1
|
Zhou J, Liu J, Liu T, Liu G, Li J, Chen D, Feng Y. Electrochemical activation of persulfate by Al-doped blue TiO 2 nanotubes for the multipath degradation of atrazine. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130578. [PMID: 37055983 DOI: 10.1016/j.jhazmat.2022.130578] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/17/2022] [Accepted: 12/07/2022] [Indexed: 06/19/2023]
Abstract
The combination of electrolysis and persulfate activation (E/PDS) is a cost-effective method for the treatment of refractory organics. However, persulfate is difficult to be activated into radicals at the anode, resulting in insufficient electro-activation efficiency. Herein, Al doped blue TiO2 nanotube electrodes (Al-bTNT) were first employed as cost-effective anode materials to fully activate PDS to radicals. In E/PDS, the kinetic constant of atrazine removal by Al-bTNT (0.048 min-1) substantially outperformed the other anodes, including the blue TiO2 nanotube electrodes (bTNT) (0.024 min-1), Ti4O7 (0.02 min-1), and B doped diamond (BDD) anodes (0.023 min-1). The Al-bTNT-E/PDS exhibited a low energy consumption (EEO = 0.72 kWh m-3) and a high mineralization rate. Based on the results of electron paramagnetic resonance, quenching experiments, and probe experiments, we propose that atrazine degrades in the Al-bTNT-E/PDS system mainly via a novel radical pathway that involves both·OH and SO4·- and the generated SO4·- is responsible for the enhanced removal rate. The oxygen vacancies (VO) generated from interstitial Al may serve as the active sites to adsorb and dissociate the persulfate molecules based on extensive characterizations. The attempt at soil-washing wastewater disposal indicated the synergistic system possessed good potential for future practical application.
Collapse
Affiliation(s)
- Jiajie Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Junfeng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tongtong Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guohong Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jiannan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dahong Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
2
|
Wang Z, Sun Z, Yin H, Liu X, Wang J, Zhao H, Pang CH, Wu T, Li S, Yin Z, Yu XF. Data-Driven Materials Innovation and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2104113. [PMID: 35451528 DOI: 10.1002/adma.202104113] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 03/19/2022] [Indexed: 05/07/2023]
Abstract
Owing to the rapid developments to improve the accuracy and efficiency of both experimental and computational investigative methodologies, the massive amounts of data generated have led the field of materials science into the fourth paradigm of data-driven scientific research. This transition requires the development of authoritative and up-to-date frameworks for data-driven approaches for material innovation. A critical discussion on the current advances in the data-driven discovery of materials with a focus on frameworks, machine-learning algorithms, material-specific databases, descriptors, and targeted applications in the field of inorganic materials is presented. Frameworks for rationalizing data-driven material innovation are described, and a critical review of essential subdisciplines is presented, including: i) advanced data-intensive strategies and machine-learning algorithms; ii) material databases and related tools and platforms for data generation and management; iii) commonly used molecular descriptors used in data-driven processes. Furthermore, an in-depth discussion on the broad applications of material innovation, such as energy conversion and storage, environmental decontamination, flexible electronics, optoelectronics, superconductors, metallic glasses, and magnetic materials, is provided. Finally, how these subdisciplines (with insights into the synergy of materials science, computational tools, and mathematics) support data-driven paradigms is outlined, and the opportunities and challenges in data-driven material innovation are highlighted.
Collapse
Affiliation(s)
- Zhuo Wang
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, 315100, P. R. China
| | - Zhehao Sun
- Research School of Chemistry, The Australian National University, ACT, 2601, Australia
| | - Hang Yin
- Research School of Chemistry, The Australian National University, ACT, 2601, Australia
| | - Xinghui Liu
- Department of Chemistry, Sungkyunkwan University (SKKU), 2066 Seoburo, Jangan-Gu, Suwon, 16419, Republic of Korea
| | - Jinlan Wang
- School of Physics, Southeast University, Nanjing, 211189, P. R. China
| | - Haitao Zhao
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China
| | - Cheng Heng Pang
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, 315100, P. R. China
- Municipal Key Laboratory of Clean Energy Conversion Technologies, University of Nottingham Ningbo China, Ningbo, 315100, P. R. China
| | - Tao Wu
- Key Laboratory for Carbonaceous Wastes Processing and Process Intensification Research of Zhejiang Province, University of Nottingham Ningbo China, Ningbo, 315100, P. R. China
- New Materials Institute, University of Nottingham, Ningbo, China, Ningbo, 315100, P. R. China
| | - Shuzhou Li
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Zongyou Yin
- Research School of Chemistry, The Australian National University, ACT, 2601, Australia
| | - Xue-Feng Yu
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China
| |
Collapse
|
3
|
Priyadarshini M, Das I, Ghangrekar MM, Blaney L. Advanced oxidation processes: Performance, advantages, and scale-up of emerging technologies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 316:115295. [PMID: 35597211 DOI: 10.1016/j.jenvman.2022.115295] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/03/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Advanced oxidation processes (AOPs) are promising technologies for partial or complete mineralization of contaminants of emerging concern by highly reactive hydroxyl, hydroperoxyl, superoxide, and sulphate radicals. Detailed investigations and reviews have been reported for conventional AOP systems that have been installed in full-scale wastewater treatment plants. However, recent efforts have focused on the peroxymonosulphate, persulphate, catalytic ozonation, ultrasonication and hydrodynamic cavitation, gamma radiation, electrochemical oxidation, modified Fenton, and plasma-assisted AOPs. This critical review presents the detailed mechanisms of emerging AOP technologies, their performance for treatment of contaminants of emerging concern, the relative advantages and disadvantages of each technology, and the remaining challenges to scale-up and implementation. Among the evaluated technologies, the modified electrochemical oxidation, gamma radiation, and plasma-assisted systems demonstrated the greatest potential for successful and sustainable implementation in wastewater treatment due to their environmental safety, compatibility, and efficient transformation of contaminants of emerging concern by a variety of reactive species. The other emerging AOP systems were also promising, but additional scale-up trials and a deeper understanding of their reaction kinetics in complex wastewater matrices are necessary to determine the technical and economic feasibility of full-scale processes.
Collapse
Affiliation(s)
- Monali Priyadarshini
- School of Environmental Science and Engineering, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Indrasis Das
- Environmental Engineering Department, CSIR-Central Leather Research Institute, Adyar, Chennai, Tamil Nadu, 600020, India; Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| | - Makarand M Ghangrekar
- School of Environmental Science and Engineering, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India; Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Lee Blaney
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD, 21250, USA.
| |
Collapse
|
4
|
Degradation of Residual Herbicide Atrazine in Agri-Food and Washing Water. Foods 2022; 11:foods11162416. [PMID: 36010414 PMCID: PMC9407628 DOI: 10.3390/foods11162416] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Atrazine, an herbicide used to control grassy and broadleaf weed, has become an essential part of agricultural crop protection tools. It is widely sprayed on corn, sorghum and sugar cane, with the attendant problems of its residues in agri-food and washing water. If ingested into humans, this residual atrazine can cause reproductive harm, developmental toxicity and carcinogenicity. It is therefore important to find clean and economical degradation processes for atrazine. In recent years, many physical, chemical and biological methods have been proposed to remove atrazine from the aquatic environment. This review introduces the research works of atrazine degradation in aqueous solutions by method classification. These methods are then compared by their advantages, disadvantages, and different degradation pathways of atrazine. Moreover, the existing toxicological experimental data for atrazine and its metabolites are summarized. Finally, the review concludes with directions for future research and major challenges to be addressed.
Collapse
|
5
|
Enhancing Ozone Oxidation of Reverse Osmosis Concentrate Using Activated Carbon-Supported Cu–Co–Mn Catalysts. Catal Letters 2022. [DOI: 10.1007/s10562-022-04064-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
6
|
Mechanism and Kinetic Analysis of the Degradation of Atrazine by O3/H2O2. WATER 2022. [DOI: 10.3390/w14091412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
In phosphate buffer, the degradation of ATZ by ozone/(O3/H2O2) under various circumstance was explored and the degradation mechanism and dynamics were probed. The findings revealed that when maintaining the reaction temperature at 25 °C, the H2O2 concentration and the O3 concentration were 20 mol/L and 20 mol/L, respectively. Moreover, the degradation rate of 5 mol/L ATZ under the influence of O3/H2O2 was 92.59% in phosphate buffer at pH7. The mechanism analysis showed that HO• and O3 underwent co-oxidized degradation and that the HO• and O3 oxidation degradation ratios were close to 1:1 under acidic conditions. Furthermore, HO• oxidative degradation dominated the ATZ degradation process. The kinetics analysis showed that the ATZ kinetics of O3/H2O2 degradation were more compatible with quasi-second-order reaction kinetics under different temperatures, pH values, and H2O2 concentrations.
Collapse
|
7
|
Yu L, Liu W, Liu L, Dong J, Han F, Chen Z, Hu D, Ge H, Wang H, Cui Y, Zhang W, Zou X, Zhang Y, Liu S, Zhao L. Removal of azimsulfuron and zoxamide using a tapered variable diameter biological fluidized bed combined with electrochemistry: Mass fraction division, energy metabolism activity and carbon emissions. BIORESOURCE TECHNOLOGY 2022; 346:126518. [PMID: 34896261 DOI: 10.1016/j.biortech.2021.126518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
The performance of the combination system of tapered variable diameter biological fluidized bed (TVDBFB) with electrochemistry (EC) was evaluated for removing azimsulfuron and zoxamide under different temperatures and influent concentrations. Maximum removal efficiency of azimsulfuron and zoxamide could reach 94% and 98% under higher influent concentration (about 780 mg/L). As temperature decreased from 32 ℃ to 8 ℃, the mSe increased from 48% to 56%, and the mSo and mSxv decreased from 30% to 22% and 27% to 24%, respectively. As the influent COD equivalent concentration of azimsulfuron and zoxamide enhanced from 260 mg/L to 780 mg/L, the Kd increased from 0.06 d-1 to 0.23 d-1. Temperature and influent concentration were main influencing factors of DHA, ATP and ETS. Increasing aeration in TVDBFB and HRT in EC under shock conditions could improve azimsulfuron and zoxamide removal efficiency, however, it was also accompanied by higher carbon emissions.
Collapse
Affiliation(s)
- Liqiang Yu
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Wenyu Liu
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Lixue Liu
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Jian Dong
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Fei Han
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Zhaobo Chen
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China.
| | - Dongxue Hu
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Hui Ge
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Hongcheng Wang
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Yubo Cui
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Wanjun Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Xuejun Zou
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Ying Zhang
- School of Resources and Environmental Science, Northeast Agricultural University, 59 Mucai Street, HarBin 150030, PR China
| | - Shuchen Liu
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Longmei Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| |
Collapse
|
8
|
Wen D, Chen B, Liu B. An ultrasound/O 3 and UV/O 3 process for atrazine manufacturing wastewater treatment: a multiple scale experimental study. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:229-243. [PMID: 35050879 DOI: 10.2166/wst.2021.633] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
An ultraviolet (UV) and ultrasound (US) enhanced ozonation method were developed to investigate their efficiency on the removal of atrazine and chemical oxygen demand (COD) in authentic atrazine manufacturing wastewater. The bench-scale tests suggested a positive effect of UV and US on the degradation of atrazine within a limited energy range. The pilot-scale flow-through system was further tested by using response surface methodology. The results showed that O3 and its interaction with UV promoted the degradation of both COD and atrazine while its interaction with US inhibited the removal of COD but promoted the removal of atrazine. The optimal removal rate of atrazine (96.9%) was achieved in the condition of 6.86 W/L UV, 1.96 g/L·h O3 and 294 W/L US. Chloride ions hindered the atrazine degradation, but the generated free chlorine radicals were still able to react with atrazine. In terms of energy-effectiveness, the configuration of 14.7 W/L UV and 1.96 g/L·h O3 is the best option, which have the electrical energy per order of 181.6 kWh/m3 for atrazine and 0.13 kWh/g COD. These method and findings could be helpful in the development of energy-efficient advanced oxidation processes in treating wastewater with high salinity and COD loadings.
Collapse
Affiliation(s)
- Diya Wen
- School of Environment, Tsinghua University, Beijing 100084, China; Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Bing Chen
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada E-mail:
| | - Bo Liu
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada E-mail:
| |
Collapse
|
9
|
Niu B, Cai J, Song W, Zhao G. Intermediate accumulation and toxicity reduction during the selective photoelectrochemical process of atrazine in complex water bodies. WATER RESEARCH 2021; 205:117663. [PMID: 34555742 DOI: 10.1016/j.watres.2021.117663] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Selective removal of atrazine (ATZ) in wastewater and clarification of the degradation intermediate-toxicity correlation are of great importance. A newly molecularly imprinted, {001} facets-exposed TiO2 (MI-TiO2,001) photoanode with strong catalytic and selective ability was designed. ATZ was selectively removed from pesticide wastewater, reaching 1.9 µg L-1, approximately 1/10 of the concentration achieved with nonselective treatment. This selective removal originated from the preferential adsorption and enrichment of ATZ onto MI-TiO2,001. The highly specific recognition relied on the halogen bond and strong hydrogen bond formed between the Cl atom and triazine ring π orbital of ATZ and the surface -OH group of MI-TiO2,001 as well as the recognition of MI-TiO2,001 to the shape and size of ATZ. The specific interaction leads to different accumulations of intermediates. The correlation of intermediate and toxicity was also discussed. Aquatic toxicity was rapidly reduced through the direct dealkylation path, and due to the accumulation of highly toxic 2‑hydroxy-4-ethylamino-6-isopropylamino-s-triazine, there will be transient fluctuations via the dechlorination-hydroxylation path first. The final product was identified as nearly nontoxic cyanuric acid, the selective accumulation of which indicated that there was almost 100% removal of aquatic toxicity and cytotoxicity with only 9.8% removal of total organic carbon. This work provides new insight into the correlation of pollutant degradation intermediates and changes in toxicity.
Collapse
Affiliation(s)
- Baoling Niu
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, China
| | - Junzhuo Cai
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, China
| | - Wenjing Song
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guohua Zhao
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, China.
| |
Collapse
|
10
|
Bakaraki Turan N, Zaman BT, Chormey DS, Onkal Engin G, Bakırdere S. Atrazine: From Detection to Remediation – A Minireview. ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1937196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Nouha Bakaraki Turan
- Civil Engineering Faculty, Environmental Engineering Department, Yildiz Technical University, İstanbul, Turkey
| | - Buse Tuğba Zaman
- Faculty of Art and Science, Department of Chemistry, Yildiz Technical University, İstanbul, Turkey
| | - Dotse Selali Chormey
- Faculty of Art and Science, Department of Chemistry, Yildiz Technical University, İstanbul, Turkey
| | - Güleda Onkal Engin
- Civil Engineering Faculty, Environmental Engineering Department, Yildiz Technical University, İstanbul, Turkey
| | - Sezgin Bakırdere
- Faculty of Art and Science, Department of Chemistry, Yildiz Technical University, İstanbul, Turkey
| |
Collapse
|
11
|
Ge H, Yu L, Chen Z, Liu Z, Liu H, Hu D, Wang H, Cui Y, Zhang W, Zou X, Zhang Y. Novel tapered variable diameter biological fluidized bed for treating pesticide wastewater with high nitrogen removal efficiency and a small footprint. BIORESOURCE TECHNOLOGY 2021; 330:124989. [PMID: 33765630 DOI: 10.1016/j.biortech.2021.124989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 05/22/2023]
Abstract
In this study, the removal efficiency of nitrogen, specific nitrification rate (SNR), specific denitrification rate (SDNR) and compliance rate of the novel tapered variable diameter biological fluidized bed (TVDBFB) and anoxic/oxic (AO) process were compared at different temperatures. The results showed that the optimal TN, NH4+-N, and TKN removal efficiencies of the TVDBFB were 76%, 89% and 88%, respectively, and those of AO were 65%, 67% and 69%, respectively. The SNR and SDNR of the TVDBFB were significantly higher than those of AO. The TVDBFB had a smaller footprint than AO. The alkalinity/NH4+-N, BOD5/TN and temperature play important roles in the compliance rate. Increasing the carrier packing rate has emerged as a new strategy for enhancing the compliance rate. Mathematical models were developed and determined to be well-fitted with the experimental values, which can be employed to predict the SNR and SDNR of the TVDBFB.
Collapse
Affiliation(s)
- Hui Ge
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Liqiang Yu
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Zhaobo Chen
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China.
| | - Zhiguo Liu
- Shandong Provincial Academy of Architectural Science Co., Ltd, 29 Wuyingshan Street, Jinan 250000, PR China
| | - Hongxia Liu
- Shandong Provincial Academy of Architectural Science Co., Ltd, 29 Wuyingshan Street, Jinan 250000, PR China
| | - Dongxue Hu
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Hongcheng Wang
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Yubo Cui
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Wanjun Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Xuejun Zou
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Ying Zhang
- School of Resources and Environmental Science, Northeast Agricultural University, 59 Mucai Street, HarBin 150030, PR China
| |
Collapse
|
12
|
Bhat AP, Gogate PR. Degradation of nitrogen-containing hazardous compounds using advanced oxidation processes: A review on aliphatic and aromatic amines, dyes, and pesticides. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123657. [PMID: 33264866 DOI: 10.1016/j.jhazmat.2020.123657] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/29/2020] [Accepted: 08/01/2020] [Indexed: 06/12/2023]
Abstract
Nitrogen-containing amino and azo compounds are widely used in textile, agricultural and chemical industries. Most of these compounds have been demonstrated to be resistant to conventional degradation processes. Advanced oxidation processes can be effective to mineralize nitrogen-containing compounds and improve the efficacy of overall treatment schemes. Due to a global concern for the occurrence of toxic and hazardous amino-compounds and their harmful degradation products in water, it is important to develop technologies that focus on all the aspects of their degradation. Our focus is to present a state-of-the-art review on the degradation of several amine- and azo-based compounds using advanced oxidation processes. The categories reviewed are aromatic amines, aliphatic amines, N-containing dyes and N-containing pesticides. Data has been compiled for degradation efficiencies of each process, reaction mechanisms focusing on specific attack of oxidants on N atoms, the effect of process parameters like pH, initial concentration, time of treatment, etc. and identification of intermediates. Several AOPs have been compared to provide a systematic overview of available literature that will drive essential aspects of future research on amine-based compounds. Ozone is observed to be highly reactive to most amines, dyes and pesticides, followed by Fenton processes. Degradation of amines is highly sensitive to pH and mechanisms differ at different pH values. Cavitation is a promising alternative pre-treatment method for cost reduction. Hybrid methods under optimized conditions are demonstrated to give synergistic effects and must be tailored for specific effluents in question. In conclusion, even though nitrogen-containing compounds are recalcitrant in nature, the use of advanced oxidation processes at carefully established optimum conditions can yield highly efficient degradation of the compounds.
Collapse
Affiliation(s)
- Akash P Bhat
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| | - Parag R Gogate
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai, 400019, India.
| |
Collapse
|
13
|
Pesticide decontamination using UV/ferrous-activated persulfate with the aid neuro-fuzzy modeling: A case study of Malathion. Food Res Int 2020; 137:109557. [DOI: 10.1016/j.foodres.2020.109557] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/20/2020] [Accepted: 07/13/2020] [Indexed: 11/30/2022]
|
14
|
Pirsaheb M, Moradi N. Sonochemical degradation of pesticides in aqueous solution: investigation on the influence of operating parameters and degradation pathway – a systematic review. RSC Adv 2020; 10:7396-7423. [PMID: 35492163 PMCID: PMC9049958 DOI: 10.1039/c9ra11025a] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 02/06/2020] [Indexed: 12/07/2022] Open
Abstract
Along with the wide production, consumption and disposal of pesticides in the world, the concerns over their human and environmental health impacts are rapidly growing.
Collapse
Affiliation(s)
- Meghdad Pirsaheb
- Research Center for Environmental Determinants of Health
- Department of Environmental Health Engineering
- School of Public Health
- Kermanshah University of Medical Sciences
- Kermanshah
| | - Negin Moradi
- Research Center for Environmental Determinants of Health
- Department of Environmental Health Engineering
- School of Public Health
- Kermanshah University of Medical Sciences
- Kermanshah
| |
Collapse
|
15
|
Photo-electrocatalytic oxidation of atrazine using sputtured deposited TiO2: WN photoanodes under UV/visible light. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.04.067] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
16
|
Ateia M, Alalm MG, Awfa D, Johnson MS, Yoshimura C. Modeling the degradation and disinfection of water pollutants by photocatalysts and composites: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134197. [PMID: 31494425 DOI: 10.1016/j.scitotenv.2019.134197] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/20/2019] [Accepted: 08/29/2019] [Indexed: 05/26/2023]
Abstract
Recently, a series of new photocatalysts have been developed for to combat diverse bio-recalcitrant contaminants and the inactivation of bacteria. Modeling photocatalytic processes is important to assess these materials, and to understand and optimize their performance. In this study, the recent literature is critically reviewed and analyzed to identify and compare methods of modeling photocatalytic performance. The Langmuir-Hinshelwood model (L-H) has been used in many studies to rationalize the degradation kinetics of single contaminants because it is the simplest model including both the adsorption equilibrium and degradation rates. Other studies report the development of more sophisticated variants of the L-H model that include the rates of catalyst excitation, recombination of electron-hole pairs, production of reactive oxygen species (ROS), and formation of by-products. Modified Chick-Watson (CW) and Hom models have been used by many researchers to include lag phases of bacteria in the description of disinfection kinetics. Artificial neural networks (ANNs) have been used to analyze the effects of operational conditions on photocatalyst performance. Moreover, response surface methodology (RSM) has been employed for experimental design, and optimization of operational conditions. We have reviewed and analyzed all available articles that model photocatalytic activity towards water pollution, summarized and put them in context, and recommended future research directions.
Collapse
Affiliation(s)
- Mohamed Ateia
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634, United States.
| | - Mohamed Gar Alalm
- Department of Public Works Engineering, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt.
| | - Dion Awfa
- Department of Civil and Environmental Engineering, School of Environment and Society, Tokyo Institute of Technology, 2-12-1, M1-4, Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Matthew S Johnson
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Chihiro Yoshimura
- Department of Civil and Environmental Engineering, School of Environment and Society, Tokyo Institute of Technology, 2-12-1, M1-4, Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
17
|
de O Teixeira GN, da Cruz AMS, Samanamud GRL, França AB, Naves LLR, Melo D, Morais D, Baston EP, Naves FL. The use of nanovermiculite catalyst in the study of removal of the organic load and degradation of atrazine via ozone process in RPB reactor. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2019; 55:19-29. [PMID: 31524057 DOI: 10.1080/03601234.2019.1661199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The main objective of this study is the degradation of a synthetic solution of atrazine by a modified vermiculite catalyzed ozonation, in a rotating packed bed (RPB) reactor. A 0.5 L RPB reactor was used to perform the experiments, using a Central Composite Design (CCD) response surface to construct the quadratic model based on the factors: pH, catalyst concentration and reactor rotation frequency. The response variable was the removal of the organic load measured in terms of Chemical Oxygen Demand (COD). After the complete quadratic model was constructed through the response surface, the COD degradation process had an optimal removal of 41% under the following conditions: pH 8.0, rotation of 1150 rpm and catalyst concentration 0.66 g L-1.
Collapse
Affiliation(s)
- Gabriel N de O Teixeira
- Chemical Engineering and Statistics Department (Research Group Waste Treatment and Management Processes), Federal University of Sao João Del Rei, São João Del Rei, Brazil
| | - Arthur M S da Cruz
- Chemical Engineering and Statistics Department (Research Group Waste Treatment and Management Processes), Federal University of Sao João Del Rei, São João Del Rei, Brazil
| | | | - Alexandre B França
- Chemical Engineering and Statistics Department (Research Group Waste Treatment and Management Processes), Federal University of Sao João Del Rei, São João Del Rei, Brazil
| | - Luzia L R Naves
- Chemical Engineering and Statistics Department (Research Group Waste Treatment and Management Processes), Federal University of Sao João Del Rei, São João Del Rei, Brazil
| | - Diego Melo
- Chemical Engineering and Statistics Department (Research Group Waste Treatment and Management Processes), Federal University of Sao João Del Rei, São João Del Rei, Brazil
| | - Daiana Morais
- Chemical Engineering and Statistics Department (Research Group Waste Treatment and Management Processes), Federal University of Sao João Del Rei, São João Del Rei, Brazil
| | - Eduardo Prado Baston
- Chemical Engineering and Statistics Department (Research Group Waste Treatment and Management Processes), Federal University of Sao João Del Rei, São João Del Rei, Brazil
| | - Fabiano L Naves
- Chemical Engineering and Statistics Department (Research Group Waste Treatment and Management Processes), Federal University of Sao João Del Rei, São João Del Rei, Brazil
| |
Collapse
|
18
|
Li Z. The use of a disability-adjusted life-year (DALY) metric to measure human health damage resulting from pesticide maximum legal exposures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 639:438-456. [PMID: 29800838 DOI: 10.1016/j.scitotenv.2018.05.148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 04/26/2018] [Accepted: 05/12/2018] [Indexed: 06/08/2023]
Abstract
Most agencies around the world have developed a separate regulation frameworks for pesticides with different modes of action, likely because of the lack of a uniform quantification for health damage, which may underestimate pesticides' impact on human health and disease burden. In this study, the disability-adjusted life-year, a uniform metric used to express the human health impact and damage, was used to measure theoretical health damage resulting from maximum exposure as permitted by law to the most widely used pesticides. The total human risk characterization factors computed from chlorpyrifos and diazinon standard values through main exposure routes are generally larger than that of other widely used pesticides, and most factors of chlorpyrifos exceed the upper bounds of health risk. In addition, the damages to human health quantified from soil legal exposure to these widely used pesticides are much lower than that from exposure to drinking water or foods, which could help derive exposure allocation factors for different exposure routes. A total of 412 (28.3% of the total) computed total risk characterization factors of the 13 pesticides exceed the upper bound of tolerable risk uncertainty. Some nations, such as those in Europe, have adopted uniform and strict pesticide standard values as well as some computed risk characterization factors presented in the consensus data cluster. In addition, the results of an analysis on the geographical distribution of health risk characterization factors indicated that European nations have provided more conservative pesticide standard values in general. It is hoped that regulatory agencies can apply this uniform metric to compare and formulate legal limits for pesticides that have different modes of action.
Collapse
Affiliation(s)
- Zijian Li
- Parsons Corporation, Chicago, IL 60606, USA; Department of Civil Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
19
|
Removal of atrazine by photoelectrocatalytic process under sunlight using WN-codoped TiO2 photoanode. J APPL ELECTROCHEM 2018. [DOI: 10.1007/s10800-018-1253-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
20
|
Jing L, Chen B, Wen D, Zheng J, Zhang B. The removal of COD and NH 3-N from atrazine production wastewater treatment using UV/O 3: experimental investigation and kinetic modeling. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:2691-2701. [PMID: 29134527 DOI: 10.1007/s11356-017-0701-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 11/06/2017] [Indexed: 06/07/2023]
Abstract
In this study, a UV/O3 hybrid advanced oxidation system was used to remove chemical oxygen demand (COD), ammonia nitrogen (NH3-N), and atrazine (ATZ) from ATZ production wastewater. The removal of COD and NH3-N, under different UV and O3 conditions, was found to follow pseudo-first-order kinetics with rate constants ranging from 0.0001-0.0048 and 0.0015-0.0056 min-1, respectively. The removal efficiency of ATZ was over 95% after 180 min treatment, regardless the level of UV power. A kinetic model was further proposed to simulate the removal processes and to quantify the individual roles and contributions of photolysis, direct O3 oxidation, and hydroxyl radical (OH·) induced oxidation. The experimental and kinetic modeling results agreed reasonably well with deviations of 12.2 and 13.1% for the removal of COD and NH3-N, respectively. Photolysis contributed appreciably to the degradation of ATZ, while OH· played a dominant role for the removal of both COD and NH3-N, especially in alkaline environments. This study provides insights into the treatment of ATZ containing wastewater using UV/O3 and broadens the knowledge of kinetics of ozone-based advanced oxidation processes.
Collapse
Affiliation(s)
- Liang Jing
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL, A1B 3X5, Canada
| | - Bing Chen
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL, A1B 3X5, Canada.
- Key Laboratory of Regional Energy and Environmental Systems Optimization, Ministry of Education, Resources and Environmental Research Academy, North China Electric Power University, Beijing, 102206, China.
| | - Diya Wen
- Key Laboratory of Regional Energy and Environmental Systems Optimization, Ministry of Education, Resources and Environmental Research Academy, North China Electric Power University, Beijing, 102206, China
| | - Jisi Zheng
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL, A1B 3X5, Canada
| | - Baiyu Zhang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL, A1B 3X5, Canada
| |
Collapse
|