1
|
Zhang J, Tang A, Jin T, Sun D, Guo F, Lei H, Lin L, Shu W, Yu P, Li X, Li B. A panoramic view of the virosphere in three wastewater treatment plants by integrating viral-like particle-concentrated and traditional non-concentrated metagenomic approaches. IMETA 2024; 3:e188. [PMID: 38898980 PMCID: PMC11183165 DOI: 10.1002/imt2.188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 06/21/2024]
Abstract
Wastewater biotreatment systems harbor a rich diversity of microorganisms, and the effectiveness of biotreatment systems largely depends on the activity of these microorganisms. Specifically, viruses play a crucial role in altering microbial behavior and metabolic processes throughout their infection phases, an aspect that has recently attracted considerable interest. Two metagenomic approaches, viral-like particle-concentrated (VPC, representing free viral-like particles) and non-concentrated (NC, representing the cellular fraction), were employed to assess their efficacy in revealing virome characteristics, including taxonomy, diversity, host interactions, lifestyle, dynamics, and functional genes across processing units of three wastewater treatment plants (WWTPs). Our findings indicate that each approach offers unique insights into the viral community and functional composition. Their combined use proved effective in elucidating WWTP viromes. We identified nearly 50,000 viral contigs, with Cressdnaviricota and Uroviricota being the predominant phyla in the VPC and NC fractions, respectively. Notably, two pathogenic viral families, Asfarviridae and Adenoviridae, were commonly found in these WWTPs. We also observed significant differences in the viromes of WWTPs processing different types of wastewater. Additionally, various phage-derived auxiliary metabolic genes (AMGs) were active at the RNA level, contributing to the metabolism of the microbial community, particularly in carbon, sulfur, and phosphorus cycling. Moreover, we identified 29 virus-carried antibiotic resistance genes (ARGs) with potential for host transfer, highlighting the role of viruses in spreading ARGs in the environment. Overall, this study provides a detailed and integrated view of the virosphere in three WWTPs through the application of VPC and NC metagenomic approaches. Our findings enhance the understanding of viral communities, offering valuable insights for optimizing the operation and regulation of wastewater treatment systems.
Collapse
Affiliation(s)
- Jiayu Zhang
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenChina
- Research Center for Eco‐Environmental EngineeringDongguan University of TechnologyDongguanChina
| | - Aixi Tang
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenChina
| | - Tao Jin
- Guangdong Magigene Biotechnology Co., Ltd.ShenzhenChina
| | - Deshou Sun
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenChina
- Shenzhen Tongchen Biotechnology Co., LimitedShenzhenChina
| | - Fangliang Guo
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenChina
| | - Huaxin Lei
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenChina
| | - Lin Lin
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenChina
| | - Wensheng Shu
- Guangdong Magigene Biotechnology Co., Ltd.ShenzhenChina
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life SciencesSouth China Normal UniversityGuangzhouChina
| | - Pingfeng Yu
- College of Environmental and Resource SciencesZhejiang UniversityHangzhouChina
| | - Xiaoyan Li
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenChina
| | - Bing Li
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenChina
| |
Collapse
|
2
|
Carine MR, Pagilla KR. A mass balance approach for quantifying the role of natural decay and fate mechanisms on SARS-CoV-2 genetic marker removal during water reclamation. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11015. [PMID: 38599573 DOI: 10.1002/wer.11015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/06/2024] [Accepted: 02/28/2024] [Indexed: 04/12/2024]
Abstract
The recent SARS-CoV-2 outbreak yielded substantial data regarding virus fate and prevalence at water reclamation facilities (WRFs), identifying influential factors as natural decay, adsorption, light, pH, salinity, and antagonistic microorganisms. However, no studies have quantified the impact of these factors in full scale WRFs. Utilizing a mass balance approach, we assessed the impact of natural decay and other fate mechanisms on genetic marker removal during water reclamation, through the use of sludge and wastewater genetic marker loading estimates. Results indicated negligible removal of genetic markers during P/PT (primary effluent (PE) p value: 0.267; preliminary and primary treatment (P/PT) accumulation p value: 0.904; and thickened primary sludge (TPS) p value: 0.076) indicating no contribution of natural decay and other fate mechanisms toward removal in P/PT. Comparably, adsorption and decomposition was found to be the dominant pathway for genetic marker removal (thickened waste activated sludge (TWAS) log loading 9.75 log10 GC/day); however, no estimation of log genetic marker accumulation could be carried out due to high detections in TWAS. PRACTITIONER POINTS: The mass balance approach suggested that the contribution of natural decay and other fate mechanisms to virus removal during wastewater treatment are negligible compared with adsorption and decomposition in P/PT (p value: 0.904). During (P/PT), a higher viral load remained in the (PE) (14.16 log10 GC/day) compared with TPS (13.83 log10 GC/day); however, no statistical difference was observed (p value: 0.280) indicting that adsorption/decomposition most probably did not occur. In secondary treatment (ST), viral genetic markers in TWAS were consistently detected (13.41 log10 GC/day) compared with secondary effluent (SE), indicating that longer HRT and the potential presence of extracellular polymeric substance-containing enriched biomass enabled adsorption/decomposition. Estimations of total solids and volatile solids for TPS and TWAS indicated that adsorption affinity was different between solids sampling locations (p value: <0.0001).
Collapse
Affiliation(s)
- Madeline R Carine
- Department of Civil and Environmental Engineering, University of Nevada, Reno, Nevada, USA
| | - Krishna R Pagilla
- Department of Civil and Environmental Engineering, University of Nevada, Reno, Nevada, USA
| |
Collapse
|
3
|
Gwenzi W, Adelodun B, Kumar P, Ajibade FO, Silva LFO, Choi KS, Selvarajan R, Abia ALK, Gholipour S, Mohammadi F, Nikaeen M. Human viral pathogens in the wastewater-source water-drinking water continuum: Evidence, health risks, and lessons for future outbreaks in low-income settings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170214. [PMID: 38278242 DOI: 10.1016/j.scitotenv.2024.170214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/10/2024] [Accepted: 01/14/2024] [Indexed: 01/28/2024]
Abstract
Human viral pathogens, including SARS-CoV-2 continue to attract public and research attention due to their disruption of society, global health, and the economy. Several earlier reviews have investigated the occurrence and fate of SARS-CoV-2 in wastewater, and the potential to use such data in wastewater-based epidemiology. However, comprehensive reviews tracking SARS-CoV-2 and other viral pathogens in the wastewater-water-drinking water continuum and the associated risk assessment are still lacking. Therefore, to address this gap, the present paper makes the following contributions: (1) critically examines the early empirical results to highlight the occurrence and stability of SARS-CoV-2 in the wastewater-source water-drinking water continuum, (2) discusses the anthropogenic and hydro(geo)logical processes controlling the circulation of SARS-CoV-2 in the wastewater-source water-drinking water continuum, (3) discusses the risky behaviour, drivers and high-risk settings in the wastewater-source water-drinking water continuum, (4) uses the available empirical data on SARS-CoV-2 occurrence in the wastewater-source water-drinking water continuum to discuss human health risks from multiple exposure pathways, gendered aspects of SARS-CoV-2 transmission via shared on-site sanitation systems, and (5) develops and risk mitigation strategy based on the available empirical evidence and quantitative human risk assessment data. Finally, it presents a comprehensive research agenda on SARS-CoV-2/COVID-19 to guide the mitigation of future similar outbreaks in low-income settings.
Collapse
Affiliation(s)
- Willis Gwenzi
- Biosystems and Environmental Engineering Research Group, 380 New Adylin, Westgate, Harare, Zimbabwe; Currently Alexander von Humboldt Fellow and Guest/Visiting Professor at: Grassland Science and Renewable Plant Resources, Faculty of Organic Agricultural Sciences, Universität Kassel, Steinstraße 19, D-37213 Witzenhausen, Germany; Leibniz-Institut für Agrartechnik und Bioökonomie e.V. (ATB), Max-Eyth-Allee 100, D-14469, Potsdam, Germany.
| | - Bashir Adelodun
- Department of Agricultural Civil Engineering, Kyungpook National University, Daegu 41566, Republic of Korea; Department of Agricultural and Biosystems Engineering, University of Ilorin, PMB 1515, Ilorin 240003, Nigeria; Institute of Agricultural Science & Technology, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Pankaj Kumar
- Agro-Ecology and Pollution Research Laboratory, Department of Zoology and Environmental Science, Gurukula Kangri (Deemed to Be University), Haridwar 249404, India; Research and Development Division, Society for AgroEnvironmental Sustainability, Dehradun 248007, India.
| | - Fidelis Odedishemi Ajibade
- Department of Civil and Environmental Engineering, Federal University of Technology, PMB 704, Akure, 340001, Nigeria.
| | - Luis F O Silva
- Department of Civil and Environmental Engineering, Universidad de la Costa, Calle 58 #55-66, 080002 Barranquilla, Atlàntico, Colombia.
| | - Kyung Sook Choi
- Department of Agricultural Civil Engineering, Kyungpook National University, Daegu 41566, Republic of Korea; Institute of Agricultural Science & Technology, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Ramganesh Selvarajan
- Department of Environmental Sciences, College of Agricultural and Environmental Sciences, University of South Africa, Florida branch, Johannesburg, South Africa
| | - Akebe Luther King Abia
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa; Environmental Research Foundation, Westville 3630, Kwazulu-Natal, South Africa
| | - Sahar Gholipour
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farzaneh Mohammadi
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahnaz Nikaeen
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
4
|
Corrin T, Rabeenthira P, Young KM, Mathiyalagan G, Baumeister A, Pussegoda K, Waddell LA. A scoping review of human pathogens detected in untreated human wastewater and sludge. JOURNAL OF WATER AND HEALTH 2024; 22:436-449. [PMID: 38421635 PMCID: wh_2024_326 DOI: 10.2166/wh.2024.326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Wastewater monitoring is an approach to identify the presence or abundance of pathogens within a population. The objective of this scoping review (ScR) was to identify and characterize research on human pathogens and antimicrobial resistance detected in untreated human wastewater and sludge. A search was conducted up to March 2023 and standard ScR methodology was followed. This ScR included 1,722 articles, of which 56.5% were published after the emergence of COVID-19. Viruses and bacteria were commonly investigated, while research on protozoa, helminths, and fungi was infrequent. Articles prior to 2019 were dominated by research on pathogens transmitted through fecal-oral or waterborne pathways, whereas more recent articles have explored the detection of pathogens transmitted through other pathways such as respiratory and vector-borne. There was variation in sampling, samples, and sample processing across studies. The current evidence suggests that wastewater monitoring could be applied to a range of pathogens as a public health tool to detect an emerging pathogen and understand the burden and spread of disease to inform decision-making. Further development and refinement of the methods to identify and interpret wastewater signals for different prioritized pathogens are needed to develop standards on when, why, and how to monitor effectively.
Collapse
Affiliation(s)
- Tricia Corrin
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, 370 Speedvale Avenue West, Guelph, Ontario N1H 7M7, Canada E-mail:
| | - Prakathesh Rabeenthira
- One Health Division, National Microbiology Laboratory, Public Health Agency of Canada, 110 Stone Road, Guelph, Ontario N1G 3W4, Canada
| | - Kaitlin M Young
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, 370 Speedvale Avenue West, Guelph, Ontario N1H 7M7, Canada
| | - Gajuna Mathiyalagan
- One Health Division, National Microbiology Laboratory, Public Health Agency of Canada, 110 Stone Road, Guelph, Ontario N1G 3W4, Canada
| | - Austyn Baumeister
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, 370 Speedvale Avenue West, Guelph, Ontario N1H 7M7, Canada
| | - Kusala Pussegoda
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, 370 Speedvale Avenue West, Guelph, Ontario N1H 7M7, Canada
| | - Lisa A Waddell
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, 370 Speedvale Avenue West, Guelph, Ontario N1H 7M7, Canada
| |
Collapse
|
5
|
Gogoi G, Singh SD, Kalyan E, Koch D, Gogoi P, Kshattry S, Mahanta HJ, Imran M, Pandey R, Bharali P. An interpretative review of the wastewater-based surveillance of the SARS-CoV-2: where do we stand on its presence and concern? Front Microbiol 2024; 15:1338100. [PMID: 38318336 PMCID: PMC10839012 DOI: 10.3389/fmicb.2024.1338100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024] Open
Abstract
Wastewater-based epidemiology (WBE) has been used for monitoring infectious diseases like polio, hepatitis, etc. since the 1940s. It is also being used for tracking the SARS-CoV-2 at the population level. This article aims to compile and assess the information for the qualitative and quantitative detection of the SARS-CoV-2 in wastewater. Based on the globally published studies, we highlight the importance of monitoring SARS-CoV-2 presence/detection in the wastewater and concurrently emphasize the development of early surveillance techniques. SARS-CoV-2 RNA sheds in the human feces, saliva, sputum and mucus that ultimately reaches to the wastewater and brings viral RNA into it. For the detection of the virus in the wastewater, different detection techniques have been optimized and are in use. These are based on serological, biosensor, targeted PCR, and next generation sequencing for whole genome sequencing or targeted amplicon sequencing. The presence of the SARS-CoV-2 RNA in wastewater could be used as a potential tool for early detection and devising the strategies for eradication of the virus before it is spread in the community. Additionally, with the right and timely understanding of viral behavior in the environment, an accurate and instructive model that leverages WBE-derived data may be created. This might help with the creation of technological tools and doable plans of action to lessen the negative effects of current viral epidemics or future potential outbreaks on public health and the economy. Further work toward whether presence of viral load correlates with its ability to induce infection, still needs evidence. The current increasing incidences of JN.1 variant is a case in point for continued early detection and surveillance, including wastewater.
Collapse
Affiliation(s)
- Gayatri Gogoi
- Center for Infectious Diseases, Biological Science and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sarangthem Dinamani Singh
- Center for Infectious Diseases, Biological Science and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, India
| | - Emon Kalyan
- Center for Infectious Diseases, Biological Science and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, India
| | - Devpratim Koch
- Center for Infectious Diseases, Biological Science and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Pronami Gogoi
- Center for Infectious Diseases, Biological Science and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, India
| | - Suman Kshattry
- Center for Infectious Diseases, Biological Science and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, India
| | - Hridoy Jyoti Mahanta
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Advanced Computation and Data Sciences Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
| | - Md Imran
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
| | - Rajesh Pandey
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
| | - Pankaj Bharali
- Center for Infectious Diseases, Biological Science and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
6
|
Yang J, Sun D, Xia T, Shi S, Suo J, Kuang H, Sun N, Hu H, Zheng Z, Zhou Y, Li X, Chen S, Huang H, Yan Z. Monitoring Prevalence and Persistence of Environmental Contamination by SARS-CoV-2 RNA in a Makeshift Hospital for Asymptomatic and Very Mild COVID-19 Patients. Int J Public Health 2023; 68:1605994. [PMID: 37767017 PMCID: PMC10520216 DOI: 10.3389/ijph.2023.1605994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Objective: To investigate the details of environmental contamination status by SARS-CoV-2 in a makeshift COVID-19 hospital. Methods: Environmental samples were collected from a makeshift hospital. The extent of contamination was assessed by quantitative reverse transcription polymerase chain reaction (RT-qPCR) for SARS-CoV-2 RNA from various samples. Results: There was a wide range of total collected samples contaminated with SARS-CoV-2 RNA, ranging from 8.47% to 100%. Results revealed that 70.00% of sewage from the bathroom and 48.19% of air samples were positive. The highest rate of contamination was found from the no-touch surfaces (73.07%) and the lowest from frequently touched surfaces (33.40%). The most contaminated objects were the top surfaces of patient cubic partitions (100%). The median Ct values among strongly positive samples were 33.38 (IQR, 31.69-35.07) and 33.24 (IQR, 31.33-34.34) for ORF1ab and N genes, respectively. SARS-CoV-2 relic RNA can be detected on indoor surfaces for up to 20 days. Conclusion: The findings show a higher prevalence and persistence in detecting the presence of SARS-CoV-2 in the makeshift COVID-19 hospital setting. The contamination mode of droplet deposition may be more common than contaminated touches.
Collapse
Affiliation(s)
- Jinyan Yang
- Department of Disease Prevention and Control, Hainan Hospital of People’s Liberation Army of China General Hospital, Sanya, China
| | - Dan Sun
- Department of Disease Prevention and Control, Hainan Hospital of People’s Liberation Army of China General Hospital, Sanya, China
| | - Tingting Xia
- Department of Disease Prevention and Control, Hainan Hospital of People’s Liberation Army of China General Hospital, Sanya, China
| | - Shi Shi
- Department of Disease Prevention and Control, Hainan Hospital of People’s Liberation Army of China General Hospital, Sanya, China
| | - Jijiang Suo
- Department of Disease Prevention and Control, Hainan Hospital of People’s Liberation Army of China General Hospital, Sanya, China
| | - Huihui Kuang
- Department of Laboratory Medicine, Hainan Hospital of People’s Liberation Army of China General Hospital, Sanya, China
| | - Nana Sun
- Department of Laboratory Medicine, Hainan Hospital of People’s Liberation Army of China General Hospital, Sanya, China
| | - Hongyan Hu
- Department of Laboratory Medicine, Hainan Hospital of People’s Liberation Army of China General Hospital, Sanya, China
| | - Zhecheng Zheng
- Department of Health Economics Management, Hainan Hospital of People’s Liberation Army of China General Hospital, Sanya, China
| | - Yang Zhou
- Department of Health Economics Management, Hainan Hospital of People’s Liberation Army of China General Hospital, Sanya, China
| | - Xiaocui Li
- Department of Cardiology, Hainan Hospital of People’s Liberation Army of China General Hospital, Sanya, China
| | - Shaojuan Chen
- Department of Cardiology, Hainan Hospital of People’s Liberation Army of China General Hospital, Sanya, China
| | - Haiqiang Huang
- Department of Radiotherapy, Hainan Hospital of People’s Liberation Army of China General Hospital, Sanya, China
| | - Zhongqiang Yan
- Department of Disease Prevention and Control, The Second Medical Center of People’s Liberation Army of China General Hospital, Beijing, China
| |
Collapse
|
7
|
Rusková M, Bučková M, Puškárová A, Cíchová M, Janská V, Achs A, Šubr Z, Kuchta T, Pangallo D. Comparison of ordinary reverse transcription real-time polymerase chain reaction (qRT-PCR) with a newly developed one-step single-tube nested real-time RT-PCR (OSN-qRT-PCR) for sensitive detection of SARS-CoV-2 in wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:95579-95589. [PMID: 37553492 PMCID: PMC10482794 DOI: 10.1007/s11356-023-29123-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 07/29/2023] [Indexed: 08/10/2023]
Abstract
Wastewater monitoring has proven to be an important approach to detecting and controlling the development of the SARS-CoV-2 pandemic. Various tests based on reverse transcription real-time PCR (qRT-PCR) have been developed and used for the detection of SARS-CoV-2 in wastewater samples. In this study, we attempted to increase the sensitivity of qRT-PCR by developing a one-step single-tube nested qRT-PCR assay (OSN-qRT-PCR). Two variants were developed, oriented to nucleocapsid phosphoprotein gene (N) and to spike protein gene (S), respectively. The performance of conventional qRT-PCR assays oriented to these genes with two novel OSN-qRT-PCR assays were firstly optimized using wastewater artificially contaminated with two encapsidated RNA mimic systems harboring a portion either N or S gene (ENRM and ESRM, respectively). The assays were coupled to a polyethylene glycol-based RNA precipitation/extraction method and applied to detect SARS-CoV-2 in wastewater samples from four cities in Slovakia. Both novel OSN-qRT-PCR assays demonstrated higher detection rates than the ordinary qRT-PCR counterparts. The virus levels in the analyzed wastewater samples had a high or very high relation with the numbers of clinical cases in the monitored regions. In fact, correlation with a 3-, 4-, or 5-day temporal offset was revealed. The OSN-qRT-PCR assays demonstrated robustness, mainly in samples with low viral loads.
Collapse
Affiliation(s)
- Magdaléna Rusková
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 845 51, Bratislava, Slovakia
| | - Mária Bučková
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 845 51, Bratislava, Slovakia
| | - Andrea Puškárová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 845 51, Bratislava, Slovakia
| | - Marianna Cíchová
- Water Research Institute, Nábrežie Arm. Gen. L. Svobodu 5, 812 49, Bratislava, Slovakia
| | - Veronika Janská
- Water Research Institute, Nábrežie Arm. Gen. L. Svobodu 5, 812 49, Bratislava, Slovakia
| | - Adam Achs
- Biomedical Research Center, Slovak Academy of Sciences, Institute of Virology, Dúbravská Cesta 9, 845 05, Bratislava, Slovakia
| | - Zdeno Šubr
- Biomedical Research Center, Slovak Academy of Sciences, Institute of Virology, Dúbravská Cesta 9, 845 05, Bratislava, Slovakia
| | - Tomáš Kuchta
- Department of Microbiology, Molecular Biology and Biotechnology, Food Research Institute, National Agricultural and Food Centre, Priemyselná 4, 824 75, Bratislava, Slovakia
| | - Domenico Pangallo
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 845 51, Bratislava, Slovakia.
- Caravella, s.r.o., Tupolevova 2, 851 01, Bratislava, Slovakia.
| |
Collapse
|
8
|
Plaza-Garrido A, Ampuero M, Gaggero A, Villamar-Ayala CA. Norovirus, Hepatitis A and SARS-CoV-2 surveillance within Chilean rural wastewater treatment plants based on different biological treatment typologies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160685. [PMID: 36476771 PMCID: PMC9721186 DOI: 10.1016/j.scitotenv.2022.160685] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 05/10/2023]
Abstract
During the COVID-19 pandemic, wastewater from WWTPs became an interesting source of epidemiological surveillance. However, there is uncertainty about the influence of treatment type on virus removal. The aim of this study was to assess viral surveillance within wastewater treatment plants (WWTPs) based on different biological treatments. Seasonal monitoring (autumn-winter and spring-summer) was conducted in 10 Chilean rural WWTPs, which were based on activated sludge, aerated lagoons, bio-discs, constructed wetlands, vermifilters and mixed systems. Viruses were measured (influent/effluent) by the RT-qPCR technique, using a commercial kit for SARS-CoV-2, NoV GI, NoV GII, and HAV. The detection of SARS-CoV-2 viral variants by genotyping was performed using SARS-CoV-2 Mutation Assays (ThermoFisher Scientific, USA). JC polyomavirus detection (control), as well as a qPCR technique. Results showed that SARS-CoV-2, NoV GI and GII were detected in influents at values between <5 and 462, 0 to 28, and 0 to 75 GC/mL, respectively. HAV was not detected among the studied WWTPs. The monitored WWTPs removed these viruses at percentages between 0 and 100 %. WWTPs based on activated sludge with bio-discs demonstrated to be the most efficient at removing SARS-CoV-2 (up to 98 %) and NoV GI and GII (100 %). Meanwhile, bio-discs technologies were the least efficient for viral removal, due to biofilm detachment, which could also adsorb viral aggregates. A correlation analysis established that solids, pH, and temperature are the most influential parameters in viral removal. Wastewater-based surveillance at WWTP allowed for the detection of Omicron before the Chilean health authorities notified its presence in the population. In addition, surveillance of viruses and other microorganisms could help assess the potential public health risk of wastewater recycling.
Collapse
Affiliation(s)
- Angela Plaza-Garrido
- Departamento de Ingeniería en Obras Civiles, Facultad de Ingeniería, Universidad Santiago de Chile (USACH), Av. Victor Jara 3659, Estación Central, Santiago, Chile
| | - Manuel Ampuero
- Programa de Virología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Aldo Gaggero
- Programa de Virología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile.
| | - Cristina Alejandra Villamar-Ayala
- Departamento de Ingeniería en Obras Civiles, Facultad de Ingeniería, Universidad Santiago de Chile (USACH), Av. Victor Jara 3659, Estación Central, Santiago, Chile.
| |
Collapse
|
9
|
Bhattacharya S, Abhishek K, Samiksha S, Sharma P. Occurrence and transport of SARS-CoV-2 in wastewater streams and its detection and remediation by chemical-biological methods. JOURNAL OF HAZARDOUS MATERIALS ADVANCES 2023; 9:100221. [PMID: 36818681 PMCID: PMC9762044 DOI: 10.1016/j.hazadv.2022.100221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/02/2022] [Accepted: 12/18/2022] [Indexed: 06/18/2023]
Abstract
This paper explains the transmission of SARS-CoV and influences of several environmental factors in the transmission process. The article highlighted several methods of collection, sampling and monitoring/estimation as well as surveillance tool for detecting SARS-CoV in wastewater streams. In this context, WBE (Wastewater based epidemiology) is found to be the most effective surveillance tool. Several methods of genomic sequencing are discussed in the paper, which are applied in WBE, like qPCR-based wastewater testing, metagenomics-based analysis, next generation sequencing etc. Additionally, several types of biosensors (colorimetric biosensor, mobile phone-based biosensors, and nanomaterials-based biosensors) showed promising results in sensing SARS-CoV in wastewater. Further, this review paper outlined the gaps in assessing the factors responsible for transmission and challenges in detection and monitoring along with the remediation and disinfection methods of this virus in wastewater. Various methods of disinfection of SARS-CoV-2 in wastewater are discussed (primary, secondary, and tertiary phases) and it is found that a suite of disinfection methods can be used for complete disinfection/removal of the virus. Application of ultraviolet light, ozone and chlorine-based disinfectants are also discussed in the context of treatment methods. This study calls for continuous efforts to gather more information about the virus through continuous monitoring and analyses and to address the existing gaps and identification of the most effective tool/ strategy to prevent SARS-CoV-2 transmission. Wastewater surveillance can be very useful in effective surveillance of future pandemics and epidemics caused by viruses, especially after development of new technologies in detecting and disinfecting viral pathogens more effectively.
Collapse
Affiliation(s)
- Sayan Bhattacharya
- School of Ecology and Environment Studies, Nalanda University, Rajgir, 803116, Bihar, India
| | - Kumar Abhishek
- School of Ecology and Environment Studies, Nalanda University, Rajgir, 803116, Bihar, India
- Department of Environment Forest and Climate Change, Government of Bihar, Patna, 800015, Bihar, India
| | - Shilpi Samiksha
- Bihar State Pollution Control Board, Patna, 800015, Bihar, India
| | - Prabhakar Sharma
- School of Ecology and Environment Studies, Nalanda University, Rajgir, 803116, Bihar, India
| |
Collapse
|
10
|
Alahdal HM, Ameen F, AlYahya S, Sonbol H, Khan A, Alsofayan Y, Alahmari A. Municipal wastewater viral pollution in Saudi Arabia: effect of hot climate on COVID-19 disease spreading. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:25050-25057. [PMID: 34138435 PMCID: PMC8210523 DOI: 10.1007/s11356-021-14809-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/07/2021] [Indexed: 05/02/2023]
Abstract
The viral RNA of SARS-Coronavirus-2 is known to be contaminating municipal wastewater. We aimed to assess if COVID-19 disease is spreading through wastewater. We studied the amount of viral RNA in raw sewage and the efficiency of the sewage treatment to remove the virus. Sewage water was collected before and after the activated sludge process three times during summer 2020 from three different sewage treatment plants. The sewage treatment was efficient in removing SARS-CoV-2 viral RNA. Each sewage treatment plant gathered wastewater from one hospital, of which COVID-19 admissions were used to describe the level of disease occurrence in the area. The presence of SARS-CoV-2 viral RNA-specific target genes (N1, N2, and E) was confirmed using RT-qPCR analysis. However, hospital admission did not correlate significantly with viral RNA. Moreover, viral RNA loads were relatively low, suggesting that sewage might preserve viral RNA in a hot climate only for a short time.
Collapse
Affiliation(s)
- Hadil M Alahdal
- Department of Biology, Faculty of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Fuad Ameen
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Sami AlYahya
- National Center for Biotechnology, King Abdulaziz City for Science & Technology, Riyadh, Saudi Arabia
| | - Hana Sonbol
- Department of Biology, Faculty of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Anas Khan
- Department of Emergency Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Global Center for Mass Gatherings Medicine, Ministry of Health, P.O. Box 11461, Riyadh, Saudi Arabia
| | - Yousef Alsofayan
- Global Center for Mass Gatherings Medicine, Ministry of Health, P.O. Box 11461, Riyadh, Saudi Arabia
| | - Ahmed Alahmari
- Global Center for Mass Gatherings Medicine, Ministry of Health, P.O. Box 11461, Riyadh, Saudi Arabia
| |
Collapse
|
11
|
Mare R, Mare C, Hadarean A, Hotupan A, Rus T. COVID-19 and Water Variables: Review and Scientometric Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:957. [PMID: 36673718 PMCID: PMC9859563 DOI: 10.3390/ijerph20020957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
COVID-19 has changed the world since 2020, and the field of water specifically, boosting scientific productivity (in terms of published articles). This paper focuses on the influence of COVID-19 on scientific productivity with respect to four water variables: (i) wastewater, (ii) renewable water resources, (iii) freshwater withdrawal, and (iv) access to improved and safe drinking water. The field's literature was firstly reviewed, and then the maps were built, emphasizing the strong connections between COVID-19 and water-related variables. A total of 94 countries with publications that assess COVID-19 vs. water were considered and evaluated for how they clustered. The final step of the research shows that, on average, scientific productivity on the water topic was mostly conducted in countries with lower COVID-19 infection rates but higher development levels as represented by gross domestic product (GDP) per capita and the human development index (HDI). According to the statistical analysis, the water-related variables are highly significant, with positive coefficients. This validates that countries with higher water-related values conducted more research on the relationship with COVID-19. Wastewater and freshwater withdrawal had the highest impact on the scientific productivity with respect to COVID-19. Access to safe drinking water becomes insignificant in the presence of the development parameters.
Collapse
Affiliation(s)
- Roxana Mare
- Department of Building Services Engineering, Faculty of Building Services Engineering, Technical University of Cluj-Napoca, 128-130 21 Decembrie 1989 Blv., 400604 Cluj-Napoca, Romania
| | - Codruța Mare
- Department of Statistics-Forecasts-Mathematics, Faculty of Economics and Business Administration, Babes-Bolyai University, 58-60 Teodor Mihali Str., 400591 Cluj-Napoca, Romania
- Interdisciplinary Centre for Data Science, Babes-Bolyai University, 68 Avram Iancu Str., 4th Floor, 400083 Cluj-Napoca, Romania
| | - Adriana Hadarean
- Department of Building Services Engineering, Faculty of Building Services Engineering, Technical University of Cluj-Napoca, 128-130 21 Decembrie 1989 Blv., 400604 Cluj-Napoca, Romania
| | - Anca Hotupan
- Department of Building Services Engineering, Faculty of Building Services Engineering, Technical University of Cluj-Napoca, 128-130 21 Decembrie 1989 Blv., 400604 Cluj-Napoca, Romania
| | - Tania Rus
- Department of Building Services Engineering, Faculty of Building Services Engineering, Technical University of Cluj-Napoca, 128-130 21 Decembrie 1989 Blv., 400604 Cluj-Napoca, Romania
| |
Collapse
|
12
|
Bonanno Ferraro G, Veneri C, Mancini P, Iaconelli M, Suffredini E, Bonadonna L, Lucentini L, Bowo-Ngandji A, Kengne-Nde C, Mbaga DS, Mahamat G, Tazokong HR, Ebogo-Belobo JT, Njouom R, Kenmoe S, La Rosa G. A State-of-the-Art Scoping Review on SARS-CoV-2 in Sewage Focusing on the Potential of Wastewater Surveillance for the Monitoring of the COVID-19 Pandemic. FOOD AND ENVIRONMENTAL VIROLOGY 2022; 14:315-354. [PMID: 34727334 PMCID: PMC8561373 DOI: 10.1007/s12560-021-09498-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/21/2021] [Indexed: 05/07/2023]
Abstract
The outbreak of coronavirus infectious disease-2019 (COVID-19), caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has rapidly spread throughout the world. Several studies have shown that detecting SARS-CoV-2 in untreated wastewater can be a useful tool to identify new outbreaks, establish outbreak trends, and assess the prevalence of infections. On 06 May 2021, over a year into the pandemic, we conducted a scoping review aiming to summarize research data on SARS-CoV-2 in sewage. Papers dealing with raw sewage collected at wastewater treatment plants, sewer networks, septic tanks, and sludge treatment facilities were included in this review. We also reviewed studies on sewage collected in community settings such as private or municipal hospitals, healthcare facilities, nursing homes, dormitories, campuses, airports, aircraft, and cruise ships. The literature search was conducted using the electronic databases PubMed, EMBASE, and Web Science Core Collection. This comprehensive research yielded 1090 results, 66 of which met the inclusion criteria and are discussed in this review. Studies from 26 countries worldwide have investigated the occurrence of SARS-CoV-2 in sewage of different origin. The percentage of positive samples in sewage ranged from 11.6 to 100%, with viral concentrations ranging from ˂LOD to 4.6 × 108 genome copies/L. This review outlines the evidence currently available on wastewater surveillance: (i) as an early warning system capable of predicting COVID-19 outbreaks days or weeks before clinical cases; (ii) as a tool capable of establishing trends in current outbreaks; (iii) estimating the prevalence of infections; and (iv) studying SARS-CoV-2 genetic diversity. In conclusion, as a cost-effective, rapid, and reliable source of information on the spread of SARS-CoV-2 and its variants in the population, wastewater surveillance can enhance genomic and epidemiological surveillance with independent and complementary data to inform public health decision-making during the ongoing pandemic.
Collapse
Affiliation(s)
- G Bonanno Ferraro
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | | | - P Mancini
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - M Iaconelli
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - E Suffredini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - L Bonadonna
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - L Lucentini
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - A Bowo-Ngandji
- Department of Microbiology, The University of Yaounde I, Yaounde, Cameroon
| | - C Kengne-Nde
- Research Monitoring and Planning Unit, National Aids Control Committee, Douala, Cameroon
| | - D S Mbaga
- Department of Microbiology, The University of Yaounde I, Yaounde, Cameroon
| | - G Mahamat
- Department of Microbiology, The University of Yaounde I, Yaounde, Cameroon
| | - H R Tazokong
- Department of Microbiology, The University of Yaounde I, Yaounde, Cameroon
| | - J T Ebogo-Belobo
- Medical Research Centre, Institute of Medical Research and Medicinal Plants Studies, Yaounde, Cameroon
| | - R Njouom
- Virology Department, Centre Pasteur of Cameroon, Yaounde, Cameroon
| | - S Kenmoe
- Virology Department, Centre Pasteur of Cameroon, Yaounde, Cameroon
| | - G La Rosa
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
13
|
Sridhar J, Parit R, Boopalakrishnan G, Rexliene MJ, Praveen R, Viswananathan B. Importance of wastewater-based epidemiology for detecting and monitoring SARS-CoV-2. CASE STUDIES IN CHEMICAL AND ENVIRONMENTAL ENGINEERING 2022; 6:100241. [PMID: 37520919 PMCID: PMC9341170 DOI: 10.1016/j.cscee.2022.100241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 08/01/2023]
Abstract
Coronavirus disease caused by the SARS-CoV-2 virus has emerged as a global challenge in terms of health and disease monitoring. COVID-19 infection is mainly spread through the SARS-CoV-2 infection leading to the development of mild to severe clinical manifestations. The virus binds to its cognate receptor ACE2 which is widely expressed among different tissues in the body. Notably, SARS-CoV-2 shedding in the fecal samples has been reported through the screening of sewage water across various countries. Wastewater screening for the presence of SARS-CoV-2 provides an alternative method to monitor infection threat, variant identification, and clinical evaluation to restrict the virus progression. Multiple cohort studies have reported the application of wastewater treatment approaches and epidemiological significance in terms of virus monitoring. Thus, the manuscript outlines consolidated and systematic information regarding the application of wastewater-based epidemiology in terms of monitoring and managing a viral disease outbreak like COVID-19.
Collapse
Affiliation(s)
- Jayavel Sridhar
- Department of Biotechnology (DDE), Madurai Kamaraj University, Madurai, 625021, Tamilnadu, India
| | - Rahul Parit
- Department of Biotechnology (DDE), Madurai Kamaraj University, Madurai, 625021, Tamilnadu, India
| | | | - M Johni Rexliene
- Department of Biotechnology (DDE), Madurai Kamaraj University, Madurai, 625021, Tamilnadu, India
| | - Rajkumar Praveen
- Department of Biotechnology (DDE), Madurai Kamaraj University, Madurai, 625021, Tamilnadu, India
| | - Balaji Viswananathan
- Department of Biotechnology (DDE), Madurai Kamaraj University, Madurai, 625021, Tamilnadu, India
| |
Collapse
|
14
|
Wartell BA, Proano C, Bakalian L, Kaya D, Croft K, McCreary M, Lichtenstein N, Miske V, Arcellana P, Boyer J, Benschoten IV, Anderson M, Crabb A, Gilson S, Gourley A, Wheeler T, Trest B, Bowman G, Kjellerup BV. Implementing wastewater surveillance for SARS-CoV-2 on a university campus: Lessons learned. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10807. [PMID: 36372781 PMCID: PMC9827968 DOI: 10.1002/wer.10807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Wastewater surveillance, also known as wastewater-based epidemiology (WBE), has been successfully used to detect SARS-CoV-2 and other viruses in sewage in many locations in the United States and globally. This includes implementation of the surveillance on college and university campuses. A two-phase study was conducted during the 2020-2021 academic year to test the feasibility of a WBE system on campus and to supplement the clinical COVID-19 testing performed for the student, staff, and faculty body. The primary objective during the Fall 2020 semester was to monitor a large portion of the on-campus population and to obtain an understanding of the spreading of the SARS-CoV-2 virus. The Spring 2021 objective was focused on selected residence halls and groups of residents on campus, as this was more efficient and relevant for an effective follow-up response. Logistical problems and planning oversights initially occurred but were corrected with improved communication and experience. Many lessons were learned, including effective mapping, site planning, communication, personnel organization, and equipment management, and obtained along the way, thereby paving an opportune guide for future planning efforts. PRACTITIONER POINTS: WBE was successful in the detection of many SARS-CoV-2 variants incl. Alpha, Beta, Gamma, Delta, Lambda, Mu, and Omicron. Careful planning and contingencies were essential for a successful implementation of a SARS-CoV-2 monitoring program. A surveillance program may be important for detection and monitoring of other public health relevant targets in wastewater incl. bacteria, viruses, fungi and viruses. Diverse lessons were learned incl. effective mapping, site planning, communication, personnel organization, and equipment management, thereby providing a guide for future planning efforts.
Collapse
Affiliation(s)
- Brian A. Wartell
- Department of Civil and Environmental EngineeringUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Camila Proano
- Department of Civil and Environmental EngineeringUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Lena Bakalian
- Department of Civil and Environmental EngineeringUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Devrim Kaya
- Department of Civil and Environmental EngineeringUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Kristen Croft
- Department of Civil and Environmental EngineeringUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Michael McCreary
- Department of Civil and Environmental EngineeringUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Naomi Lichtenstein
- Department of Civil and Environmental EngineeringUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Victoria Miske
- Department of Civil and Environmental EngineeringUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Patricia Arcellana
- Department of Civil and Environmental EngineeringUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Jessica Boyer
- Department of Civil and Environmental EngineeringUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Isabelle Van Benschoten
- Department of Civil and Environmental EngineeringUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Marya Anderson
- Department of Civil and Environmental EngineeringUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Andrea Crabb
- Department of Residential FacilitiesUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Susan Gilson
- Department of Residential FacilitiesUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Anthony Gourley
- Department of Residential FacilitiesUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Tim Wheeler
- Department of Residential FacilitiesUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Brian Trest
- Facilities ManagementUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Glynnis Bowman
- Facilities ManagementUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Birthe V. Kjellerup
- Department of Civil and Environmental EngineeringUniversity of Maryland College ParkCollege ParkMarylandUSA
| |
Collapse
|
15
|
Ramezani Ziarani F, Tahamtan A, Safari H, Tabarraei A, Dadban Shahamat Y. Detection of SARS-CoV-2 genome in the air, surfaces, and wastewater of the referral hospitals, Gorgan, north of Iran. IRANIAN JOURNAL OF MICROBIOLOGY 2022; 14:617-623. [PMID: 36531809 PMCID: PMC9723430 DOI: 10.18502/ijm.v14i5.10954] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
BACKGROUND AND OBJECTIVES Coronavirus disease 2019 (COVID-19) is a pandemic caused by the novel virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Knowing the virus's behavior and its persistence in different environments are crucial and will lead to the proper management of the disease. In this study, air, surface, and sewage samples were taken from different parts of referral hospitals for COVID-19. MATERIALS AND METHODS Air samples were taken with impinger, surface samples with swabs, and sewage samples were taken from the hospital wastewater treatment plant. After viral genome extraction, a real-time RT-PCR test was applied to confirm the presence of SARS-CoV-2 RNA in the collected samples. RESULTS The virus genome could be traced in the wards and wastewater related to hospitalized COVID-19 patients. Overally, 29%, 16%, and 37.5% of air, surface, and sewage samples were positive for the SARS-CoV-2 genome, respectively. CONCLUSION Findings of such studies provide valuable results regarding the degree of contamination of hospital environments and the risk of virus transmission in different environments and among hospital staff and patients.
Collapse
Affiliation(s)
- Farzad Ramezani Ziarani
- Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Alireza Tahamtan
- Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Hasan Safari
- Department of Environmental Health Engineering, Faculty of Health, Environmental Health Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Alijan Tabarraei
- Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Yousef Dadban Shahamat
- Department of Environmental Health Engineering, Faculty of Health, Environmental Health Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
16
|
Mousazadeh M, Kabdaşlı I, Khademi S, Sandoval MA, Moussavi SP, Malekdar F, Gilhotra V, Hashemi M, Dehghani MH. A critical review on the existing wastewater treatment methods in the COVID-19 era: What is the potential of advanced oxidation processes in combatting viral especially SARS-CoV-2? JOURNAL OF WATER PROCESS ENGINEERING 2022; 49:103077. [PMID: 35990175 PMCID: PMC9381433 DOI: 10.1016/j.jwpe.2022.103077] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/19/2022] [Accepted: 08/15/2022] [Indexed: 06/01/2023]
Abstract
The COVID-19 epidemic has put the risk of virus contamination in water bodies on the horizon of health authorities. Hence, finding effective ways to remove the virus, especially SARS-CoV-2, from wastewater treatment plants (WWTPs) has emerged as a hot issue in the last few years. Herein, this study first deals with the fate of SARS-CoV-2 genetic material in WWTPs, then critically reviews and compares different wastewater treatment methods for combatting COVID-19 as well as to increase the water quality. This critical review sheds light the efficiency of advanced oxidation processes (AOPs) to inactivate virus, specially SARS-CoV-2 RNA. Although several physicochemical treatment processes (e.g. activated sludge) are commonly used to eliminate pathogens, AOPs are the most versatile and effective virus inactivation methods. For instance, TiO2 is the most known and widely studied photo-catalyst innocuously utilized to degrade pollutants as well as to photo-induce bacterial and virus disinfection due to its high chemical resistance and efficient photo-activity. When ozone is dissolved in water and wastewater, it generates a wide spectrum of the reactive oxygen species (ROS), which are responsible to degrade materials in virus membranes resulting in destroying the cell wall. Furthermore, electrochemical advanced oxidation processes act through direct oxidation when pathogens react at the anode surface or by indirect oxidation through oxidizing species produced in the bulk solution. Consequently, they represent a feasible choice for the inactivation of a wide range of pathogens. Nonetheless, there are some challenges with AOPs which should be addressed for application at industrial-scale.
Collapse
Affiliation(s)
- Milad Mousazadeh
- Social Determinants of Health Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
- Department of Environmental Health Engineering, School of Health, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Işık Kabdaşlı
- İstanbul Technical University, Civil Engineering Faculty, Environmental Engineering Department, Ayazağa Campus, 34469 Maslak, İstanbul, Turkey
| | - Sara Khademi
- Health, Safety, and Environment Specialist, North Drilling Company, Ahvaz, Iran
| | - Miguel Angel Sandoval
- Universidad de Santiago de Chile USACH, Facultad de Química y Biología, Departamento de Química de los Materiales, Laboratorio de Electroquímica Medio Ambiental, LEQMA, Casilla 40, Correo 33, Santiago, Chile
- Universidad de Guanajuato, División de Ciencias Naturales y Exactas, Departamento de Ingeniería Química, Noria Alta S/N, 36050, Guanajuato, Guanajuato, Mexico
| | | | - Fatemeh Malekdar
- Department of Foot and Mouth Disease Vaccine Production, Razi Vaccine and Serum Research Institute, Karaj, Iran
| | - Vishakha Gilhotra
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Marjan Hashemi
- Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Dehghani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Institute for Environmental Research, Center for Solid Waste Research, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Shaheen MNF, Elmahdy EM, Shahein YE. The first detection of SARS-CoV-2 RNA in urban wastewater in Giza, Egypt. JOURNAL OF WATER AND HEALTH 2022; 20:1212-1222. [PMID: 36044190 DOI: 10.2166/wh.2022.098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The new coronavirus (SARS-CoV-2) is a respiratory virus causing coronavirus disease (COVID-19). Individuals with COVID-19 can shed the viral genome in their feces, even if they do not have symptoms, and the virus can be detected in wastewater. The current study provides the first surveillance of SARS-CoV-2 RNA genome in the wastewater in Egypt. To study this aim, untreated influent (n = 48) and treated effluent (n = 48) samples were collected between January and December 2021 from the wastewater treatment plant in Giza. The viral RNA genome was determined by reverse transcription-polymerase chain reaction (RT-PCR) (S, E, and N target regions) and real-time quantitative reverse transcription-PCR (RT-qPCR) (N1 and N2 target regions). The RT-PCR assay failed to detect SARS-CoV-2 RNA in all samples analyzed, whereas RT-qPCR succeeded in the detection of N gene of SARS-CoV-2 in 62.5% of untreated influent samples. The RT-qPCR Ct values of those samples tested positive ranged from 19.9 to 30.1 with a mean of 23. The treated effluent samples were negative for viral RNA detected by both RT-PCR and RT-qPCR, indicating the efficiency of the sewage treatment plant in degrading SARS-CoV-2. Our preliminary findings provide evidence for the value of wastewater epidemiology approach for the surveillance of SARS-CoV-2 in the population to assist in the responses of public health to COVID-19 outbreak.
Collapse
Affiliation(s)
- Mohamed N F Shaheen
- Environmental Virology Laboratory, Water Pollution Research Department, Environment and Climate Change Research Institute, National Research Centre, Dokki 12622, Giza, Egypt E-mail: ,
| | - Elmahdy M Elmahdy
- Environmental Virology Laboratory, Water Pollution Research Department, Environment and Climate Change Research Institute, National Research Centre, Dokki 12622, Giza, Egypt E-mail: ,
| | - Yasser E Shahein
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, 12622 Dokki, Cairo, Egypt
| |
Collapse
|
18
|
Hyllestad S, Myrmel M, Lomba JAB, Jordhøy F, Schipper SK, Amato E. Effectiveness of environmental surveillance of SARS-CoV-2 as an early warning system during the first year of the COVID-19 pandemic: a systematic review. JOURNAL OF WATER AND HEALTH 2022; 20:1223-1242. [PMID: 36044191 DOI: 10.2166/wh.2022.115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Since infected persons shed SARS-CoV-2 in faeces before symptoms appear, environmental surveillance (ES) may serve as an early warning system (EWS) for COVID-19 and new variants of concern. The ES of SARS-CoV-2 has been widely reviewed; however, its effectiveness as an EWS for SARS-CoV-2 in terms of timeliness, sensitivity and specificity has not been systematically assessed. We conducted a systematic review to identify and synthesise evidence on the ES of SARS-CoV-2 as an EWS to evaluate the added value for public health. Of 1,014 studies identified, we considered 29 for a qualitative synthesis of the timeliness of ES as an EWS for COVID-19, while six studies were assessed for the ability to detect new variants and two for both aims. The synthesis indicates ES may serve as an EWS of 1-2 weeks. ES could complement clinical surveillance for SARS-CoV-2; however, its cost-benefit value for public health decisions needs to be assessed based on the stage of the pandemic and resources available. Studies focusing methodological knowledge gaps as well as how to use and interpret ES signals for public health actions are needed, as is the sharing of knowledge within countries/areas with long experience of such surveillance.
Collapse
Affiliation(s)
- Susanne Hyllestad
- Department for Infection Control and Preparedness, Norwegian Institute of Public Health (NIPH), Oslo, Norway E-mail:
| | - Mette Myrmel
- Faculty of Veterinary Medicine, Virology Unit, Norwegian University of Life Science (NMBU), Oslo, Norway
| | - Jose Antonio Baz Lomba
- Department of Environmental Chemistry and Technology, Norwegian Institute for Water Research (NIVA), Oslo, Norway
| | - Fredrik Jordhøy
- Department for Infection Control and Preparedness, Norwegian Institute of Public Health (NIPH), Oslo, Norway E-mail:
| | - Svanhild Kjørsvik Schipper
- Department for Infection Control and Preparedness, Norwegian Institute of Public Health (NIPH), Oslo, Norway E-mail:
| | - Ettore Amato
- Department for Infection Control and Preparedness, Norwegian Institute of Public Health (NIPH), Oslo, Norway E-mail:
| |
Collapse
|
19
|
Shelemba AA, Kazachkova EA, Kononova YV, Kazachinskaya EI, Rukavishnikov MY, Kuvshinova IN, Voevoda MI, Shestopalov AM, Chepurnov AA. Cell and Organism Technologies for Assessment of the SARS-CoV-2 Infectivity in Fluid Environment. Bull Exp Biol Med 2022; 173:519-522. [PMID: 36058968 PMCID: PMC9441323 DOI: 10.1007/s10517-022-05574-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Indexed: 11/30/2022]
Abstract
Under conditions of COVID-19 pandemic, considerable amounts of SARS-CoV-2 contained in household, municipal, and medical wastewaters inevitably reach natural water bodies. Possible preservation of virus infectivity in liquid environment is of a paramount epidemiological importance. Experiments demonstrated that SARS-CoV-2 is resistant to multiple freezing/thawing cycles and retains its infectivity in tap and river water for up to 2 days at 20°C and 7 days at 4°C. In natural milk, its viability is preserved in a refrigerator for 6 days. The exposure of aquarium fish to the virus-containing water fails to cause any infection.
Collapse
Affiliation(s)
- A A Shelemba
- Federal Research Center of Fundamental and Translational Medicine, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E A Kazachkova
- Federal Research Center of Fundamental and Translational Medicine, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Yu V Kononova
- Federal Research Center of Fundamental and Translational Medicine, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E I Kazachinskaya
- Federal Research Center of Fundamental and Translational Medicine, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | | | | | - M I Voevoda
- Federal Research Center of Fundamental and Translational Medicine, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A M Shestopalov
- Federal Research Center of Fundamental and Translational Medicine, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A A Chepurnov
- Federal Research Center of Fundamental and Translational Medicine, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia.
| |
Collapse
|
20
|
El-Malah SS, Saththasivam J, Jabbar KA, K K A, Gomez TA, Ahmed AA, Mohamoud YA, Malek JA, Abu Raddad LJ, Abu Halaweh HA, Bertollini R, Lawler J, Mahmoud KA. Application of human RNase P normalization for the realistic estimation of SARS-CoV-2 viral load in wastewater: A perspective from Qatar wastewater surveillance. ENVIRONMENTAL TECHNOLOGY & INNOVATION 2022; 27:102775. [PMID: 35761926 PMCID: PMC9220754 DOI: 10.1016/j.eti.2022.102775] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/30/2022] [Accepted: 06/19/2022] [Indexed: 05/06/2023]
Abstract
The apparent uncertainty associated with shedding patterns, environmental impacts, and sample processing strategies have greatly influenced the variability of SARS-CoV-2 concentrations in wastewater. This study evaluates the use of a new normalization approach using human RNase P for the logic estimation of SARS-CoV-2 viral load in wastewater. SARS-CoV-2 variants outbreak was monitored during the circulating wave between February and August 2021. Sewage samples were collected from five major wastewater treatment plants and subsequently analyzed to determine the viral loads in the wastewater. SARS-CoV-2 was detected in all the samples where the wastewater Ct values exhibited a similar trend as the reported number of new daily positive cases in the country. The infected population number was estimated using a mathematical model that compensated for RNA decay due to wastewater temperature and sewer residence time, and which indicated that the number of positive cases circulating in the population declined from 765,729 ± 142,080 to 2,303 ± 464 during the sampling period. Genomic analyses of SARS-CoV-2 of thirty wastewater samples collected between March 2021 and April 2021 revealed that alpha (B.1.1.7) and beta (B.1.351) were among the dominant variants of concern (VOC) in Qatar. The findings of this study imply that the normalization of data allows a more realistic assessment of incidence trends within the population.
Collapse
Affiliation(s)
- Shimaa S El-Malah
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 34110, Doha, Qatar
| | - Jayaprakash Saththasivam
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 34110, Doha, Qatar
| | - Khadeeja Abdul Jabbar
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 34110, Doha, Qatar
| | - Arun K K
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 34110, Doha, Qatar
| | - Tricia A Gomez
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 34110, Doha, Qatar
| | - Ayeda A Ahmed
- Genomics Laboratory, Weill Cornell Medicine-Qatar (WCM-Q), Cornell University, Doha, Qatar
| | - Yasmin A Mohamoud
- Genomics Laboratory, Weill Cornell Medicine-Qatar (WCM-Q), Cornell University, Doha, Qatar
| | - Joel A Malek
- Genomics Laboratory, Weill Cornell Medicine-Qatar (WCM-Q), Cornell University, Doha, Qatar
| | - Laith J Abu Raddad
- Infectious Disease Epidemiology Group, Weill Cornell Medicine-Qatar, Cornell University, Doha, Qatar
| | - Hussein A Abu Halaweh
- Drainage Network Operation & Maintenance Department, Public Works Authority, Doha, Qatar
| | | | - Jenny Lawler
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 34110, Doha, Qatar
| | - Khaled A Mahmoud
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 34110, Doha, Qatar
| |
Collapse
|
21
|
Padilla-Reyes DA, Álvarez MM, Mora A, Cervantes-Avilés PA, Kumar M, Loge FJ, Mahlknecht J. Acquired insights from the long-term surveillance of SARS-CoV-2 RNA for COVID-19 monitoring: The case of Monterrey Metropolitan Area (Mexico). ENVIRONMENTAL RESEARCH 2022; 210:112967. [PMID: 35189100 PMCID: PMC8853965 DOI: 10.1016/j.envres.2022.112967] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 05/08/2023]
Abstract
Wastewater-based epidemiology offers a time- and cost-effective way to monitor SARS-CoV-2 spread in communities and therefore represents a complement to clinical testing. WBE applicability has been demonstrated in a number of cases over short-term periods as a method for tracking the prevalence of SARS-CoV-2 and an early-warning tool for predicting outbreaks in the population. This study reports SARS-CoV-2 viral loads from wastewater treatment plants (WWTPs) and hospitals over a 6-month period (June to December 2020). Results show that the overall range of viral load in positive tested samples was between 1.2 × 103 and 3.5 × 106 gene copies/l, unveiling that secondary-treated wastewaters mirrored the viral load of influents. The interpretation suggests that the viral titers found in three out of four WWTPs were associated to clinical COVID-19 surveillance indicators preceding 2-7 days the rise of reported clinical cases. The median wastewater detection rate of SARS-CoV-2 was one out of 14,300 reported new cases. Preliminary model estimates of prevalence ranged from 0.02 to 4.6% for the studied period. This comprehensive statistical and epidemiological analysis demonstrates that the applied wastewater-based approach to COVID-19 surveillance is in general consistent and feasible, although there is room for improvements.
Collapse
Affiliation(s)
- Diego A Padilla-Reyes
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Eugenio Garza Sada 2501 Sur, Monterrey, 64849, Mexico
| | - Mario Moises Álvarez
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Eugenio Garza Sada 2501 Sur, Monterrey, 64849, Mexico
| | - Abrahan Mora
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Puebla, Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla, 72453, Mexico
| | - Pabel A Cervantes-Avilés
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Puebla, Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla, 72453, Mexico
| | - Manish Kumar
- Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun, 248007, India
| | - Frank J Loge
- Department of Civil and Environmental Engineering, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Jürgen Mahlknecht
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Eugenio Garza Sada 2501 Sur, Monterrey, 64849, Mexico.
| |
Collapse
|
22
|
Yanaç K, Adegoke A, Wang L, Uyaguari M, Yuan Q. Detection of SARS-CoV-2 RNA throughout wastewater treatment plants and a modeling approach to understand COVID-19 infection dynamics in Winnipeg, Canada. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:153906. [PMID: 35218826 PMCID: PMC8864809 DOI: 10.1016/j.scitotenv.2022.153906] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 02/04/2022] [Accepted: 02/11/2022] [Indexed: 05/07/2023]
Abstract
Although numerous studies have detected SARS-CoV-2 RNA in wastewater and attempted to find correlations between the concentration of SARS-CoV-2 RNA and the number of cases, no consensus has been reached on sample collection and processing, and data analysis. Moreover, the fate of SARS-CoV-2 in wastewater treatment plants is another issue, specifically regarding the discharge of the virus into environmental settings and the water cycle. The current study monitored SARS-CoV-2 RNA in influent and effluent wastewater samples with three different concentration methods and sludge samples over six months (July to December 2020) to compare different virus concentration methods, assess the fate of SARS-CoV-2 RNA in wastewater treatment plants, and describe the potential relationship between SARS-CoV-2 RNA concentrations in influent and infection dynamics. Skimmed milk flocculation (SMF) resulted in 15.27 ± 3.32% recovery of an internal positive control, Armored RNA, and a high positivity rate of SARS-CoV-2 RNA in stored wastewater samples compared to ultrafiltration methods employing a prefiltration step to eliminate solids in fresh wastewater samples. Our results suggested that SARS-CoV-2 RNA may predominate in solids, and therefore, concentration methods focusing on both supernatant and solid fractions may result in better recovery. SARS-CoV-2 RNA was detected in influent and primary sludge samples but not in secondary and final effluent samples, indicating a significant reduction during primary and secondary treatments. SARS-CoV-2 RNA was first detected in influent on September 30th, 2020. A decay-rate formula was applied to estimate initial concentrations of late-processed samples with SMF. A model based on shedding rate and new cases was applied to estimate SARS-CoV-2 RNA concentrations and the number of active shedders. Inferred sensitivity of observed and modeled concentrations to the fluctuations in new cases and test-positivity rates indicated a potential contribution of newly infected individuals to SARS-CoV-2 RNA loads in wastewater.
Collapse
Affiliation(s)
- Kadir Yanaç
- Department of Civil Engineering, University of Manitoba, Winnipeg, Canada
| | - Adeola Adegoke
- Department of Statistics, University of Manitoba, Winnipeg, Canada
| | - Liqun Wang
- Department of Statistics, University of Manitoba, Winnipeg, Canada
| | - Miguel Uyaguari
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Qiuyan Yuan
- Department of Civil Engineering, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
23
|
Alhama J, Maestre JP, Martín MÁ, Michán C. Monitoring COVID-19 through SARS-CoV-2 quantification in wastewater: progress, challenges and prospects. Microb Biotechnol 2022; 15:1719-1728. [PMID: 34905659 PMCID: PMC9151337 DOI: 10.1111/1751-7915.13989] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 12/13/2022] Open
Abstract
Wastewater-Based Epidemiology (WBE) is widely used to monitor the progression of the current SARS-CoV-2 pandemic at local levels. In this review, we address the different approaches to the steps needed for this surveillance: sampling wastewaters (WWs), concentrating the virus from the samples and quantifying them by qPCR, focusing on the main limitations of the methodologies used. Factors that can influence SARS-CoV-2 monitoring in WWs include: (i) physical parameters as temperature that can hamper the detection in warm seasons and tropical regions, (ii) sampling methodologies and timetables, being composite samples and Moore swabs the less variable and more sensitive approaches, (iii) virus concentration methodologies that need to be feasible and practicable in simpler laboratories and (iv) detection methodologies that should tend to use faster and cost-effective procedures. The efficiency of WW treatments and the use of WWs for SARS-CoV-2 variants detection are also addressed. Furthermore, we discuss the need for the development of common standardized protocols, although these must be versatile enough to comprise variations among target communities. WBE screening of risk populations will allow for the prediction of future outbreaks, thus alerting authorities to implement early action measurements.
Collapse
Affiliation(s)
- José Alhama
- Department of Biochemistry and Molecular BiologyUniversidad de CórdobaCampus de Excelencia Internacional Agroalimentario CeiA3, Edificio Severo OchoaCórdoba14071Spain
| | - Juan P. Maestre
- Department of Civil, Architectural, and Environmental EngineeringThe University of Texas at Austin301 E. Dean Keeton St., Stop C1786AustinTX78712USA
| | - M. Ángeles Martín
- Department of Inorganic Chemistry and Chemical EngineeringArea of Chemical EngineeringUniversidad de CórdobaInstitute of Fine Chemistry and Nanochemistry (IUNAN)Campus de Excelencia Internacional Agroalimentario CeiA3, Edificio Marie CurieCórdoba14071Spain
| | - Carmen Michán
- Department of Biochemistry and Molecular BiologyUniversidad de CórdobaCampus de Excelencia Internacional Agroalimentario CeiA3, Edificio Severo OchoaCórdoba14071Spain
| |
Collapse
|
24
|
Döhla M, Schulte B, Wilbring G, Kümmerer BM, Döhla C, Sib E, Richter E, Ottensmeyer PF, Haag A, Engelhart S, Eis-Hübinger AM, Exner M, Mutters NT, Schmithausen RM, Streeck H. SARS-CoV-2 in Environmental Samples of Quarantined Households. Viruses 2022; 14:1075. [PMID: 35632816 PMCID: PMC9147922 DOI: 10.3390/v14051075] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 02/01/2023] Open
Abstract
The role of environmental transmission of SARS-CoV-2 remains unclear. Thus, the aim of this study was to investigate whether viral contamination of air, wastewater, and surfaces in quarantined households result in a higher risk for exposed persons. For this study, a source population of 21 households under quarantine conditions with at least one person who tested positive for SARS-CoV-2 RNA were randomly selected from a community in North Rhine-Westphalia in March 2020. All individuals living in these households participated in this study and provided throat swabs for analysis. Air and wastewater samples and surface swabs were obtained from each household and analysed using qRT-PCR. Positive swabs were further cultured to analyse for viral infectivity. Out of all the 43 tested adults, 26 (60.47%) tested positive using qRT-PCR. All 15 air samples were qRT-PCR-negative. In total, 10 out of 66 wastewater samples were positive for SARS-CoV-2 (15.15%) and 4 out of 119 surface samples (3.36%). No statistically significant correlation between qRT-PCR-positive environmental samples and the extent of the spread of infection between household members was observed. No infectious virus could be propagated under cell culture conditions. Taken together, our study demonstrates a low likelihood of transmission via surfaces. However, to definitively assess the importance of hygienic behavioural measures in the reduction of SARS-CoV-2 transmission, larger studies should be designed to determine the proportionate contribution of smear vs. droplet transmission.
Collapse
Affiliation(s)
- Manuel Döhla
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (M.D.); (G.W.); (C.D.); (E.S.); (A.H.); (S.E.); (M.E.); (N.T.M.); (R.M.S.)
- Department of Microbiology and Hospital Hygiene, Bundeswehr Central Hospital Koblenz, Rübenacher Straße 170, 56072 Koblenz, Germany
| | - Bianca Schulte
- Institute of Virology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (B.S.); (B.M.K.); (E.R.); (P.F.O.); (A.M.E.-H.)
| | - Gero Wilbring
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (M.D.); (G.W.); (C.D.); (E.S.); (A.H.); (S.E.); (M.E.); (N.T.M.); (R.M.S.)
| | - Beate Mareike Kümmerer
- Institute of Virology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (B.S.); (B.M.K.); (E.R.); (P.F.O.); (A.M.E.-H.)
| | - Christin Döhla
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (M.D.); (G.W.); (C.D.); (E.S.); (A.H.); (S.E.); (M.E.); (N.T.M.); (R.M.S.)
| | - Esther Sib
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (M.D.); (G.W.); (C.D.); (E.S.); (A.H.); (S.E.); (M.E.); (N.T.M.); (R.M.S.)
| | - Enrico Richter
- Institute of Virology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (B.S.); (B.M.K.); (E.R.); (P.F.O.); (A.M.E.-H.)
| | - Patrick Frank Ottensmeyer
- Institute of Virology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (B.S.); (B.M.K.); (E.R.); (P.F.O.); (A.M.E.-H.)
| | - Alexandra Haag
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (M.D.); (G.W.); (C.D.); (E.S.); (A.H.); (S.E.); (M.E.); (N.T.M.); (R.M.S.)
| | - Steffen Engelhart
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (M.D.); (G.W.); (C.D.); (E.S.); (A.H.); (S.E.); (M.E.); (N.T.M.); (R.M.S.)
| | - Anna Maria Eis-Hübinger
- Institute of Virology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (B.S.); (B.M.K.); (E.R.); (P.F.O.); (A.M.E.-H.)
| | - Martin Exner
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (M.D.); (G.W.); (C.D.); (E.S.); (A.H.); (S.E.); (M.E.); (N.T.M.); (R.M.S.)
| | - Nico Tom Mutters
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (M.D.); (G.W.); (C.D.); (E.S.); (A.H.); (S.E.); (M.E.); (N.T.M.); (R.M.S.)
| | - Ricarda Maria Schmithausen
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (M.D.); (G.W.); (C.D.); (E.S.); (A.H.); (S.E.); (M.E.); (N.T.M.); (R.M.S.)
| | - Hendrik Streeck
- Institute of Virology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (B.S.); (B.M.K.); (E.R.); (P.F.O.); (A.M.E.-H.)
| |
Collapse
|
25
|
Döhla M, Schulte B, Wilbring G, Kümmerer BM, Döhla C, Sib E, Richter E, Ottensmeyer PF, Haag A, Engelhart S, Eis-Hübinger AM, Exner M, Mutters NT, Schmithausen RM, Streeck H. SARS-CoV-2 in Environmental Samples of Quarantined Households. Viruses 2022. [PMID: 35632816 DOI: 10.1101/2020.05.28.20114041] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
The role of environmental transmission of SARS-CoV-2 remains unclear. Thus, the aim of this study was to investigate whether viral contamination of air, wastewater, and surfaces in quarantined households result in a higher risk for exposed persons. For this study, a source population of 21 households under quarantine conditions with at least one person who tested positive for SARS-CoV-2 RNA were randomly selected from a community in North Rhine-Westphalia in March 2020. All individuals living in these households participated in this study and provided throat swabs for analysis. Air and wastewater samples and surface swabs were obtained from each household and analysed using qRT-PCR. Positive swabs were further cultured to analyse for viral infectivity. Out of all the 43 tested adults, 26 (60.47%) tested positive using qRT-PCR. All 15 air samples were qRT-PCR-negative. In total, 10 out of 66 wastewater samples were positive for SARS-CoV-2 (15.15%) and 4 out of 119 surface samples (3.36%). No statistically significant correlation between qRT-PCR-positive environmental samples and the extent of the spread of infection between household members was observed. No infectious virus could be propagated under cell culture conditions. Taken together, our study demonstrates a low likelihood of transmission via surfaces. However, to definitively assess the importance of hygienic behavioural measures in the reduction of SARS-CoV-2 transmission, larger studies should be designed to determine the proportionate contribution of smear vs. droplet transmission.
Collapse
Affiliation(s)
- Manuel Döhla
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
- Department of Microbiology and Hospital Hygiene, Bundeswehr Central Hospital Koblenz, Rübenacher Straße 170, 56072 Koblenz, Germany
| | - Bianca Schulte
- Institute of Virology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Gero Wilbring
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Beate Mareike Kümmerer
- Institute of Virology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Christin Döhla
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Esther Sib
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Enrico Richter
- Institute of Virology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | | | - Alexandra Haag
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Steffen Engelhart
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Anna Maria Eis-Hübinger
- Institute of Virology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Martin Exner
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Nico Tom Mutters
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Ricarda Maria Schmithausen
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Hendrik Streeck
- Institute of Virology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| |
Collapse
|
26
|
Espinosa MF, Verbyla ME, Vassalle L, Leal C, Leroy-Freitas D, Machado E, Fernandes L, Rosa-Machado AT, Calábria J, Chernicharo C, Mota Filho CR. Reduction and liquid-solid partitioning of SARS-CoV-2 and adenovirus throughout the different stages of a pilot-scale wastewater treatment plant. WATER RESEARCH 2022; 212:118069. [PMID: 35077942 PMCID: PMC8759026 DOI: 10.1016/j.watres.2022.118069] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 05/04/2023]
Abstract
Investigating waterborne viruses is of great importance to minimizing risks to public health. Viruses tend to adsorb to sludge particles from wastewater processes by electrostatic and hydrophobic interactions between virus, aquatic matrix, and particle surface. Sludge is often re-used in agriculture; therefore, its evaluation is also of great interest to public health. In the present study, a pilot scale system treating real domestic wastewater from a large city in Brazil was used to evaluate the removal, the overall reduction, and liquid-solid partitioning of human adenovirus (HAdV), the novel coronavirus (SARS-CoV-2) and fecal indicators (F-specific coliphages and E. coli). The system consists of a high-rate algal pond (HRAP) post-treating the effluent of an upflow anaerobic sludge blanket (UASB) reactor. Samples were collected from the influent and effluent of each unit, as well as from the sludge of the UASB and from the microalgae biomass in the HRAP. Pathogens and indicators were quantified by quantitative polymerase chain reaction (qPCR) (for HAdV), qPCR with reverse transcription (RTqPCR) (for SARS-CoV-2), the double agar plaque assay (for coliphages), and the most probable number (MPN) method (for E. coli). The removal and overall reduction of HAdV and SARS-CoV-2 was greater than 1-log10. Almost 60% of remaining SARS-CoV-2 RNA and more than 70% of remaining HAdV DNA left the system in the sludge, demonstrating that both viruses may have affinity for solids. Coliphages showed a much lower affinity to solids, with only 3.7% leaving the system in the sludge. The system performed well in terms of the removal of organic matter and ammoniacal nitrogen, however tertiary treatment would be necessary to provide further pathogen reduction, if the effluent is to be reused in agriculture. To our knowledge, this is the first study that evaluated the reduction and partitioning of SARS-CoV-2 and HAdV through the complete cycle of a wastewater treatment system consisting of a UASB reactor followed by HRAPs.
Collapse
Affiliation(s)
| | | | - Lucas Vassalle
- Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Cintia Leal
- Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | | | - Elayne Machado
- Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Luyara Fernandes
- Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | | | - Juliana Calábria
- Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Carlos Chernicharo
- Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | | |
Collapse
|
27
|
Twigg C, Wenk J. Review and Meta‐Analysis: SARS‐CoV‐2 and Enveloped Virus Detection in Feces and Wastewater. CHEMBIOENG REVIEWS 2022. [PMCID: PMC9083821 DOI: 10.1002/cben.202100039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Detection and quantification of viruses supplies key information on their spread and allows risk assessment for public health. In wastewater, existing detection methods have been focusing on non‐enveloped enteric viruses due to enveloped virus transmission, such as coronaviruses, by the fecal‐oral route being less likely. Since the beginning of the SARS‐CoV‐2 pandemic, interest and importance of enveloped virus detection in wastewater has increased. Here, quantitative studies on SARS‐CoV‐2 occurrence in feces and raw wastewater and other enveloped viruses via quantitative real‐time reverse transcription polymerase chain reaction (RT‐qPCR) during the early stage of the pandemic until April 2021 are reviewed, including statistical evaluation of the positive detection rate and efficiency throughout the detection process involving concentration, extraction, and amplification stages. Optimized and aligned sampling protocols and concentration methods for enveloped viruses, along with SARS‐CoV‐2 surrogates, in wastewater environments may improve low and variable recovery rates providing increased detection efficiency and comparable data on viral load measured across different studies.
Collapse
Affiliation(s)
- Charlotte Twigg
- University of Bath Department of Chemical Engineering and Water Innovation and Research Centre (WIRC@Bath) Claverton Down BA2 7AY Bath Somerset United Kingdom
| | - Jannis Wenk
- University of Bath Department of Chemical Engineering and Water Innovation and Research Centre (WIRC@Bath) Claverton Down BA2 7AY Bath Somerset United Kingdom
| |
Collapse
|
28
|
Zhang D, Duran SSF, Lim WYS, Tan CKI, Cheong WCD, Suwardi A, Loh XJ. SARS-CoV-2 in wastewater: From detection to evaluation. MATERIALS TODAY. ADVANCES 2022; 13:100211. [PMID: 35098102 PMCID: PMC8786653 DOI: 10.1016/j.mtadv.2022.100211] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/16/2022] [Accepted: 01/21/2022] [Indexed: 05/07/2023]
Abstract
SARS-CoV-2 presence in wastewater has been reported in several studies and has received widespread attention among the Wastewater-based epidemiology (WBE) community. Such studies can potentially be used as a proxy for early warning of potential COVID-19 outbreak, or as a mitigation measure for potential virus transmission via contaminated water. In this review, we summarized the latest understanding on the detection, concentration, and evaluation of SARS-CoV-2 in wastewater. Importantly, we discuss factors affecting the quality of wastewater surveillance ranging from temperature, pH, starting concentration, as well as the presence of chemical pollutants. These factors greatly affect the reliability and comparability of studies reported by various communities across the world. Overall, this review provides a broadly encompassing guidance for epidemiological study using wastewater surveillance.
Collapse
Affiliation(s)
- Danwei Zhang
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Agency for Science, Technology and Research, Singapore, 138634
| | - Solco S Faye Duran
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Agency for Science, Technology and Research, Singapore, 138634
| | - Wei Yang Samuel Lim
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Agency for Science, Technology and Research, Singapore, 138634
| | - Chee Kiang Ivan Tan
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Agency for Science, Technology and Research, Singapore, 138634
| | - Wun Chet Davy Cheong
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Agency for Science, Technology and Research, Singapore, 138634
| | - Ady Suwardi
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Agency for Science, Technology and Research, Singapore, 138634
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Agency for Science, Technology and Research, Singapore, 138634
| |
Collapse
|
29
|
Wade MJ, Lo Jacomo A, Armenise E, Brown MR, Bunce JT, Cameron GJ, Fang Z, Farkas K, Gilpin DF, Graham DW, Grimsley JMS, Hart A, Hoffmann T, Jackson KJ, Jones DL, Lilley CJ, McGrath JW, McKinley JM, McSparron C, Nejad BF, Morvan M, Quintela-Baluja M, Roberts AMI, Singer AC, Souque C, Speight VL, Sweetapple C, Walker D, Watts G, Weightman A, Kasprzyk-Hordern B. Understanding and managing uncertainty and variability for wastewater monitoring beyond the pandemic: Lessons learned from the United Kingdom national COVID-19 surveillance programmes. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127456. [PMID: 34655869 PMCID: PMC8498793 DOI: 10.1016/j.jhazmat.2021.127456] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/23/2021] [Accepted: 10/05/2021] [Indexed: 05/18/2023]
Abstract
The COVID-19 pandemic has put unprecedented pressure on public health resources around the world. From adversity, opportunities have arisen to measure the state and dynamics of human disease at a scale not seen before. In the United Kingdom, the evidence that wastewater could be used to monitor the SARS-CoV-2 virus prompted the development of National wastewater surveillance programmes. The scale and pace of this work has proven to be unique in monitoring of virus dynamics at a national level, demonstrating the importance of wastewater-based epidemiology (WBE) for public health protection. Beyond COVID-19, it can provide additional value for monitoring and informing on a range of biological and chemical markers of human health. A discussion of measurement uncertainty associated with surveillance of wastewater, focusing on lessons-learned from the UK programmes monitoring COVID-19 is presented, showing that sources of uncertainty impacting measurement quality and interpretation of data for public health decision-making, are varied and complex. While some factors remain poorly understood, we present approaches taken by the UK programmes to manage and mitigate the more tractable sources of uncertainty. This work provides a platform to integrate uncertainty management into WBE activities as part of global One Health initiatives beyond the pandemic.
Collapse
Affiliation(s)
- Matthew J Wade
- UK Health Security Agency, Environmental Monitoring for Health Protection, Windsor House, Victoria Street, London SW1H 0TL, UK; Newcastle University, School of Engineering, Cassie Building, Newcastle-upon-Tyne NE1 7RU, UK.
| | - Anna Lo Jacomo
- UK Health Security Agency, Environmental Monitoring for Health Protection, Windsor House, Victoria Street, London SW1H 0TL, UK; Bristol University, Department of Engineering Mathematics, Bristol BS8 1TW, UK
| | - Elena Armenise
- Environment Agency, Research, Horizon House, Deanery Road, Bristol BS1 5AH, UK
| | - Mathew R Brown
- UK Health Security Agency, Environmental Monitoring for Health Protection, Windsor House, Victoria Street, London SW1H 0TL, UK; Newcastle University, School of Engineering, Cassie Building, Newcastle-upon-Tyne NE1 7RU, UK
| | - Joshua T Bunce
- UK Health Security Agency, Environmental Monitoring for Health Protection, Windsor House, Victoria Street, London SW1H 0TL, UK; Newcastle University, School of Engineering, Cassie Building, Newcastle-upon-Tyne NE1 7RU, UK; Department for Environment, Food and Rural Affairs, Seacole Building, 2 Marsham Street, London SW1P 4DF, UK
| | - Graeme J Cameron
- Scottish Environment Protection Agency, Strathallan House, Stirling FK9 4TZ, UK
| | - Zhou Fang
- Biomathematics and Statistics Scotland, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| | - Kata Farkas
- Bangor University, School of Natural Sciences, Deiniol Road, Bangor LL57 2UW, UK
| | - Deidre F Gilpin
- Queen's University Belfast, School of Pharmacy, Lisburn Road, Belfast BT9 7BL, UK
| | - David W Graham
- Newcastle University, School of Engineering, Cassie Building, Newcastle-upon-Tyne NE1 7RU, UK
| | - Jasmine M S Grimsley
- UK Health Security Agency, Environmental Monitoring for Health Protection, Windsor House, Victoria Street, London SW1H 0TL, UK
| | - Alwyn Hart
- Environment Agency, Research, Horizon House, Deanery Road, Bristol BS1 5AH, UK
| | - Till Hoffmann
- UK Health Security Agency, Environmental Monitoring for Health Protection, Windsor House, Victoria Street, London SW1H 0TL, UK; Imperial College London, Department of Mathematics, London SW7 2AZ, UK
| | - Katherine J Jackson
- Environment Agency, Research, Horizon House, Deanery Road, Bristol BS1 5AH, UK
| | - David L Jones
- Bangor University, School of Natural Sciences, Deiniol Road, Bangor LL57 2UW, UK; The University of Western Australia, UWA School of Agriculture and Environment, Perth, WA 6009, Australia
| | - Chris J Lilley
- UK Health Security Agency, Environmental Monitoring for Health Protection, Windsor House, Victoria Street, London SW1H 0TL, UK
| | - John W McGrath
- Queen's University Belfast, School of Biological Sciences, Chlorine Gardens, Belfast BT9 5DL, UK
| | - Jennifer M McKinley
- Queen's University Belfast, School of Natural and Built Environment, Stranmills Road, Belfast BT9 5AG, UK
| | - Cormac McSparron
- Queen's University Belfast, School of Natural and Built Environment, Stranmills Road, Belfast BT9 5AG, UK
| | - Behnam F Nejad
- Queen's University Belfast, School of Natural and Built Environment, Stranmills Road, Belfast BT9 5AG, UK
| | - Mario Morvan
- UK Health Security Agency, Environmental Monitoring for Health Protection, Windsor House, Victoria Street, London SW1H 0TL, UK; University College London, Department of Physics and Astronomy, Gower Street, London WC1E 6BT, UK
| | - Marcos Quintela-Baluja
- Newcastle University, School of Engineering, Cassie Building, Newcastle-upon-Tyne NE1 7RU, UK
| | - Adrian M I Roberts
- Biomathematics and Statistics Scotland, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| | - Andrew C Singer
- UK Centre for Ecology and Hydrology, Benson Lane, Wallingford OX10 8BB, UK
| | - Célia Souque
- UK Health Security Agency, Environmental Monitoring for Health Protection, Windsor House, Victoria Street, London SW1H 0TL, UK; University of Oxford, Department of Zoology, Mansfield Road, Oxford OX1 3SZ, UK
| | - Vanessa L Speight
- University of Sheffield, Department of Civil and Structural Engineering, Mappin Street, Sheffield S1 3JD, UK
| | - Chris Sweetapple
- UK Health Security Agency, Environmental Monitoring for Health Protection, Windsor House, Victoria Street, London SW1H 0TL, UK; University of Exeter, Centre for Water Systems, College of Engineering, Mathematics and Physical Sciences, Exeter EX4 4QF, UK
| | - David Walker
- Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, Weymouth DT4 8UB, UK
| | - Glenn Watts
- Environment Agency, Research, Horizon House, Deanery Road, Bristol BS1 5AH, UK
| | - Andrew Weightman
- Cardiff University, Cardiff School of Biosciences, The Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK
| | | |
Collapse
|
30
|
Haak L, Delic B, Li L, Guarin T, Mazurowski L, Dastjerdi NG, Dewan A, Pagilla K. Spatial and temporal variability and data bias in wastewater surveillance of SARS-CoV-2 in a sewer system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150390. [PMID: 34818797 PMCID: PMC8445773 DOI: 10.1016/j.scitotenv.2021.150390] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/31/2021] [Accepted: 09/13/2021] [Indexed: 05/04/2023]
Abstract
The response to disease outbreaks, such as SARS-CoV-2, can be constrained by a limited ability to measure disease prevalence early at a localized level. Wastewater based epidemiology is a powerful tool identifying disease spread from pooled community sewer networks or at influent to wastewater treatment plants. However, this approach is often not applied at a granular level that permits detection of local hot spots. This study examines the spatial patterns of SARS-CoV-2 in sewage through a spatial sampling strategy across neighborhood-scale sewershed catchments. Sampling was conducted across the Reno-Sparks metropolitan area from November to mid-December of 2020. This research utilized local spatial autocorrelation tests to identify the evolution of statistically significant neighborhood hot spots in sewershed sub-catchments that were identified to lead waves of infection, with adjacent neighborhoods observed to lag with increasing viral RNA concentrations over subsequent dates. The correlations between the sub-catchments over the sampling period were also characterized using principal component analysis. Results identified distinct time series patterns, with sewersheds in the urban center, outlying suburban areas, and outlying urbanized districts generally following unique trends over the sampling period. Several demographic parameters were identified as having important gradients across these areas, namely population density, poverty levels, household income, and age. These results provide a more strategic approach to identify disease outbreaks at the neighborhood level and characterized how sampling site selection could be designed based on the spatial and demographic characteristics of neighborhoods.
Collapse
Affiliation(s)
- Laura Haak
- Department of Civil and Environmental Engineering, University of Nevada, MS-0258, Reno, NV 89557-0258, USA
| | - Blaga Delic
- Department of Civil and Environmental Engineering, University of Nevada, MS-0258, Reno, NV 89557-0258, USA
| | - Lin Li
- Department of Civil and Environmental Engineering, University of Nevada, MS-0258, Reno, NV 89557-0258, USA
| | - Tatiana Guarin
- Department of Civil and Environmental Engineering, University of Nevada, MS-0258, Reno, NV 89557-0258, USA
| | - Lauren Mazurowski
- Department of Civil and Environmental Engineering, University of Nevada, MS-0258, Reno, NV 89557-0258, USA
| | - Niloufar Gharoon Dastjerdi
- Department of Civil and Environmental Engineering, University of Nevada, MS-0258, Reno, NV 89557-0258, USA
| | - Aimee Dewan
- Department of Civil and Environmental Engineering, University of Nevada, MS-0258, Reno, NV 89557-0258, USA
| | - Krishna Pagilla
- Department of Civil and Environmental Engineering, University of Nevada, MS-0258, Reno, NV 89557-0258, USA.
| |
Collapse
|
31
|
Jalali Milani S, Nabi Bidhendi G. A Review on the Potential of Common Disinfection Processes for the Removal of Virus from Wastewater. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH 2022; 16:9. [PMID: 35013682 PMCID: PMC8733756 DOI: 10.1007/s41742-021-00387-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/04/2021] [Accepted: 12/25/2021] [Indexed: 05/07/2023]
Abstract
Due to the prevalence of the COVID-19 outbreak, as well as findings of SARS-CoV-2 RNA in wastewater and the possibility of viral transmission through wastewater, disinfection is required. As a consequence, based on prior investigations, this work initially employed the viral concentration detection technique, followed by the RT-qPCR assay, as the foundation for identifying the SARS-CoV-2 virus in wastewater. After that, the ability and efficacy of chlorine, ozone, and UV disinfection to inactivate the SARS-CoV-2 virus from wastewater were examined. Chlorine disinfection is the most extensively used disinfection technology due to its multiple advantages. With a chlorine dioxide disinfectant dose of 40 mg/L, the SARS-CoV virus is inactivated after 30 min of contact time. On the other hand, ozone is a powerful oxidizer and an effective microbicide that is employed as a disinfectant due to its positive characteristics. After 30 min of exposure to 1000 ppmv ozone, corona pseudoviruses are reduced by 99%. Another common method of disinfection is using ultraviolet radiation, which is usually 253.7 nm suitable for ultraviolet disinfection. At a dose of 1048 mJ/cm2, UVC radiation completely inactivates the SARS-CoV-2 virus. Finally, to evaluate disinfection performance and optimize disinfection strategies to prevent the spread of SARS-CoV-2, this study attempted to investigate the ability to remove and compare the effectiveness of each disinfectant to inactive the SARS-CoV-2 virus from wastewater, summarize studies, and provide future solutions due to the limited availability of integrated resources in this field and the spread of the SARS-CoV-2 virus worldwide.
Collapse
Affiliation(s)
- Sevda Jalali Milani
- School of Environment, College of Engineering, University of Tehran, Tehran, Iran
| | | |
Collapse
|
32
|
Sojobi AO, Zayed T. Impact of sewer overflow on public health: A comprehensive scientometric analysis and systematic review. ENVIRONMENTAL RESEARCH 2022; 203:111609. [PMID: 34216613 DOI: 10.1016/j.envres.2021.111609] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/16/2021] [Accepted: 06/24/2021] [Indexed: 05/09/2023]
Abstract
Sewer overflow (SO), which has attracted global attention, poses serious threat to public health and ecosystem. SO impacts public health via consumption of contaminated drinking water, aerosolization of pathogens, food-chain transmission, and direct contact with fecally-polluted rivers and beach sediments during recreation. However, no study has attempted to map the linkage between SO and public health including Covid-19 using scientometric analysis and systematic review of literature. Results showed that only few countries were actively involved in SO research in relation to public health. Furthermore, there are renewed calls to scale up environmental surveillance to safeguard public health. To safeguard public health, it is important for public health authorities to optimize water and wastewater treatment plants and improve building ventilation and plumbing systems to minimize pathogen transmission within buildings and transportation systems. In addition, health authorities should formulate appropriate policies that can enhance environmental surveillance and facilitate real-time monitoring of sewer overflow. Increased public awareness on strict personal hygiene and point-of-use-water-treatment such as boiling drinking water will go a long way to safeguard public health. Ecotoxicological studies and health risk assessment of exposure to pathogens via different transmission routes is also required to appropriately inform the use of lockdowns, minimize their socio-economic impact and guide evidence-based welfare/social policy interventions. Soft infrastructures, optimized sewer maintenance and prescreening of sewer overflow are recommended to reduce stormwater burden on wastewater treatment plant, curtail pathogen transmission and marine plastic pollution. Comprehensive, integrated surveillance and global collaborative efforts are important to curtail on-going Covid-19 pandemic and improve resilience against future pandemics.
Collapse
Affiliation(s)
| | - Tarek Zayed
- Department of Building and Real Estate, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
33
|
Sangkham S. A review on detection of SARS-CoV-2 RNA in wastewater in light of the current knowledge of treatment process for removal of viral fragments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 299:113563. [PMID: 34488114 PMCID: PMC8373619 DOI: 10.1016/j.jenvman.2021.113563] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/02/2021] [Accepted: 08/17/2021] [Indexed: 05/05/2023]
Abstract
The entire globe is affected by the novel disease of coronavirus 2019 (COVID-19 or 2019-nCoV), which is formally recognised as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The World Health Organisation (WHO) announced this disease as a global pandemic. The presence of SARS-CoV-2 RNA in unprocessed wastewater has become a cause of worry due to these emerging pathogens in the process of wastewater treatment, as reported in the present study. This analysis intends to interpret the fate, environmental factors and route of transmission of SARS-CoV-2, along with its eradication by treating the wastewater for controlling and preventing its further spread. Different recovery estimations of the virus have been depicted by the detection of SARS-CoV-2 RNA in wastewater through the viral concentration techniques. Most frequently used viral concentration techniques include polyethylene glycol (PEG) precipitation, ultrafiltration, electronegative membrane, and ultracentrifugation, after which the detection and quantification of SARS-CoV-2 RNA are done in wastewater samples through quantitative reverse transcription-polymerase chain reaction (RT-qPCR). The wastewater treatment plant (WWTP) holds the key responsibility of eliminating pathogens prior to the discharge of wastewater into surface water bodies. The removal of SARS-CoV-2 RNA at the treatment stage is dependent on the operations of wastewater treatment systems during the outbreak of the virus; particularly, in the urban and extensively populated regions. Efficient primary, secondary and tertiary methods of wastewater treatment and disinfection can reduce or inactivate SARS-CoV-2 RNA before being drained out. Nonetheless, further studies regarding COVID-19-related disinfectants, environment conditions and viral concentrations in each treatment procedure, implications on the environment and regular monitoring of transmission need to be done urgently. Hence, monitoring the SARS-CoV-2 RNA in samples of wastewater under the procedure of wastewater-based epidemiology (WBE) supplement the real-time data pertaining to the investigation of the COVID-19 pandemic in the community, regional and national levels.
Collapse
Affiliation(s)
- Sarawut Sangkham
- Department of Environmental Health, School of Public Health, University of Phayao, Muang District, Phayao, 56000, Thailand.
| |
Collapse
|
34
|
Liu Z, Skowron K, Grudlewska-Buda K, Wiktorczyk-Kapischke N. The existence, spread, and strategies for environmental monitoring and control of SARS-CoV-2 in environmental media. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148949. [PMID: 34252782 PMCID: PMC8262394 DOI: 10.1016/j.scitotenv.2021.148949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/26/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is the most influential infectious disease to emerge in the early 21st century. The outbreak of COVID-19 has caused a great many deaths and has had a negative impact on the world's economic development. The etiological agent of COVID-19 is severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2, which is highly infectious and variable, can be transmitted through different environmental media (gaseous, liquid, and solid). There are many unanswered questions surrounding this virus. This review summarizes the current knowledge on the latest global COVID-19 epidemic situation, SARS-CoV-2 variants, the progress in SARS-CoV-2 vaccine use, and the existence and spread of SARS-CoV-2 in gaseous, liquid, and solid media, with particular emphasis on the prevention and control of further spread of the disease. This review aims to help people worldwide to become more familiar with the transmission characteristics of SARS-CoV-2 in environmental media, so as targeted measures to fight the epidemic, reduce deaths, and restore the economy can be implemented under the pressure of global SARS-CoV-2 vaccine shortages.
Collapse
Affiliation(s)
- Zhongchuang Liu
- Green Intelligence Environmental School, Yangtze Normal University, 16 Juxian Rd. Lidu, Fuling District of Chongqing, China; Chongqing Multiple-source Technology Engineering Research Center for Ecological Environment Monitoring, Yangtze Normal University, 16 Juxian Rd. Lidu, Fuling District of Chongqing, China.
| | - Krzysztof Skowron
- Department of Microbiology, Nicolaus Copernicus University in Toruń, Collegium Medicum of L. Rydygier in Bydgoszcz, 9 M. Skłodowskiej-Curie Street, 85-094 Bydgoszcz, Poland
| | - Katarzyna Grudlewska-Buda
- Department of Microbiology, Nicolaus Copernicus University in Toruń, Collegium Medicum of L. Rydygier in Bydgoszcz, 9 M. Skłodowskiej-Curie Street, 85-094 Bydgoszcz, Poland
| | - Natalia Wiktorczyk-Kapischke
- Department of Microbiology, Nicolaus Copernicus University in Toruń, Collegium Medicum of L. Rydygier in Bydgoszcz, 9 M. Skłodowskiej-Curie Street, 85-094 Bydgoszcz, Poland
| |
Collapse
|
35
|
Gharoon N, Dewan A, Li L, Haak L, Mazurowski L, Guarin T, Pagilla K. Removal of SARS-CoV-2 viral markers through a water reclamation facility. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:2819-2827. [PMID: 34528319 PMCID: PMC8661921 DOI: 10.1002/wer.1641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 05/09/2023]
Abstract
There have been multiple reports of COVID-19 virus, SARS-CoV-2 RNA presence in influent wastewater of water reclamation facilities (WRFs) across the world. In this study, the removal of SARS-CoV-2 RNA was investigated in a WRF by collecting samples from various stages relayed to hydraulic retention time (HRT) and analyzed for viral RNA (N1 and N2) gene markers and wastewater characteristics. SARS-CoV-2 RNA was detected in 28 out of 28 influent wastewater and primary effluent samples. Secondary effluent showed 4 out of 9 positive samples, and all tertiary and final effluent samples were below the detection limit for the viral markers. The reduction was significant (p value < 0.005, one-way analysis of variance [ANOVA] test) in secondary treatment, ranging from 1.4 to 2.0 log10 removal. Adjusted N1 viral marker had a positive correlation with total suspended solids, total Kjeldahl nitrogen, and ammonia concentrations (Spearman's ρ = 0.61, 0.67, and 0.53, respectively, p value < 0.05), while demonstrating a strongly negative correlation with HRT (Spearman's ρ = -0.58, p value < 0.01). PRACTITIONER POINTS: Viral RNA was present in all samples taken from influent and primary effluent of a WRF. SARS-CoV-2 gene marker was detected in secondary effluent in 4 out of 9 samples. Tertiary and final effluent samples tested nondetect for SARS-CoV-2 gene markers. Up to 0.5 and 2.0 log10 virus removal values were achieved by primary and secondary treatment, respectively.
Collapse
Affiliation(s)
- Niloufar Gharoon
- Department of Civil and Environmental EngineeringUniversity of Nevada RenoRenoNVUSA
| | - Aimee Dewan
- Department of Civil and Environmental EngineeringUniversity of Nevada RenoRenoNVUSA
| | - Lin Li
- Department of Civil and Environmental EngineeringUniversity of Nevada RenoRenoNVUSA
| | - Laura Haak
- Department of Civil and Environmental EngineeringUniversity of Nevada RenoRenoNVUSA
| | - Lauren Mazurowski
- Department of Civil and Environmental EngineeringUniversity of Nevada RenoRenoNVUSA
| | - Tatiana Guarin
- Department of Civil and Environmental EngineeringUniversity of Nevada RenoRenoNVUSA
| | - Krishna Pagilla
- Department of Civil and Environmental EngineeringUniversity of Nevada RenoRenoNVUSA
| |
Collapse
|
36
|
Van Poelvoorde LAE, Delcourt T, Coucke W, Herman P, De Keersmaecker SCJ, Saelens X, Roosens NHC, Vanneste K. Strategy and Performance Evaluation of Low-Frequency Variant Calling for SARS-CoV-2 Using Targeted Deep Illumina Sequencing. Front Microbiol 2021; 12:747458. [PMID: 34721349 PMCID: PMC8548777 DOI: 10.3389/fmicb.2021.747458] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/21/2021] [Indexed: 12/24/2022] Open
Abstract
The ongoing COVID-19 pandemic, caused by SARS-CoV-2, constitutes a tremendous global health issue. Continuous monitoring of the virus has become a cornerstone to make rational decisions on implementing societal and sanitary measures to curtail the virus spread. Additionally, emerging SARS-CoV-2 variants have increased the need for genomic surveillance to detect particular strains because of their potentially increased transmissibility, pathogenicity and immune escape. Targeted SARS-CoV-2 sequencing of diagnostic and wastewater samples has been explored as an epidemiological surveillance method for the competent authorities. Currently, only the consensus genome sequence of the most abundant strain is taken into consideration for analysis, but multiple variant strains are now circulating in the population. Consequently, in diagnostic samples, potential co-infection(s) by several different variants can occur or quasispecies can develop during an infection in an individual. In wastewater samples, multiple variant strains will often be simultaneously present. Currently, quality criteria are mainly available for constructing the consensus genome sequence, and some guidelines exist for the detection of co-infections and quasispecies in diagnostic samples. The performance of detection and quantification of low-frequency variants using whole genome sequencing (WGS) of SARS-CoV-2 remains largely unknown. Here, we evaluated the detection and quantification of mutations present at low abundances using the mutations defining the SARS-CoV-2 lineage B.1.1.7 (alpha variant) as a case study. Real sequencing data were in silico modified by introducing mutations of interest into raw wild-type sequencing data, or by mixing wild-type and mutant raw sequencing data, to construct mixed samples subjected to WGS using a tiling amplicon-based targeted metagenomics approach and Illumina sequencing. As anticipated, higher variation and lower sensitivity were observed at lower coverages and allelic frequencies. We found that detection of all low-frequency variants at an abundance of 10, 5, 3, and 1%, requires at least a sequencing coverage of 250, 500, 1500, and 10,000×, respectively. Although increasing variability of estimated allelic frequencies at decreasing coverages and lower allelic frequencies was observed, its impact on reliable quantification was limited. This study provides a highly sensitive low-frequency variant detection approach, which is publicly available at https://galaxy.sciensano.be, and specific recommendations for minimum sequencing coverages to detect clade-defining mutations at certain allelic frequencies. This approach will be useful to detect and quantify low-frequency variants in both diagnostic (e.g., co-infections and quasispecies) and wastewater [e.g., multiple variants of concern (VOCs)] samples.
Collapse
Affiliation(s)
- Laura A. E. Van Poelvoorde
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
| | - Thomas Delcourt
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
| | - Wim Coucke
- Quality of Laboratories, Sciensano, Brussels, Belgium
| | - Philippe Herman
- Expertise and Service Provision, Sciensano, Brussels, Belgium
| | | | - Xavier Saelens
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
| | | | - Kevin Vanneste
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
| |
Collapse
|
37
|
Silva FAFD, de Brito BB, Santos MLC, Marques HS, da Silva Júnior RT, de Carvalho LS, de Sousa Cruz S, Rocha GR, Correa Santos GL, de Souza KC, Maciel RGA, Lopes DS, Silva NOE, Oliveira MV, de Melo FF. Transmission of severe acute respiratory syndrome coronavirus 2 via fecal-oral: Current knowledge. World J Clin Cases 2021; 9:8280-8294. [PMID: 34754839 PMCID: PMC8554441 DOI: 10.12998/wjcc.v9.i28.8280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/15/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in more than 93 million cases and 2 million deaths in the world. SARS-CoV-2 respiratory tract infection and its main clinical manifestations such as cough and shortness of breath are well known to the scientific community. However, a growing number of studies have reported SARS-CoV-2-related gastrointestinal involvement based on clinical manifestations, such as diarrhea, nausea, vomiting, and abdominal pain as well as on the pathophysiological mechanisms associated with coronavirus disease 2019. Furthermore, current evidence suggests SARS-CoV-2 transmission via the fecal-oral route and aerosol dissemination. Moreover, studies have shown a high risk of contamination through hospital surfaces and personal fomites. Indeed, viable SARS-CoV-2 specimens can be obtained from aerosols, which raises the possibility of transmission through aerosolized viral particles from feces. Therefore, the infection by SARS-CoV-2 via fecal-oral route or aerosolized particles should be considered. In addition, a possible viral spread to sources of drinking water, sewage, and rivers as well as the possible risk of viral transmission in shared toilets become a major public health concern, especially in the least developed countries. Since authors have emphasized the presence of viral RNA and even viable SARS-CoV-2 in human feces, studies on the possible fecal-oral coronavirus disease 2019 transmission become essential to understand better the dynamics of its transmission and, then, to reinforce preventive measures against this infection, leading to a more satisfactory control of the incidence of the infection.
Collapse
Affiliation(s)
| | - Breno Bittencourt de Brito
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45002175, Bahia, Brazil
| | - Maria Luísa Cordeiro Santos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45002175, Bahia, Brazil
| | - Hanna Santos Marques
- Departamento de Ciências Naturais, Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista 45002175, Bahia, Brazil
| | | | - Lorena Sousa de Carvalho
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45002175, Bahia, Brazil
| | - Samuel de Sousa Cruz
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45002175, Bahia, Brazil
| | - Gabriel Reis Rocha
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45002175, Bahia, Brazil
| | - Gabriel Lima Correa Santos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45002175, Bahia, Brazil
| | - Kathlen Coutinho de Souza
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45002175, Bahia, Brazil
| | | | - Daiana Silva Lopes
- Departamento de Bioquímica e Biofísica, Universidade Federal da Bahia, Salvador 40.110-100, Bahia, Brazil
| | - Natália Oliveira e Silva
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45002175, Bahia, Brazil
| | - Márcio Vasconcelos Oliveira
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45002175, Bahia, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| |
Collapse
|
38
|
Pulicharla R, Kaur G, Brar SK. A year into the COVID-19 pandemic: Rethinking of wastewater monitoring as a preemptive approach. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2021; 9:106063. [PMID: 34307017 PMCID: PMC8282934 DOI: 10.1016/j.jece.2021.106063] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/29/2021] [Accepted: 07/13/2021] [Indexed: 05/10/2023]
Abstract
Under the current pandemic situation caused by the novel coronavirus SARS-CoV-2, wastewater monitoring has been increasingly investigated as a surveillance tool for community-wide disease prevalence. After a year into the pandemic, this review critically discusses the real progress made in the detection of SARS-CoV-2 using wastewater monitoring. The limitations and the key challenges faced in improving the detection methods are highlighted. As per the literature, the complex nature of the wastewater matrix poses problems in processing the samples and achieving high sensitivity at low loads of viral RNA using the current detection methods. Furthermore, in the absence of a gold standard analytical method for wastewater, the validation of the generated data for use in wastewater-based epidemiological modeling of the disease becomes practically difficult. However, research is advancing in adopting clinical methods to the wastewater by using appropriate processing controls, and recovery methods. Besides, the technological advances made by the industry including the development of PCR kits with improved detection limits, easy-to-use viral RNA concentration methods, ability to detect the coronavirus variants, and artificial intelligence and advanced data modeling for continuous and remote monitoring greatly help to debottleneck some of these problems. Currently, these technologies are limited to healthcare systems, however, their use for wastewater monitoring is expected to provide opportunities for wide-scale applications of wastewater-based epidemiology (WBE). Moreover, the data from wastewater monitoring act as the initial checkpoint for human health even before the appearance of symptoms, hence WBE needs more attention to manage current and future infectious transmissions.
Collapse
Affiliation(s)
- Rama Pulicharla
- Department of Civil Engineering, Lassonde School of Engineering, York University, Toronto, Ontario M3J 1P3, Canada
| | - Guneet Kaur
- Department of Civil Engineering, Lassonde School of Engineering, York University, Toronto, Ontario M3J 1P3, Canada
| | - Satinder K Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
39
|
De Giglio O, Triggiano F, Apollonio F, Diella G, Fasano F, Stefanizzi P, Lopuzzo M, Brigida S, Calia C, Pousis C, Marzella A, La Rosa G, Lucentini L, Suffredini E, Barbuti G, Caggiano G, Montagna MT. Potential Use of Untreated Wastewater for Assessing COVID-19 Trends in Southern Italy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:10278. [PMID: 34639592 PMCID: PMC8508086 DOI: 10.3390/ijerph181910278] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 02/06/2023]
Abstract
As a complement to clinical disease surveillance, the monitoring of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in wastewater can be used as an early warning system for impending epidemics. This study investigated the dynamics of SARS-CoV-2 in untreated wastewater with respect to the trend of coronavirus disease 2019 (COVID-19) prevalence in Southern Italy. A total of 210 wastewater samples were collected between May and November 2020 from 15 Apulian wastewater treatment plants (WWTP). The samples were concentrated in accordance with the standard of World Health Organization (WHO, Geneva, Switzerland) procedure for Poliovirus sewage surveillance, and molecular analysis was undertaken with real-time reverse-transcription quantitative PCR (RT-(q) PCR). Viral ribonucleic acid (RNA) was found in 12.4% (26/210) of the samples. The virus concentration in the positive samples ranged from 8.8 × 102 to 6.5 × 104 genome copies/L. The receiver operating characteristic (ROC) curve modeling showed that at least 11 cases/100,000 inhabitants would occur after a wastewater sample was found to be positive for SARS-CoV-2 (sensitivity = 80%, specificity = 80.9%). To our knowledge, this is the first study in Italy that has applied wastewater-based epidemiology to predict COVID-19 prevalence. Further studies regarding methods that include all variables (meteorological phenomena, characteristics of the WWTP, etc.) affecting this type of wastewater surveillance data would be useful to improve data interpretation.
Collapse
Affiliation(s)
- Osvalda De Giglio
- Regional Reference Laboratory of SARS-CoV-2 in Wastewater, Department of Biomedical Science and Human Oncology, Hygiene Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy;
| | - Francesco Triggiano
- Department of Biomedical Science and Human Oncology, Hygiene Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy; (F.T.); (F.A.); (G.D.); (F.F.); (P.S.); (M.L.); (C.C.); (C.P.); (A.M.); (G.B.); (G.C.)
| | - Francesca Apollonio
- Department of Biomedical Science and Human Oncology, Hygiene Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy; (F.T.); (F.A.); (G.D.); (F.F.); (P.S.); (M.L.); (C.C.); (C.P.); (A.M.); (G.B.); (G.C.)
| | - Giusy Diella
- Department of Biomedical Science and Human Oncology, Hygiene Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy; (F.T.); (F.A.); (G.D.); (F.F.); (P.S.); (M.L.); (C.C.); (C.P.); (A.M.); (G.B.); (G.C.)
| | - Fabrizio Fasano
- Department of Biomedical Science and Human Oncology, Hygiene Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy; (F.T.); (F.A.); (G.D.); (F.F.); (P.S.); (M.L.); (C.C.); (C.P.); (A.M.); (G.B.); (G.C.)
| | - Pasquale Stefanizzi
- Department of Biomedical Science and Human Oncology, Hygiene Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy; (F.T.); (F.A.); (G.D.); (F.F.); (P.S.); (M.L.); (C.C.); (C.P.); (A.M.); (G.B.); (G.C.)
| | - Marco Lopuzzo
- Department of Biomedical Science and Human Oncology, Hygiene Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy; (F.T.); (F.A.); (G.D.); (F.F.); (P.S.); (M.L.); (C.C.); (C.P.); (A.M.); (G.B.); (G.C.)
| | - Silvia Brigida
- National Research Council (CNR), Water Research Institute (IRSA), Via F. De Blasio, 5, 70132 Bari, Italy;
| | - Carla Calia
- Department of Biomedical Science and Human Oncology, Hygiene Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy; (F.T.); (F.A.); (G.D.); (F.F.); (P.S.); (M.L.); (C.C.); (C.P.); (A.M.); (G.B.); (G.C.)
| | - Chrysovalentinos Pousis
- Department of Biomedical Science and Human Oncology, Hygiene Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy; (F.T.); (F.A.); (G.D.); (F.F.); (P.S.); (M.L.); (C.C.); (C.P.); (A.M.); (G.B.); (G.C.)
| | - Angelo Marzella
- Department of Biomedical Science and Human Oncology, Hygiene Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy; (F.T.); (F.A.); (G.D.); (F.F.); (P.S.); (M.L.); (C.C.); (C.P.); (A.M.); (G.B.); (G.C.)
| | - Giuseppina La Rosa
- Department of Environment and Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.L.R.); (L.L.)
| | - Luca Lucentini
- Department of Environment and Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.L.R.); (L.L.)
| | - Elisabetta Suffredini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Giovanna Barbuti
- Department of Biomedical Science and Human Oncology, Hygiene Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy; (F.T.); (F.A.); (G.D.); (F.F.); (P.S.); (M.L.); (C.C.); (C.P.); (A.M.); (G.B.); (G.C.)
| | - Giuseppina Caggiano
- Department of Biomedical Science and Human Oncology, Hygiene Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy; (F.T.); (F.A.); (G.D.); (F.F.); (P.S.); (M.L.); (C.C.); (C.P.); (A.M.); (G.B.); (G.C.)
| | - Maria Teresa Montagna
- Regional Reference Laboratory of SARS-CoV-2 in Wastewater, Department of Biomedical Science and Human Oncology, Hygiene Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy;
| |
Collapse
|
40
|
Mousazadeh M, Ashoori R, Paital B, Kabdaşlı I, Frontistis Z, Hashemi M, Sandoval MA, Sherchan S, Das K, Emamjomeh MM. Wastewater Based Epidemiology Perspective as a Faster Protocol for Detecting Coronavirus RNA in Human Populations: A Review with Specific Reference to SARS-CoV-2 Virus. Pathogens 2021; 10:1008. [PMID: 34451472 PMCID: PMC8401392 DOI: 10.3390/pathogens10081008] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/21/2022] Open
Abstract
Wastewater-based epidemiology (WBE) has a long history of identifying a variety of viruses from poliovirus to coronaviruses, including novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The presence and detection of SARS-CoV-2 in human feces and its passage into the water bodies are significant public health challenges. Hence, the hot issue of WBE of SARS-CoV-2 in the coronavirus respiratory disease (COVID-19) pandemic is a matter of utmost importance (e.g., SARS-CoV-1). The present review discusses the background, state of the art, actual status, and prospects of WBE, as well as the detection and quantification protocols of SARS-CoV-2 in wastewater. The SARS-CoV-2 detection studies have been performed in different water matrixes such as influent and effluent of wastewater treatment plants, suburban pumping stations, hospital wastewater, and sewer networks around the globe except for Antarctica. The findings revealed that all WBE studies were in accordance with clinical and epidemiological data, which correlates the presence of SARS-CoV-2 ribonucleic acid (RNA) with the number of new daily positive cases officially reported. This last was confirmed via Reverse Transcriptase-quantitative Polymerase Chain Reaction (RT-qPCR) testing which unfortunately is not suitable for real-time surveillance. In addition, WBE concept may act as a faster protocol to alert the public health authorities to take administrative orders (possible re-emerging infections) due to the impracticality of testing all citizens in a short time with limited diagnostic facilities. A comprehensive and integrated review covering all steps starting from sampling to molecular detection of SARS-CoV-2 in wastewater has been made to guide for the development well-defined and reliable protocols.
Collapse
Affiliation(s)
- Milad Mousazadeh
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran;
- Department of Environmental Health Engineering, School of Health, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Razieh Ashoori
- Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran;
| | - Biswaranjan Paital
- Redox Regulation Laboratory, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar 751003, India;
| | - Işık Kabdaşlı
- Environmental Engineering Department, Civil Engineering Faculty, Ayazağa Campus, İstanbul Technical University, İstanbul 34469, Turkey;
| | - Zacharias Frontistis
- Department of Chemical Engineering, University of Western Macedonia, 50132 Kozani, Greece;
| | - Marjan Hashemi
- Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran;
| | - Miguel A. Sandoval
- Laboratorio de Electroquímica Medio Ambiental LEQMA, Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile USACH, Casilla 40, Correo 33, Santiago 9170022, Chile;
- Departamento de Ingeniería Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato 36050, Mexico
| | - Samendra Sherchan
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 7011, USA;
| | - Kabita Das
- Department of Philosophy, Utkal University, Bhubaneswar 751004, India;
| | - Mohammad Mahdi Emamjomeh
- Social Determinants of Health Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
41
|
Teymoorian T, Teymourian T, Kowsari E, Ramakrishna S. Direct and indirect effects of SARS-CoV-2 on wastewater treatment. JOURNAL OF WATER PROCESS ENGINEERING 2021; 42:102193. [PMID: 35592058 PMCID: PMC8226068 DOI: 10.1016/j.jwpe.2021.102193] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/11/2021] [Accepted: 06/21/2021] [Indexed: 05/06/2023]
Abstract
The novel SARS-CoV-2 is expanding internationally. While the current focus is on limiting its transmission from direct contact with infected patients and surfaces during the pandemic, the secondary transmission potential via sewage should not be underestimated, especially in low-income and developing countries with weak wastewater treatment technologies. Recent studies have indicated SARS-CoV-2 positivity also be detected in the feces of patients. Therefore, the risk of transmission and infection can be increased into sewage by the fecal-oral way, mainly in some parts of the globe with a high amount of open defecation. This review collected scattered data and recent studies about the direct and indirect effects of coronavirus in the water cycle. The direct impacts of COVID-19 on wastewater are related to the presence of the coronavirus and suitable viral removal methods in different phases of treatment in wastewater treatment plants. The indirect effects of COVID-19 on wastewater are related to the overuse of cleaning and disinfecting products to protect against viral infection and the overuse of certain drugs to protect against virus or novel mental problems and panic to COVID-19 and consequently their presence in wastewater. This unexpected situation leads to changes in the quality of wastewater and brings adverse and harmful effects for the human, aquatic organisms, and the environment. Therefore, applying effective wastewater treatment technologies with low toxic by-products in wastewater treatment plants will be helpful to prevent the increasing occurrence of these extra contaminants in the environment.
Collapse
Affiliation(s)
- Termeh Teymoorian
- Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), Hafez St., Tehran 15875-4413, Iran
| | - Targol Teymourian
- Department of Civil and Environmental Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez St., Tehran 15875-4413, Iran
| | - Elaheh Kowsari
- Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), Hafez St., Tehran 15875-4413, Iran
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, 119260, Singapore
| |
Collapse
|
42
|
Ji B, Zhao Y, Wei T, Kang P. Water science under the global epidemic of COVID-19: Bibliometric tracking on COVID-19 publication and further research needs. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2021; 9:105357. [PMID: 33747765 PMCID: PMC7959687 DOI: 10.1016/j.jece.2021.105357] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/22/2021] [Accepted: 03/12/2021] [Indexed: 05/05/2023]
Abstract
There are overwhelming increases of studies and over 200,000 publications related to all the aspects of COVID-19. Among them, 262 papers were published by authors from 67 countries regarding COVID-19 with water science and technology. Although the transmission routes of SARS-CoV-2 in water cycle have not been proved, the water and wastewater play an important role in the control of COVID-19 pandemic. Accordingly, it is scholarly relevant and interesting to look into publications of COVID-19 in water science and technology to track the investigations for moving forward in the years to come. It is believed that, through the literature survey, the question on what we know and what we do not know about COVID-19 so far can be clear, thus providing useful information for helping curbing the epidemic from water sector. This forms the basis of the current study. As such, a bibliometric analysis was conducted. It reveals that wastewater-based epidemiology (WBE) has recently gained global attention with the source and survival characteristics of coronavirus in the aquatic environment; the methodology of virus detection; the water hygiene; and the impact of the COVID-19 pandemic on the water ecosystem being the main topics in 2020. Various studies have shown that drinking water is safety whereas wastewater may be a potential risk during this pandemic. From the perspective of the water cycle, the scopes for further research needs are discussed and proposed, which could enhance the important role and value of water science in warning, monitoring, and predicting COVID-19 during epidemic outbreaks.
Collapse
Affiliation(s)
- Bin Ji
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China
- Department of Municipal and Environmental Engineering, Faculty of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, PR China
| | - Yaqian Zhao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China
- Department of Municipal and Environmental Engineering, Faculty of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, PR China
| | - Ting Wei
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China
- Chemical Engineering Department, University of Alcalá, Madrid, Spain
| | - Peiying Kang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China
| |
Collapse
|
43
|
Sherchan SP, Shahin S, Patel J, Ward LM, Tandukar S, Uprety S, Schmitz BW, Ahmed W, Simpson S, Gyawali P. Occurrence of SARS-CoV-2 RNA in Six Municipal Wastewater Treatment Plants at the Early Stage of COVID-19 Pandemic in The United States. Pathogens 2021; 10:798. [PMID: 34201687 PMCID: PMC8308538 DOI: 10.3390/pathogens10070798] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 12/23/2022] Open
Abstract
In this study, we investigated the occurrence of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) RNA in primary influent (n = 42), secondary effluent (n = 24) and tertiary treated effluent (n = 34) collected from six wastewater treatment plants (WWTPs A-F) in Virginia (WWTP A), Florida (WWTPs B, C, and D), and Georgia (WWTPs E and F) in the United States during April-July 2020. Of the 100 wastewater samples analyzed, eight (19%) untreated wastewater samples collected from the primary influents contained SARS-CoV-2 RNA as measured by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) assays. SARS-CoV-2 RNA were detected in influent wastewater samples collected from WWTP A (Virginia), WWTPs E and F (Georgia) and WWTP D (Florida). Secondary and tertiary effluent samples were not positive for SARS-CoV-2 RNA indicating the treatment processes in these WWTPs potentially removed SARS-CoV-2 RNA during the secondary and tertiary treatment processes. However, further studies are needed to understand the log removal values (LRVs) and transmission risks of SARS-CoV-2 RNA through analyzing wastewater samples from a wider range of WWTPs.
Collapse
Affiliation(s)
- Samendra P. Sherchan
- Department of Environmental Health Sciences, Tulane University, 1440 Canal Street, Suite 2100, New Orleans, LA 70112, USA; (S.S.); (J.P.); (L.M.W.)
| | - Shalina Shahin
- Department of Environmental Health Sciences, Tulane University, 1440 Canal Street, Suite 2100, New Orleans, LA 70112, USA; (S.S.); (J.P.); (L.M.W.)
| | - Jeenal Patel
- Department of Environmental Health Sciences, Tulane University, 1440 Canal Street, Suite 2100, New Orleans, LA 70112, USA; (S.S.); (J.P.); (L.M.W.)
| | - Lauren M. Ward
- Department of Environmental Health Sciences, Tulane University, 1440 Canal Street, Suite 2100, New Orleans, LA 70112, USA; (S.S.); (J.P.); (L.M.W.)
| | - Sarmila Tandukar
- Policy Research Institute, Sano Gaucharan, Kathmandu 44600, Nepal; or
| | - Sital Uprety
- Swiss Federal Institute of Aquatic Science and Technology, Eawag, Überlandstrasse 133, Dübendorf, 8600 Zürich, Switzerland;
| | - Bradley W. Schmitz
- Yuma Center of Excellence for Desert Agriculture (YCEDA), University of Arizona, 6425 W. 8th St., Yuma, AZ 85364, USA;
| | - Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia;
| | - Stuart Simpson
- CSIRO Land and Water, Lucas Heights, NSW 2234, Australia;
| | - Pradip Gyawali
- Institute of Environmental Science and Research Ltd., Porirua 5240, New Zealand;
| |
Collapse
|
44
|
Panchal D, Prakash O, Bobde P, Pal S. SARS-CoV-2: sewage surveillance as an early warning system and challenges in developing countries. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:22221-22240. [PMID: 33733417 PMCID: PMC7968922 DOI: 10.1007/s11356-021-13170-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/22/2021] [Indexed: 04/15/2023]
Abstract
Transmission of novel coronavirus (SARS-CoV-2) in humans happens either through airway exposure to respiratory droplets from an infected patient or by touching the virus contaminated surface or objects (fomites). Presence of SARS-CoV-2 in human feces and its passage to sewage system is an emerging concern for public health. Pieces of evidence of the occurrence of viral RNA in feces and municipal wastewater (sewage) systems have not only warned reinforcing the treatment facilities but also suggest that these systems can be monitored to get epidemiological data for checking trend of COVID-19 infection in the community. This review summarizes the occurrence and persistence of novel coronavirus in sewage with an emphasis on the possible water environment contamination. Monitoring of novel coronavirus (SARS-CoV-2) via sewage-based epidemiology could deliver promising information regarding rate of infection providing a valid and complementary tool for tracking and diagnosing COVID-19 across communities. Tracking the sewage systems could act as an early warning tool for alerting the public health authorities for necessary actions. Given the impracticality of testing every citizen with limited diagnostic resources, it is imperative that sewage-based epidemiology can be tested as an early warning system. The need for the development of robust sampling strategies and subsequent detection methodologies and challenges for developing countries are also discussed.
Collapse
Affiliation(s)
- Deepak Panchal
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Wastewater Technology Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India
| | - Om Prakash
- Wastewater Technology Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India
| | - Prakash Bobde
- Wastewater Technology Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India
- Department of Research & Development, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India
| | - Sukdeb Pal
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
- Wastewater Technology Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India.
| |
Collapse
|