1
|
Qu C, Tang J, Liu J, Wang W, Song F, Cheng S, Tang X, Tang CJ. Quorum sensing-enhanced electron transfer in anammox consortia: A mechanism for improved resistance to variable-valence heavy metals. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137130. [PMID: 39813926 DOI: 10.1016/j.jhazmat.2025.137130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/03/2025] [Accepted: 01/03/2025] [Indexed: 01/18/2025]
Abstract
Quorum sensing (QS) is recognized for enhancing bacterial resistance against heavy metals by regulating the production of extracellular substances that hinder metal penetration into the intracellular environment. However, it remains unclear whether QS contributes to resistance by regulating electron transfer, thereby transforming metals from more toxic to less toxic forms. This study investigated the regulatory mechanism of acyl-homoserine lactone (AHL)-mediated QS on electron transfer under As(III) and Cr(VI) stress. Metagenomic binning results revealed that Candidatus Brocadia sinica serves as a major contributor to AHL production for regulating heavy metal resistance, while other symbiotic bacteria offer complementary resistance pathways. In these bacteria, the AHL synthesis gene htdS plays a pivotal role in QS regulation of electron transfer and heavy metal resistance. Experimental findings demonstrated that AHL increased the electron transport system activity by 19.8 %, and upregulated electron transfer gene expression by 1.1- to 6.9-fold. The enhanced electron transfer facilitated a 28.7 % increase in the transformation of As(III) to less toxic As(V) and monomethylarsonic acid, ultimately achieving efficient nitrogen removal under As(III) stress. This study expands our understanding of how QS strengthens bacterial resistance to heavy metals, offering novel strategies for enhancing nitrogen removal of anammox in heavy metal-contaminated environments.
Collapse
Affiliation(s)
- Caiyan Qu
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Jiong Tang
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Jingyu Liu
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Wenming Wang
- Hunan Pilot Yanghu Reclaimed Water Co., Ltd., Changsha 410208, China
| | - Fengming Song
- Hunan Pilot Yanghu Reclaimed Water Co., Ltd., Changsha 410208, China
| | - Siyuan Cheng
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Xi Tang
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China.
| | - Chong-Jian Tang
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China.
| |
Collapse
|
2
|
Khan MTA, Al-Battashi H, Al-Hinai M, Almdawi M, Pracejus B, Elshafey ESI, Abed RMM. Isolation of Aerobic Heterotrophic Bacteria from a Microbial Mat with the Ability to Grow on and Remove Hexavalent Chromium through Biosorption and Bioreduction. Appl Biochem Biotechnol 2025; 197:94-112. [PMID: 39102082 DOI: 10.1007/s12010-024-05023-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/06/2024]
Abstract
Water pollution with toxic hexavalent chromium, Cr(VI), is an environmental threat that has a direct impact on living organisms. The use of microorganisms from microbial mats to remove Cr(VI) has scarcely been investigated. Here, we isolated aerobic heterotrophic bacteria from a Cr-polluted microbial mat found in a mining site in Oman, and investigated their ability to remove Cr(VI), and the underlying mechanism(s) of removal. All isolates fell phylogenetically into the genera Enterobacter, Bacillus, and Cupriavidus, and could completely remove 1 mg L-1 Cr(VI) in 6 days. The strains could tolerate up to 2000 mg L-1 Cr(VI), and exhibited the highest Cr(VI) removal rate at 100 ± 9 mg L-1 d-1. Using scanning electron microscopy (SEM) coupled with elemental analysis, the strains were shown to adsorb Cr(VI) at their cell surfaces. The functional groups OH, NH2, Alkyl, Metal-O, and Cr(VI)-O were involved in the biosorption process. In addition, the strains were shown to reduce Cr(VI) to Cr(III) with the involvement of chromate reductase enzyme. We conclude that the aerobic heterotrophic bacteria isolated from Cr-polluted microbial mats use biosorption and bioreduction processes to remove Cr(VI) from wastewater.
Collapse
Affiliation(s)
- Mohammad Tariq Ali Khan
- Biology Department, College of Science, Sultan Qaboos University, P. O. Box: 36, PC 123, Al Khoud, Sultanate of Oman
| | - Huda Al-Battashi
- Biology Department, College of Science, Sultan Qaboos University, P. O. Box: 36, PC 123, Al Khoud, Sultanate of Oman
| | - Mahmood Al-Hinai
- Biology Department, College of Science, Sultan Qaboos University, P. O. Box: 36, PC 123, Al Khoud, Sultanate of Oman
| | - Malak Almdawi
- Biology Department, College of Science, Sultan Qaboos University, P. O. Box: 36, PC 123, Al Khoud, Sultanate of Oman
| | - Bernhard Pracejus
- Department of Earth Sciences, College of Science, Sultan Qaboos University, P. O. Box: 36, PC 123, Al Khoud, Sultanate of Oman
| | - El-Said I Elshafey
- Chemistry Department, College of Science, Sultan Qaboos University, P. O. Box: 36, PC 123, Al Khoud, Sultanate of Oman
| | - Raeid M M Abed
- Biology Department, College of Science, Sultan Qaboos University, P. O. Box: 36, PC 123, Al Khoud, Sultanate of Oman.
| |
Collapse
|
3
|
Zveushe OK, Nkoh JN, de Dios VR, Manjoro TT, Suanon F, Zhang H, Chen W, Lin L, Zhou L, Zhang W, Sesu F, Li J, Han Y, Dong F. Enhancing hexavalent chromium stable reduction via sodium alginate encapsulation of newly isolated fungal and bacterial consortia. JOURNAL OF HAZARDOUS MATERIALS 2024; 486:136994. [PMID: 39740549 DOI: 10.1016/j.jhazmat.2024.136994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/02/2025]
Abstract
Chromium [Cr(VI)]-induced soil pollution is a serious environmental threat. Bioremediation utilizes specific microbes capable of transforming Cr(VI) into the less toxic Cr(III), however, microbial efficacy can be inhibited by elevated pollutant concentrations and competition from indigenous microbial communities. Thus, this study explored the potential of single and multi-domain microbial consortia encapsulated in alginate to overcome these shortcomings. The results revealed that (i) fungal treatments demonstrated an elevated tolerance and reduction ability for Cr(VI) compared to bacterial treatments; (ii) combined application of fungi and bacteria was more effective in degrading Cr(VI) in soil compared to the individual treatments; (iii) microbial encapsulation improved microbial response to Cr(VI) toxicity thereby increasing their lifespan and Cr(VI) degrading ability; (iv) microbial consortia significantly decreased soil pH, electrical conductivity, and redox potential while simultaneously increasing soil enzyme activities (urease, sucrase, phosphatase, catalase, and laccase); and (v) The improved tolerance in the inoculated treatment resulted in increased microbial diversity and a substantial variation in microbial community structures, with 10,753 bacterial and 2697 fungal amplicon sequence variants identified across the treatment groups. This study underscores the critical importance of microbial diversity in bioremediation, emphasizing that encapsulation with the right material could improve the effectiveness of environmental remediation strategies.
Collapse
Affiliation(s)
- Obey Kudakwashe Zveushe
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jackson Nkoh Nkoh
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Víctor Resco de Dios
- Joint Research Unit CTFC-AGROTECNIO-CERCA Center, Lleida 25198, Spain; Department of Forest and Agricultural Sciences and Engineering, University of Lleida, Lleida 25198, Spain
| | - Tendai Terence Manjoro
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Fidèle Suanon
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Hengxing Zhang
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Wenfang Chen
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Lin Lin
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Lei Zhou
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, China
| | - Wei Zhang
- Center of Analysis and Testing, Southwest University of Science and Technology, Mianyang 621010, China
| | - Frank Sesu
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jin Li
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Ying Han
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Faqin Dong
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China.
| |
Collapse
|
4
|
Tuli SR, Ali MF, Jamal TB, Khan MAS, Fatima N, Ahmed I, Khatun M, Sharmin SA. Characterization and Molecular Insights of a Chromium-Reducing Bacterium Bacillus tropicus. Microorganisms 2024; 12:2633. [PMID: 39770835 PMCID: PMC11676387 DOI: 10.3390/microorganisms12122633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 01/11/2025] Open
Abstract
Environmental pollution from metal toxicity is a widespread concern. Certain bacteria hold promise for bioremediation via the conversion of toxic chromium compounds into less harmful forms, promoting environmental cleanup. In this study, we report the isolation and detailed characterization of a highly chromium-tolerant bacterium, Bacillus tropicus CRB14. The isolate is capable of growing on 5000 mg/L Cr (VI) in an LB (Luria Bertani) agar plate while on 900 mg/L Cr (VI) in LB broth. It shows an 86.57% reduction ability in 96 h of culture. It can also tolerate high levels of As, Cd, Co, Fe, Zn, and Pb. The isolate also shows plant growth-promoting potential as demonstrated by a significant activity of nitrogen fixation, phosphate solubilization, IAA (indole acetic acid), and siderophore production. Whole-genome sequencing revealed that the isolate lacks Cr resistance genes in their plasmids and are located on its chromosome. The presence of the chrA gene points towards Cr(VI) transport, while the absence of ycnD suggests alternative reduction pathways. The genome harbors features like genomic islands and CRISPR-Cas systems, potentially aiding adaptation and defense. Analysis suggests robust metabolic pathways, potentially involved in Cr detoxification. Notably, genes for siderophore and NRP-metallophore production were identified. Whole-genome sequencing data also provides the basis for molecular validation of various genes. Findings from this study highlight the potential application of Bacillus tropicus CRB14 for bioremediation while plant growth promotion can be utilized as an added benefit.
Collapse
Affiliation(s)
- Shanjana Rahman Tuli
- Environmental Biotechnology Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka 1349, Bangladesh (N.F.)
| | - Md. Firoz Ali
- Environmental Biotechnology Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka 1349, Bangladesh (N.F.)
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail 1902, Bangladesh
| | - Tabassum Binte Jamal
- Environmental Biotechnology Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka 1349, Bangladesh (N.F.)
| | - Md. Abu Sayem Khan
- Environmental Biotechnology Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka 1349, Bangladesh (N.F.)
- Department of Microbiology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Nigar Fatima
- Environmental Biotechnology Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka 1349, Bangladesh (N.F.)
| | - Irfan Ahmed
- Environmental Biotechnology Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka 1349, Bangladesh (N.F.)
| | - Masuma Khatun
- Environmental Biotechnology Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka 1349, Bangladesh (N.F.)
| | - Shamima Akhtar Sharmin
- Environmental Biotechnology Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka 1349, Bangladesh (N.F.)
| |
Collapse
|
5
|
Ma R, Shi Y, Chen Y. The alleviation of Cr(Ⅵ) stress on simultaneous nitrification and denitrification process of Acinetobacter haemolyticus RH19. WATER RESEARCH 2024; 273:122968. [PMID: 39693716 DOI: 10.1016/j.watres.2024.122968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/15/2024] [Accepted: 12/11/2024] [Indexed: 12/20/2024]
Abstract
Bioremediation of Cr(Ⅵ) and ammonia is considered as a promising and cost-effective alternative to chemical and physical methods. However, Cr(Ⅵ) could inhibit nitrogen removal by inhibiting intra-/extracellular electron (IET/EET) transfer or nitrifying and denitrifying enzymes activity due to its higher solubility. In this study, we isolated a simultaneous nitrification and denitrification (SND) microorganism Acinetobacter haemolyticus RH19, capable of outcompeting oxygen to take nitrogen oxides/ammonia as electron acceptors, and studied a combined accelerant (cysteine, biotin and cytokinin) to relive the Cr(Ⅵ) stress. Respiratory chain inhibited experiments and intermediates showed that strain RH19 had the intact intracellular respiratory chain. Despite the inhibited complex Ⅳ favoring the electrons transfer to NOx--N, the SND process was still greatly inhibited with Cr(Ⅵ), likely attributed to lower electron flow to the electron acceptors (nitration/nitrition/denitrification enzyme). Instead, the accelerant detoxified Cr(Ⅵ) mainly at CoQ site responsible for electron transfer to AMO and NAP, as well as complex Ⅳ (related with aerobic denitrification), favoring the shortcut SND (SSND, NH4+-N→NH2ON→NO2--N→N2) process by directly converting nitrite to nitrogen gases. Additionally, accelerant could stimulate the secretion of c-Cyts and flavin mononucleotide (FMN) to improve the electron transfer. Overall, this study highlighted the accelerant-alleviated mechanism in the SND process under Cr(Ⅵ) stress, and deepened the theoretical SND basis for the treatment of co-existing pollutants.
Collapse
Affiliation(s)
- Ruhui Ma
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Yuqi Shi
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Yuancai Chen
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China.
| |
Collapse
|
6
|
Wang S, Zhang X, Tian D, Zhao J, Rabiee H, Cai F, Xie M, Virdis B, Guo J, Yuan Z, Zhang R, Hu S. Anaerobic oxidation of methane coupled to reductive immobilization of hexavalent chromium by "Candidatus Methanoperedens". JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136020. [PMID: 39383693 DOI: 10.1016/j.jhazmat.2024.136020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/03/2024] [Accepted: 09/29/2024] [Indexed: 10/11/2024]
Abstract
The anaerobic oxidation of methane (AOM) carried out by anaerobic methanotrophic archaea (ANME) plays an important role in mitigating methane emissions from aqueous environments and has applications in bioremediation and wastewater treatment. Previous studies showed that AOM could be coupled to chromate reduction. However, the specific responsible microorganisms and the biochemical mechanisms are unclear. Herein, we showed that a consortium dominated by ANME "Candidatus Methanoperedens" was able to couple AOM to the reduction of Cr(VI) to Cr(III) at a stoichiometry close to the theoretical ratio. Quantitative distribution analysis of Cr(III) products suggested Cr(VI) was predominantly reduced via the extracellular respiratory pathways. Further Cr(III)-targeted fluorescent visualization combined with single-cell electron microscopic imaging suggested that Cr(VI) was reduced by "Ca. Methanoperedens" independently. Biochemical mechanism investigation via proteomic analysis showed proteins for nitrate reduction under nitrate-reducing conditions were significantly downregulated in Cr(VI)-reducing incubation. Instead, many multiheme cytochrome c (MHCs) were among the most upregulated proteins during the Cr(VI) reduction process, suggesting MHC-governed pathways for extracellular Cr(VI) reduction. The significant upregulation of a formate-dependent nitrite reductase during Cr(VI) reduction indicated its potential contribution to the small proportion of Cr(VI) reduction inside cells.
Collapse
Affiliation(s)
- Suicao Wang
- Australian Centre for Water and Environmental Biotechnology (ACWEB), Faculty of Engineering, Architecture and Information Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Xueqin Zhang
- Australian Centre for Water and Environmental Biotechnology (ACWEB), Faculty of Engineering, Architecture and Information Technology, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Dihua Tian
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jing Zhao
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Hesamoddin Rabiee
- Australian Centre for Water and Environmental Biotechnology (ACWEB), Faculty of Engineering, Architecture and Information Technology, The University of Queensland, Brisbane, Queensland 4072, Australia; School of Chemical Engineering, The University of Queensland, Brisbane, Queensland, Australia; Centre for Future Materials, University of Southern Queensland, Springfield, Queensland, Australia
| | - Fangrui Cai
- Australian Centre for Water and Environmental Biotechnology (ACWEB), Faculty of Engineering, Architecture and Information Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Mengying Xie
- Australian Centre for Water and Environmental Biotechnology (ACWEB), Faculty of Engineering, Architecture and Information Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Bernardino Virdis
- Australian Centre for Water and Environmental Biotechnology (ACWEB), Faculty of Engineering, Architecture and Information Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB), Faculty of Engineering, Architecture and Information Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Zhiguo Yuan
- School of Energy and Environment, City University of Hong Kong, Hong Kong
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Shihu Hu
- Australian Centre for Water and Environmental Biotechnology (ACWEB), Faculty of Engineering, Architecture and Information Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
7
|
Chu J, Ye Y, Wu YH. A glimpse of microbial potential in metal metabolism in the Clarion-Clipperton Fracture Zone in the eastern Pacific Ocean based on metagenomic analysis. Mar Genomics 2024; 79:101159. [PMID: 39536492 DOI: 10.1016/j.margen.2024.101159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
The polymetallic nodules distributed in the abyssal ocean floor are full of economic value, rich in manganese, iron, copper and rare-earth elements. Little is currently known about the diversity and the metabolic potential of microorganisms inhabiting the Clarion-Clipperton Fracture Zone (CCFZ) in eastern Pacific Ocean. In this study, the surface sediments (0-8 cm), which were divided into eight parts at 1 cm intervals were collected from the CCFZ. The microbial diversity and the metabolic potential of metal were examined by metagenomic sequencing and binning. The metal redox genes and metal transporter genes also showed a certain trend at different depths, the highest in the surface layer, about the same at 0-6 cm, and greater changes after >6 cm. 58 high- and medium metagenome-assembled genomes (MAGs) were recovered and assigned to 14 bacterial phyla and 1 archaeal phylum after dereplication. Alphaproteobacteria mainly carried out the oxidation of Fe/Mn and the reduction of Hg, Gammaproteobacteria mainly for the oxidation of Mn/Cu and the reduction of Cr/Hg and Methylomirabilota mainly for the oxidation of Mn and the reduction of As/Cr/Hg. Among the five Thermoproteota MAGs identified, only one had genes annotated for Mn oxidation, suggesting a limited but potentially significant role in this process at the bottom layer. By identifying the microbial diversity and the metabolic potential of metal in different depth, our study strengthens the understanding of metal metabolism in CCFZ and provides the foundation for further analyses of metal metabolism in such ecosystems.
Collapse
Affiliation(s)
- Jiayi Chu
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources and Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China; School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Yonglian Ye
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources and Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Yue-Hong Wu
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources and Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China.
| |
Collapse
|
8
|
Ding C, Ding Z, Liu Q, Liu W, Chai L. Advances in mechanism for the microbial transformation of heavy metals: implications for bioremediation strategies. Chem Commun (Camb) 2024; 60:12315-12332. [PMID: 39364540 DOI: 10.1039/d4cc03722g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Heavy metals are extensively discharged through various anthropogenic activities, resulting in an environmental risk on a global scale. In this case, microorganisms can survive in an extreme heavy metal-contaminated environment via detoxification or resistance, playing a pivotal role in the speciation, bioavailability, and mobility of heavy metals. Therefore, studies on the mechanism for the microbial transformation of heavy metals are of great importance and can provide guidance for heavy metal bioremediation. Current research studies on the microbial transformation of heavy metals mainly focus on the single oxidation, reduction and methylation pathways. However, complex microbial transformation processes and corresponding bioremediation strategies have never been clarified, which may involve the inherent physicochemical properties of heavy metals. To uncover the underlying mechanism, we reclassified heavy metals into three categories based on their biological transformation pathways, namely, metals that can be chelated, reduced or oxidized, and methylated. Firstly, we comprehensively characterized the difference in transmembrane pathways between heavy metal cations and anions. Further, biotransformation based on chelation by low-molecular-weight organic complexes is thoroughly discussed. Moreover, the progress and knowledge gaps in the microbial redox and (de)methylation mechanisms are discussed to establish a connection linking theoretical advancements with solutions to the heavy metal contamination problem. Finally, several efficient bioremediation strategies for heavy metals and the limitations of bioremediation are proposed. This review presents a solid contribution to the design of efficient microbial remediation strategies applied in the real environment.
Collapse
Affiliation(s)
- Chunlian Ding
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China.
| | - Zihan Ding
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China.
| | - Qingcai Liu
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China.
| | - Weizao Liu
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China.
| | - Liyuan Chai
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| |
Collapse
|
9
|
Liu S, Zhang Y, Duan Y, Shen X, Guo H, Kong Z, Gao Y, Han X, Wang W, Daigger GT, Zhang G, Li R, Liu Y, Song Z, Song G. Feasibility and mechanism of adsorption and bioreduction of hexavalent chromium using Rhodopseudomonas palustris immobilized on multiple materials. CHEMOSPHERE 2024; 366:143457. [PMID: 39366488 DOI: 10.1016/j.chemosphere.2024.143457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/30/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
Rhodopseudomonas palustris immobilized on multiple materials was used to invistigate Cr(VI) adsorption and bioreduction. The highest Cr(VI) removal (97.5%) was achieved at 276h under the opitimed conditions of 2.5% SA, 8% PVA, and 50% filling degree. The highest adsorption capacity was obtained at 11.75 mg g-1 under 300 mg L-1 Cr(VI). Results from adsorption kinetics and isotherms indicated that Cr(VI) adsorption of immobilized photosynthetic bacteria (IPSB) was consistent with the Freundich model and the pseudo-second-order kinetic model (qe = 14.00 mg g-1). SEM and FTIR analyses verified that the porous multilayer network structure of IPSB provided more adsorption sites and functional groups for the removal of Cr(VI). Furthermore, the maximum Cr(VI) reduction efficiency of IPSB was achieved at 10.80 mg g-1, which correlated with the up-regulation of chrR gene expressions at 100 mg L-1 Cr(VI). This study demonstrated the dual mechanisms of Cr(VI) removal in IPSB-treated Cr wastewater, involving both chemisorption and bioreduction working synergistically.
Collapse
Affiliation(s)
- Shuli Liu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450000, China; Zhongzhou Water Holding Co., Ltd., Zhengzhou 450046, China; Civil and Environmental Engineering, University of Michigan, 2350 Hayward St, G.G. Brown Building, Ann Arbor, MI 48109, USA.
| | - Yuhong Zhang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450000, China.
| | - Yacong Duan
- ZhiHe Environmental Science and Technology Co., Ltd., Zhengzhou 450001,China.
| | - Xiangyu Shen
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450000, China.
| | - Haoyi Guo
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450000, China.
| | - Zhihui Kong
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450000, China.
| | - Yatong Gao
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450000, China.
| | - Xiaohong Han
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450000, China.
| | - Wenxiao Wang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450000, China.
| | - Glen T Daigger
- Civil and Environmental Engineering, University of Michigan, 2350 Hayward St, G.G. Brown Building, Ann Arbor, MI 48109, USA.
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300130, China.
| | - Ruihua Li
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450000, China.
| | - Yuhao Liu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450000, China.
| | - Zhixin Song
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450000, China.
| | - Gangfu Song
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450000, China; Zhongzhou Water Holding Co., Ltd., Zhengzhou 450046, China.
| |
Collapse
|
10
|
Xu Z, Wang S, Chen Y, Xu H, Wang Y, Huang W, Song X. Superior nitrate and chromium reduction synergistically driven by multiple electron donors: Performance and the related biochemical mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124507. [PMID: 38968984 DOI: 10.1016/j.envpol.2024.124507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/10/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Nitrate and Cr(VI) are the typical and prevalent co-contaminants in the groundwater, how to synchronously and effectively diminish them has received growing attention. The most problem that currently limits the nitrate and Cr(VI) reduction technology for groundwater remediation is with emphasis on exploring the optimal electron donors. This study investigated the feasibility of utilizing the synergistical effect of inorganic electron donors (pyrite, sulfur) and inherently limited organics to promote synchronous nitrate and Cr(VI) removal, which meets the requirement of naturally low-carbon and eco-friendly technologies. The NO3--N and Cr(VI) removal efficiencies in the pyrite and sulfur involved mixotrophic biofilter (PS-BF: approximately 90.8 ± 0.6% and 99.1 ± 2.1%) were substantially higher than that in a volcanic rock supported biofilter (V-BF: about 49.6% ± 2.8% and 50.0% ± 9.3%), which was consistent with the spatial variations of their concentrations. Abiotic and biotic batch tests directly confirmed the decisive role of pyrite and sulfur for NO3--N and Cr(VI) removal via chemical and microbial pathways. A server decline in sulfate production correlated with decreasing COD consumption revealed that there was sulfur disproportionation induced by limited organics. Metagenomic analysis suggested that chemoautotrophic microbes like Sulfuritalea and Thiobacillus were key players responsible for sulfur oxidation, nitrate and Cr(VI) reduction. The metabolic pathway analysis suggested that genes encoding functional enzymes related to complete denitrification, S oxidation, and dissimilatory sulfate reduction were upregulated, however, genes encoding Cr(VI) reduction enzymes (e.g. chrA, chrR, nemA, and azoR) were downregulated in PS-BF, which further explained the synergistical effect of multiple electron donors. These findings provide insights into their potential cooperative interaction of multiple electron donors on greatly promoting nitrate and Cr(VI) removal and have implications for the remediation technology of nitrate and Cr(VI) co-contaminated groundwater.
Collapse
Affiliation(s)
- Zhongshuo Xu
- Donghua University, College of Environmental Science and Engineering, Shanghai, 201600, China.
| | - Shihao Wang
- Donghua University, College of Environmental Science and Engineering, Shanghai, 201600, China
| | - Yinnan Chen
- Donghua University, College of Environmental Science and Engineering, Shanghai, 201600, China
| | - Hui Xu
- Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Yuhui Wang
- Donghua University, College of Environmental Science and Engineering, Shanghai, 201600, China
| | - Wei Huang
- Donghua University, College of Environmental Science and Engineering, Shanghai, 201600, China
| | - Xinshan Song
- Donghua University, College of Environmental Science and Engineering, Shanghai, 201600, China
| |
Collapse
|
11
|
Chen S, Wang X, Zhao Q, Xu Q, Zhang Y. Dissecting the Simultaneous Extracellular/Intracellular Contributions to Cr(VI) Reduction under Aerobic and Anaerobic Conditions Using the Newly Isolating Cr(VI)-Reducing Bacterium of Pseudomonas sp. HGB10. Microorganisms 2024; 12:1958. [PMID: 39458268 PMCID: PMC11509900 DOI: 10.3390/microorganisms12101958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Quantifying extracellular and intracellular contributions to Cr(VI) reduction is crucial for understanding bacterial Cr(VI)-reduction mechanisms. However, this contribution under different oxygen conditions remains largely unexplored. This study quantified the extracellular/intracellular contribution to aerobic and anaerobic Cr(VI) reduction using Pseudomonas sp. HGB10, an isolated Cr(VI)-reducing bacterium, as the experimental model. Interestingly, it was found that the lower anaerobic minimum inhibitory concentration (MIC) does not necessarily imply a lower anaerobic Cr(VI)-reduction rate for HGB10. For the initial Cr(VI) concentration of 20 mg L-1, the maximum anaerobic Cr(VI)-reducing rate reached 100%, while the aerobic counterpart was only 75%, even though the value of the aerobic MIC (400 mg L-1) is twice that of the anaerobic (200 mg L-1). Additionally, the calculated extracellular contributions to aerobic and anaerobic Cr(VI) reduction were 10.76% and 55.71%, respectively, while the intracellular contributions were 68.29% and 40.38%. The sum of extracellular and intracellular contributions to Cr(VI) reduction (79.05% and 96.09%) under aerobic and anaerobic conditions was nearly balanced with the corresponding maximum values despite minor relative errors. These results indicated that anaerobic Cr(VI) reduction mainly occurred extracellularly rather than intracellularly, which differs from the existing result. Overall, our findings provide new insights into bacterial Cr(VI) reduction.
Collapse
Affiliation(s)
| | - Xiaoyu Wang
- School of Environment, Northeast Normal University, Changchun 130117, China; (S.C.); (Q.Z.); (Q.X.); (Y.Z.)
| | | | | | | |
Collapse
|
12
|
Malik N, Ahmad M, Malik Z, Hussain A, Waseem M, Ali A, Rizwan M. Isolation and characterization of chromium-resistant bacteria and their effects on germination, growth, and Cr accumulation in Capsicum annum (L.) under Cr stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108955. [PMID: 39053317 DOI: 10.1016/j.plaphy.2024.108955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 06/13/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Chromium (Cr) is a well-known environmental pollutant while less information is available on the role of Cr-resistant bacteria in the alleviation of Cr-stress in chili (Capsicum annum L.) plants. Effect of Cr-resistant bacterial strains on growth and Cr uptake by chili plants was investigated. The results revealed that Cr-stress showed a negative effect on germination, photosynthesis, and relative water content but the inoculation ameliorated the plant stress. Chromium-resistant bacterial strains enhanced the shoot and root growth (33% SL, 19.7% RL), shoot and root dry weight (35%, 32.9%), relative water content (32.25%), membrane stability index (46.52%) SPAD value (50.76%), Cr concentration in shoots and roots (19.87 and 18.52 mg kg-1), bioaccumulation and translocation factor (0.396 mgkg-1), and seedling vigor index (40.8%) of plants. Chromium-resistant bacterial strains enhanced the NPK uptake while reduced Cr uptake by plants. The morphological and biochemical examination of rhizobacterial strains (and NM28) resistant to Cr-stress revealed smooth, off-white colonies of bacteria composed of rod-shaped cells which are Gram positive in reaction while negative in catalase activity. High quantities of malic acid were produced by bacterial strains under study i.e. NM8 (926.12 μgmL-2) and NM28 (992.25 μgmL-2). These strains were identified as Bacillus cereus strain NM8 and Bacillus subtilis strain NM28 through 16S rRNA sequencing. Results showed that B. cereus strain NM28 is more effective than B. cereus strain NM8 in promoting the growth of Cr-stressed Chili that might be suitable to develop biofertilizer for sustainable production of vegetables under metal stress.
Collapse
Affiliation(s)
- Natasha Malik
- Department of Soil Science, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Maqshoof Ahmad
- Department of Soil Science, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Zaffar Malik
- Department of Soil Science, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Azhar Hussain
- Department of Soil Science, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Waseem
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Ahmad Ali
- Department of Soil Science, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| |
Collapse
|
13
|
Harboul K, El Aabedy A, Hammani K, El-Karkouri A. Reduction of hexavalent chromium using Bacillus safensis isolated from an abandoned mine. ENVIRONMENTAL TECHNOLOGY 2024; 45:4495-4511. [PMID: 37671659 DOI: 10.1080/09593330.2023.2256457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/17/2023] [Indexed: 09/07/2023]
Abstract
The present work focused on the isolation of a bacterial strain multi-resistant to heavy metals with a high potential for reducing hexavalent chromium (Cr(VI)) and studied its Cr(VI) removal performance in immobilized state and the mechanisms involved. Bacterial isolate was identified as Bacillus safensis CCMM B629 (B. safensis), is able to completely reduce 50, 100 and 200 mg/L of Cr(VI) after 24, 48 and 120 h, respectively under optimized conditions of pH 7 and 30°C. The coexistence of nitrates, cadmium and mercury inhibits reduction, while copper and iron significantly improve removal efficiencies. Additionally, the presence of electron donors such as glycerol, glucose and citrate significantly increases bioreduction rate. Cells immobilized in alginate beads successfully reduced Cr(VI) compared to free cells, showing the performance of biobeads in Cr(VI) reduction. Membrane fraction exhibited highest rate of Cr(VI) reduction (65%) compared to other cellular components, indicating that Cr(VI) reduction occurred primarily in cell membrane. Further characterization of Cr(VI) removal by B. safensis cells using scanning electron microscopy and energy-dispersive X-ray (SEM-EDX) analysis showed its ability to reduce and adsorb Cr(VI), confirming that hexavalent chromium was taken up successfully on bacterial cell surfaces. Based on Fourier transform infrared spectroscopy analysis (FTIR), hydroxyl, carboxyl, amide, and phosphoryl functional groups participated in combination with Cr(III). In conclusion, B. safensis is a bacterium with great potential for Cr(VI) removal, and it is a promising and competitive strain for use in bioremediation of Cr(VI) contaminated industrial effluents.
Collapse
Affiliation(s)
- Kaoutar Harboul
- Natural Resources and Environment Laboratory, Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Amal El Aabedy
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Khalil Hammani
- Natural Resources and Environment Laboratory, Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Abdenbi El-Karkouri
- Biotechnology, Environment, Agri-Food and Health Laboratory, Faculty of Sciences Dhar el Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
14
|
Liu ZS, Wang KH, Han Q, Jiang CY, Liu SJ, Li DF. Sphingobium sp. SJ10-10 encodes a not-yet-reported chromate reductase and the classical Rieske dioxygenases to simultaneously degrade PAH and reduce chromate. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134889. [PMID: 38878436 DOI: 10.1016/j.jhazmat.2024.134889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/28/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024]
Abstract
Both polycyclic aromatic hydrocarbons (PAHs) and heavy metals persist in the environment and are toxic to organisms. Their co-occurrence makes any of them difficult to remove during bioremediation and poses challenges to environmental management and public health. Microorganisms capable of effectively degrading PAHs and detoxifying heavy metals concurrently are required to improve the bioremediation process. In this study, we isolated a new strain, Sphingobium sp. SJ10-10, from an abandoned coking plant and demonstrated its capability to simultaneously degrade 92.6 % of 75 mg/L phenanthrene and reduce 90 % of 3.5 mg/L hexavalent chromium [Cr(VI)] within 1.5 days. Strain SJ10-10 encodes Rieske non-heme iron ring-hydroxylating oxygenases (RHOs) to initiate PAH degradation. Additionally, a not-yet-reported protein referred to as Sphingobium chromate reductase (SchR), with low sequence identity to known chromate reductases, was identified to reduce Cr(VI). SchR is distributed across different genera and can be classified into two classes: one from Sphingobium members and the other from non-Sphingobium species. The widespread presence of SchR in those RHO-containing Sphingobium members suggests that they are excellent candidates for bioremediation. In summary, our study demonstrates the simultaneous removal of PAHs and Cr(VI) by strain SJ10-10 and provides valuable insights into microbial strategies for managing complex pollutant mixtures.
Collapse
Affiliation(s)
- Ze-Shen Liu
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ke-Huan Wang
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qun Han
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Cheng-Ying Jiang
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - De-Feng Li
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
15
|
Mishra S, Dubey P, Naseem M, Rishi S, Patel A, Srivastava PK. A kinetic modelling approach to explore mechanism of Cr(VI) detoxification by a novel strain Pseudochrobactrum saccharolyticum NBRI-CRB 13 using response surface methodology. World J Microbiol Biotechnol 2024; 40:288. [PMID: 39101971 DOI: 10.1007/s11274-024-04099-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/29/2024] [Indexed: 08/06/2024]
Abstract
A novel Pseudochrobactrum saccharolyticum strain NBRI-CRB 13, isolated from tannery sludge, was studied to grow up to 500 mgL-1 of Cr(VI) and showed Cr(VI) detoxification by reducing > 90% of Cr(VI) at different concentrations 25, 50 and 100 mgL-1. Kinetic studies showed that first-order models were fitted (R2 = 0.998) to the time-dependent Cr(VI) reduction with degradation rate constant (k) (1.03-0.429 h-1). Cr(VI) detoxification was primarily related to the extracellular fraction of microbial cells, which showed a maximum extracellular reductase enzyme activity led to 94.6% reduction of Cr(VI). Moreover, the strain showed maximum extracellular polymeric substances (EPS) production at 100 mgL-1 Cr(VI), which is presumably the reason for Cr(VI) removal as EPS serves as the metal binding site for Cr(VI) ions. Further, an optimization study using Box-Behnken design was conducted considering parameters viz., pH, temperature, and initial concentration of Cr(VI). The maximum percent reduction of Cr(VI) was obtained at pH 6.5, temperature 30 °C with 62.5 mgL-1Cr(VI) concentration. Further, the Cr(VI) reduction and adsorption ability of strain P. saccharolyticum NBRI-CRB13 were confirmed by SEM-EDS, FTIR, and XRD analyses. FTIR analysis confirmed the presence of functional groups (-OH, -COOH, -PO4) on bacterial cell walls, which were more likely to interact with positively charged chromium ions. The study elucidated the reduction of Cr(VI) by the novel bacterium within 24 h using the response surface methodology approach and advocated its application in real-time situations.
Collapse
Affiliation(s)
- Sandhya Mishra
- Environmental Technologies Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, India
| | - Priya Dubey
- Environmental Technologies Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, India
- Department of Biosciences, Integral University, Lucknow, India
| | - Mariya Naseem
- Environmental Technologies Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, India
| | - Saloni Rishi
- Environmental Technologies Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, India
- Department of Microbiology, Guru Nanak Dev University, Amritsar, India
| | - Anju Patel
- Environmental Technologies Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, India
| | - Pankaj Kumar Srivastava
- Environmental Technologies Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, India.
| |
Collapse
|
16
|
Zhou L, Wu F, Lai Y, Zhao B, Zhang W, Rittmann BE. Cooperation and competition between denitrification and chromate reduction in a hydrogen-based membrane biofilm reactor. WATER RESEARCH 2024; 259:121870. [PMID: 38843627 DOI: 10.1016/j.watres.2024.121870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/07/2024] [Accepted: 06/02/2024] [Indexed: 06/25/2024]
Abstract
Competition and cooperation between denitrification and Cr(VI) reduction in a H2-based membrane biofilm reactor (H2-MBfR) were documented over 55 days of continuous operation. When nitrate (5 mg N/L) and chromate (0.5 mg Cr/L) were fed together, the H2-MBfR maintained approximately 100 % nitrate removal and 60 % chromate Cr(VI) removal, which means that nitrate outcompeted Cr(VI) for electrons from H2 oxidation. Removing nitrate from the influent led to an immediate increase in Cr(VI) removal (to 92 %), but Cr(VI) removal gradually deteriorated, with the removal ratio dropping to 14 % after five days. Cr(VI) removal resumed once nitrate was again added to the influent. 16S rDNA analyses showed that bacteria able to carry out H2-based denitrification and Cr(VI) reduction were in similar abundances throughout the experiment, but gene expression for Cr(VI)-reduction and export shifted. Functional genes encoding for energy-consuming chromate export (encoded by ChrA) as a means of bacterial resistance to toxicity were more abundant than genes encoding for the energy producing Cr(VI) respiration via the chromate reductase ChrR-NdFr. Thus, Cr(VI) transport and resistance to Cr(VI) toxicity depended on H2-based denitrification to supply energy. With Cr(VI) being exported from the cells, Cr(VI) reduction to Cr(III) was sustained. Thus, cooperation among H2-based denitrification, Cr(VI) export, and Cr(VI) reduction led to sustained Cr(VI) removal in the presence of nitrate, even though Cr(VI) reduction was at a competitive disadvantage for utilizing electrons from H2 oxidation.
Collapse
Affiliation(s)
- Lijie Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Fei Wu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yongzhou Lai
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Bikai Zhao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Wenyu Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85287-5701, United States of America.
| |
Collapse
|
17
|
Tang H, Xiang G, Xiao W, Yang Z, Zhao B. Microbial mediated remediation of heavy metals toxicity: mechanisms and future prospects. FRONTIERS IN PLANT SCIENCE 2024; 15:1420408. [PMID: 39100088 PMCID: PMC11294182 DOI: 10.3389/fpls.2024.1420408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/28/2024] [Indexed: 08/06/2024]
Abstract
Heavy metal pollution has become a serious concern across the globe due to their persistent nature, higher toxicity, and recalcitrance. These toxic metals threaten the stability of the environment and the health of all living beings. Heavy metals also enter the human food chain by eating contaminated foods and cause toxic effects on human health. Thus, remediation of HMs polluted soils is mandatory and it needs to be addressed at higher priority. The use of microbes is considered as a promising approach to combat the adverse impacts of HMs. Microbes aided in the restoration of deteriorated environments to their natural condition, with long-term environmental effects. Microbial remediation prevents the leaching and mobilization of HMs and they also make the extraction of HMs simple. Therefore, in this context recent technological advancement allowed to use of bioremediation as an imperative approach to remediate polluted soils. Microbes use different mechanisms including bio-sorption, bioaccumulation, bioleaching, bio-transformation, bio-volatilization and bio-mineralization to mitigate toxic the effects of HMs. Thus, keeping in the view toxic HMs here in this review explores the role of bacteria, fungi and algae in bioremediation of polluted soils. This review also discusses the various approaches that can be used to improve the efficiency of microbes to remediate HMs polluted soils. It also highlights different research gaps that must be solved in future study programs to improve bioremediation efficency.
Collapse
Affiliation(s)
- Haiying Tang
- School of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, China
| | - Guohong Xiang
- School of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, China
| | - Wen Xiao
- School of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, China
| | - Zeliang Yang
- School of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, China
| | - Baoyi Zhao
- Shuangfeng Agriculture and Rural Bureau, Loudi, Hunan, China
| |
Collapse
|
18
|
Jia J, Xiao B, Yao L, Zhang B, Ma Y, Wang W, Han Y, Lei Q, Zhao R, Dong J, Wei N, Zhang H. The dominant role of extracellular polymeric substances produced by Achromobacter xylosoxidans BP1 in Cr(VI) microbial reduction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174464. [PMID: 38964391 DOI: 10.1016/j.scitotenv.2024.174464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/12/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Extracellular polymeric substances (EPS) have demonstrated significant benefits for reducing multivalent metal contamination. Using Achromobacter xylosoxidans BP1 isolated from a coal chemical site in China, this study elucidated the contribution of EPS production to Cr (VI) reduction and revealed its biological removal mechanism. BP1 grew at an optimum pH of 8 and the lowest inhibitory concentration of Cr(VI) was 300 mg/L. The spent medium completely removed Cr(VI), whereas resting cells were only able to remove 10.47 % and inactivated cells were nearly incapable of Cr(VI) removal. S-EPS and B-EPS reduced Cr(VI) by 98.59 % and 11.64 %, respectively. SEM-EDS analysis showed that the BP1 cells were stimulated to produce EPS under Cr stress. The XPS results showed that 29.63 % of Cr(VI) was enriched by intracellular bioaccumulation or biosorption and 70.37 % of Cr(VI) was reduced by extracellular enzymes to produce Cr(OH)3 and organic Cr(III) complexes. According to FTIR, EPS with -OH, COO-, and amide groups supplied binding sites and electrons for the reductive adsorption of Cr(VI). Genomic studies showed that BP1 primarily produces extracellular polysaccharides, metabolises sulphur and nitrogen, and reduces reactive oxygen species damage as a result of DNA repair proteases.
Collapse
Affiliation(s)
- Jianli Jia
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, People's Republic of China.
| | - Bing Xiao
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, People's Republic of China.
| | - Linying Yao
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, People's Republic of China.
| | - Ben Zhang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, People's Republic of China.
| | - Yichi Ma
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, People's Republic of China.
| | - Weiran Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, People's Republic of China.
| | - Yuxin Han
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, People's Republic of China.
| | - Qiushuang Lei
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, People's Republic of China; Center for Soil Protection and Landscape Design, Chinese Academy of Environmental Planning, Beijing 100041, People's Republic of China.
| | - Ruofan Zhao
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, People's Republic of China.
| | - Jingqi Dong
- Center for Soil Protection and Landscape Design, Chinese Academy of Environmental Planning, Beijing 100041, People's Republic of China.
| | - Nan Wei
- Center for Soil Protection and Landscape Design, Chinese Academy of Environmental Planning, Beijing 100041, People's Republic of China.
| | - Hongzhen Zhang
- Center for Soil Protection and Landscape Design, Chinese Academy of Environmental Planning, Beijing 100041, People's Republic of China.
| |
Collapse
|
19
|
Aké AHJ, Rochdi N, Jemo M, Hafidi M, Ouhdouch Y, El Fels L. Cr(VI) removal performance from wastewater by microflora isolated from tannery effluents in a semi-arid environment: a SEM, EDX, FTIR and zeta potential study. Front Microbiol 2024; 15:1423741. [PMID: 39011144 PMCID: PMC11246972 DOI: 10.3389/fmicb.2024.1423741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/03/2024] [Indexed: 07/17/2024] Open
Abstract
Hexavalent chromium removal from the environment remains a crucial worldwide challenge. To address this issue, microbiological approaches are amongst the straightforward strategies that rely mainly on the bacteria's and fungi's survival mechanisms upon exposure to toxic metals, such as reduction, efflux system, uptake, and biosorption. In this work, scanning electron microscopy, energy-dispersive X-ray spectrophotometry, Fourier transform infrared spectroscopy, and zeta potential measurements were used to investigate the ability of chromium adsorption by Bacillus licheniformis, Bacillus megaterium, Byssochlamys sp., and Candida maltosa strains isolated from tannery wastewater. Scanning electron microscopy combined with energy dispersive X-ray spectroscopy revealed alterations in the cells treated with hexavalent chromium. When exposed to 50 mg/L Cr6+, Bacillus licheniformis and Candida maltosa cells become rough, extracellular secretions are reduced in Bacillus megaterium, and Byssochlamys sp. cells are tightly bound and exhibit the greatest Cr weight percentage. In-depth analysis of Fourier transform infrared spectra of control and Cr-treated cells unveiled Cr-microbial interactions involving proteins, lipids, amino acids, and carbohydrates. These findings were supported by zeta potential measurements highlighting significant variations in charge after treatment with Cr(VI) with an adsorption limit of 100 mg/L Cr6+ for all the strains. Byssochlamys sp. showed the best performance in Cr adsorption, making it the most promising candidate for treating Cr-laden wastewater.
Collapse
Affiliation(s)
- Aké Henri Joël Aké
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment, Labeled Research Unit-CNRST N°4, Faculty of Sciences Semlalia, Universiry Cadi Ayyad, Marrakesh, Morocco
| | - Nabil Rochdi
- Laboratory of Innovative Materials, Energy and Sustainable Development (IMED-Lab), Cadi Ayyad University, Marrakesh, Morocco
- Department of Physics, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - Martin Jemo
- AgroBiosciences Program, College of Agriculture and Environmental Sciences, University Mohammed VI Polytechnic (UM6P), Ben Guerir, Morocco
| | - Mohamed Hafidi
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment, Labeled Research Unit-CNRST N°4, Faculty of Sciences Semlalia, Universiry Cadi Ayyad, Marrakesh, Morocco
- African Sustainable Agriculture Research Institute (ASARI), College of Agriculture and Environmental Sciences, University Mohammed VI Polytechnic (UM6P), Laâyoune, Morocco
| | - Yedir Ouhdouch
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment, Labeled Research Unit-CNRST N°4, Faculty of Sciences Semlalia, Universiry Cadi Ayyad, Marrakesh, Morocco
- AgroBiosciences Program, College of Agriculture and Environmental Sciences, University Mohammed VI Polytechnic (UM6P), Ben Guerir, Morocco
| | - Loubna El Fels
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment, Labeled Research Unit-CNRST N°4, Faculty of Sciences Semlalia, Universiry Cadi Ayyad, Marrakesh, Morocco
| |
Collapse
|
20
|
Khan S, Mumtaj ZA, Khan AR, Alkahtani MQ, Aleya E, Louzon M, Aleya L. Reviewing the role of microplastics as carriers for microorganisms in absorbing toxic trace elements. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:46806-46819. [PMID: 38976194 DOI: 10.1007/s11356-024-34070-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/18/2024] [Indexed: 07/09/2024]
Abstract
The pervasive presence of microplastics in various settings, such as freshwater and marine ecosystems, has sparked serious concerns. Microplastics can operate as possible transporters for hazardous trace elements or microbes, even though they are not naturally able to actively absorb these compounds. The binding sites on the plastic's surface or the complexes that are formed with the organic material on the plastic are how this adsorption process takes place. Microplastics' surfaces also seem to be attractive to microorganisms, such as bacteria and algae. Microorganisms can adhere to the rough surface of microplastics, which facilitates their colonization and formation of biofilms. Numerous bacteria, including ones that have the ability to absorb hazardous trace elements, can be found in these biofilms. Microplastics and microbes can interact in ways that are advantageous and detrimental. Microplastics have the ability to act as a substrate for microbial growth, which could lead to an increase in the quantity of microorganisms in the surrounding environment. On the other hand, microplastics may make it easier for microbes to spread to new areas, which could help dangerous or deadly species proliferate. Research is still ongoing to determine the degree to which microplastics serve as carriers of microbes and hazardous trace elements. Comprehending the implications of microplastics, pollutants, and microorganisms in a variety of environmental conditions is difficult due to their complex interplay. This review provides a detailed description of the complexity of the problem and used the examples related to microplastics, its environmental effects, and impacts on human health.
Collapse
Affiliation(s)
- Saimah Khan
- Department of Chemistry, Integral University, Lucknow, India
| | - Zeba Ali Mumtaj
- Department of Chemistry, Integral University, Lucknow, India
| | | | - Meshel Qablan Alkahtani
- Department of Civil Engineering, College of Engineering, King Khalid University, Abha, Saudi Arabia
| | - Enis Aleya
- Laboratoire de Chrono-Environnement, UMR CNRS 6249, Université de Bourgogne Franche-Comté, La Bouloie, 25030, Besançon Cedex, France
| | - Maxime Louzon
- Crisalid Living Laboratory, Envisol, 29 Avenue Victor Hugo, 38800, Le Pont De Claix, France
| | - Lotfi Aleya
- Laboratoire de Chrono-Environnement, UMR CNRS 6249, Université de Bourgogne Franche-Comté, La Bouloie, 25030, Besançon Cedex, France.
| |
Collapse
|
21
|
Li Z, Cui E, Gu N, Ma W, Guo Q, Li X, Jin J, Wang Q, Ding C. Unveiling the biointerfaces characteristics and removal pathways of Cr(Ⅵ) in Bacillus cereus FNXJ1-2-3 for the Cr(Ⅵ)-to-Cr(0) conversion. ENVIRONMENTAL RESEARCH 2024; 251:118663. [PMID: 38460667 DOI: 10.1016/j.envres.2024.118663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/23/2024] [Accepted: 03/07/2024] [Indexed: 03/11/2024]
Abstract
Although less toxic than hexavalent chromium, Cr (Ⅲ) species still pose a threat to human health. The Cr (Ⅵ) should be converted to Cr (0) instead of Cr (Ⅲ), which is still involved in biological detoxification filed. Herein, for the first time, it was found that Cr(Ⅵ) can be reduced into Cr(0) by Bacillus cereus FNXJ1-2-3, a way to completely harmless treatment of Cr(Ⅵ). The bacterial strain exhibited excellent performance in the reduction, sorption, and accumulation of Cr(Ⅵ) and Cr (Ⅲ). XPS etching characterization inferred that the transformation of Cr(Ⅵ) into Cr(0) followed a reduction pathway of Cr(Ⅵ)→Cr (Ⅲ)→metallic Cr(0), in which at least two secretory chromium reductases (ECrⅥ→Ⅲ and ECrⅢ→0) worked. Under the optimum condition, the yield ratio of Cr(0)/Cr (Ⅲ) reached 33.90%. In addition, the interfacial interactions, ion channels, chromium reductases, and external electron donors also contributed to the Cr(Ⅵ)/Cr(0) transformation. Findings of this study indicate that Bacillus cereus FNXJ1-2-3 is a promising bioremediation agent for Cr(Ⅵ) pollution control.
Collapse
Affiliation(s)
- Zhaoxia Li
- School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, 224051, China
| | - Entian Cui
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng, Jiangsu, 224051, China
| | - Naipeng Gu
- UNHO (China) BioPharmaceutical Co., Ltd., Nanjing, Jiangsu, 210046, China
| | - Weixing Ma
- School of Environmental Science and Engineering, Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng, Jiangsu, 224051, China
| | - Qingyuan Guo
- School of Environmental Science and Engineering, Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng, Jiangsu, 224051, China
| | - Xuan Li
- School of Environmental Science and Engineering, Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng, Jiangsu, 224051, China
| | - Jianxiang Jin
- School of Environmental Science and Engineering, Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng, Jiangsu, 224051, China
| | - Qun Wang
- Jiangsu YIDA Testing Technology Co., Ltd. , Building A-15, Big Data Industrial Park, Chengnan New District, Yancheng, Jiangsu, 224051, China
| | - Cheng Ding
- School of Environmental Science and Engineering, Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng, Jiangsu, 224051, China.
| |
Collapse
|
22
|
Feng L, Liu B, Yao J, Li M, Zhu J, Zhao Y, Wu Y. Extracellular bioreduction is the main Cr(VI) detoxification strategy of Bacillus sp. HL1. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120870. [PMID: 38640757 DOI: 10.1016/j.jenvman.2024.120870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/03/2024] [Accepted: 04/07/2024] [Indexed: 04/21/2024]
Abstract
Bacterium with high Cr(VI) detoxification capability belonged to the genus Bacillus have been largely explored, yet their reduction strategies are still in debate. Cr(VI) removal performance and mechanism of Bacillus sp. HL1 isolated from tailings a site was comprehensively investigated in this study. Approximately 88.31% of 100 mg/L Cr(VI) was continuously removed within 72 h, while it could resist up to 300 mg/L Cr(VI). Metal ions Mn2+ and Cu2+ could effectively improve the Cr(VI) removal performance to 14.41% and 3.41% under the optimal conditions, respectively. Cr(VI) removal performances by subcellular extracts showed that nearly 45.28% of 100 mg/L extracellular Cr(VI) was efficaciously reduced to Cr(III), while only 14.27%, 6.40%, and 2.73% of the cell-free extract, resting cells, and cell debris were reduced, respectively. This suggested that extracellular bioreduction was the primary Cr(VI) detoxification strategy despite a small part of Cr(VI) reduction took place intracellularly. In particular, the reduction products of the intracellular and extracellular compounds significantly differed, with organo-Cr(III) complex outside the cell and crystalline Cr(III) precipitate inside. Such observation was also evidenced by the intracellular black precipitate observed in the TEM image. XRD, XPS, and EPR analysis showed different Cr(III) compositions of intracellular and extracellular products. This study deepens our insights into the different fates of microorganisms that reduce Cr(VI) intracellularly and extracellularly.
Collapse
Affiliation(s)
- Lingyun Feng
- School of Water Resource and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), China.
| | - Bang Liu
- School of Water Resource and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), China
| | - Jun Yao
- School of Water Resource and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), China.
| | - Miaomiao Li
- School of Water Resource and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), China
| | - Junjie Zhu
- School of Water Resource and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), China
| | - Yan Zhao
- School of Water Resource and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), China
| | - Yingjian Wu
- School of Water Resource and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), China
| |
Collapse
|
23
|
Reddy GKK, Kavibharathi K, Singh A, Nancharaiah YV. Growth-dependent cr(VI) reduction by Alteromonas sp. ORB2 under haloalkaline conditions: toxicity, removal mechanism and effect of heavy metals. World J Microbiol Biotechnol 2024; 40:165. [PMID: 38630187 DOI: 10.1007/s11274-024-03982-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/04/2024] [Indexed: 04/19/2024]
Abstract
Bacterial reduction of hexavalent chromium (VI) to chromium (III) is a sustainable bioremediation approach. However, the Cr(VI) containing wastewaters are often characterized with complex conditions such as high salt, alkaline pH and heavy metals which severely impact the growth and Cr(VI) reduction potential of microorganisms. This study investigated Cr(VI) reduction under complex haloalkaline conditions by an Alteromonas sp. ORB2 isolated from aerobic granular sludge cultivated from the seawater-microbiome. Optimum growth of Alteromonas sp. ORB2 was observed under haloalkaline conditions at 3.5-9.5% NaCl and pH 7-11. The bacterial growth in normal culture conditions (3.5% NaCl; pH 7.6) was not inhibited by 100 mg/l Cr(VI)/ As(V)/ Pb(II), 50 mg/l Cu(II) or 5 mg/l Cd(II). Near complete reduction of 100 mg/l Cr(VI) was achieved within 24 h at 3.5-7.5% NaCl and pH 8-11. Cr(VI) reduction by Alteromonas sp. ORB2 was not inhibited by 100 mg/L As(V), 100 mg/L Pb(II), 50 mg/L Cu(II) or 5 mg/L Cd(II). The bacterial cells grew in the medium with 100 mg/l Cr(VI) contained lower esterase activity and higher reactive oxygen species levels indicating toxicity and oxidative stress. In-spite of toxicity, the cells grew and reduced 100 mg/l Cr(VI) completely within 24 h. Cr(VI) removal from the medium was driven by bacterial reduction to Cr(III) which remained in the complex medium. Cr(VI) reduction was strongly linked to aerobic growth of Alteromonas sp. The Cr(VI) reductase activity of cytosolic protein fraction was pronounced by supplementing with NADPH in vitro assays. This study demonstrated a growth-dependent aerobic Cr(VI) reduction by Alteromonas sp. ORB2 under complex haloalkaline conditions akin to wastewaters.
Collapse
Affiliation(s)
- G Kiran Kumar Reddy
- Biofouling and Biofilm Processes Section, WSCD, Chemistry Group, Bhabha Atomic Research Centre, Kalpakkam, 603102, India
- Homi Bhabha National Institute, BARC Training School Complex, Anushaktinagar, Mumbai, 400094, India
| | - K Kavibharathi
- Biofouling and Biofilm Processes Section, WSCD, Chemistry Group, Bhabha Atomic Research Centre, Kalpakkam, 603102, India
| | - Anuroop Singh
- Biofouling and Biofilm Processes Section, WSCD, Chemistry Group, Bhabha Atomic Research Centre, Kalpakkam, 603102, India
| | - Y V Nancharaiah
- Biofouling and Biofilm Processes Section, WSCD, Chemistry Group, Bhabha Atomic Research Centre, Kalpakkam, 603102, India.
- Homi Bhabha National Institute, BARC Training School Complex, Anushaktinagar, Mumbai, 400094, India.
| |
Collapse
|
24
|
Li ZT, Song X, Yuan S, Zhao HP. Unveiling the inhibitory mechanisms of chromium exposure on microbial reductive dechlorination: Kinetics and microbial responses. WATER RESEARCH 2024; 253:121328. [PMID: 38382292 DOI: 10.1016/j.watres.2024.121328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/23/2024]
Abstract
Chromium and organochlorine solvents, particularly trichloroethene (TCE), are pervasive co-existing contaminants in subsurface aquifers due to their extensive industrial use and improper disposal practices. In this study, we investigated the microbial dechlorination kinetics under different TCE-Cr(Ⅲ/VI) composite pollution conditions and elucidated microbial response mechanisms based on community shift patterns and metagenomic analysis. Our results revealed that the reductive dechlorinating consortium had high resistance to Cr(III) but extreme sensitivity to Cr(VI) disturbance, resulting in a persistent inhibitory effect on subsequent dechlorination. Interestingly, the vinyl chloride-respiring organohalide-respiring bacteria (OHRB) was notably more susceptible to Cr(III/VI) exposure than the trichloroethene-respiring one, possibly due to inferior competition for growth substrates, such as electron donors. In terms of synergistic non-OHRB populations, Cr(III/VI) exposure had limited impacts on lactate fermentation but significantly interfered with H2-producing acetogenesis, leading to inhibited microbial dechlorination due to electron donor deficiencies. However, this inhibition can be effectively mitigated by the amendment of exogenous H2 supply. Furthermore, being the predominant OHRB, Dehalococcoides have inherent Cr(VI) resistance defects and collaborate with synergistic non-OHRB populations to achieve concurrent bio-detoxication of Cr(VI) and TCE. Our findings expand the understanding of the response patterns of different functional populations towards Cr(III/VI) stress, and provide valuable insights for the development of in situ bioremediation strategies for sites co-contaminated with chloroethene and chromium.
Collapse
Affiliation(s)
- Zheng-Tao Li
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310030, PR China
| | - Xin Song
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Songhu Yuan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, PR China
| | - He-Ping Zhao
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310030, PR China.
| |
Collapse
|
25
|
Dubey P, Farooqui A, Patel A, Srivastava PK. Microbial innovations in chromium remediation: mechanistic insights and diverse applications. World J Microbiol Biotechnol 2024; 40:151. [PMID: 38553582 DOI: 10.1007/s11274-024-03936-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/21/2024] [Indexed: 04/02/2024]
Abstract
The ubiquity of hexavalent chromium (Cr(VI)) from industrial activities poses a critical environmental threat due to its persistence, toxicity and mutagenic potential. Traditional physico-chemical methods for its removal often entail significant environmental drawbacks. Recent advancements in remediation strategies have emphasized nano and bioremediation techniques as promising avenues for cost-effective and efficient Cr(VI) mitigation. Bioremediation harnesses the capabilities of biological agents like microorganisms, and algae to mitigate heavy metal contamination, while nano-remediation employs nanoparticles for adsorption purposes. Various microorganisms, including E. coli, Byssochlamys sp., Pannonibacter phragmitetus, Bacillus, Aspergillus, Trichoderma, Fusarium, and Chlorella utilize bioreduction, biotransformation, biosorption and bioaccumulation mechanisms to convert Cr(VI) to Cr(III). Their adaptability to different environments and integration with nanomaterials enhance microbial activity, offering eco-friendly solutions. The study provides a brief overview of metabolic pathways involved in Cr(VI) bioreduction facilitated by diverse microbial species. Nitroreductase and chromate reductase enzymes play key roles in nitrogen and chromium removal, with nitroreductase requiring nitrate and NADPH/NADH, while the chromium reductase pathway relies solely on NADPH/NADH. This review investigates the various anthropogenic activities contributing to Cr(VI) emissions and evaluates the efficacy of conventional, nano-remediation, and bioremediation approaches in curbing Cr(VI) concentrations. Additionally, it scrutinizes the mechanisms underlying nano-remediation techniques for a deeper understanding of the remediation process. It identifies research gaps and offers insights into future directions aimed at enhancing the real-time applicability of bioremediation methods for mitigating with Cr(VI) pollution and pave the way for sustainable remediation solutions.
Collapse
Affiliation(s)
- Priya Dubey
- Department of Biosciences, Integral University, Lucknow, India
- Environmental Technologies, CSIR-National Botanical Research Institute, Lucknow, India
| | - Alvina Farooqui
- Department of Biosciences, Integral University, Lucknow, India.
| | - Anju Patel
- Environmental Technologies, CSIR-National Botanical Research Institute, Lucknow, India.
| | | |
Collapse
|
26
|
Ghorbani A, Emamverdian A, Pehlivan N, Zargar M, Razavi SM, Chen M. Nano-enabled agrochemicals: mitigating heavy metal toxicity and enhancing crop adaptability for sustainable crop production. J Nanobiotechnology 2024; 22:91. [PMID: 38443975 PMCID: PMC10913482 DOI: 10.1186/s12951-024-02371-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 02/25/2024] [Indexed: 03/07/2024] Open
Abstract
The primary factors that restrict agricultural productivity and jeopardize human and food safety are heavy metals (HMs), including arsenic, cadmium, lead, and aluminum, which adversely impact crop yields and quality. Plants, in their adaptability, proactively engage in a multitude of intricate processes to counteract the impacts of HM toxicity. These processes orchestrate profound transformations at biomolecular levels, showing the plant's ability to adapt and thrive in adversity. In the past few decades, HM stress tolerance in crops has been successfully addressed through a combination of traditional breeding techniques, cutting-edge genetic engineering methods, and the strategic implementation of marker-dependent breeding approaches. Given the remarkable progress achieved in this domain, it has become imperative to adopt integrated methods that mitigate potential risks and impacts arising from environmental contamination on yields, which is crucial as we endeavor to forge ahead with the establishment of enduring agricultural systems. In this manner, nanotechnology has emerged as a viable field in agricultural sciences. The potential applications are extensive, encompassing the regulation of environmental stressors like toxic metals, improving the efficiency of nutrient consumption and alleviating climate change effects. Integrating nanotechnology and nanomaterials in agrochemicals has successfully mitigated the drawbacks associated with traditional agrochemicals, including challenges like organic solvent pollution, susceptibility to photolysis, and restricted bioavailability. Numerous studies clearly show the immense potential of nanomaterials and nanofertilizers in tackling the acute crisis of HM toxicity in crop production. This review seeks to delve into using NPs as agrochemicals to effectively mitigate HM toxicity and enhance crop resilience, thereby fostering an environmentally friendly and economically viable approach toward sustainable agricultural advancement in the foreseeable future.
Collapse
Affiliation(s)
- Abazar Ghorbani
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Islamic Republic of Iran.
| | - Abolghassem Emamverdian
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Necla Pehlivan
- Biology Department, Faculty of Arts and Sciences, Recep Tayyip Erdogan University, Rize, 53100, Türkiye
| | - Meisam Zargar
- Department of Agrobiotechnology, Institute of Agriculture, RUDN University, Moscow, 117198, Russia
| | - Seyed Mehdi Razavi
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Islamic Republic of Iran
| | - Moxian Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
27
|
Liu Y, Kang Z, Wang Q, Wang T, Song N, Yu H. One-step synthesis of ferrous disulfide and iron nitride modified hydrochar for enhanced adsorption and reduction of hexavalent chromium in Bacillus LD513 by promoting electron transfer and microbial metabolism. BIORESOURCE TECHNOLOGY 2024; 396:130415. [PMID: 38316228 DOI: 10.1016/j.biortech.2024.130415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/07/2024]
Abstract
Microbial immobilization technology is effective in improving bioremediation efficiency and heavy metal pollution. Herein, Bacillus LD513 with hexavalent chromium (Cr(VI)) tolerance was isolated and immobilized on a novel ferrous disulfide (FeS2)/iron nitride (FeN) modified hydrochar (Fe3-SNHC) prepared from waste straws. The prepared Fe3-SNHC-based LD513 (FeLD) significantly improves Cr(VI) adsorption and reduction by 31.4 % and 15.7 %, respectively, compared to LD513 alone. Furthermore, the FeLD composite system demonstrates efficient Cr(VI) removal efficiency and good environmental adaptability under different culture conditions. Microbial metabolism and electrochemical analysis indicate that Fe3-SNHC is an ideal carrier for protecting LD513 activity, promoting extracellular polymer secretion, and reducing oxidative stress. Additionally, the carrier serves as an electron shuttle that accelerates electron transfer and promotes Cr(VI) reduction. Overall, FeLD is an environmentally friendly biocomposite that shows good promise for reducing Cr(VI) contamination in wastewater treatment.
Collapse
Affiliation(s)
- Yuxin Liu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zhichao Kang
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Quanying Wang
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China
| | - Tianye Wang
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China
| | - Ningning Song
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China
| | - Hongwen Yu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China.
| |
Collapse
|
28
|
Wang Y, Zhou Z, Zhang W, Guo J, Li N, Zhang Y, Gong D, Lyu Y. Metabolic mechanism of Cr(VI) pollution remediation by Alicycliphilus denitrificans Ylb10. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169135. [PMID: 38070572 DOI: 10.1016/j.scitotenv.2023.169135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/16/2023] [Accepted: 12/04/2023] [Indexed: 01/18/2024]
Abstract
Cr(VI) is a well-known toxic pollutant and its remediation has attracted great attention. It is important to continuously discover and explore new high-efficiency Cr(VI) reducing bacteria to further improve the efficiency of Cr(VI) pollution remediation. In this paper, metabolic mechanism of Cr(VI) reduction in a new highly efficient Cr(VI) reducing bacterium, Alicycliphilus denitrificans Ylb10, was investigated. The results showed that Ylb10 could tolerate and completely reduce 450 mg/L Cr(VI). Cr(VI) can be reduced in the intracellular compartment, membrane and the extracellular compartment, with the plasma membrane being the main active site for Cr(VI) reduction. With the addition of NADH, the reduction efficiency of cell membrane components for Cr(VI) increased 2.3-fold. The omics data analysis showed that sulfite reductase CysJ, thiosulfate dehydrogenase TsdA, nitrite reductase NrfA, nitric oxide reductase NorB, and quinone oxidoreductase ChrR play important roles in the reduction of Cr(VI), in the intracellular, and the extracellular compartment, and the membrane of Ylb10, and therefore Cr(VI) was reduced by the combined action of several reductases at these three locations.
Collapse
Affiliation(s)
- Yue Wang
- College of Biological & Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Zhiyi Zhou
- College of Biological & Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Wen Zhang
- College of Biological & Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China; Hubei Engineering Research Center for Biological Jiaosu, China Three Gorges University, Yichang 443002, China; Key Laboratory of Functional Yeast, China National Light Industry, China Three Gorges University, Yichang 443002, China
| | - Jinling Guo
- College of Biological & Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China; Hubei Engineering Research Center for Biological Jiaosu, China Three Gorges University, Yichang 443002, China; Key Laboratory of Functional Yeast, China National Light Industry, China Three Gorges University, Yichang 443002, China
| | - Ning Li
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang 443002, China
| | - Yaoping Zhang
- DOE-Great Lakes Bioenergy Research Center (GLBRC), University of Wisconsin-Madison, Madison, WI, USA
| | - Dachun Gong
- College of Biological & Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China; Hubei Engineering Research Center for Biological Jiaosu, China Three Gorges University, Yichang 443002, China; Key Laboratory of Functional Yeast, China National Light Industry, China Three Gorges University, Yichang 443002, China
| | - Yucai Lyu
- College of Biological & Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China; Hubei Engineering Research Center for Biological Jiaosu, China Three Gorges University, Yichang 443002, China; Key Laboratory of Functional Yeast, China National Light Industry, China Three Gorges University, Yichang 443002, China.
| |
Collapse
|
29
|
Wang X, Zhong L, Huo X, Guo N, Zhang Y, Wang G, Shi K. Chromate-induced methylglyoxal detoxification system drives cadmium and chromate immobilization by Cupriavidus sp. MP-37. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123194. [PMID: 38145638 DOI: 10.1016/j.envpol.2023.123194] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/01/2023] [Accepted: 12/17/2023] [Indexed: 12/27/2023]
Abstract
The detoxification of cadmium (Cd) or chromium (Cr) by microorganisms plays a vital role in bacterial survival and restoration of the polluted environment, but how microorganisms detoxify Cd and Cr simultaneously is largely unknown. Here, we isolated a bacterium, Cupriavidus sp. MP-37, which immobilized Cd(II) and reduced Cr(VI) simultaneously. Notably, strain MP-37 exhibited variable Cd(II) immobilization phenotypes, namely, cell adsorption and extracellular immobilization in the co-presence of Cd(II) and Cr(VI), while cell adsorption in the presence of Cd(II) alone. To unravel Cr(VI)-induced extracellular Cd(II) immobilization, proteomic analysis was performed, and methylglyoxal-scavenging protein (glyoxalase I, GlyI) and a regulator (YafY) showed the highest upregulation in the co-presence of Cd(II) and Cr(VI). GlyI overexpression reduced the intracellular methylglyoxal content and increased the immobilized Cd(II) content in extracellular secreta. The addition of lactate produced by GlyI protein with methylglyoxal as substrate increased the Cd(II) content in extracellular secreta. Reporter gene assay, electrophoretic mobility shift assay, and fluorescence quenching assay demonstrated that glyI expression was induced by Cr(VI) but not by Cd(II), and that YafY positively regulated glyI expression by binding Cr(VI). In the pot experiment, inoculation with the MP-37 strain reduced the Cd content of Oryza sativa L., and their secreted lactate reduced the Cr accumulation in Oryza sativa L. This study reveals that Cr(VI)-induced detoxification system drives methylglyoxal scavenging and Cd(II) extracellular detoxification in Cd(II) and Cr(VI) co-existence environment.
Collapse
Affiliation(s)
- Xing Wang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Limin Zhong
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Xueqi Huo
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Naijiang Guo
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yao Zhang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Gejiao Wang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Kaixiang Shi
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China.
| |
Collapse
|
30
|
Cai Y, Chen X, Qi H, Bu F, Shaaban M, Peng QA. Genome analysis of Shewanella putrefaciens 4H revealing the potential mechanisms for the chromium remediation. BMC Genomics 2024; 25:136. [PMID: 38308218 PMCID: PMC10837877 DOI: 10.1186/s12864-024-10031-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/19/2024] [Indexed: 02/04/2024] Open
Abstract
Microbial remediation of heavy metal polluted environment is ecofriendly and cost effective. Therefore, in the present study, Shewanella putrefaciens stain 4H was previously isolated by our group from the activated sludge of secondary sedimentation tank in a dyeing wastewater treatment plant. The bacterium was able to reduce chromate effectively. The strains showed significant ability to reduce Cr(VI) in the pH range of 8.0 to 10.0 (optimum pH 9.0) and 25-42 ℃ (optimum 30 ℃) and were able to reduce 300 mg/L of Cr(VI) in 72 h under parthenogenetic anaerobic conditions. In this paper, the complete genome sequence was obtained by Nanopore sequencing technology and analyzed chromium metabolism-related genes by comparative genomics The genomic sequence of S. putrefaciens 4H has a length of 4,631,110 bp with a G + C content of 44.66% and contains 4015 protein-coding genes and 3223, 2414, 2343 genes were correspondingly annotated into the COG, KEGG, and GO databases. The qRT-PCR analysis showed that the expression of chrA, mtrC, and undA genes was up-regulated under Cr(VI) stress. This study explores the Chromium Metabolism-Related Genes of S. putrefaciens 4H and will help to deepen our understanding of the mechanisms of Cr(VI) tolerance and reduction in this strain, thus contributing to the better application of S. putrefaciens 4H in the field of remediation of chromium-contaminated environments.
Collapse
Affiliation(s)
- Yajun Cai
- College of Environmental Engineering, Wuhan Textile University, Wuhan, 430200, China
- Clean Production of Textile Printing and Dyeing Engineering Research Center of Ministry of Education, Wuhan, 430200, China
| | - Xu Chen
- College of Environmental Engineering, Wuhan Textile University, Wuhan, 430200, China
| | - Hanghang Qi
- College of Environmental Engineering, Wuhan Textile University, Wuhan, 430200, China
| | - Fantong Bu
- College of Environmental Engineering, Wuhan Textile University, Wuhan, 430200, China
| | - Muhammad Shaaban
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
| | - Qi-An Peng
- College of Environmental Engineering, Wuhan Textile University, Wuhan, 430200, China.
- Clean Production of Textile Printing and Dyeing Engineering Research Center of Ministry of Education, Wuhan, 430200, China.
| |
Collapse
|
31
|
Wu C, Zhou J, Pang S, Yang L, Lichtfouse E, Liu H, Xia S, Rittmann BE. Reduction and precipitation of chromium(VI) using a palladized membrane biofilm reactor. WATER RESEARCH 2024; 249:120878. [PMID: 38007896 DOI: 10.1016/j.watres.2023.120878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/27/2023] [Accepted: 11/14/2023] [Indexed: 11/28/2023]
Abstract
H2-driven reduction of hexavalent chromium (Cr(VI)) using precious-metal catalysts is promising, but its implementation in water treatment has been restricted by poor H2-transfer efficiency and high catalyst loss. We investigated the reduction of Cr(VI) through hydrogenation catalyzed by elemental-palladium nanoparticles (PdNPs) generated in-situ within biofilm of a membrane biofilm reactor (MBfR), creating a Pd-MBfR. Experiments were conducted using a Pd-MBfR and a non-Pd MBfR. The Pd-MBfR achieved Cr(VI) (1000 μg L-1) reduction of >99 % and reduced the concentration of total Cr to below 50 μg L-1, much lower than the total Cr concentration in the non-Pd MBfR effluent (290 μg L-1). The Pd-MBfR also had a lower concentration of dissolved organic compounds compared to the non-Pd MBfR, which minimized the formation of soluble organo-Cr(III) complexes and promoted precipitation of Cr(OH)3. Solid-state characterizations documented deposition of Cr(OH)3 as the product of Cr(VI) reduction in the Pd-MBfR. Metagenomic analyses revealed that the addition and reduction of Cr(VI) had minimal impact on the microbial community (dominated by Dechloromonas) and functional genes in the biofilm of the Pd-MBfR, since the PdNP-catalyzed reduction process was rapid. This study documented efficient Cr(VI) reduction and precipitation of Cr(OH)3 by the Pd-MBfR technology.
Collapse
Affiliation(s)
- Chengyang Wu
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, China
| | - Jingzhou Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, China
| | - Si Pang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, China
| | - Lin Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, China
| | - Eric Lichtfouse
- Aix-Marseille Univ, CNRS, IRD, INRA, Coll France, CEREGE, Aix-en-Provence 13100, France
| | - Hongbo Liu
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, China.
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, China
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 727 Tyler Road, Tempe, USA
| |
Collapse
|
32
|
Shi XC, Wang K, Xue M, Mao W, Xu K, Tremblay PL, Zhang T. Ultrafast removal of toxic Cr(VI) by the marine bacterium Vibrio natriegens. CHEMOSPHERE 2024; 350:141177. [PMID: 38211787 DOI: 10.1016/j.chemosphere.2024.141177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/04/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
The fastest-growing microbe Vibrio natriegens is an excellent platform for bioproduction processes. Until now, this marine bacterium has not been examined for bioremediation applications, where the production of substantial amounts of biomass would be beneficial. V. natriegens can perform extracellular electron transfer (EET) to Fe(III) via a single porin-cytochrome circuit conserved in Vibrionaceae. Electroactive microbes capable of EET to Fe(III) usually also reduce toxic metals such as carcinogenic Cr(VI), which is converted to Cr(III), thus decreasing its toxicity and mobility. Here, the performance of V. natriegens was explored for the bioremediation of Cr(VI). At a density of 100 mg/mL, V. natriegens removed 5-20 mg/L Cr(VI) within 30 s and 100 mg/L Cr(VI) within 10 min. In comparison, the model bacterium Escherichia coli grown to a comparable cell density removed Cr(VI) 36 times slower. To eliminate Cr(VI), V. natriegens had to be metabolically active, and functional outer-membrane c-type cytochromes were required. At the end of the Cr(VI) removal process, V. natriegens had reduced all of it into Cr(III) while adsorbing more than half of the metallic ions. These results demonstrate that V. natriegens, with its fast metabolism, is a viable option for the rapid treatment of aqueous pollution with Cr.
Collapse
Affiliation(s)
- Xiao-Chen Shi
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan, 430070, PR China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China; Advanced Engineering Technology Research Institute of Zhongshan City, Wuhan University of Technology, Zhongshan, 528437, PR China
| | - Kefan Wang
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Miao Xue
- Institut WUT-AMU, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Weijia Mao
- Institut WUT-AMU, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Kai Xu
- Center for Material Research and Analysis, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Pier-Luc Tremblay
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan, 430070, PR China; Institut WUT-AMU, Wuhan University of Technology, Wuhan, 430070, PR China; Shaoxing Institute for Advanced Research, Wuhan University of Technology, Shaoxing, 312300, PR China; Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya, 572024, PR China.
| | - Tian Zhang
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan, 430070, PR China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China; Institut WUT-AMU, Wuhan University of Technology, Wuhan, 430070, PR China; Shaoxing Institute for Advanced Research, Wuhan University of Technology, Shaoxing, 312300, PR China; Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya, 572024, PR China.
| |
Collapse
|
33
|
Herrera-Calderon AC, Leal L, Suárez-Bautista JD, Manotas-Viloria HS, Muñoz-García A, Franco D, Arenas NE, Vanegas J. Metagenomic and genomic analysis of heavy metal-tolerant and -resistant bacteria in resource islands in a semi-arid zone of the Colombian Caribbean. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:5596-5609. [PMID: 38127234 PMCID: PMC10799150 DOI: 10.1007/s11356-023-30253-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/29/2023] [Indexed: 12/23/2023]
Abstract
Bacteria from resource islands can adapt to different extreme conditions in semi-arid regions. We aimed to determine the potential resistance and tolerance to heavy metals from the bacterial community under the canopy of three resource islands in a semi-arid zone of the Colombian Caribbean. Total DNA was extracted from soil and through a metagenomics approach, we identified genes related to heavy metal tolerance and resistance under the influence of drought and humidity conditions, as well as the presence or absence of vegetation. We characterized the genomes of bacterial isolates cultivated in the presence of four heavy metals. The abundances of genes related to heavy metal resistance and tolerance were favored by soil moisture and the presence of vegetation. We observed a high abundance of resistance genes (60.4%) for Cu, Zn, and Ni, while 39.6% represented tolerance. These genes positively correlated with clay and silt content, and negatively correlated with sand content. Resistance and tolerance were associated with detoxification mechanisms involving oxidoreductase enzymes, metalloproteases, and hydrolases, as well as transmembrane proteins involved in metal transport such as efflux pumps and ion transmembrane transporters. The Bacillus velezensis C3-3 and Cytobacillus gottheilii T106 isolates showed resistance to 5 mM of Cd, Co, Mn, and Ni through detoxification genes associated with ABC pumps, metal transport proteins, ion antiporter proteins, and import systems, among others. Overall, these findings highlight the potential of bacteria from resource islands in bioremediation processes of soils contaminated with heavy metals.
Collapse
Affiliation(s)
| | - Leslie Leal
- Department of Biological and Environmental Sciences, Universidad Jorge Tadeo Lozano, Bogotá, Colombia
| | | | | | | | - Diego Franco
- Faculty of Biology, Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Nelson Enrique Arenas
- Faculty of Sciences, Department of Biology, Universidad Antonio Nariño, Bogotá, Colombia
| | - Javier Vanegas
- Faculty of Sciences, Department of Biology, Universidad Antonio Nariño, Bogotá, Colombia.
| |
Collapse
|
34
|
Olaya‐Abril A, Biełło K, Rodríguez‐Caballero G, Cabello P, Sáez LP, Moreno‐Vivián C, Luque‐Almagro VM, Roldán MD. Bacterial tolerance and detoxification of cyanide, arsenic and heavy metals: Holistic approaches applied to bioremediation of industrial complex wastes. Microb Biotechnol 2024; 17:e14399. [PMID: 38206076 PMCID: PMC10832572 DOI: 10.1111/1751-7915.14399] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Cyanide is a highly toxic compound that is found in wastewaters generated from different industrial activities, such as mining or jewellery. These residues usually contain high concentrations of other toxic pollutants like arsenic and heavy metals that may form different complexes with cyanide. To develop bioremediation strategies, it is necessary to know the metabolic processes involved in the tolerance and detoxification of these pollutants, but most of the current studies are focused on the characterization of the microbial responses to each one of these environmental hazards individually, and the effect of co-contaminated wastes on microbial metabolism has been hardly addressed. This work summarizes the main strategies developed by bacteria to alleviate the effects of cyanide, arsenic and heavy metals, analysing interactions among these toxic chemicals. Additionally, it is discussed the role of systems biology and synthetic biology as tools for the development of bioremediation strategies of complex industrial wastes and co-contaminated sites, emphasizing the importance and progress derived from meta-omic studies.
Collapse
Affiliation(s)
- Alfonso Olaya‐Abril
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de RabanalesUniversidad de CórdobaCórdobaSpain
| | - Karolina Biełło
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de RabanalesUniversidad de CórdobaCórdobaSpain
| | - Gema Rodríguez‐Caballero
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de RabanalesUniversidad de CórdobaCórdobaSpain
| | - Purificación Cabello
- Departamento de Botánica, Ecología y Fisiología Vegetal, Edificio Celestino Mutis, Campus de RabanalesUniversidad de CórdobaCórdobaSpain
| | - Lara P. Sáez
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de RabanalesUniversidad de CórdobaCórdobaSpain
| | - Conrado Moreno‐Vivián
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de RabanalesUniversidad de CórdobaCórdobaSpain
| | - Víctor Manuel Luque‐Almagro
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de RabanalesUniversidad de CórdobaCórdobaSpain
| | - María Dolores Roldán
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de RabanalesUniversidad de CórdobaCórdobaSpain
| |
Collapse
|
35
|
Tumolo M, De Paola D, Uricchio VF, Ancona V. Biostimulation effect of different amendments on Cr(VI) recovering microbial community. N Biotechnol 2023; 78:29-41. [PMID: 37793602 DOI: 10.1016/j.nbt.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 09/15/2023] [Accepted: 09/30/2023] [Indexed: 10/06/2023]
Abstract
The present study used Cr(VI)-polluted microcosms amended with lactate or yeast extract, and nonamended microcosms as control, to investigate how a native bacterial community varied in response to the treatment and during the pollutant removal. Results suggested that providing electron donors resulted in a proliferation of a few bacterial species, with the consequent decrease in observed species richness and evenness, and was a driving force for the bacterial compositional shift. Lactate promoted, in the first instance, the enrichment of fermentative bacteria belonging to Chromobacteriaceae, including Paludibacterium, and Micrococcaceae as observed after 4 days. When the rate of Cr(VI) removal was maximum in microcosms amended with lactate, the most represented taxa were Pseudarcicella and Azospirillum. Using yeast extract as a carbon source and electron donor led instead to the significant enrichment of Shewanella, followed by Vogesella and Acinetobacter on the 4th day, corresponding to 90% of Cr(VI) removed from the system. After the complete Cr(VI) removal, achieved in 7 days in the presence of yeast extract, α-diversity was notably increased. The amendment-specific turnover of the enriched bacterial taxa resulted in a different kinetic of pollutant removal. In particular, yeast extract promoted the quickest Cr(VI) reduction, while lactate supported a slower, but also considerable, pollutant removal from water. Since it is reasonable to assume that a macroscopic effect, such as the observed Cr(VI) removal, involved the overrepresented taxa, deepening the knowledge of the native bacterial community and its changes were used to hypothesize the possible microbial pathways involved.
Collapse
Affiliation(s)
- Marina Tumolo
- Water Research Institute, Italian National Research Council (IRSA-CNR), 70132 Bari, BA, Italy; Department of Biology, University of Bari, 70126 Bari, BA, Italy
| | - Domenico De Paola
- Institute of Biosciences and Bioresources, Italian National Research Council (IBBR-CNR), 70126 Bari, BA, Italy.
| | - Vito Felice Uricchio
- Water Research Institute, Italian National Research Council (IRSA-CNR), 70132 Bari, BA, Italy
| | - Valeria Ancona
- Water Research Institute, Italian National Research Council (IRSA-CNR), 70132 Bari, BA, Italy.
| |
Collapse
|
36
|
Li T, Du D, Li C, Zhao J, Guo L, Wang X, Zhao J, Xiang W. Investigation on Cr(VI)-bioreduction mechanism and reduction products by a novel Microbacterium sp. strain NEAU-W11. CHEMOSPHERE 2023; 343:140232. [PMID: 37734508 DOI: 10.1016/j.chemosphere.2023.140232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/12/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
Cr(VI) widely exists in the environment and has highly toxic, carcinogenic and mutagenic effects on all organisms. Physical/chemical methods to remove chromium pollution are economically expensive and have disadvantages like high reagent consumption, energy requirements and so on, while bioremediation is an eco-friendly, simple and cost-effective way. In this study, a novel Cr(VI)-reducing strain, Microbacterium sp. NEAU-W11, was reported, and its reduction mechanism was investigated. Microbacterium sp. NEAU-W11 could effectively degrade Cr(VI) under the conditions of pH 7-10, 15-35 °C, and the coexistence of metal pollutants such as Pb and Ni, etc. In addition, both Fe3+ and Cu2+ could improve the reducing ability of strain NEAU-W11, and glucose and lactose as electron donors also had promoting effect. Heat treatment of resting cells confirmed that chromium removal was not biological sorption but biological reduction. The active reductase of strain NEAU-W11 to chromium(VI) mainly existed in the cell cytoplasm, which is the first report in the genus Microbacterium. Micro-characterization of strain NEAU-W11 and the reduction products identified the reduction products as Cr(III)-ligand complexes bound to extracellular polymeric substances (EPS). Collectively, this study systematically investigated the degradation mechanism of Microbacterium sp. NEAU-W11 and the distribution of degradation product Cr(III), providing a new reduction mechanism for the genus Microbacterium, providing a new perspective for a comprehensive understanding of the degradation and transport of chromium by bacteria, and providing theoretical reference for the migration of metal ions in environmental governance.
Collapse
Affiliation(s)
- Tingting Li
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, People's Republic of China
| | - Dandan Du
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, People's Republic of China
| | - Chenxu Li
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, People's Republic of China
| | - Junlei Zhao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, People's Republic of China
| | - Lifeng Guo
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, People's Republic of China
| | - Xiangjing Wang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, People's Republic of China
| | - Junwei Zhao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, People's Republic of China.
| | - Wensheng Xiang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, People's Republic of China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China.
| |
Collapse
|
37
|
Ramli NN, Kurniawan SB, Ighalo JO, Mohd Said NS, Marsidi N, Buhari J, Ramli Shah RA, Zulkifli M, Alias J, Daud NM, Ahmad J, Othman AR, Sheikh Abdullah SR, Abu Hasan H. A review of the treatment technologies for hexavalent chromium contaminated water. Biometals 2023; 36:1189-1219. [PMID: 37209220 DOI: 10.1007/s10534-023-00512-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
The toxicity of hexavalent chromium (Cr(VI)) present in the environment has exceeded the current limits or standards and thus may lead to biotic and abiotic catastrophes. Accordingly, several treatments, including chemical, biological, and physical approaches, are being used to reduce Cr(VI) waste in the surrounding environment. This study compares the Cr(VI) treatment approaches from several areas of science and their competence in Cr(VI) removal. As an effective combination of physical and chemical approaches, the coagulation-flocculation technique removes more than 98% of Cr(VI) in less than 30 min. Most membrane filtering approaches can remove up to 90% of Cr(VI). Biological approaches that involve the use of plants, fungi, and bacteria also successfully eliminate Cr(VI) but are difficult to scale up. Each of these approaches has its benefits and drawbacks, and their applicability is determined by the research aims. These approaches are also sustainable and environmentally benign, thus limiting their effects on the ecosystem.
Collapse
Affiliation(s)
- Nur Nadhirah Ramli
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia.
| | - Setyo Budi Kurniawan
- Laboratory of Algal Biotechnology, Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Opatovický Mlýn, 379 81, Třeboň, Czech Republic
| | - Joshua O Ighalo
- Department of Chemical Engineering, Nnamdi Azikiwe University, Awka, P. M. B., 5025, Nigeria
| | - Nor Sakinah Mohd Said
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Nuratiqah Marsidi
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Junaidah Buhari
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Radhiatul Atiqah Ramli Shah
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Maryam Zulkifli
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Jahira Alias
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Nurull Muna Daud
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Jamilah Ahmad
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Ahmad Razi Othman
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia.
| | - Siti Rozaimah Sheikh Abdullah
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Hassimi Abu Hasan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
- Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| |
Collapse
|
38
|
Liu J, Sun S, Zhang H, Kong Q, Li Q, Yao X. Remediation materials for the immobilization of hexavalent chromium in contaminated soil: Preparation, applications, and mechanisms. ENVIRONMENTAL RESEARCH 2023; 237:116918. [PMID: 37611786 DOI: 10.1016/j.envres.2023.116918] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/01/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023]
Abstract
Hexavalent chromium is a toxic metal that can induce severe chromium contamination of soil, posing a potential risk to human health and ecosystems. In recent years, the immobilization of Cr(VI) using remediation materials including inorganic materials, organic materials, microbial agents, and composites has exhibited great potential in remediating Cr(VI)-contaminated soil owing to the environmental-friendliness, short period, simple operation, low cost, applicability on an industrial scale, and high efficiency of these materials. Therefore, a systematical summary of the current progress on various remediation materials is essential. This work introduces the production (sources) of remediation materials and examines their characteristics in detail. Additionally, a critical summary of recent research on the utilization of remediation materials for the stabilization of Cr(VI) in the soil is provided, together with an evaluation of their remediation efficiencies toward Cr(VI). The influences of remediation material applications on soil physicochemical properties, microbial community structure, and plant growth are summarized. The immobilization mechanisms of remediation materials toward Cr(VI) in the soil are illuminated. Importantly, this study evaluates the feasibility of each remediation material application for Cr(VI) remediation. The latest knowledge on the development of remediation materials for the immobilization of Cr(VI) in the soil is also presented. Overall, this review will provide a reference for the development of remediation materials and their application in remediating Cr(VI)-contaminated soil.
Collapse
Affiliation(s)
- Jiwei Liu
- College of Geography and Environment, Shandong Normal University, Jinan, Shandong, 250014, China.
| | - Shuyu Sun
- College of Geography and Environment, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Huanxin Zhang
- College of Geography and Environment, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Qiang Kong
- College of Geography and Environment, Shandong Normal University, Jinan, Shandong, 250014, China; Dongying Institute, Shandong Normal University, Dongying, Shandong, 257092, China
| | - Qian Li
- School of Modern Agriculture and Environment, Weifang Institute of Technology, Weifang, Shandong, 261000, China
| | - Xudong Yao
- Project Department, Shandong Luqiao Detection Technology Co., Ltd., Rizhao, Shandong, 276800, China
| |
Collapse
|
39
|
Xia G, Zhu S, Zhao W, Yang X, Sheng L, Mao H. Arbuscular mycorrhizal fungi alter rhizosphere fungal community characteristics of Acorus calamus to improve Cr resistance. PeerJ 2023; 11:e15681. [PMID: 37953782 PMCID: PMC10638908 DOI: 10.7717/peerj.15681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/13/2023] [Indexed: 11/14/2023] Open
Abstract
To investigate changes in fungal community characteristics under different Cr(VI) concentration stresses and the advantages of adding arbuscular mycorrhizal fungi (AMF), we used high throughput sequencing to characterize the fungal communities. Cr(VI) stress reduced rhizosphere soil SOM (soil organic matter) content and AMF addition improved this stress phenomenon. There were significant differences in fungal community changes under different Cr(VI) concentrations. The fungal community characteristics changed through inhibition of fungal metabolic ability, as fungal abundance increased after AMF addition, and the fungal diversity increased under high Cr(VI) concentration. The dominant phyla were members of the Ascomycota, Basidiomycota, Mortierellomycota, and Rozellomycota. Dominant groups relevant to Cr resistance were Ascomycota and Basidiomycota fungi. Moreover, Fungal community characteristics were analyzed using high-throughput sequencing of the cytochrome c metabolic pathway, NADH dehydrogenase, and NADH: ubiquinone reductase and all these functions were enhanced after AMF addition. Therefore, Cr(VI) stress significantly affects fungal community structure, while AMF addition could increase its SOM content, and metabolic capacity, and improve fungal community tolerance to Cr stress. This study contributed to the understanding response of rhizosphere fungal community in AMF-assisted wetland phytoremediation under Cr stress.
Collapse
Affiliation(s)
- Guodong Xia
- Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang, Guizhou, China
| | - Sixi Zhu
- Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang, Guizhou, China
| | - Wei Zhao
- Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang, Guizhou, China
| | - Xiuqing Yang
- Guizhou Minzu University, Guiyang, Guizhou, China
| | - Luying Sheng
- Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang, Guizhou, China
| | - Huan Mao
- Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang, Guizhou, China
| |
Collapse
|
40
|
Shan B, Hao R, Zhang J, Ye Y, Li J, Xu H, Lu A. Exploring the mechanism of enhanced Cr(VI) removal by Lysinibacillus cavernae microcapsules loaded with synthetic nano-hydroxyapatite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:106571-106584. [PMID: 37730979 DOI: 10.1007/s11356-023-29910-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/12/2023] [Indexed: 09/22/2023]
Abstract
In this study, nano-scale hydroxyapatite (HAP) powder was successfully synthesized from waste eggshells and combined with Lysinibacillus cavernae CR-2 to form bio-microcapsules, which facilitated the enhanced removal of Cr(VI) from wastewater. The effects of various parameters, such as bio-microcapsule dosage, HAP dosage, and initial Cr(VI) concentration on Cr(VI) removal, were investigated. Under different treatment conditions, the Cr(VI) removal followed the order of LC@HAP (90.95%) > LC (78.15%) > Free-LC (75.61%) > HAP (6.56%) > NM (0.23%) at the Cr(VI) initial concentration of 50 mg L-1. Relative to other reaction systems, the LC@HAP treatment exhibited a considerable decrease in total Cr content in the solution, with removal rates surpassing 70%. Additionally, the bio-microcapsules maintained significant biological activity after reacting with Cr(VI). Further characterization using SEM, FTIR, XPS, and XRD revealed that the Cr(VI) removal mechanisms by bio-microcapsules primarily involved biological reduction and HAP adsorption. The adsorption of Cr(III) by HAP predominantly occurred through electrostatic interactions and surface complexation, accompanied by an ion exchange process between Cr(III) and Ca(II). Hence, bio-microcapsules, created by combining L. cavernae with HAP, represent a promising emerging material for the enhanced removal of Cr(VI) pollutants from wastewater.
Collapse
Affiliation(s)
- Bing Shan
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| | - Ruixia Hao
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, 100871, China.
| | - Junman Zhang
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| | - Yubo Ye
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| | - Jiani Li
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| | - Hui Xu
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| | - Anhuai Lu
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
41
|
Fernandez M, Callegari EA, Paez MD, González PS, Agostini E. Proteomic analysis to unravel the biochemical mechanisms triggered by Bacillus toyonensis SFC 500-1E under chromium(VI) and phenol stress. Biometals 2023; 36:1081-1108. [PMID: 37209221 DOI: 10.1007/s10534-023-00506-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/24/2023] [Indexed: 05/22/2023]
Abstract
Bacillus toyonensis SFC 500-1E is a member of the consortium SFC 500-1 able to remove Cr(VI) and simultaneously tolerate high phenol concentrations. In order to elucidate mechanisms utilized by this strain during the bioremediation process, the differential expression pattern of proteins was analyzed when it grew with or without Cr(VI) (10 mg/L) and Cr(VI) + phenol (10 and 300 mg/L), through two complementary proteomic approaches: gel-based (Gel-LC) and gel-free (shotgun) nanoUHPLC-ESI-MS/MS. A total of 400 differentially expressed proteins were identified, out of which 152 proteins were down-regulated under Cr(VI) and 205 up-regulated in the presence of Cr(VI) + phenol, suggesting the extra effort made by the strain to adapt itself and keep growing when phenol was also added. The major metabolic pathways affected include carbohydrate and energetic metabolism, followed by lipid and amino acid metabolism. Particularly interesting were also ABC transporters and the iron-siderophore transporter as well as transcriptional regulators that can bind metals. Stress-associated global response involving the expression of thioredoxins, SOS response, and chaperones appears to be crucial for the survival of this strain under treatment with both contaminants. This research not only provided a deeper understanding of B. toyonensis SFC 500-1E metabolic role in Cr(VI) and phenol bioremediation process but also allowed us to complete an overview of the consortium SFC 500-1 behavior. This may contribute to an improvement in its use as a bioremediation strategy and also provides a baseline for further research.
Collapse
Affiliation(s)
- Marilina Fernandez
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto (UNRC), Ruta 36 Km 601, CP 5800, Río Cuarto, Córdoba, Argentina.
- CONICET, Instituto de Biotecnología Ambiental y Salud (INBIAS), Río Cuarto, Córdoba, Argentina.
| | - Eduardo A Callegari
- Division of Basic Biomedical Sciences Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| | - María D Paez
- Division of Basic Biomedical Sciences Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| | - Paola S González
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto (UNRC), Ruta 36 Km 601, CP 5800, Río Cuarto, Córdoba, Argentina
- CONICET, Instituto de Biotecnología Ambiental y Salud (INBIAS), Río Cuarto, Córdoba, Argentina
| | - Elizabeth Agostini
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto (UNRC), Ruta 36 Km 601, CP 5800, Río Cuarto, Córdoba, Argentina
- CONICET, Instituto de Biotecnología Ambiental y Salud (INBIAS), Río Cuarto, Córdoba, Argentina
| |
Collapse
|
42
|
Lin WH, Chien CC, Ou JH, Yu YL, Chen SC, Kao CM. Cleanup of Cr(VI)-polluted groundwater using immobilized bacterial consortia via bioreduction mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 339:117947. [PMID: 37075632 DOI: 10.1016/j.jenvman.2023.117947] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/02/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
Cr(VI) bioreduction has become a remedial alternative for Cr(VI)-polluted site cleanup. However, lack of appropriate Cr(VI)-bioreducing bacteria limit the field application of the in situ bioremediation process. In this study, two different immobilized Cr(VI)-bioreducing bacterial consortia using novel immobilization agents have been developed for Cr(VI)-polluted groundwater remediation: (1) granular activated carbon (GAC) + silica gel + Cr(VI)-bioreducing bacterial consortia (GSIB), and (2) GAC + sodium alginate (SA) + polyvinyl alcohol (PVA) + Cr(VI)-bioreducing bacterial consortia (GSPB). Moreover, two unique substrates [carbon-based agent (CBA) and emulsified polycolloid substrate (EPS)] were developed and used as the carbon sources for Cr(VI) bioreduction enhancement. The microbial diversity, dominant Cr-bioreducing bacteria, and changes of Cr(VI)-reducing genes (nsfA, yieF, and chrR) were analyzed to assess the effectiveness of Cr(VI) bioreduction. Approximately 99% of Cr(VI) could be bioreduced in microcosms with GSIB and CBA addition after 70 days of operation, which caused increased populations of total bacteria, nsfA, yieF, and chrR from 2.9 × 108 to 2.1 × 1012, 4.2 × 104 to 6.3 × 1011, 4.8 × 104 to 2 × 1011, and 6.9 × 104 to 3.7 × 107 gene copies/L. In microcosms with CBA and suspended bacteria addition (without bacterial immobilization), the Cr(VI) reduction efficiency dropped to 60.3%, indicating that immobilized Cr-bioreducing bacteria supplement could enhance Cr(VI) bioreduction. Supplement of GSPB led to a declined bacterial growth due to the cracking of the materials. The addition of GSIB and CBA could establish a reduced condition, which favored the growth of Cr(VI)-reducing bacteria. The Cr(VI) bioreduction efficiency could be significantly improved through adsorption and bioreduction mechanisms, and production of Cr(OH)3 precipitates confirmed the occurrence of Cr(VI) reduction. The main Cr-bioreducing bacteria included Trichococcus, Escherichia-Shigella, and Lactobacillus. Results suggest that the developed GSIB bioremedial system could be applied to cleanup Cr(VI)-polluted groundwater effectively.
Collapse
Affiliation(s)
- Wei-Han Lin
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China; Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chih-Ching Chien
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Chung-Li City, Taoyuan, Taiwan
| | - Jiun-Hau Ou
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Ying-Liang Yu
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Ssu-Ching Chen
- Department of Life Sciences, National Central University, Taoyuan, Taiwan.
| | - Chih-Ming Kao
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
43
|
Zhang D, Li X, Wu Y, Xu X, Liu Y, Shi B, Peng Y, Dai D, Sha Z, Zheng J. Microbe-driven elemental cycling enables microbial adaptation to deep-sea ferromanganese nodule sediment fields. MICROBIOME 2023; 11:160. [PMID: 37491386 PMCID: PMC10367259 DOI: 10.1186/s40168-023-01601-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/17/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND Ferromanganese nodule-bearing deep-sea sediments cover vast areas of the ocean floor, representing a distinctive habitat in the abyss. These sediments harbor unique conditions characterized by high iron concentration and low degradable nutrient levels, which pose challenges to the survival and growth of most microorganisms. While the microbial diversity in ferromanganese nodule-associated sediments has been surveyed several times, little is known about the functional capacities of the communities adapted to these unique habitats. RESULTS Seven sediment samples collected adjacent to ferromanganese nodules from the Clarion-Clipperton Fracture Zone (CCFZ) in the eastern Pacific Ocean were subjected to metagenomic analysis. As a result, 179 high-quality metagenome-assembled genomes (MAGs) were reconstructed and assigned to 21 bacterial phyla and 1 archaeal phylum, with 88.8% of the MAGs remaining unclassified at the species level. The main mechanisms of resistance to heavy metals for microorganisms in sediments included oxidation (Mn), reduction (Cr and Hg), efflux (Pb), synergy of reduction and efflux (As), and synergy of oxidation and efflux (Cu). Iron, which had the highest content among all metallic elements, may occur mainly as Fe(III) that potentially functioned as an electron acceptor. We found that microorganisms with a diverse array of CAZymes did not exhibit higher community abundance. Instead, microorganisms mainly obtained energy from oxidation of metal (e.g., Mn(II)) and sulfur compounds using oxygen or nitrate as an electron acceptor. Chemolithoautotrophic organisms (Thaumarchaeota and Nitrospirota phyla) were found to be potential manganese oxidizers. The functional profile analysis of the dominant microorganisms further indicated that utilization of inorganic nutrients by redox reactions (rather than organic nutrient metabolism) is a major adaptive strategy used by microorganisms to support their survival in the ferromanganese nodule sediments. CONCLUSIONS This study provides a comprehensive metagenomic analysis of microbes inhabiting metal-rich ferromanganese nodule sediments. Our results reveal extensive redundancy across taxa for pathways of metal resistance and transformation, the highly diverse mechanisms used by microbes to obtain nutrition, and their participation in various element cycles in these unique environments. Video Abstract.
Collapse
Affiliation(s)
- Dechao Zhang
- Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Geology, Laoshan Laboratory, Qingdao, 266237, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xudong Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuehong Wu
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, 310012, Hangzhou, China
| | - Xuewei Xu
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, 310012, Hangzhou, China
| | - Yanxia Liu
- Laboratory for Marine Geology, Laoshan Laboratory, Qingdao, 266237, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Benze Shi
- Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Geology, Laoshan Laboratory, Qingdao, 266237, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yujie Peng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dadong Dai
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhongli Sha
- Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Geology, Laoshan Laboratory, Qingdao, 266237, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jinshui Zheng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
44
|
Soni S, Jha AB, Dubey RS, Sharma P. Alleviation of chromium stress in plants using metal and metal oxide nanoparticles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:83180-83197. [PMID: 37358773 DOI: 10.1007/s11356-023-28161-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 06/03/2023] [Indexed: 06/27/2023]
Abstract
Chromium (Cr), one of the hazardous pollutants, exists predominantly as Cr(VI) and Cr(III) in the environment. Cr(VI) is more toxic than Cr(III) due to its high mobility and solubility. Elevated levels of Cr in agricultural soil due to various anthropogenic activities cause Cr accumulation in plants, resulting in a significant reduction in plant yield and quality due to Cr-induced physiological, biochemical and molecular alterations. It can infiltrate the food chain through crop plants and cause harmful effects in humans via biomagnification. Cr(VI) is linked to cancer in humans. Therefore, mitigation strategies are required to remediate Cr-polluted soils and limit its accumulation in plants for safe food production. Recent research on metal and metal oxide nanoparticles (NPs) has shown that they can effectively reduce Cr accumulation and phytotoxicity. The effects of these NPs are influenced by their type and dose, exposure method, plant species and experimental settings. In this review, we present an up-to-date compilation and comprehensive analysis of the existing literature regarding the process of uptake and distribution of Cr and impact and potential mechanisms of metal and metal oxide nanoparticles led mitigation of Cr-induced stress in plants. We have also discussed recent developments, existing research gaps and future research directions in the field of Cr stress mitigation by NPs in plants. Overall, this review can provide valuable insights in reducing Cr accumulation and toxicity using metal and metal oxide nanoparticles, thereby promoting safe and sustainable cultivation of food and phytostabilization of Cr-polluted soil.
Collapse
Affiliation(s)
- Sunil Soni
- School of Environment and Sustainable Development, Central University of Gujarat, Sector 30, Gandhinagar, Gujarat, 382030, India
| | - Ambuj Bhushan Jha
- Crop Development Centre/Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
- School of Life Sciences, Central University of Gujarat, Sector 30, Gandhinagar, Gujarat, 382030, India
| | - Rama Shanker Dubey
- Central University of Gujarat, Sector 29, Gandhinagar, Gujarat, 382030, India
| | - Pallavi Sharma
- School of Environment and Sustainable Development, Central University of Gujarat, Sector 30, Gandhinagar, Gujarat, 382030, India.
| |
Collapse
|
45
|
Salam LB, Obayori OS, Ilori MO, Amund OO. Chromium contamination accentuates changes in the microbiome and heavy metal resistome of a tropical agricultural soil. World J Microbiol Biotechnol 2023; 39:228. [PMID: 37338635 DOI: 10.1007/s11274-023-03681-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/15/2023] [Indexed: 06/21/2023]
Abstract
The impacts of hexavalent chromium (Cr) contamination on the microbiome, soil physicochemistry, and heavy metal resistome of a tropical agricultural soil were evaluated for 6 weeks in field-moist microcosms consisting of a Cr-inundated agricultural soil (SL9) and an untreated control (SL7). The physicochemistry of the two microcosms revealed a diminution in the total organic matter content and a significant dip in macronutrients phosphorus, potassium, and nitrogen concentration in the SL9 microcosm. Heavy metals analysis revealed the detection of seven heavy metals (Zn, Cu, Fe, Cd, Se, Pb, Cr) in the agricultural soil (SL7), whose concentrations drastically reduced in the SL9 microcosm. Illumina shotgun sequencing of the DNA extracted from the two microcosms showed the preponderance of the phyla, classes, genera, and species of Actinobacteria (33.11%), Actinobacteria_class (38.20%), Candidatus Saccharimonas (11.67%), and Candidatus Saccharimonas aalborgensis (19.70%) in SL7, and Proteobacteria (47.52%), Betaproteobacteria (22.88%), Staphylococcus (16.18%), Staphylococcus aureus (9.76%) in SL9, respectively. Functional annotation of the two metagenomes for heavy metal resistance genes revealed diverse heavy metal resistomes involved in the uptake, transport, efflux, and detoxification of various heavy metals. It also revealed the exclusive detection in SL9 metagenome of resistance genes for chromium (chrB, chrF, chrR, nfsA, yieF), cadmium (czcB/czrB, czcD), and iron (fbpB, yqjH, rcnA, fetB, bfrA, fecE) not annotated in SL7 metagenome. The findings from this study revealed that Cr contamination induces significant shifts in the soil microbiome and heavy metal resistome, alters the soil physicochemistry, and facilitates the loss of prominent members of the microbiome not adapted to Cr stress.
Collapse
Affiliation(s)
- Lateef Babatunde Salam
- Department of Biological Sciences, Microbiology unit, Elizade University, Ilara-Mokin, Ondo State, Nigeria.
| | | | - Matthew O Ilori
- Department of Microbiology, University of Lagos, Akoka, Lagos, Nigeria
| | - Olukayode O Amund
- Department of Microbiology, University of Lagos, Akoka, Lagos, Nigeria
| |
Collapse
|
46
|
Fernandez M, Callegari EA, Paez MD, González PS, Agostini E. Functional response of Acinetobacter guillouiae SFC 500-1A to tannery wastewater as revealed by a complementary proteomic approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118333. [PMID: 37320920 DOI: 10.1016/j.jenvman.2023.118333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 04/22/2023] [Accepted: 06/04/2023] [Indexed: 06/17/2023]
Abstract
Acinetobacter guillouiae SFC 500-1 A is a promising candidate for the bioremediation of tannery wastewater. In this study, we applied shotgun proteomic technology in conjunction with a gel-based assay (Gel-LC) to explore the strain's intracellular protein profile when grown in tannery wastewater as opposed to normal culture conditions. A total of 1775 proteins were identified, 52 of which were unique to the tannery wastewater treatment. Many of them were connected to the degradation of aromatic compounds and siderophore biosynthesis. On the other hand, 1598 proteins overlapped both conditions but were differentially expressed in each. Those that were upregulated in wastewater (109) were involved in the processes mentioned above, as well as in oxidative stress mitigation and intracellular redox state regulation. Particularly interesting were the downregulated proteins under the same treatment (318), which were diverse but mainly linked to the regulation of basic cellular functions (replication, transcription, translation, cell cycle, and wall biogenesis); metabolism (amino acids, lipids, sulphate, energetic processes); and other more complex responses (cell motility, exopolysaccharide production, biofilm formation, and quorum sensing). The findings suggest that SFC 500-1 A engages in survival and stress management strategies to cope with the toxic effects of tannery wastewater, and that such strategies may be mostly oriented at keeping metabolic processes to a minimum. Altogether, the results might be useful in the near future to improve the strain's effectiveness if it will be applied for bioremediation.
Collapse
Affiliation(s)
- Marilina Fernandez
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto (UNRC), 5800, Río Cuarto, Córdoba, Argentina; Instituto de Biotecnología Ambiental y Salud (INBIAS-CONICET), Río Cuarto, Córdoba, Argentina.
| | - Eduardo A Callegari
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD, USA.
| | - María D Paez
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD, USA.
| | - Paola S González
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto (UNRC), 5800, Río Cuarto, Córdoba, Argentina; Instituto de Biotecnología Ambiental y Salud (INBIAS-CONICET), Río Cuarto, Córdoba, Argentina.
| | - Elizabeth Agostini
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto (UNRC), 5800, Río Cuarto, Córdoba, Argentina; Instituto de Biotecnología Ambiental y Salud (INBIAS-CONICET), Río Cuarto, Córdoba, Argentina.
| |
Collapse
|
47
|
Feng H, Yang W, Zhang Y, Ding Y, Chen L, Kang Y, Huang H, Chen R. Electroactive microorganism-assisted remediation of groundwater contamination: Advances and challenges. BIORESOURCE TECHNOLOGY 2023; 377:128916. [PMID: 36940880 DOI: 10.1016/j.biortech.2023.128916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/11/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Groundwater contamination has become increasingly prominent, therefore, the development of efficient remediation technology is crucial for improving groundwater quality. Bioremediation is cost-effective and environmentally friendly, while coexisting pollutant stress can affect microbial processes, and the heterogeneous character of groundwater medium can induce bioavailability limitations and electron donor/acceptor imbalances. Electroactive microorganisms (EAMs) are advantageous in contaminated groundwater because of their unique bidirectional electron transfer mechanism, which allows them to use solid electrodes as electron donors/acceptors. However, the relatively low-conductivity groundwater environment is unfavorable for electron transfer, which becomes a bottleneck problem that limits the remediation efficiency of EAMs. Therefore, this study reviews the recent advances and challenges of EAMs applied in the groundwater environment with complex coexisting ions, heterogeneity, and low conductivity and proposes corresponding future directions.
Collapse
Affiliation(s)
- Huajun Feng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China; College of Environment and Resources, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Wanyue Yang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Yangcheng Ding
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China
| | - Long Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China
| | - Ying Kang
- Zhejiang Ecological Environmental Monitoring Center, 117 Xueyuan Road, Hangzhou 310012, Zhejiang, China
| | - Huan Huang
- Zhejiang Ecological Environmental Monitoring Center, 117 Xueyuan Road, Hangzhou 310012, Zhejiang, China
| | - Ruya Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China.
| |
Collapse
|
48
|
Cao L, Lu M, Zhao M, Zhang Y, Nong Y, Hu M, Wang Y, Li T, Chen F, Wang M, Liu J, Li E, Sun H. Physiological and transcriptional studies reveal Cr(VI) reduction mechanisms in the exoelectrogen Cellulomonas fimi Clb-11. Front Microbiol 2023; 14:1161303. [PMID: 37303804 PMCID: PMC10251745 DOI: 10.3389/fmicb.2023.1161303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/24/2023] [Indexed: 06/13/2023] Open
Abstract
A facultative exoelectrogen, Cellulomonas fimi strain Clb-11, was isolated from polluted river water. This strain could generate electricity in microbial fuel cells (MFCs) with carboxymethyl cellulose (CMC) as the carbon source, and the maximum output power density was 12.17 ± 2.74 mW·m-2. In addition, Clb-11 could secrete extracellular chromate reductase or extracellular electron mediator to reduce Cr(VI) to Cr(III). When the Cr(VI) concentration was less than 0.5 mM in Luria-Bertani (LB) medium, Cr(VI) could be completely reduced by Clb-11. However, the Clb-11 cells swelled significantly in the presence of Cr(VI). We employed transcriptome sequencing analysis to identify genes involved in different Cr(VI) stress responses in Clb-11. The results indicate that 99 genes were continuously upregulated while 78 genes were continuously downregulated as the Cr(VI) concentration increased in the growth medium. These genes were mostly associated with DNA replication and repair, biosynthesis of secondary metabolites, ABC transporters, amino sugar and nucleotide sugar metabolism, and carbon metabolism. The swelling of Clb-11 cells might have been related to the upregulation of the genes atoB, INO1, dhaM, dhal, dhak, and bccA, which encode acetyl-CoA C-acetyltransferase, myo-inositol-1-phosphate synthase, phosphoenolpyruvate-glycerone phosphotransferase, and acetyl-CoA/propionyl-CoA carboxylase, respectively. Interestingly, the genes cydA and cydB related to electron transport were continuously downregulated as the Cr(VI) concentration increased. Our results provide clues to the molecular mechanism of Cr(VI) reduction by microorganisms in MFCs systems.
Collapse
|
49
|
Ekeoma BC, Ekeoma LN, Yusuf M, Haruna A, Ikeogu CK, Merican ZMA, Kamyab H, Pham CQ, Vo DVN, Chelliapan S. Recent Advances in the Biocatalytic Mitigation of Emerging Pollutants: A Comprehensive Review. J Biotechnol 2023; 369:14-34. [PMID: 37172936 DOI: 10.1016/j.jbiotec.2023.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/25/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
The issue of environmental pollution has been worsened by the emergence of new contaminants whose morphology is yet to be fully understood. Several techniques have been adopted to mitigate the pollution effects of these emerging contaminants, and bioremediation involving plants, microbes, or enzymes has stood out as a cost-effective and eco-friendly approach. Enzyme-mediated bioremediation is a very promising technology as it exhibits better pollutant degradation activity and generates less waste. However, this technology is subject to challenges like temperature, pH, and storage stability, in addition to recycling difficulty as it is arduous to isolate them from the reaction media. To address these challenges, the immobilization of enzymes has been successfully applied to ameliorate the activity, stability, and reusability of enzymes. Although this has significantly increased the uses of enzymes over a wide range of environmental conditions and facilitated the use of smaller bioreactors thereby saving cost, it still comes with additional costs for carriers and immobilization. Additionally, the existing immobilization methods have their individual limitations. This review provides state-of-the-art information to readers focusing on bioremediation using enzymes. Different parameters such as: the sustainability of biocatalysts, the ecotoxicological evaluation of transformation contaminants, and enzyme groups used were reviewed. The efficacy of free and immobilized enzymes, materials and methods for immobilization, bioreactors used, challenges to large-scale implementation, and future research needs were thoroughly discussed.
Collapse
Affiliation(s)
- Bernard Chukwuemeka Ekeoma
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama, 35487, USA
| | - Leonard Nnamdi Ekeoma
- Department of Pharmacy, Nnamdi Azikiwe University, Agulu Campus, Anambra State, Nigeria
| | - Mohammad Yusuf
- Institute of Hydrocarbon Recovery, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak 32610, Malaysia.
| | - Abdurrashid Haruna
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, 32610, Malaysia; Department of Chemistry, Ahmadu Bello University Zaria-Nigeria
| | | | - Zulkifli Merican Aljunid Merican
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, 32610, Malaysia; Institute of Contaminant Management, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, 32610, Malaysia
| | - Hesam Kamyab
- Faculty of Architecture and Urbanism, UTE University, Calle Rumipamba S/N and Bourgeois, Quito, Ecuador; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India; Process Systems Engineering Centre (PROSPECT), Faculty of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia.
| | - Cham Q Pham
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 755414, Vietnam
| | - Dai-Viet N Vo
- Centre of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, Ho Chi Minh City, 755414, Viet Nam.
| | - Shreeshivadasan Chelliapan
- Engineering Department, Razak Faculty of Technology & Informatics, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia
| |
Collapse
|
50
|
Mortada WI, El-Naggar A, Mosa A, Palansooriya KN, Yousaf B, Tang R, Wang S, Cai Y, Chang SX. Biogeochemical behaviour and toxicology of chromium in the soil-water-human nexus: A review. CHEMOSPHERE 2023; 331:138804. [PMID: 37137390 DOI: 10.1016/j.chemosphere.2023.138804] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/05/2023]
Abstract
Chromium (Cr) affects human health if it accumulates in organs to elevated concentrations. The toxicity risk of Cr in the ecosphere depends upon the dominant Cr species and their bioavailability in the lithosphere, hydrosphere, and biosphere. However, the soil-water-human nexus that controls the biogeochemical behaviour of Cr and its potential toxicity is not fully understood. This paper synthesizes information on different dimensions of Cr ecotoxicological hazards in the soil and water and their subsequent effects on human health. The various routes of environmental exposure of Cr to humans and other organisms are also discussed. Human exposure to Cr(VI) causes both carcinogenic and non-carcinogenic health effects via complicated reactions that include oxidative stress, chromosomal and DNA damage, and mutagenesis. Chromium (VI) inhalation can cause lung cancer; however, incidences of other types of cancer following Cr(VI) exposure are low but probable. The non-carcinogenic health consequences of Cr(VI) exposure are primarily respiratory and cutaneous. Research on the biogeochemical behaviour of Cr and its toxicological hazards on human and other biological routes is therefore urgently needed to develop a holistic approach to understanding the soil-water-human nexus that controls the toxicological hazards of Cr and its detoxification.
Collapse
Affiliation(s)
- Wael I Mortada
- Urology and Nephrology Center, Mansoura University, Mansoura, 35516, Egypt
| | - Ali El-Naggar
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, China; Department of Soil Sciences, Faculty of Agriculture, Ain Shams University, Cairo, 11241, Egypt; Department of Renewable Resources, University of Alberta, Edmonton, Alberta, T6G 2H1, Canada
| | - Ahmed Mosa
- Soils Department, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt.
| | | | - Balal Yousaf
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China; Department of Environmental Engineering, Middle East Technical University, Ankara, 06800, Turkey
| | - Ronggui Tang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, China
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, 196 W Huayang Rd, Yangzhou, Jiangsu, PR China
| | - Yanjiang Cai
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, China
| | - Scott X Chang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, China; Department of Renewable Resources, University of Alberta, Edmonton, Alberta, T6G 2H1, Canada.
| |
Collapse
|