo/no intervention. Regarding ΔMDA: vitamin D with calcium, omega-3, vitamin D, omega-3 with vitamin E, magnesium with zinc and calcium, and probiotics were superior to placebo/no intervention. CONCLUSIONS Administration of dietary supplements in women with GDM can be helpful in limiting the oxidative stress which develop in these pregnancies.
Collapse
|
26
|
Cojic MM, Klisic A, Kocic R, Veljkovic A, Kocic G. Data-Driven Cluster Analysis of Oxidative Stress Indexes in relation to Vitamin D Level, Age, and Metabolic Control in Patients with Type 2 Diabetes on Metformin Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7942716. [PMID: 34239695 PMCID: PMC8241498 DOI: 10.1155/2021/7942716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/05/2021] [Accepted: 06/12/2021] [Indexed: 11/17/2022]
Abstract
Recent advances in vitamin D research indicate that patients with type 2 diabetes mellitus (T2DM) are suffering from vitamin D deficiency and increased oxidative stress to a variable extent, which could produce different health impacts for each individual. The novel multivariate statistical method applied in the present study allows metabolic phenotyping of T2DM individuals based on vitamin D status, metabolic control, and oxidative stress status in order to identify effectively different subtypes in our type 2 DM study population. Data-driven statistical cluster analysis was performed with 95 patients with T2DM, treated with metformin. Clusters were based on 12 variables-age, disease duration, vitamin D level, insulin, fasting glycemia (FG), glycated hemoglobin (HbA1c), high-density and low-density lipoprotein, total cholesterol (TC), triglycerides (TG), body mass index (BMI), and triglycerides/glucose index (TYG). The analysis revealed four unique clusters which differed significantly in terms of vitamin D status, with a mean 25 (OH) D level in cluster 1 (57.84 ± 11.46 nmol/L) and cluster 4 (53.78 ± 22.36 nmol/L), falling within the insufficiency range. Cluster 2 had the highest mean level of 25 (OH) D (84.55 ± 22.66 nmol/L), indicative of vitamin D sufficiency. Cluster 3 had a mean vitamin D level below 50 nmol/L (49.27 ± 16.95), which is considered deficient. Patients in the vitamin D sufficient cluster had a significantly better glycemic and metabolic control as well as a lower level of lipid peroxidation compared to other clusters. The patients from the vitamin D sufficient cluster also had a significantly higher level of vitamin D/MPO, vitamin D/XO, vitamin D/MDA, vitamin D/CAT, and vitamin D/TRC than that in the vitamin deficient and insufficient clusters. The vitamin D deficient cluster included significantly younger patients and had a significantly lower level of AOPP/TRC and albumin/TRC than the vitamin D sufficient cluster. The evidence from our cluster analysis in the context of separated T2DM demonstrates beneficial effects of optimal vitamin D status on metabolic control and oxidative stress in T2DM patients. Older T2DM patients require higher vitamin D levels in order to achieve good metabolic control and favorable antioxidant protection. Since protein damage is more pronounced in these patients, adding water-soluble antioxidant in addition to higher doses of vitamin D should be considered.
Collapse
Affiliation(s)
- Milena M. Cojic
- Primary Health Care Center, University of Montenegro, Faculty of Medicine, Podgorica, Montenegro
| | - Aleksandra Klisic
- Primary Health Care Center, University of Montenegro, Faculty of Medicine, Podgorica, Montenegro
| | - Radivoj Kocic
- Clinic for Endocrinology, Faculty of Medicine, University of Nis, Nis, Serbia
| | - Andrej Veljkovic
- Institute of Biochemistry, Faculty of Medicine, University of Nis, Nis, Serbia
| | - Gordana Kocic
- Institute of Biochemistry, Faculty of Medicine, University of Nis, Nis, Serbia
| |
Collapse
|
27
|
Kuzgun G, Başaran R, Arıoğlu İnan E, Can Eke B. Effects of insulin treatment on hepatic CYP1A1 and CYP2E1 activities and lipid peroxidation levels in streptozotocin-induced diabetic rats. J Diabetes Metab Disord 2021; 19:1157-1164. [PMID: 33520832 DOI: 10.1007/s40200-020-00616-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 12/22/2022]
Abstract
Reactive oxygen species (ROS) and lipid peroxidation (LPO) levels may increase in diabetic state and lead to oxidative stress, which plays a critical role in the progression of diabetes. There are various sources of ROS, including cytochrome P450 monooxygenases (CYP450s), which may be modulated in terms of their activities and expressions under diabetic conditions. This study is aimed to investigate the effects of streptozotocin-induced diabetes and insulin treatment on hepatic cytochrome P450 1A1 (CYP1A1) and cytochrome P450 2E1 (CYP2E1) activities and LPO levels. Methods: CYP1A1 and CYP2E1 activities were measured with ethoxyresorufin O-deethylase and p-nitrophenol hydroxylase activities, respectively. LPO levels were then corroborated via thiobarbituric acid reactive substances. Results: In diabetic rats, a marked 2.1- and 2.4-fold increase in hepatic CYP1A1 activity and 1.8- and 1.6-fold increase in hepatic CYP2E1 activity were observed compared to controls and insulin-treated diabetic rats, respectively. Hepatic LPO levels in diabetic rats did not significantly change compared to controls. However, in insulin-treated diabetic rats, LPO levels are 0.92- and 0.89-fold remarkably decrease compared to controls and diabetics, respectively. Conclusion: The present study suggests that insulin might have a useful role in the modulation of CYP1A1 and CYP2E1 activities as well as LPO levels in the liver of diabetic rats.
Collapse
Affiliation(s)
- Gökçe Kuzgun
- Present Address: Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ankara University, Yenimahalle, Ankara 06560 Turkey
| | - Rahman Başaran
- Present Address: Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ankara University, Yenimahalle, Ankara 06560 Turkey
| | - Ebru Arıoğlu İnan
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Yenimahalle, Ankara 06560 Turkey
| | - Benay Can Eke
- Present Address: Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ankara University, Yenimahalle, Ankara 06560 Turkey
| |
Collapse
|
28
|
Rao H, Jalali JA, Johnston TP, Koulen P. Emerging Roles of Dyslipidemia and Hyperglycemia in Diabetic Retinopathy: Molecular Mechanisms and Clinical Perspectives. Front Endocrinol (Lausanne) 2021; 12:620045. [PMID: 33828528 PMCID: PMC8020813 DOI: 10.3389/fendo.2021.620045] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/25/2021] [Indexed: 12/20/2022] Open
Abstract
Diabetic retinopathy (DR) is a significant cause of vision loss and a research subject that is constantly being explored for new mechanisms of damage and potential therapeutic options. There are many mechanisms and pathways that provide numerous options for therapeutic interventions to halt disease progression. The purpose of the present literature review is to explore both basic science research and clinical research for proposed mechanisms of damage in diabetic retinopathy to understand the role of triglyceride and cholesterol dysmetabolism in DR progression. This review delineates mechanisms of damage secondary to triglyceride and cholesterol dysmetabolism vs. mechanisms secondary to diabetes to add clarity to the pathogenesis behind each proposed mechanism. We then analyze mechanisms utilized by both triglyceride and cholesterol dysmetabolism and diabetes to elucidate the synergistic, additive, and common mechanisms of damage in diabetic retinopathy. Gathering this research adds clarity to the role dyslipidemia has in DR and an evaluation of the current peer-reviewed basic science and clinical evidence provides a basis to discern new potential therapeutic targets.
Collapse
Affiliation(s)
- Hussain Rao
- Department of Ophthalmology, School of Medicine, Vision Research Center, University of Missouri – Kansas City, Kansas City, MO, United States
| | - Jonathan A. Jalali
- Department of Ophthalmology, School of Medicine, Vision Research Center, University of Missouri – Kansas City, Kansas City, MO, United States
| | - Thomas P. Johnston
- Department of Ophthalmology, School of Medicine, Vision Research Center, University of Missouri – Kansas City, Kansas City, MO, United States
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri – Kansas City, Kansas City, MO, United States
| | - Peter Koulen
- Department of Ophthalmology, School of Medicine, Vision Research Center, University of Missouri – Kansas City, Kansas City, MO, United States
- Department of Biomedical Sciences, School of Medicine, University of Missouri – Kansas City, Kansas City, MO, United States
- *Correspondence: Peter Koulen,
| |
Collapse
|
29
|
Acrolein: A Potential Mediator of Oxidative Damage in Diabetic Retinopathy. Biomolecules 2020; 10:biom10111579. [PMID: 33233661 PMCID: PMC7699716 DOI: 10.3390/biom10111579] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/05/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
Diabetic retinopathy (DR) is the leading cause of vision loss among working-age adults. Extensive evidences have documented that oxidative stress mediates a critical role in the pathogenesis of DR. Acrolein, a product of polyamines oxidation and lipid peroxidation, has been demonstrated to be involved in the pathogenesis of various human diseases. Acrolein’s harmful effects are mediated through multiple mechanisms, including DNA damage, inflammation, ROS formation, protein adduction, membrane disruption, endoplasmic reticulum stress, and mitochondrial dysfunction. Recent investigations have reported the involvement of acrolein in the pathogenesis of DR. These studies have shown a detrimental effect of acrolein on the retinal neurovascular unit under diabetic conditions. The current review summarizes the existing literature on the sources of acrolein, the impact of acrolein in the generation of oxidative damage in the diabetic retina, and the mechanisms of acrolein action in the pathogenesis of DR. The possible therapeutic interventions such as the use of polyamine oxidase inhibitors, agents with antioxidant properties, and acrolein scavengers to reduce acrolein toxicity are also discussed.
Collapse
|
30
|
Ma R, Li Y, Wang J, Yang P, Wang K, Wang W. Incorporation of nanosized calcium silicate improved osteointegration of polyetheretherketone under diabetic conditions. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:98. [PMID: 33130931 DOI: 10.1007/s10856-020-06435-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
Diabetes can impair osteoblastic functions and negatively interfere with osteointegration at the bone/implant interface. Previously, we prepared a nanosized calcium silicate (CS) incorporated-polyetheretherketone (PK) biocomposite (CS/PK) and found that the CS/PK composite exhibited enhanced osteoblast functions in vitro and osteointegration in vivo, but its bioperformance under diabetic conditions remained elusive. In this study, MC3T3-E1 cells incubated on CS/PK and PK samples were subjected to diabetic serum (DS) and normal serum (NS); cell attachment, morphology, spreading, proliferation, and osteogenic differentiation were compared to assess in vitro osteoblastic functions on the surfaces of different materials. An in vivo test was performed on diabetic rabbits implanted with CS/PK or PK implants into the cranial bone defect to assess the osteointegration ability of the implants. In vitro results showed that diabetes inhibited osteoblastic functions evidenced by impaired morphology and spreading, and decreased attachment, proliferation, and osteogenic differentiation compared with the findings under normal conditions. Notably, CS/PK ameliorated osteoblastic disfunction under diabetic conditions in vitro. In vivo results from micro-CT and histologic examinations revealed that rabbits with CS/PK implants exhibited improved osteointegration at the bone/implant interface under diabetic conditions compared with PK. Therefore, the CS/PK composite improved the impaired osteointegration induced by diabetes and is a promising orthopedic or craniofacial implant material that may obtain good clinical performance in diabetic patients.
Collapse
Affiliation(s)
- Rui Ma
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shanxi, China
| | - Yongwei Li
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shanxi, China
| | - Jialin Wang
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shanxi, China
| | - Pei Yang
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shanxi, China
| | - Kunzheng Wang
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shanxi, China.
| | - Wei Wang
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shanxi, China.
| |
Collapse
|
31
|
Veroneze R, Cruz Tfaile Corbi S, Roque da Silva B, de S. Rocha C, V. Maurer-Morelli C, Perez Orrico SR, Cirelli JA, Von Zuben FJ, Mantuaneli Scarel-Caminaga R. Using association rule mining to jointly detect clinical features and differentially expressed genes related to chronic inflammatory diseases. PLoS One 2020; 15:e0240269. [PMID: 33007040 PMCID: PMC7531780 DOI: 10.1371/journal.pone.0240269] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/23/2020] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVE It is increasingly common to find patients affected by a combination of type 2 diabetes mellitus (T2DM), dyslipidemia (DLP) and periodontitis (PD), which are chronic inflammatory diseases. More studies able to capture unknown relationships among these diseases will contribute to raise biological and clinical evidence. The aim of this study was to apply association rule mining (ARM) to discover whether there are consistent patterns of clinical features (CFs) and differentially expressed genes (DEGs) relevant to these diseases. We intend to reinforce the evidence of the T2DM-DLP-PD-interplay and demonstrate the ARM ability to provide new insights into multivariate pattern discovery. METHODS We utilized 29 clinical glycemic, lipid and periodontal parameters from 143 patients divided into five groups based upon diabetic, dyslipidemic and periodontal conditions (including a healthy-control group). At least 5 patients from each group were selected to assess the transcriptome by microarray. ARM was utilized to assess relevant association rules considering: (i) only CFs; and (ii) CFs+DEGs, such that the identified DEGs, specific to each group of patients, were submitted to gene expression validation by quantitative polymerase chain reaction (qPCR). RESULTS We obtained 78 CF-rules and 161 CF+DEG-rules. Based on their clinical significance, Periodontists and Geneticist experts selected 11 CF-rules, and 5 CF+DEG-rules. From the five DEGs prospected by the rules, four of them were validated by qPCR as significantly different from the control group; and two of them validated the previous microarray findings. CONCLUSIONS ARM was a powerful data analysis technique to identify multivariate patterns involving clinical and molecular profiles of patients affected by specific pathological panels. ARM proved to be an effective mining approach to analyze gene expression with the advantage of including patient's CFs. A combination of CFs and DEGs might be employed in modeling the patient's chance to develop complex diseases, such as those studied here.
Collapse
Affiliation(s)
- Rosana Veroneze
- Department of Computer Engineering and Industrial Automation, School of Electrical and Computer Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Sâmia Cruz Tfaile Corbi
- Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, School of Dentistry at Araraquara, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Bárbara Roque da Silva
- Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, School of Dentistry at Araraquara, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Cristiane de S. Rocha
- Department of Medical Genetics and Genomic Medicine, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Cláudia V. Maurer-Morelli
- Department of Medical Genetics and Genomic Medicine, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Silvana Regina Perez Orrico
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University (UNESP), Araraquara, SP, Brazil
- Advanced Research Center in Medicine, Union of the Colleges of the Great Lakes (UNILAGO), São José do Rio Preto, SP, Brazil
| | - Joni A. Cirelli
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Fernando J. Von Zuben
- Department of Computer Engineering and Industrial Automation, School of Electrical and Computer Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Raquel Mantuaneli Scarel-Caminaga
- Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, School of Dentistry at Araraquara, São Paulo State University (UNESP), Araraquara, SP, Brazil
| |
Collapse
|
32
|
Reactive Sterol Electrophiles: Mechanisms of Formation and Reactions with Proteins and Amino Acid Nucleophiles. CHEMISTRY (BASEL, SWITZERLAND) 2020; 2:390-417. [PMID: 35372835 PMCID: PMC8976181 DOI: 10.3390/chemistry2020025] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Radical-mediated lipid oxidation and the formation of lipid hydroperoxides has been a focal point in the investigation of a number of human pathologies. Lipid peroxidation has long been linked to the inflammatory response and more recently, has been identified as the central tenet of the oxidative cell death mechanism known as ferroptosis. The formation of lipid electrophile-protein adducts has been associated with many of the disorders that involve perturbations of the cellular redox status, but the identities of adducted proteins and the effects of adduction on protein function are mostly unknown. Both cholesterol and 7-dehydrocholesterol (7-DHC), which is the immediate biosynthetic precursor to cholesterol, are oxidizable by species such as ozone and oxygen-centered free radicals. Product mixtures from radical chain processes are particularly complex, with recent studies having expanded the sets of electrophilic compounds formed. Here, we describe recent developments related to the formation of sterol-derived electrophiles and the adduction of these electrophiles to proteins. A framework for understanding sterol peroxidation mechanisms, which has significantly advanced in recent years, as well as the methods for the study of sterol electrophile-protein adduction, are presented in this review.
Collapse
|
33
|
Corbi SCT, de Vasconcellos JF, Bastos AS, Bussaneli DG, da Silva BR, Santos RA, Takahashi CS, de S Rocha C, Carvalho BDS, Maurer-Morelli CV, Orrico SRP, Barros SP, Scarel-Caminaga RM. Circulating lymphocytes and monocytes transcriptomic analysis of patients with type 2 diabetes mellitus, dyslipidemia and periodontitis. Sci Rep 2020; 10:8145. [PMID: 32424199 PMCID: PMC7235087 DOI: 10.1038/s41598-020-65042-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 04/21/2020] [Indexed: 02/06/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM), dyslipidemia and periodontitis are frequently associated pathologies; however, there are no studies showing the peripheral blood transcript profile of these combined diseases. Here we identified the differentially expressed genes (DEGs) of circulating lymphocytes and monocytes to reveal potential biomarkers that may be used as molecular targets for future diagnosis of each combination of these pathologies (compared to healthy patients) and give insights into the underlying molecular mechanisms of these diseases. Study participants (n = 150) were divided into groups: (H) systemically and periodontal healthy (control group); (P) with periodontitis, but systemically healthy; (DL-P) with dyslipidemia and periodontitis; (T2DMwell-DL-P) well-controlled type 2 diabetes mellitus with dyslipidemia and periodontitis; and (T2DMpoorly-DL-P) poorly-controlled type 2 diabetes mellitus with dyslipidemia and periodontitis. We preprocessed the microarray data using the Robust Multichip Average (RMA) strategy, followed by the RankProd method to identify candidates for DEGs. Furthermore, we performed functional enrichment analysis using Ingenuity Pathway Analysis and Gene Set Enrichment Analysis. DEGs were submitted to pairwise comparisons, and selected DEGs were validated by quantitative polymerase chain reaction. Validated DEGs verified from T2DMpoorly-DL-P versus H were: TGFB1I1, VNN1, HLADRB4 and CXCL8; T2DMwell-DL-P versus H: FN1, BPTF and PDE3B; DL-P versus H: DAB2, CD47 and HLADRB4; P versus H: IGHDL-P, ITGB2 and HLADRB4. In conclusion, we identified that circulating lymphocytes and monocytes of individuals simultaneously affected by T2DM, dyslipidemia and periodontitis, showed an altered molecular profile mainly associated to inflammatory response, immune cell trafficking, and infectious disease pathways. Altogether, these results shed light on novel potential targets for future diagnosis, monitoring or development of targeted therapies for patients sharing these conditions.
Collapse
Affiliation(s)
- Sâmia C T Corbi
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, UNESP- São Paulo State University, Araraquara, 14801385, SP, Brazil
- Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, School of Dentistry at Araraquara, UNESP- São Paulo State University, Araraquara, 14801385, SP, Brazil
| | - Jaira F de Vasconcellos
- Molecular Genomics and Therapeutics Section, Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 10 Center Drive, Building 10, Room 9D11, Bethesda, MD, 20892, USA
- Department of Surgery, Uniformed Services University of the Health Sciences and Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Alliny S Bastos
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, UNESP- São Paulo State University, Araraquara, 14801385, SP, Brazil
| | - Diego Girotto Bussaneli
- Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, School of Dentistry at Araraquara, UNESP- São Paulo State University, Araraquara, 14801385, SP, Brazil
| | - Bárbara Roque da Silva
- Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, School of Dentistry at Araraquara, UNESP- São Paulo State University, Araraquara, 14801385, SP, Brazil
| | - Raquel Alves Santos
- Postgraduate Program in Sciences of the University of Franca, Franca, 14404600, SP, Brazil
| | - Catarina S Takahashi
- Department of Genetics, Faculty of Medicine of Ribeirão Preto, USP - University of São Paulo, Ribeirão Preto, 14049900, SP, Brazil
- Department of Biology, Faculty of Philosophy Sciences and Letters of Ribeirão Preto, USP -University of São Paulo, Ribeirão Preto, 14049900, SP, Brazil
| | - Cristiane de S Rocha
- Department of Medical Genetics and Medicine Genomics, University of Campinas - UNICAMP, Campinas, 13083-887, SP, Brazil
| | - Benilton de Sá Carvalho
- Department of Statistics, Institute of Mathematics, Statistics and Scientific Computing, University of Campinas, 13083-859, São Paulo, Brazil
| | - Cláudia V Maurer-Morelli
- Department of Medical Genetics and Medicine Genomics, University of Campinas - UNICAMP, Campinas, 13083-887, SP, Brazil
| | - Silvana R P Orrico
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, UNESP- São Paulo State University, Araraquara, 14801385, SP, Brazil
- Advanced Research Center in Medicine, Union of the Colleges of the Great Lakes (UNILAGO), São José do Rio Preto, SP, 15030-070, Brazil
| | - Silvana P Barros
- Department of Periodontology, University of North Carolina at Chapel Hill - UNC, School of Dentistry, Chapel Hill, NC, USA
| | - Raquel M Scarel-Caminaga
- Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, School of Dentistry at Araraquara, UNESP- São Paulo State University, Araraquara, 14801385, SP, Brazil.
| |
Collapse
|
34
|
Uddin SJ, Afroz M, Zihad SMNK, Rahman MS, Akter S, Khan IN, Al-Rabbi SMS, Rouf R, Islam MT, Shilpi JA, Nahar L, Tiralongo E, Sarker SD. A Systematic Review on Anti-diabetic and Cardioprotective Potential of Gallic Acid: A Widespread Dietary Phytoconstituent. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1734609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Shaikh Jamal Uddin
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Mohasana Afroz
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | | | - Md. Shamim Rahman
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Sanzida Akter
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Ishaq N. Khan
- PK-Neurooncology Research Group, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, 25000, Pakistan
| | | | - Razina Rouf
- Department of Pharmacy, Faculty of Life Science, Bangabandhu Sheikh Mujibur Rahman Science & Technology University, Gopalganj, Bangladesh
| | - Muhammad Torequl Islam
- Department of Pharmacy, Faculty of Life Science, Bangabandhu Sheikh Mujibur Rahman Science & Technology University, Gopalganj, Bangladesh
| | - Jamil A. Shilpi
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Lutfun Nahar
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, LiverpoolL3 3AF, UK
| | - Evelin Tiralongo
- School of Pharmacy and Pharmacology & Menzies Health Institute Queensland, Griffith University, Southport, Qld, Australia
| | - Satyajit D. Sarker
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, LiverpoolL3 3AF, UK
| |
Collapse
|
35
|
Kulas JA, Weigel TK, Ferris HA. Insulin resistance and impaired lipid metabolism as a potential link between diabetes and Alzheimer's disease. Drug Dev Res 2020; 81:194-205. [PMID: 32022298 DOI: 10.1002/ddr.21643] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 12/20/2019] [Accepted: 01/23/2020] [Indexed: 12/13/2022]
Abstract
Diabetes disrupts organs throughout the body including the brain. Evidence suggests diabetes is a risk factor for Alzheimer's disease (AD) and neurodegeneration. In this review, we focus on understanding how diabetes contributes to the progression of neurodegeneration by influencing several aspects of the disease process. We emphasize the potential roles of brain insulin resistance, as well as cholesterol and lipid disruption, as factors which worsen AD.
Collapse
Affiliation(s)
- Joshua A Kulas
- Division of Endocrinology and Metabolism, University of Virginia, Charlottesville, Virginia
| | - Thaddeus K Weigel
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia
| | - Heather A Ferris
- Division of Endocrinology and Metabolism, University of Virginia, Charlottesville, Virginia.,Department of Neuroscience, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
36
|
Durg S, Bavage S, Shivaram SB. Withania somnifera
(Indian ginseng) in diabetes mellitus: A systematic review and meta‐analysis of scientific evidence from experimental research to clinical application. Phytother Res 2020; 34:1041-1059. [DOI: 10.1002/ptr.6589] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/17/2019] [Accepted: 11/26/2019] [Indexed: 12/27/2022]
|
37
|
Mooranian A, Zamani N, Mikov M, Goločorbin-Kon S, Stojanovic G, Arfuso F, Kovacevic B, Al-Salami H. Bio Micro-Nano Technologies of Antioxidants Optimised Their Pharmacological and Cellular Effects, ex vivo, in Pancreatic β-Cells. Nanotechnol Sci Appl 2020; 13:1-9. [PMID: 32021126 PMCID: PMC6954832 DOI: 10.2147/nsa.s212323] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 09/10/2019] [Indexed: 01/19/2023] Open
Abstract
Introduction Recent formulation and microencapsulation studies of probucol (PB) using the polymer sodium alginate (SA) and bile acids have shown promising results but PB stability, and pharmacology profiles remain suboptimal. This study aimed to investigate novel polymers for the nano and micro encapsulation of PB, with the anti-inflammatory bile acid ursodeoxycholic acid (UDCA). Material and methods Six formulations using three types of polymers were investigated with and without UDCA. The polymers were NM30D, RL30D, and RS30D and they were mixed with SA and PB at set ratios and microencapsulated using oscillating-voltage-mediated nozzle technology coupled with ionic gelation. The microcapsules were examined for physical and biological effects using pancreatic β-cells. Results and discussion UDCA addition did not adversely affect the morphology and physical features of the microcapsules. Despite thermal stability remaining unchanged, bile acid incorporation did enhance the electrokinetic stability of the formulation system for NM30D and RL30D polymers. Mechanical stability remained similar in all groups. Enhanced uptake of PB from the microcapsule by pancreatic β-cells was only seen with NM30D-UDCA-intercalated microcapsules and this effect was sustained at both glucose levels of 5.5 and 35.5 mM. Conclusion UDCA addition enhanced PB delivery and biological effects in a formulation-dependent manner.
Collapse
Affiliation(s)
- Armin Mooranian
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, Western Australia, Australia
| | - Nassim Zamani
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, Western Australia, Australia
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | | | - Goran Stojanovic
- Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Bozica Kovacevic
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, Western Australia, Australia
| | - Hani Al-Salami
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, Western Australia, Australia
| |
Collapse
|
38
|
Gutiérrez-Pliego LE, Martínez-Carrillo BE, Reséndiz-Albor AA, Valdés-Ramos R. Effect on Adipose Tissue of Diabetic Mice Supplemented with n-3 Fatty Acids Extracted from Microalgae. Endocr Metab Immune Disord Drug Targets 2020; 20:728-735. [PMID: 32053089 PMCID: PMC7360907 DOI: 10.2174/1871530320666200213111452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 11/22/2019] [Accepted: 11/22/2019] [Indexed: 12/04/2022]
Abstract
BACKGROUND Type 2 Diabetes Mellitus (T2DM) is considered a chronic noncommunicable disease in which oxidative stress is expected as a result of hyperglycaemia. One of the most recent approaches is the study of microalgae fatty acids and their possible antioxidant effect. OBJECTIVE This study aimed to analyse the effect of supplementation with n-3 fatty acids extracted from microalgae on the total antioxidant capacity (TAC) and lipid peroxidation of adipose tissue and plasma from diabetic (db/db) and healthy (CD1) mice. METHODS Mice were supplemented with lyophilized n-3 fatty acids extracted from microalgae or added to the diet, from week 8 to 16. TAC assay and Thiobarbituric Acid Reactive Substances assay (TBARS) were performed on adipose tissue and plasma samples. RESULTS The supplementation of lyophilized n-3 fatty acids from microalgae increased the total antioxidant capacity in adipose tissue of diabetic mice (615.67μM Trolox equivalents vs 405.02μM Trolox equivalents from control mice, p<0.01) and in the plasma of healthy mice (1132.97±85.75μM Trolox equivalents vs 930.64±32μM Trolox equivalents from modified diet mice, p<0.01). There was no significant effect on lipid peroxidation on both strains. CONCLUSION The use of n-3 fatty acids extracted from microalgae could be a useful strategy to improve total antioxidant capacity in T2DM.
Collapse
Affiliation(s)
| | | | | | - Roxana Valdés-Ramos
- Address correspondence to this author at the Faculty of Medicine, Universidad Autónoma del Estado de México, Paseo Tollocan esq. Jesús Carranza, Col. Moderna de la Cruz, Toluca, Edo. Mex, 50180, Mexico; Tel/Fax: +52-722-217-4831; E-mails:
| |
Collapse
|
39
|
Daulay M, Sari MI, Wahyuni DD, Syarifah S. The Gene Polymorphisms (-308G/A) and the Tumor Necrosis Factor-alpha Levels in Type 2 Diabetic Patients with and Without Tuberculosis Infection. Open Access Maced J Med Sci 2019; 7:3960-3964. [PMID: 32165936 PMCID: PMC7061401 DOI: 10.3889/oamjms.2019.824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The gene polymorphism (-308G/A) and tumor necrosis factor-alpha (TNF-α) levels influence development of disease in type 2 diabetic patients and tuberculosis patients. AIM In this study, we analyze the association between the TNF-α polymorphisms (-308G/A) and the levels of TNF-α in type 2 diabetic patients with and without tuberculosis infection. METHODS This study was an analytic observational with cross sectional approach consisting 40 type 2 diabetic patients with tuberculosis infection, 40 type 2 diabetic patients without tuberculosis infection and 40 healthy control (HC) subjects. The TNF-α gene polymorphism (-308G/A) was analyzed with polymerase chain reaction-restriction fragment lengths polymorphisms (PCR-RFLP) method. The TNF-α levels were measured using an enzyme-linked immunosorbent assay. The association between gene polymorphism (-308G/A) in study groups was analyzed by Fisher's exact test, tumor necrosis factor-alpha (TNF-α) levels in study groups was carried out using the Kruskal-Wallis test. Hardy-Weinberg Equilibrium also determined genotype deviation and allele frequencies. RESULTS The GG and GA+AA genotypes frequency in both of patient groups and HC subjects were not differ significantly (95% and 5% vs 95% and 5% vs 92.5% and 7.5%; p > 0.05). The TNF-α levels (pg/ml) of type 2 diabetic without tuberculosis infection were higher than those of type 2 diabetic with tuberculosis infection and HC subjects (7.42 ± 0.78 vs 2.23 ± 0.51 vs 2.57 ± 0.63; p < 0.01). The TNF-α levels in the GA+AA genotypes were higher than the GG wild-type genotype (p > 0.05). There was no significant deviation of genotype frequency and allele from Hardy-Weinberg Equilibrium. CONCLUSION The gene polymorphism (-308G/A) had no association with type 2 diabetic patients with and without tuberculosis infection and the gene polymorphism (-308G/A) was not influence the TNF-α levels but there was a significant differentiation of TNF-α levels between the groups.
Collapse
Affiliation(s)
- Milahayati Daulay
- Department of Physiology, Faculty of Medicine, Universitas Sumatera Utara, Jl. dr. Mansur Kampus USU Medan 20155, Indonesia
| | - Mutiara Indah Sari
- Department of Biochemistry, Faculty of Medicine, Universitas Sumatera Utara, Jl. dr. Mansur Kampus USU Medan 20155, Indonesia
| | - Dian Dwi Wahyuni
- Department of Microbiology, Faculty of Medicine, Universitas Sumatera Utara, Jl. dr. Mansur Kampus USU Medan 20155, Indonesia
| | - Siti Syarifah
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Sumatera Utara, Jl. Dr. Mansur Kampus USU Medan 20155, Indonesia
| |
Collapse
|
40
|
Tang KS. The current and future perspectives of zinc oxide nanoparticles in the treatment of diabetes mellitus. Life Sci 2019; 239:117011. [PMID: 31669241 DOI: 10.1016/j.lfs.2019.117011] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/04/2019] [Accepted: 10/21/2019] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus (DM) is a multifaceted and costly disease, which requires serious attention. Finding a cheaper anti-diabetic alternative that can act on multiple disease-related targets and pathways is the ultimate treatment goal for DM. Nanotechnology has offered some exciting possibilities in biomedical and drug delivery applications. Zinc oxide nanoparticles (ZnO-NPs), a novel agent to deliver zinc, have great implications in many disease therapies including DM. This review summarizes the pharmacological mechanisms by which ZnO-NPs alleviate DM and diabetic complications. Research implications and future perspectives were also discussed.
Collapse
Affiliation(s)
- Kim San Tang
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia; Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
41
|
Abdel-Moneim A, Zanaty MI, El-Sayed A, Khalil RG, Rahman HA. Relation Between Oxidative Stress and Hematologic Abnormalities in Children With Type 1 Diabetes. Can J Diabetes 2019; 44:222-228. [PMID: 31630989 DOI: 10.1016/j.jcjd.2019.07.153] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 07/20/2019] [Accepted: 07/30/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Recently, numerous studies have renewed attention to the hematologic profile in the early identification of diabetic inflammation and complications. The objective of this study was to investigate the relationship between hematologic indices abnormalities and oxidative stress among children with type 1 diabetes mellitus (T1DM). METHODS This study included 70 children diagnosed with T1DM and 30 healthy control subjects. The children with T1DM were divided into 2 groups according to the duration of diabetes: children with newly diagnosed T1DM and children with established T1DM. RESULTS Erythrocyte count and platelet count were decreased significantly in children with established T1DM, whereas leukocyte count and neutrophil count were increased significantly in children with newly diagnosed T1DM compared with healthy control subjects. Moreover, hemoglobin and hematocrit values revealed a significant depletion in both T1DM groups; however, values of red blood cell distribution width, mean platelet volume and platelet distribution width were significantly elevated in both T1DM groups compared with healthy control subjects. Also, microalbuminuria levels showed a significant increase in children with established T1DM, whereas lipid peroxidation biomarker (malondialdehyde) and nitric oxide levels were elevated markedly in both T1DM groups compared with the healthy group. CONCLUSIONS The data demonstrated that the hematologic profile showed noticeable alterations in children with T1DM, and the inflammation and oxidative stress markers were contributed to the hematologic abnormalities. The results revealed that some hematologic indices can be used in the early detection of children with T1DM at risk for diabetic complications.
Collapse
Affiliation(s)
- Adel Abdel-Moneim
- Molecular Physiology Division, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.
| | - Mohamed I Zanaty
- Biotechnology Department, Faculty of Postgraduate Studies for Advanced Science, Beni-Suef University, Beni-Suef, Egypt
| | - Amr El-Sayed
- Biotechnology Department, Faculty of Postgraduate Studies for Advanced Science, Beni-Suef University, Beni-Suef, Egypt
| | - Rehab G Khalil
- Immunology Division, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Hanan Abdel Rahman
- Biotechnology Department, Faculty of Postgraduate Studies for Advanced Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
42
|
Poor Glycaemic Control Is Associated with Increased Lipid Peroxidation and Glutathione Peroxidase Activity in Type 2 Diabetes Patients. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9471697. [PMID: 31467640 PMCID: PMC6701413 DOI: 10.1155/2019/9471697] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/05/2019] [Accepted: 07/01/2019] [Indexed: 12/15/2022]
Abstract
Glycaemic control is the main focus of managing diabetes and its complications. Hyperglycaemia induces oxidative stress favouring cellular damage and subsequent diabetic complications. The present study was conducted to compare the plasma total antioxidant capacity (TAC) and individual antioxidant marker antioxidant status of type 2 diabetics (T2D) with good ((+) GC) and poor ((-) GC) glycaemic control with prediabetic (PDM) and normoglycaemic (NG) individuals. T2D (n = 147), PDM (n = 47), and NGC (n = 106) were recruited as subjects. T2D and PDM had lower plasma TAG than NG subjects. T2D and PDM had significantly higher GPx activity and plasma MDA concentrations than NG. PDM showed the highest SOD activity. T2D (-) GC showed significantly elevated GPx activity and higher MDA level and significantly lower SOD activity among all study groups. Lower plasma TAC and higher plasma MDA indicate the presence of oxidative stress in T2D and PDM. Elevated GPx activity in T2D, PDM, and particularly in T2D (-) GC suggests a compensatory response to counteract excess lipid peroxidation in the hyperglycaemic state. Decline in SOD activity advocates the presence of glycation and excess lipid peroxidation in T2D.
Collapse
|
43
|
Simeonova R, Vitcheva V, Zheleva-Dimitrova D, Balabanova V, Savov I, Yagi S, Dimitrova B, Voynikov Y, Gevrenova R. Trans-3,5-dicaffeoylquinic acid from Geigeria alata Benth. & Hook.f. ex Oliv. & Hiern with beneficial effects on experimental diabetes in animal model of essential hypertension. Food Chem Toxicol 2019; 132:110678. [PMID: 31323233 DOI: 10.1016/j.fct.2019.110678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/11/2019] [Accepted: 07/13/2019] [Indexed: 11/15/2022]
Abstract
Geigeria alata Benth. & Hook.f. ex Oliv. & Hiern (Asteraceae) is used in Sudanese folk medicine for treatment of diabetes. The study aimed to estimate the acute oral toxicity of trans-3,5-dicaffeoylquinic acid (3,5-diCQA) from G. alata roots and to assess its antihypeglycemic, antioxidant and antihypertensive effects on chemically-induced diabetic spontaneously hypertensive rats (SHRs). The structure of 3,5-diCQA was established by NMR and HRMS spectra. Type 2 diabetes was induced by intraperitoneal injection of streptozotocin. 3,5-diCQA was slightly toxic with LD50 = 2154 mg/kg. At 5 mg/kg 3,5-diCQA reduced significantly (p < 0.05) the blood glucose levels by 42%, decreased the blood pressure by 22% and ameliorated the oxidative stress biomarkers reduced glutathione, malondialdehyde, and serum biochemical parameters. The beneficial effect on antioxidant enzymes was evidenced by the elevated glutathione peroxidase, glutathione reductase, and glutathione S-transferase activitiy in the livers of diabetic animals. 3,5-diCQA prevents the histopathological changes related to diabetes and hypertension. 3,5-diCQA was more potent α-glucosidase inhibitor (IC50 27.24 μg/mL) than acarbose (IC50 99.77 μg/mL). The antihyperglycemic action of the compound was attributed to the α-glucosidase inhibition. The beneficial effects of 3,5-diCQA on streptozotocin-induced diabetic hypertensive rats support the traditional use of G.alata for the management of diabetes.
Collapse
Affiliation(s)
- Rumyana Simeonova
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav St., 1000, Sofia, Bulgaria.
| | - Vessela Vitcheva
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav St., 1000, Sofia, Bulgaria.
| | - Dimitrina Zheleva-Dimitrova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav St., 1000, Sofia, Bulgaria.
| | - Vessela Balabanova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav St., 1000, Sofia, Bulgaria.
| | - Ionko Savov
- Institute of Emergency Medicine "N. I. Pirogov", Bul. Totleben 21, Sofia, 1000, Bulgaria.
| | - Sakina Yagi
- Department of Botany, Faculty of Science, University of Khartoum, Sudan.
| | - Bozhana Dimitrova
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav St., 1000, Sofia, Bulgaria; Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav St., 1000, Sofia, Bulgaria.
| | - Yulian Voynikov
- Department of Chemistry, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav St., 1000, Sofia, Bulgaria.
| | - Reneta Gevrenova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav St., 1000, Sofia, Bulgaria.
| |
Collapse
|
44
|
Abdel-Moneim A, Abdel-Reheim ES, Semmler M, Addaleel W. The Impact of Glycemic Status and Metformin Administration on Red Blood Cell Indices and Oxidative Stress in Type 2 Diabetic Patients. Malays J Med Sci 2019; 26:47-60. [PMID: 31496893 PMCID: PMC6719883 DOI: 10.21315/mjms2019.26.4.6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/03/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Most guidelines all over the world recommended metformin as the first-line treatment for in type 2 diabetic patients. Therefore, the present study was suggested to assess the outcome of metformin administration and glycemic status on alterations in red blood cell (RBCs) indices as well as the oxidative stress in type 2 diabetic patients. METHODS Between December 2016 and October of 2017, a total of 158 eligible individuals were classified as 50 healthy subjects and 108 diabetic patients who were subdivided into six groups according to the type of anti-diabetic treatments. RESULTS Overall, the results elucidated that hemoglobin concentration was markedly diminished, while red cell distribution width (RDW) value was significantly (P < 0.001) elevated in all diabetic groups as compared to control. Moreover, in all diabetic groups, malondialdehyde (MDA) concentration was elevated noticeably (P < 0.001), while reduced glutathione (GSH) revealed a lower concentration (P < 0.001) than that of control. CONCLUSION The present study exhibited the amelioration effect of metformin administration on oxidative stress and glycemic status which reflected on some RBCs indices. However, hemoglobin concentration showed a noticeable diminution in all metformin-treated groups in spite of the improvement in glycemic and oxidative stress status which indicated that the metformin-induced anemia is independently from diabetic complications.
Collapse
Affiliation(s)
- Adel Abdel-Moneim
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Egypt
| | | | - Margit Semmler
- Diabetes Research Institute, Düsseldorf University, Düsseldorf, Germany
| | - Wessam Addaleel
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Egypt
| |
Collapse
|
45
|
Shiba M, Kato T, Izumi T, Miyamoto S, Nakane E, Haruna T, Inoko M. Risk of myocardial infarction in patients with psoriasis: A cross-sectional patient-population study in a Japanese hospital. J Cardiol 2018; 73:276-279. [PMID: 30583988 DOI: 10.1016/j.jjcc.2018.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/30/2018] [Accepted: 10/10/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND Some epidemiological studies have demonstrated the association between psoriasis vulgaris and coronary artery disease (CAD). However, there is a lack of specific data regarding the association between psoriasis vulgaris and myocardial infarction (MI), the more severe and critical presentation of CAD, in the Japanese population. METHODS AND RESULTS We retrospectively analyzed 113,065 patients of all ages at our hospital from January 1, 2011 to January 1, 2013. We extracted the data of patients with psoriasis vulgaris, diabetes mellitus, dyslipidemia, or MI (acute, sub-acute, or old), including sex and age from the electronic medical record database. The prevalence of MI in patients with hypertension, dyslipidemia, diabetes mellitus, and psoriasis vulgaris were 4.8% (794/16,476), 5.0% (459/9236), 4.6% (531/11,555), and 2.7% (32/1197), respectively. Multivariate analysis showed that psoriasis vulgaris was significantly associated with MI [adjusted odds ratio (OR): 1.87; 95% confidence interval (CI): 1.26-2.68; p=0.0022]. In a subgroup analysis of 24,069 patients who had one or more comorbidities including diabetes mellitus, dyslipidemia, and hypertension, psoriasis vulgaris was still independently associated with MI after adjusting for sex and age (adjusted OR, 1.49; 95% CI: 1.02-2.18; p=0.0358) in adults. CONCLUSION Psoriasis vulgaris was significantly associated with MI in a Japanese hospital-based population.
Collapse
Affiliation(s)
- Masayuki Shiba
- Department of Cardiology, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Hyogo, Japan
| | - Takao Kato
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Toshiaki Izumi
- Cardiovascular Center, Tazuke Kofukai Medical Research Institute, Kitano Hospital, Osaka, Japan
| | - Shoichi Miyamoto
- Cardiovascular Center, Tazuke Kofukai Medical Research Institute, Kitano Hospital, Osaka, Japan
| | - Eisaku Nakane
- Cardiovascular Center, Tazuke Kofukai Medical Research Institute, Kitano Hospital, Osaka, Japan
| | - Tetsuya Haruna
- Cardiovascular Center, Tazuke Kofukai Medical Research Institute, Kitano Hospital, Osaka, Japan
| | - Moriaki Inoko
- Cardiovascular Center, Tazuke Kofukai Medical Research Institute, Kitano Hospital, Osaka, Japan
| |
Collapse
|
46
|
Herrera-Rueda MÁ, Tlahuext H, Paoli P, Giacoman-Martínez A, Almanza-Pérez JC, Pérez-Sánchez H, Gutiérrez-Hernández A, Chávez-Silva F, Dominguez-Mendoza EA, Estrada-Soto S, Navarrete-Vazquez G. Design, synthesis, in vitro, in vivo and in silico pharmacological characterization of antidiabetic N-Boc-l-tyrosine-based compounds. Biomed Pharmacother 2018; 108:670-678. [PMID: 30245467 DOI: 10.1016/j.biopha.2018.09.074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/12/2018] [Accepted: 09/12/2018] [Indexed: 11/16/2022] Open
Abstract
In this study, we synthesized five N-Boc-L-tyrosine-based analogues to glitazars. The in vitro effects of compounds 1-5 on protein tyrosine phosphatase 1B (PTP-1B), peroxisome proliferator-activated receptor alpha and gamma (PPARα/γ), glucose transporter type-4 (GLUT-4) and fatty acid transport protein-1 (FATP-1) activation are reported in this paper. Compounds 1 and 3 were the most active in the in vitro PTP-1B inhibition assay, showing IC50s of approximately 44 μM. Treatment of adipocytes with compound 1 increased the mRNA expression of PPARγ and GLUT-4 by 8- and 3-fold, respectively. Moreover, both compounds (1 and 3) also increased the relative mRNA expression of PPARα (by 8-fold) and FATP-1 (by 15-fold). Molecular docking studies were performed in order to elucidate the polypharmacological binding mode of the most active compounds on these targets. Finally, a murine model of hyperglycemia was used to evaluate the in vivo effectiveness of compounds 1 and 3. We found that both compounds are orally active using an exploratory dose of 100 mg/kg, decreasing the blood glucose concentration in an oral glucose tolerance test and a non-insulin-dependent diabetes mellitus murine model. In conclusion, we demonstrated that both molecules showed strong in vitro and in vivo effects and can be considered polypharmacological antidiabetic candidates.
Collapse
Affiliation(s)
| | - Hugo Tlahuext
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, 62209, Mexico
| | - Paolo Paoli
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Sezione di Scienze Biochimiche, Università degli Studi di Firenze, Viale Morgagni 50, 50134, Firenze, Italy
| | - Abraham Giacoman-Martínez
- Laboratorio de Farmacologia, Depto. Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, México, D.F. 09340, Mexico
| | - Julio César Almanza-Pérez
- Laboratorio de Farmacologia, Depto. Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, México, D.F. 09340, Mexico
| | - Horacio Pérez-Sánchez
- Bioinformatics and High Performance Computing Research Group (BIO-HPC), Computer Engineering Department, Universidad Católica de Murcia (UCAM), E30107, Murcia, Spain
| | | | - Fabiola Chávez-Silva
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico
| | | | - Samuel Estrada-Soto
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico
| | - Gabriel Navarrete-Vazquez
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico.
| |
Collapse
|
47
|
Mechanisms Underlying Early-Stage Changes in Visual Performance and Retina Function After Experimental Induction of Sustained Dyslipidemia. Neurochem Res 2018; 43:1500-1510. [PMID: 29860619 DOI: 10.1007/s11064-018-2563-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/21/2018] [Accepted: 05/26/2018] [Indexed: 12/12/2022]
Abstract
Visual and retinal function was measured in a mouse model of chemically induced, sustained dyslipidemia to determine the contribution of dyslipidemia to the pathogenesis of retinopathy in the context of metabolic syndrome. Fifteen male C57BL/6Crl mice were divided into three groups. Poloxamer 407 (P-407), 14.5% w/w was delivered at a rate of 6 µl/day by implanted osmotic mini-pumps either subcutaneously (P-407 SQ) or intraperitoneally (P-407 IP) to P-407-treated mice, whereas saline was administered at the same rate to control mice using only the subcutaneous route of administration. Total cholesterol (TC) and true triglyceride (TG) levels were quantified from plasma. Optomotor responses to stimuli of varying spatial frequency or contrast were used to measure visual acuity and contrast sensitivity. Retinal function was determined using Ganzfeld flash electroretinography (ERG). At 32 days, TC for the P-407 IP group was significantly elevated compared to saline controls (169.4 ± 16.5 mg/dl, 0.001 < P < 0.01). TG levels for both the P-407 SQ (59.3 ± 22.4 mg/dl, 0.01 < P < 0.05) and P-407 IP groups (67.7 ± 18.0 mg/dl, 0.001 < P < 0.01) were significantly elevated relative to controls. Electroretinography demonstrated a very significant decline in the b/a ratio (1.80 ± 0.11, P < 0.01) for the P-407 IP group. The b/a ratio exhibited a moderate, significant correlation with TC levels (r = - 0.4425, P = 0.0392) and a strong, very significant correlation with TG levels (r = - 0.6190, P = 0.0021). Delivery of P-407 via osmotic mini-pump resulted in the sustained, significant elevation of plasma TC and TG levels. This elevation in plasma lipid levels was correlated with a decline in inner retinal function.
Collapse
|
48
|
Wong FN, Chua KH, Tan JAMA, Wong CM, Kuppusamy UR. Glycaemic control in type 2 diabetic patients with chronic kidney disease: the impacts on enzymatic antioxidants and soluble RAGE. PeerJ 2018; 6:e4421. [PMID: 29610703 PMCID: PMC5880175 DOI: 10.7717/peerj.4421] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 02/07/2018] [Indexed: 12/24/2022] Open
Abstract
Background Chronic kidney disease (CKD) is characterised by long-term kidney damage and renal function decline. Diabetic CKD is the principal subtype of kidney disease in Malaysia and is associated with oxidative stress which plays an important role in development and progression of the disease. Glycaemic control slows down the progression of diabetic complications, including diabetic CKD. However, the implication of glycaemic control on enzymatic antioxidants and soluble RAGE (sRAGE) in CKD patients remains elusive. The aim of this study was to investigate the effect of glycaemic control on the levels or activities of glutathione peroxidase (GPx), superoxide dismutase (SOD) and sRAGE in CKD patients. Methods A total of 150 CKD patients and 64 non-CKD patients were enrolled. The type 2 diabetic patients in the recruited study participants were categorised based on their glycaemic control; poor glycaemic control (GC) with haemoglobin A1c (HbA1c) > 7% and good GC with HbA1c ≤ 7%. The levels or activities of GPx, SOD and sRAGE in plasma were measured. These biochemical parameters were analysed using Mann-Whitney U test and two-way analysis of variance (ANOVA). Results The activities of GPx and SOD as well as plasma level of sRAGE were not significantly different among the CKD patients with varying glycaemic control status. Irrespective of diabetes status and glycaemic control status, CKD patients also exhibited lower plasma SOD activities compared with non-CKD patients. Among the non-CKD patients, SOD activities were significantly higher in diabetic patients with good GC than diabetic patients with poor GC. Two-way ANOVA revealed that both CKD status and glycaemic control had an interaction effect on SOD activities in diabetic subjects with and without CKD. Follow-up analysis showed that SOD activities were significantly higher in non-CKD patients with good GC. There were no overall significant differences in GPx activities among the study participants. Furthermore, plasma sRAGE levels were higher in diabetic patients with CKD than those without CKD, regardless of glycaemic control status. There were no interaction effects between CKD status and glycaemic control status on GPx and sRAGE. Instead, CKD status showed significant main effects on these parameters, indicating significant differences between diabetic subjects with CKD and diabetic subjects without CKD. Conclusion Glycaemic control did not quantitatively alter GPx, SOD and sRAGE in diabetic CKD patients. Despite the advantages of good glycaemic control, a well-controlled diabetes in CKD did not modulate the activities of enzymatic antioxidants and sRAGE levels, therefore may not be the primary mechanism to handle oxidative stress.
Collapse
Affiliation(s)
- Foo Nian Wong
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kek Heng Chua
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Chew Ming Wong
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Umah Rani Kuppusamy
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
49
|
Lombardo D, Silvy F, Crenon I, Martinez E, Collignon A, Beraud E, Mas E. Pancreatic adenocarcinoma, chronic pancreatitis, and MODY-8 diabetes: is bile salt-dependent lipase (or carboxyl ester lipase) at the crossroads of pancreatic pathologies? Oncotarget 2018; 9:12513-12533. [PMID: 29552330 PMCID: PMC5844766 DOI: 10.18632/oncotarget.23619] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 11/06/2017] [Indexed: 12/22/2022] Open
Abstract
Pancreatic adenocarcinomas and diabetes mellitus are responsible for the deaths of around two million people each year worldwide. Patients with chronic pancreatitis do not die directly of this disease, except where the pathology is hereditary. Much current literature supports the involvement of bile salt-dependent lipase (BSDL), also known as carboxyl ester lipase (CEL), in the pathophysiology of these pancreatic diseases. The purpose of this review is to shed light on connections between chronic pancreatitis, diabetes, and pancreatic adenocarcinomas by gaining an insight into BSDL and its variants. This enzyme is normally secreted by the exocrine pancreas, and is diverted within the intestinal lumen to participate in the hydrolysis of dietary lipids. However, BSDL is also expressed by other cells and tissues, where it participates in lipid homeostasis. Variants of BSDL resulting from germline and/or somatic mutations (nucleotide insertion/deletion or nonallelic homologous recombination) are expressed in the pancreas of patients with pancreatic pathologies such as chronic pancreatitis, MODY-8, and pancreatic adenocarcinomas. We discuss the possible link between the expression of BSDL variants and these dramatic pancreatic pathologies, putting forward the suggestion that BSDL and its variants are implicated in the cell lipid metabolism/reprogramming that leads to the dyslipidemia observed in chronic pancreatitis, MODY-8, and pancreatic adenocarcinomas. We also propose potential strategies for translation to therapeutic applications.
Collapse
Affiliation(s)
- Dominique Lombardo
- Aix Marseille Univ, INSERM, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France
| | - Françoise Silvy
- Aix Marseille Univ, INSERM, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France
| | - Isabelle Crenon
- Aix Marseille Univ, INSERM, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France
| | - Emmanuelle Martinez
- Aix Marseille Univ, INSERM, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France
| | - Aurélie Collignon
- Aix Marseille Univ, INSERM, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France
| | - Evelyne Beraud
- Aix Marseille Univ, INSERM, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France
| | - Eric Mas
- Aix Marseille Univ, INSERM, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France
| |
Collapse
|
50
|
Biocompatible zinc oxide nanocrystals stabilized via hydroxyethyl cellulose for mitigation of diabetic complications. Int J Biol Macromol 2018; 107:748-754. [DOI: 10.1016/j.ijbiomac.2017.09.056] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/04/2017] [Accepted: 09/15/2017] [Indexed: 01/09/2023]
|