1
|
Kumari P, Kaushal D, Chauhan V, Shandilya P, Kumar M. Synthesis of gum acacia-cl-acrylic acid-co-itaconic acid hydrogels for efficient removal of toxic dye rhodamine-B: A step for sustainable environment. Int J Biol Macromol 2024; 292:139296. [PMID: 39736289 DOI: 10.1016/j.ijbiomac.2024.139296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/16/2024] [Accepted: 12/27/2024] [Indexed: 01/01/2025]
Abstract
In the present study, we prepared Gum Acacia-cl-Acrylic acid-co-itaconic acid (GA-cl-AA-co-IA) hydrogels by free radical crosslink polymerization method for the efficient removal of Rhodamine-B (RhB) dye. The hydrogels were further characterized by different characterization techniques: Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), Atomic force microscopy (AFM), Brunuer-Emmett-Teller (BET) and field emission scanning electron microscopy (FE-SEM) to confirm synthesis. The synthesis parameters were optimized by swelling studies, which were performed by gravimetric analysis method. The maximum swelling ability of hydrogels synthesized at optimized concentrations was 2170 % in basic medium. GA-cl-AA-co-IA hydrogels showed a good adsorption ability for RhB dye. The impact of various adsorption parameters (adsorbent dose, initial adsorbate (dye) concentration, pH of medium, and temperature) on adsorption ability was also evaluated. Langmuir, Freundlich and temkin adsorption isotherm model and pseudo first, second order model and intra-particle diffusion kinetic models were used to study the nature of adsorption process and kinetics. The adsorption by the hydrogels were best explained by Langmuir isotherm and Pseudo second order kinetic model. The reusability studies of GA-cl-AA-co-IA hydrogel showed that hydrogels showed good adsorption abilities even after 6 consecutive adsorption desorption cycles.
Collapse
Affiliation(s)
- Pooja Kumari
- Department of Chemistry and Chemical Sciences, Central University of Himachal Pradesh, Dharamshala, Kangra 176206, India
| | - Deepika Kaushal
- Department of Chemistry, Sri Sai University Palampur, HP, India
| | - Vinay Chauhan
- School of Advanced Chemical Sciences, Shoolini University, Solan, HP, 173229, India
| | - Pooja Shandilya
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA; Department of Chemistry, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | - Manish Kumar
- Department of Chemistry and Chemical Sciences, Central University of Himachal Pradesh, Dharamshala, Kangra 176206, India.
| |
Collapse
|
2
|
Marambio OG, Muñoz A, Martin-Trasancos R, Sánchez J, Pizarro GDC. The Design of a Controlled-Release Polymer of a Phytopharmaceutical Agent: A Study on the Release in Different PH Environments Using the Ultrafiltration Technique. Polymers (Basel) 2024; 16:3492. [PMID: 39771344 PMCID: PMC11728549 DOI: 10.3390/polym16243492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025] Open
Abstract
A series of hydrophilic copolymers were prepared using 2-hydroxyethyl methacrylate (HEMA) and itaconic acid (IA) from free radical polymerization at different feed monomer ratios using ammonium persulfate (APS) initiators in water at 70 °C. The herbicide 2,4-dichlorophenoxy acetic acid (2,4-D) was grafted to Poly(HEMA-co-IA) by a condensation reaction. The hydrolysis of the polymeric release system, Poly(HEMA-co-IA)-2,4-D, demonstrated that the release of the herbicide in an aqueous phase depends on the polymeric system's pH value and hydrophilic character. In addition, the swelling behavior (Wt%) was studied at different pH values using Liquid-phase Polymer Retention (LPR) in an ultrafiltration system. The acid hydrolysis of the herbicide from the conjugates follows a first-order kinetic, showing higher kinetic constants as the pH increases. The base-catalyzed hydrolysis reaction of the herbicide follows a zero-order kinetic, where the basic medium acts as a catalyst, accelerating the release rate of the herbicide and showing higher kinetic constants as the pH increases. The differences in the release rates found for the hydrogel herbicide at different pH values can be correlated with the difference in their swelling capacity, where the release rate generally increases with an increase in the swelling capacity from water solution at higher pH values. The study of the release process revealed that all samples in distilled water at a pH of 10 are representative of agricultural systems. It showed first-order swelling kinetics and an absorption capacity that conforms to the parameters for hydrogels for agricultural applications, which supports their potential for these purposes.
Collapse
Affiliation(s)
- Oscar G. Marambio
- Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y Medio Ambiente, Universidad Tecnológica Metropolitana (UTEM), J. P. Alessandri 1242, Santiago 7800002, Chile
| | - Alejandro Muñoz
- Departamento de Química Física, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
| | - Rudy Martin-Trasancos
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170002, Chile;
| | - Julio Sánchez
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
| | - Guadalupe del C. Pizarro
- Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y Medio Ambiente, Universidad Tecnológica Metropolitana (UTEM), J. P. Alessandri 1242, Santiago 7800002, Chile
| |
Collapse
|
3
|
Adamu H, Bello U, IbrahimTafida U, Garba ZN, Galadima A, Lawan MM, Abba SI, Qamar M. Harnessing bio and (Photo)catalysts for microplastics degradation and remediation in soil environment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122543. [PMID: 39305881 DOI: 10.1016/j.jenvman.2024.122543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/02/2024] [Accepted: 09/16/2024] [Indexed: 11/17/2024]
Abstract
Soil pollution by microplastics (MPs) is an escalating environmental crisis with far-reaching consequences. However, current research on the degradation and/or remediation of MPs has mainly focused on water-simulated environments, with little attention given to soil MPs. Therefore, the review explores such terrestrial territory, exploring the potential of biodegradation and novel photocatalytic technologies for MPs degradation/remediation in soil. This review comprehensively investigates the potential of biological and photocatalytic approaches for soil MPs degradation and remediation. A temporal analysis of research from 2004 to 2024 highlights the increasing focus on this critical issue. The review explores the biocatalytic roles of diverse enzymes, including cutinase, PETase, MHETase, hydrolase, lipase, laccase, lignin peroxidase, and Mn-peroxidase, in MPs degradation. Strategies for enzyme engineering, such as protein engineering and immobilization, are explored to enhance catalytic efficiency. The potential for developing enzyme consortia for optimized MP degradation is also discussed. Photocatalytic remediation using TiO2, ZnO, clay, hydrogel, and other photocatalysts is examined, emphasizing their mechanisms and effectiveness. Computational modeling is proposed to deepen understanding of soil MPs-catalyst interactions, primarily aiming to develop novel catalysts tailored for soil environments for environmental safety and sustainable restoration. A comparative analysis of biological and photocatalytic approaches evaluates their environmental implications and the potential for synergistic combinations, with emphasis on soil quality protection, restoration and impact on soil ecosystems. Hence, this review accentuates the urgent need for innovative solutions to address MPs pollution in soil and provides a foundational understanding of the current knowledge gaps, as well as paves the way for future research and development.
Collapse
Affiliation(s)
- Haruna Adamu
- Department of Environmental Management Technology, Abubakar Tafawa Balewa University, Yelwa Campus, 740272, Bauchi, Nigeria; Department of Chemistry, Abubakar Tafawa Balewa University, Gubi Campus, 740102, Bauchi, Nigeria.
| | - Usman Bello
- Department of Chemistry, Abubakar Tafawa Balewa University, Gubi Campus, 740102, Bauchi, Nigeria; Biofuel and Biochemical Research Group, Department of Chemical Engineering, Universiti Teknologi, PETRONAS, Seri Iskandar, 32610, Malaysia
| | - Usman IbrahimTafida
- Department of Chemistry, Abubakar Tafawa Balewa University, Gubi Campus, 740102, Bauchi, Nigeria
| | | | - Ahmad Galadima
- Department of Chemistry, Federal University Gusau, Nigeria
| | | | - Sani Isah Abba
- Department of Chemical Engineering, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia; Water Research Centre, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia
| | - Mohammad Qamar
- Department of Materials Science and Engineering (MSE), King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia; Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
4
|
Sayyar Z, Pakdel PM, Peighambardoust SJ. Oral delivery of Sunitinib malate using carboxymethyl cellulose/poly(acrylic acid-itaconic acid)/Cloisite 30B nanocomposite hydrogel as a pH-responsive carrier. BMC Biotechnol 2024; 24:70. [PMID: 39350177 PMCID: PMC11441084 DOI: 10.1186/s12896-024-00883-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 07/30/2024] [Indexed: 10/04/2024] Open
Abstract
This work aimed to fabricate a Cloisite 30B-incorporated carboxymethyl cellulose graft copolymer of acrylic acid and itaconic acid hydrogel (Hyd) via a free radical polymerization method for controlled release of Sunitinib malate anticancer drug. The synthesized samples were characterized by FTIR, XRD, TEM, and SEM-dot mapping analyses. The encapsulation efficiency of Hyd and Hyd/Cloisite 30B (6 wt%) was 81 and 93%, respectively, showing the effectiveness of Cloisite 30B in drug loading. An in vitro drug release study showed that drug release from all samples in a buffer solution with pH 7.4 was higher than in a buffer solution with pH 5.5. During 240 min, the cumulative drug release from Hyd/Cloisite 30B (94.97% at pH 7.4) is lower than Hyd (53.71% at pH 7.4). Also, drug-loaded Hyd/Cloisite 30B (6 wt%) demonstrated better antibacterial activity towards S. Aureus bacteria and E. Coli. High anticancer activity of Hyd/Cloisite 30B against MCF-7 human breast cancer cells was shown by the MTT assay, with a MCF-7 cell viability of 23.82 ± 1.23% after 72-hour incubation. Our results suggest that Hyd/Cloisite 30B could be used as a pH-controlled carrier to deliver anticancer Sunitinib malate.
Collapse
Affiliation(s)
- Zahra Sayyar
- Department of Chemical Engineering, University of Bonab, Bonab, 55513-95133, Iran.
| | | | | |
Collapse
|
5
|
Wouters M, Van Moll L, De Vooght L, Choińska E, Idaszek J, Szlązak K, Heljak MK, Święszkowski W, Cos P. Polymyxin B Peptide Hydrogel Coating: A Novel Approach to Prevent Ventilator-Associated Pneumonia. Int J Mol Sci 2024; 25:10269. [PMID: 39408597 PMCID: PMC11477085 DOI: 10.3390/ijms251910269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Ventilator-associated pneumonia (VAP) remains one of the most common hospital-acquired infections (HAI). Considering the complicated diagnosis and the lack of effective treatment, prophylactic measures are suggested as the new standard to prevent the disease. Although VAP often manifests a polymicrobial nature, Pseudomonas aeruginosa remains one of the pathogens associated with the highest morbidity and mortality rates within these mechanically ventilated patients. In this paper, we report on the development of an antibacterial hydrogel coating using the polymyxin B (PMB) peptide to prevent bacterial adhesion to the polymeric substrate. We fully characterized the properties of the coating using atomic force microscopy (AFM), scanning electron microscopy (SEM), wettability analyses and Fourier-transform infrared (FTIR) and Raman spectroscopy. Furthermore, several biological assays confirmed the antibacterial and anti-biofilm effect of the tubing for at least 8 days against P. aeruginosa. On top of that, the produced coating is compliant with the requirements regarding cytocompatibility stated in the ISO (International Organization for Standardization) 10993 guidelines and an extended release of PMB over a period of at least 42 days was detected. In conclusion, this study serves as a foundation for peptide-releasing hydrogel formulas in the prevention of VAP.
Collapse
Affiliation(s)
- Milan Wouters
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, 2000 Antwerp, Belgium; (M.W.); (L.V.M.); (L.D.V.)
| | - Laurence Van Moll
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, 2000 Antwerp, Belgium; (M.W.); (L.V.M.); (L.D.V.)
| | - Linda De Vooght
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, 2000 Antwerp, Belgium; (M.W.); (L.V.M.); (L.D.V.)
| | - Emilia Choińska
- Faculty of Materials Sciences and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland; (E.C.); (J.I.); (K.S.); (M.K.H.)
| | - Joanna Idaszek
- Faculty of Materials Sciences and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland; (E.C.); (J.I.); (K.S.); (M.K.H.)
| | - Karol Szlązak
- Faculty of Materials Sciences and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland; (E.C.); (J.I.); (K.S.); (M.K.H.)
| | - Marcin K. Heljak
- Faculty of Materials Sciences and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland; (E.C.); (J.I.); (K.S.); (M.K.H.)
| | - Wojciech Święszkowski
- Faculty of Materials Sciences and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland; (E.C.); (J.I.); (K.S.); (M.K.H.)
| | - Paul Cos
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, 2000 Antwerp, Belgium; (M.W.); (L.V.M.); (L.D.V.)
| |
Collapse
|
6
|
Zeb BS, Mahmood Q, Irshad M, Zafar H, Wang R. Sustainable treatment of combined industrial wastewater: synergistic phytoremediation with Eichhornia crassipes, Pistia stratiotes, and Arundo donax in biofilm wetlands. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 27:128-134. [PMID: 39300947 DOI: 10.1080/15226514.2024.2403037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
This study investigates the treatment of combined wastewater from Hattar Industrial Estate using Biofilm Wetlands (BW) planted with monoculture species: Eichhornia crassipes (EAC), Pistia stratiotes (WL), and Arundo donax (GR). Each species showed distinct capabilities in organic degradation, metal uptake, and pH stabilization. BW2, planted with EAC, achieved the highest total solids (TS) and total suspended solids (TSS) removal efficiencies of 66% and 65%, respectively. GR effectively reduced initial COD concentrations from 232 mg/L to 58.67 mg/L, while EAC and WL reached reductions to 72.78 mg/L and 70.67 mg/L, respectively. Overall, the plant efficiency ranking was EAC > GR > WL. These findings underscore the potential of these plant species in synergistic BW systems, highlighting their role as natural solutions for remediating complex industrial effluents. This research contributes to advancing eco-friendly wastewater treatment approaches, suggesting promising applications for sustainable practices in industrial contexts. RESEARCH HIGHLIGHTSThis research assessed the effectiveness of phytoremediation using Eichhornia crassipes, Pistia stratiotes, and Arundo donax for removing pollutants i.e. heavy metals (Cd, Pb, Ni, K, Ca, Mg, Na, Fe, Hg) nitrates, phosphates and sulfates from combined industrial wastewater of Hattar Industrial Estate Pakistan.It highlighted the potential of selected plant species' as natural treatment systems, providing crucial insights into their efficiency.Findings contribute to understanding nature-based solutions for complex industrial effluents.
Collapse
Affiliation(s)
- Bibi Saima Zeb
- Department of Environmental Sciences, COMSATS University Islamabad- Abbottabad Campus, Abbottabad, Pakistan
| | - Qaisar Mahmood
- Department of Environmental Sciences, COMSATS University Islamabad- Abbottabad Campus, Abbottabad, Pakistan
- Department of Biology, College of Science, University of Bahrain, Sakhir, Bahrain
| | - Muhammad Irshad
- Department of Environmental Sciences, COMSATS University Islamabad- Abbottabad Campus, Abbottabad, Pakistan
| | - Habiba Zafar
- Department of Environmental Sciences, COMSATS University Islamabad- Abbottabad Campus, Abbottabad, Pakistan
| | - Ru Wang
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| |
Collapse
|
7
|
Rahul, Jindal R. Efficient removal of toxic dyes malachite green and fuchsin acid from aqueous solutions using Pullulan/CMC hydrogel. POLYMER 2024; 307:127203. [DOI: 10.1016/j.polymer.2024.127203] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
8
|
Lavrov KV, Shemyakina AO, Grechishnikova EG, Gerasimova TV, Kalinina TI, Novikov AD, Leonova TE, Ryabchenko LE, Bayburdov TA, Yanenko AS. A new concept of biocatalytic synthesis of acrylic monomers for obtaining water-soluble acrylic heteropolymers. Metab Eng Commun 2024; 18:e00231. [PMID: 38222043 PMCID: PMC10787234 DOI: 10.1016/j.mec.2023.e00231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/03/2023] [Accepted: 12/13/2023] [Indexed: 01/16/2024] Open
Abstract
Rhodococcus strains were designed as model biocatalysts (BCs) for the production of acrylic acid and mixtures of acrylic monomers consisting of acrylamide, acrylic acid, and N-alkylacrylamide (N-isopropylacrylamide). To obtain BC strains, we used, among other approaches, adaptive laboratory evolution (ALE), based on the use of the metabolic pathway of amide utilization. Whole genome sequencing of the strains obtained after ALE, as well as subsequent targeted gene disruption, identified candidate genes for three new amidases that are promising for the development of BCs for the production of acrylic acid from acrylamide. New BCs had two types of amidase activities, acrylamide-hydrolyzing and acrylamide-transferring, and by varying the ratio of these activities in BCs, it is possible to influence the ratio of monomers in the resulting mixtures. Based on these strains, a prototype of a new technological concept for the biocatalytic synthesis of acrylic monomers was developed for the production of water-soluble acrylic heteropolymers containing valuable N-alkylacrylamide units. In addition to the possibility of obtaining mixtures of different compositions, the advantages of the concept are a single starting reagent (acrylamide), more unification of processes (all processes are based on the same type of biocatalyst), and potentially greater safety for personnel and the environment compared to existing chemical technologies.
Collapse
Affiliation(s)
- Konstantin V. Lavrov
- NRC “Kurchatov Institute”, Kurchatov Genomic Center, 123182, Akademika Kurchatova pl. 1, Moscow, Russia
| | - Anna O. Shemyakina
- NRC “Kurchatov Institute”, Kurchatov Genomic Center, 123182, Akademika Kurchatova pl. 1, Moscow, Russia
| | - Elena G. Grechishnikova
- NRC “Kurchatov Institute”, Kurchatov Genomic Center, 123182, Akademika Kurchatova pl. 1, Moscow, Russia
| | - Tatyana V. Gerasimova
- NRC “Kurchatov Institute”, Kurchatov Genomic Center, 123182, Akademika Kurchatova pl. 1, Moscow, Russia
| | - Tatyana I. Kalinina
- NRC “Kurchatov Institute”, Kurchatov Genomic Center, 123182, Akademika Kurchatova pl. 1, Moscow, Russia
| | - Andrey D. Novikov
- NRC “Kurchatov Institute”, Kurchatov Genomic Center, 123182, Akademika Kurchatova pl. 1, Moscow, Russia
| | - Tatyana E. Leonova
- NRC “Kurchatov Institute”, Kurchatov Genomic Center, 123182, Akademika Kurchatova pl. 1, Moscow, Russia
| | - Ludmila E. Ryabchenko
- NRC “Kurchatov Institute”, Kurchatov Genomic Center, 123182, Akademika Kurchatova pl. 1, Moscow, Russia
| | - Telman A. Bayburdov
- Saratov Chemical Plant of Acrylic Polymers “AKRYPOL”, 410059, Saratov, Russia
| | - Alexander S. Yanenko
- NRC “Kurchatov Institute”, Kurchatov Genomic Center, 123182, Akademika Kurchatova pl. 1, Moscow, Russia
| |
Collapse
|
9
|
Zamani-Babgohari F, Irannejad A, Kalantari Pour M, Khayati GR. Synthesis of carboxymethyl starch co (polyacrylamide/ polyacrylic acid) hydrogel for removing methylene blue dye from aqueous solution. Int J Biol Macromol 2024; 269:132053. [PMID: 38704075 DOI: 10.1016/j.ijbiomac.2024.132053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/13/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
Natural polysaccharides, notably starch, have garnered attention for their accessibility, cost-effectiveness, and biodegradability. Modifying starch to carboxymethyl starch enhances its solubility, swelling capacity, and adsorption efficiency. This research examines the synthesis of an effective hydrogel adsorbent based on carboxymethyl starch for the elimination of methylene blue from aqueous solutions. The hydrogel was synthesized using polyacrylamide and polyacrylic acid as monomers, ammonium persulfate as the initiator, and N,N'-methylenebisacrylamide as the cross-linker. Through FESEM, swelling morphology was evaluated in both distilled water and methylene blue dye. The adsorption data elucidated that the adsorption capacity of the hydrogel significantly depends on the dosage of the adsorbent, pH, and concentration of the MB dye. At a pH of 7 and a dye concentration of 250 mg/L, the hydrogel exhibited an impressive 95 % removal rate for methylene blue. The results indicate that the adsorption process follows pseudo-second-order kinetics and conforms well to the Langmuir adsorption isotherm, indicating a maximum adsorption capacity of 1700 mg/g. According to the pseudo-second-order kinetic model and FTIR analysis, methylene blue chemisorbs to the adsorbent material. Hydrogel absorbents regulate adsorption through both intra-particle diffusion and liquid film diffusion. These results highlight the potential of the new hydrogel absorber for water purification.
Collapse
Affiliation(s)
- Fatemeh Zamani-Babgohari
- Department of Materials Engineering and Metallurgy, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Ahmad Irannejad
- Department of Materials Engineering and Metallurgy, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Maryam Kalantari Pour
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Gholam Reza Khayati
- Department of Materials Engineering and Metallurgy, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
10
|
Dong Y, Ghasemzadeh M, Khorsandi Z, Sheibani R, Nasrollahzadeh M. Starch-based hydrogels for environmental applications: A review. Int J Biol Macromol 2024; 269:131956. [PMID: 38692526 DOI: 10.1016/j.ijbiomac.2024.131956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 04/19/2024] [Accepted: 04/27/2024] [Indexed: 05/03/2024]
Abstract
Water sources have become extremely scarce and contaminated by organic and inorganic industrial and agricultural pollutants as well as household wastes. Poisoning water resources by dyes and metals is a problem because contaminated water can leak into subsurface and surface sources, causing serious contamination and health problems. Therefore, developing wastewater treatment technologies is valuable. Today, hydrogels have attracted considerable attention owing to their broad applications. Hydrogels are polymeric network compositions with significant water-imbibing capacity. Hydrogels have potential applications in diverse fields such as biomedical, personal care products, pharmaceuticals, cosmetics, and biosensors. They can be prepared by using natural (biopolymers) and synthetic polymers. Synthetic polymer-based hydrogels obtained from petrochemicals are not environmentally benign; thus, abundant plant-based polysaccharides are found as more suitable compounds for making biodegradable hydrogels. Polysaccharides with many advantages such as non-toxicity, biodegradability, availability, inexpensiveness, etc. are widely employed for the preparation of environmentally friendly hydrogels. Polysaccharides-based hydrogels containing chitin, chitosan, gum, starch (St), etc. are employed to remove pollutants, metals, and dyes. Among these, St has attracted a lot of attention. St can be mixed with other compounds to make hydrogels, which remove dyes and metal ions to variable degrees of efficiency. Although St has numerous advantages, it suffers from drawbacks such as low stability, low water solubility, and fast degradability in water which limit its application as an environmental adsorbent. As an effective way to overcome these weaknesses, various modification approaches to form starch-based hydrogels (SBHs) employing different compounds have been reported. The preparation methods and applications of SBH adsorbents in organic dyes, hazardous materials, and toxic ions elimination from water resources have been comprehensively discussed in this review.
Collapse
Affiliation(s)
- Yahao Dong
- Henan Key Laboratory of Green Chemistry, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China.
| | | | - Zahra Khorsandi
- Department of Chemistry, Faculty of Science, University of Qom, Qom 37185-359, Iran
| | - Reza Sheibani
- Amirkabir University of Technology-Mahshahr Campus, University St., Nahiyeh san'ati, Mahshahr, Khouzestan, Iran
| | | |
Collapse
|
11
|
Haripriya P, Vijayakrishna K. Synthesis of poly(ionic liquid-OH) mediated deacetylated chitin and its hydrogels: A study on their applications in controlled release of paracetamol and urea. Int J Biol Macromol 2024; 266:131230. [PMID: 38574909 DOI: 10.1016/j.ijbiomac.2024.131230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/14/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024]
Abstract
Due to the biodegradable and biocompatible nature of chitin and chitosan, they are extensively used in the synthesis of hydrogels for various applications. In this work, deacetylation of chitin is carried out with alkaline poly(dimethyldiallylammonium-hydroxide) that gave a higher amount of water-soluble chitin (with 84 % of the degree of deacetylation = chitosan0.84) compared to deacetylation using NaOH. The water-soluble chitosan0.84 is used as intercalating chains for the preparation of acrylic acid and vinylimidazole-based hydrogels. The quaternization of imidazole groups is done with 1,ω-dibromoalkanes, which sets off the crosslinking in the above polymer network. A set of three chitosan0.84 intercalated hydrogels, namely Cs-C4-hydrogel, Cs-C5-hydrogel, and Cs-C10-hydrogel are prepared bearing butyl, pentyl, and decyl chains as respective crosslinkers. The swell ratios of these intercalated hydrogels are compared with those of non-intercalated hydrogels (C4-hydrogel, C5-hydrogel, and C10-hydrogel). Chitosan0.84 intercalated Cs-C10-hydrogel has excellent swelling properties (2330 % swelling ratio) among six synthesized hydrogels. SEM analysis reveals that decyl crosslinker-bearing hydrogels are highly porous. The multi-functionality of Cs-C10-hydrogel and C10-hydrogel is explored towards -the controlled release of paracetamol/urea, and methyleneblue dye absorption. These studies disclose that chitosan0.84 intercalated hydrogels are showing superior-swelling behavior, high paracetamol/urea loading capacities and better dye entrapment than their non-intercalated counterparts.
Collapse
Affiliation(s)
- Patra Haripriya
- School of Basic Sciences, Indian Institute of Technology, Bhubaneswar 752050, Odisha, India
| | - Kari Vijayakrishna
- School of Basic Sciences, Indian Institute of Technology, Bhubaneswar 752050, Odisha, India.
| |
Collapse
|
12
|
Stanciu MC, Teacă CA. Natural Polysaccharide-Based Hydrogels Used for Dye Removal. Gels 2024; 10:243. [PMID: 38667662 PMCID: PMC11049453 DOI: 10.3390/gels10040243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Removal of contaminants from discharge water is vital and demands urgent assistance with the goal to keep clean water. Adsorption is one of the most common, efficient, and low-priced methods used in water treatment. Various polysaccharide-based gels have been used as efficient dye adsorbents from wastewater. This review summarizes cutting-edge research of the last decade of different hydrogels based on natural polysaccharides (chitin, chitosan, cellulose, starch, pullulan, and dextran) concerning their dye adsorption efficiency. Beyond their natural abundance, attributes of polysaccharides such as biocompatibility, biodegradability, and low cost make them not only efficient, but also environmentally sustainable candidates for water purification. The synthesis and dye removal performance together with the effect of diverse factors on gels retaining ability, kinetic, and isotherm models encountered in adsorption studies, are introduced. Thermodynamic parameters, sorbent recycling capacity along with conclusions and future prospects are also presented.
Collapse
Affiliation(s)
- Magdalena-Cristina Stanciu
- Natural Polymers, Bioactive and Biocompatible Materials Department, “Petru Poni” Institute of Macromolecular Chemistry, 41A, Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| | - Carmen-Alice Teacă
- Center for Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A, Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
13
|
Ahmad A, Hassan A, Roy PG, Zhou S, Irfan A, Chaudhry AR, Kanwal F, Begum R, Farooqi ZH. Recent developments in chitosan based microgels and their hybrids. Int J Biol Macromol 2024; 260:129409. [PMID: 38224801 DOI: 10.1016/j.ijbiomac.2024.129409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 01/17/2024]
Abstract
Chitosan based microgels have gained great attention because of their chemical stability, biocompatibility, easy functionalization and potential uses in numerous fields. Production, properties, characterization and applications of chitosan based microgels have been systematically reviewed in this article. Some of these systems exhibit responsive behavior towards external stimuli like pH, light, temperature, glucose, etc. in terms of swelling/deswelling in an aqueous medium depending upon the functionalities present in the network which makes them a potential candidate for various applications in the fields of biomedicine, agriculture, catalysis, sensing and nanotechnology. Current research development and critical overview in this field accompanying by future possibilities is presented. The discussion is concluded with recommended possible future works for further progress in this field.
Collapse
Affiliation(s)
- Azhar Ahmad
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - Ahmad Hassan
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - Prashun Ghosh Roy
- Department of Chemistry of The College of Staten Island and Ph.D. Program in Chemistry of The Graduate Centre, The City University of New York, 2800 Victory Boulevard, Staten Island, NY 10314, United States
| | - Shuiqin Zhou
- Department of Chemistry of The College of Staten Island and Ph.D. Program in Chemistry of The Graduate Centre, The City University of New York, 2800 Victory Boulevard, Staten Island, NY 10314, United States
| | - Ahmad Irfan
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Aijaz Rasool Chaudhry
- Department of Physics, College of Science, University of Bisha, P.O. Box 551, Bisha 61922, Saudi Arabia
| | - Farah Kanwal
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - Robina Begum
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan.
| | - Zahoor H Farooqi
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan.
| |
Collapse
|
14
|
Chen S, Wu L, Wu Z, Liu Z, Qiu Z, Chi L. Highly efficient removal of Sr 2+ from aqueous solutions using a polyacrylic acid/crown-ether/graphene oxide hydrogel composite. RSC Adv 2024; 14:7825-7835. [PMID: 38444965 PMCID: PMC10913416 DOI: 10.1039/d3ra08789a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/25/2024] [Indexed: 03/07/2024] Open
Abstract
With the development of nuclear power, efficiently treating nuclear wastes generated during operation has attracted extensive attention. Hydrogels are common adsorbent materials in the treatment of wastewater due to their high swelling rate and easy post-treatment. In this work, a novel polyacrylic acid/crown-ether/graphene oxide (PAA/DB18C6/GO) hydrogel composite was synthesized by a radical cross-linking copolymerization method and characterized using various analytical tools such as SEM, FT-IR, TGA and XPS. The effects of time, pH, initial Sr2+ concentration, and temperature on Sr2+ adsorption onto the PAA/DB18C6/GO were studied. The PAA/DB18C6/GO shows a high adsorption capacity of 379.35 mg g-1 at an initial Sr2+ concentration of 772 mg L-1 due to the unique structure of dibenzo-18-crown-ether-6 and high swelling. The composite has a high selectivity for Sr2+ with a removal rate of 82.4% when concentrations of Na+ and K+ were 10 times higher than that of Sr2+. The pH and temperature have no apparent impact on adsorption performance of the PAA/DB18C6/GO under the experimental conditions. The composite shows excellent reusability with more than 92% removal rate for Sr2+ after five continuous cycles. In addition, the mechanism of Sr2+ adsorption by PAA/DB18C6/GO was analyzed by fitting the adsorption data to the theoretical models and XPS data.
Collapse
Affiliation(s)
- Sheng Chen
- College of Chemistry, Fuzhou University Fuzhou Fujian 350108 China
- Fujian Key Laboratory of Fuel and Materials in Clean Nuclear Energy System, Fujian Institute of Research on the Structure of Matter, CAS Fuzhou Fujian 350002 China
| | - Lina Wu
- Fujian Key Laboratory of Fuel and Materials in Clean Nuclear Energy System, Fujian Institute of Research on the Structure of Matter, CAS Fuzhou Fujian 350002 China
| | - Zhicheng Wu
- Fujian Key Laboratory of Fuel and Materials in Clean Nuclear Energy System, Fujian Institute of Research on the Structure of Matter, CAS Fuzhou Fujian 350002 China
| | - Zhikun Liu
- Fujian Key Laboratory of Fuel and Materials in Clean Nuclear Energy System, Fujian Institute of Research on the Structure of Matter, CAS Fuzhou Fujian 350002 China
| | - Zhihua Qiu
- Fujian Key Laboratory of Fuel and Materials in Clean Nuclear Energy System, Fujian Institute of Research on the Structure of Matter, CAS Fuzhou Fujian 350002 China
| | - Lisheng Chi
- Fujian Key Laboratory of Fuel and Materials in Clean Nuclear Energy System, Fujian Institute of Research on the Structure of Matter, CAS Fuzhou Fujian 350002 China
| |
Collapse
|
15
|
Alizadeh M, Peighambardoust SJ, Foroutan R. Efficacious adsorption of divalent nickel ions over sodium alginate-g-poly(acrylamide)/hydrolyzed Luffa cylindrica-CoFe 2O 4 bionanocomposite hydrogel. Int J Biol Macromol 2024; 254:127750. [PMID: 38287592 DOI: 10.1016/j.ijbiomac.2023.127750] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 10/05/2023] [Accepted: 10/26/2023] [Indexed: 01/31/2024]
Abstract
Existing Ni2+ heavy metal ions in an aqueous medium are highly hazardous for living organisms and humans. Therefore, designing low-cost adsorbents with enhanced effectiveness is essential for removing nickel ions to safeguard public health. In this study, a novel green nanocomposite hydrogel was synthesized through the free radical solution and bulk polymerization method, and its capability to remove divalent nickel ions from aqueous media was examined. The bionanocomposite hydrogel named as SA-g-poly(AAm)/HL-CoFe2O4 was produced by grafting polyacrylamide (AAm) onto sodium alginate (SA) in the presence of a magnetic composite recognized as HL-CoFe2O4, where HL represents hydrolyzed Luffa Cylindrica. By employing FT-IR, XRD, VSM, SEM, EDX-Map, BET, DLS, HPLC, and TGA techniques, morphological evaluation and characterization of the adsorbents were carried out. The performance of the adsorption process was studied under varying operational conditions including pH, temperature, contact duration, initial concentration of pollutant ions, and adsorbent dosage. HPLC analysis proved the non-toxic structure of the bionanocomposite hydrogel. The number of unreacted acrylamide monomers within the hydrogel matrix was measured at 20.82 mg/kg. The optimum conditions was discovered to be pH = 6, room temperature, adsorbent dosage of 1 of g.L-1, initial Ni2+ concentration of 10 mg.L-1, and contact time of 100 min, and the maximum adsorption efficiency at optimal state was calculated as 70.09, 90.25, and 93.83 % for SA-g-poly (AAm), SA-g-poly(AAm)/HL, and SA-g-poly(AAm)/HL-CoFe2O4 samples, respectively. Langmuir isotherm model was in good agreement with the experimental data and the maximum adsorption capacity of SA-g-poly(AAm), SA-g-poly(AAm)/HL, and SA-g-poly(AAm)/HL-CoFe2O4 samples was calculated to be 31.37, 43.15, and 45.19 mg.g-1, respectively. The adsorption process, according to kinetic studies, follows a pseudo-second-order kinetic model. Investigations on thermodynamics also demonstrated that the process is exothermic and spontaneous. Exploring the interference effect of co-existing ions showed that the adsorption efficiency has decreased with concentration enhancement of Ca2+ and Na+ cations in aqueous medium. Furthermore, the adsorption/desorption assessments revealed that after 8 consecutive cycles, there had been no noticeable decline in the adsorption effectiveness. Finally, actual wastewater treatment outcomes demonstrated that the bionanocomposite hydrogel successfully removes heavy metal pollutants from shipbuilding industry effluent. Therefore, the findings revealed that the newly fabricated bionanocomposite hydrogel is an efficient, cost-effective, easy-separable, and green adsorbent that could be potentially utilized to remove divalent nickel ions from wastewater.
Collapse
Affiliation(s)
- Mehran Alizadeh
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz 5166616471, Iran
| | | | - Rauf Foroutan
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz 5166616471, Iran
| |
Collapse
|
16
|
Jumnong K, Kongseng P, Maijan P, Suwanboon S, Chantarak S. Double-function ZnO/starch biodegradable hydrogel composite for methylene blue adsorption and photocatalytic degradation. Int J Biol Macromol 2023; 253:127533. [PMID: 37858654 DOI: 10.1016/j.ijbiomac.2023.127533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/17/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
An eco-friendly material for the removal of dyes from wastewater was developed. Biodegradable polymers (BP), cassava starch and poly(vinyl alcohol), were used to replace polyacrylamide. The hydrogel containing 50 wt% of BP (BP50) could absorb 34 times its dry weight of water. The hydrogel could adsorb Zn2+ and ZnO photocatalyst particles could be formed via a simple precipitation method. The incorporation of ZnO did not affect the adsorption efficiency of the ZnO/BP50 hydrogel composite towards methylene blue (MB). At initial concentrations (Co) below 4500 mg/g, the hydrogel composite removed ∼99 % of MB from solution in 3 h. The highest adsorption capacity of 1170 mg/g was obtained when Co was 6000 mg/g and at a dose of 0.10 g/20 mL. The hydrogel composite degraded 95 %-98 % of adsorbed MB at rates of 0.19 h-1 and 1.77 h-1 under UV irradiation and sunlight, respectively, with exposure times of 16 h for UV but only 2 h for sunlight. The material remained effective for at least 10 cycles of photodegradation under sunlight and removed 86 % of MB in solution on the 10th cycle. The composite also showed antibacterial activities and biodegradability in soil. These results indicated this material would not generate after-process toxic waste.
Collapse
Affiliation(s)
- Kanita Jumnong
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Piyawan Kongseng
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Pattarawadee Maijan
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Sumetha Suwanboon
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Sirinya Chantarak
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| |
Collapse
|
17
|
Fei YH, Deng H, Wu G, Luo M, Chen Y, Wang X, Ye H, Liu T. Insight into adsorption process and mechanisms of Cr(III) using carboxymethyl cellulose- g-poly(acrylic acid- co-acrylamide)/attapulgite composite hydrogel. ENVIRONMENTAL TECHNOLOGY 2023; 44:4173-4187. [PMID: 35611631 DOI: 10.1080/09593330.2022.2082325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Cr(III) as one of the most concerned potentially toxic elements, is discharged from relevant industries and Cr(VI) reduction. Hydrogel-based adsorption could be one of the promising approaches for Cr(III) removal. Featured with environmental friendliness and low cost, carboxymethyl cellulose (CMC) was employed for the hydrogel synthesis, and attapulgite (APT) could be used to strengthen its stability. However, the adsorption performance and mechanisms need to be examined. In the present study, carboxymethyl cellulose-g-poly(acrylic acid-co-acrylamide)/ attapulgite (CMC-g-p(AA-co-AM)/APT) was synthesised via in situ copolymerisation. Its efficacy for removing Cr(III) from an aqueous solution was investigated using batch adsorption experiments. Results showed that the introduction of APT enhanced the thermal stability but decreased the swelling performance of the hydrogel. The prepared hydrogel could strongly adsorb Cr(III) at a wide pH range of 3.0-7.0. Cr(III) can be efficiently removed by the composite hydrogel within 1-2 h. At low concentration, CMC-g-p(AA-co-AM)/APT could slightly adsorbed more Cr(III) than CMC-g-p(AA-co-AM). The maximum absorption of CMC-g-p(AA-co-AM) and CMC-g-p(AA-co-AM)/APT were 74.8 and 47.7 mg/g at 298 K, respectively. The negative value of ΔHo and ΔGo indicated the adsorption of Cr(III) onto the two studied hydrogels is an exothermic and spontaneous process. Ion exchange and complexation, as implied by EDS, FT-IR and XPS, combining with electrostatic attraction are the possible adsorption mechanisms for Cr(III) onto the prepared hydrogels. All the results above suggests that the composite hydrogel CMC-g-p(AA-co-AM)/APT can be a promising candidate for the removal of Cr(III) from waste water.
Collapse
Affiliation(s)
- Ying-Heng Fei
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, People's Republic of China
| | - Hongmei Deng
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, People's Republic of China
- Key Laboratory of Water Safety and Protection in Pearl River Delta, Ministry of Education, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou, People's Republic of China
| | - Gaoyuan Wu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, People's Republic of China
- Key Laboratory of Water Safety and Protection in Pearl River Delta, Ministry of Education, Guangzhou, People's Republic of China
| | - Mengting Luo
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, People's Republic of China
- Key Laboratory of Water Safety and Protection in Pearl River Delta, Ministry of Education, Guangzhou, People's Republic of China
| | - Yongheng Chen
- Key Laboratory of Water Safety and Protection in Pearl River Delta, Ministry of Education, Guangzhou, People's Republic of China
| | - Xiaohuan Wang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, People's Republic of China
| | - Hengpeng Ye
- School of Chemistry and Materials, South-Central University for Nationalities, Wuhan, People's Republic of China
| | - Tao Liu
- School of Civil and Engneering, Guangzhou University, Guangzhou, People's Republic of China
| |
Collapse
|
18
|
Ghani AA, Devarayapalli KC, Kim B, Lim Y, Kim G, Jang J, Lee DS. Sodium-alginate-laden MXene and MOF systems and their composite hydrogel beads for batch and fixed-bed adsorption of naproxen with electrochemical regeneration. Carbohydr Polym 2023; 318:121098. [PMID: 37479431 DOI: 10.1016/j.carbpol.2023.121098] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 07/23/2023]
Abstract
Sodium alginate (SA)-laden two-dimensional (2D) Ti3C2Tx MXene (MX) and MIL-101(Fe) (a type of metal-organic framework (MOF)) composites were prepared and used for the removal of naproxen (NPX), following the adsorption and electrochemical regeneration processes. The fixed-bed adsorption column studies were also conducted to study the process of removal of NPX by hydrogels. The number of interactions via which the MX-embedded SA (MX@SA) could adsorb NPX was higher than the number of pathways associated with NPX adsorption on the MIL-101(Fe)-embedded SA (MIL-101(Fe)@SA), and the MX and MIL-101(Fe) composite embedded SA (MX/MIL-101(Fe)@SA). The optimum parameters for the electrochemical regeneration process were determined: charge passed and current density values were 169.3 C g-1 and 10 mA cm-2, respectively, for MX@SA, and the charge passed and current density values were 16.7 C g-1 and 5 mA cm-2, respectively, for both MIL-101(Fe)@SA and MX/MIL-101(Fe)@SA. These parameters enabled excellent regeneration, consistent over multiple adsorption and electrochemical regeneration cycles. The mechanism for the regeneration of the materials was proposed that the regeneration of MX@SA and MIL-101(Fe)@SA involved the indirect electrooxidation process in the presence of OH radicals, and the regeneration of MX/MIL-101(Fe)@SA involved the indirect oxidation process in the presence of active chlorine species.
Collapse
Affiliation(s)
- Ahsan Abdul Ghani
- Department of Chemical Engineering, University of Karachi, Main University Road, Karachi 75270, Sindh, Pakistan
| | | | - Bolam Kim
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Youngsu Lim
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Gyuhyeon Kim
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Jiseon Jang
- R&D Institute of Radioactive Wastes, Korea Radioactive Waste Agency, 174 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea
| | - Dae Sung Lee
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| |
Collapse
|
19
|
Khalid A, Zulfiqar S, Tabassum N, Ullah Z, Zaki ZI, Fallatah AM, El-Bahy ZM, Laraib S, Ahmad F. Hydroxyapatite and ionic liquid coupled with hybrid membranes for toxic pollutant removal and remediation. CHEMOSPHERE 2023; 339:139717. [PMID: 37541442 DOI: 10.1016/j.chemosphere.2023.139717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/23/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Access to clean water is the mandatory requirement for every living being to sustain life. So, membrane-based integrated approach of adsorption and separation technology has recently been preferred by scientists over other conventional techniques, for wastewater treatment. Current research focused on the synthesis of novel imidazolium (A1) based IL, which was further functionalized with hydroxyapatite (HAp; extracted from Labeo rohita scales), to create possible solutions towards environmental remediation. Cellulose acetate (CA) was used for the fabrication of three different ionic liquid membranes. All the synthesized products were characterized by FTIR, XRD and TGA. Two dyes of different nature, i.e., congo red (anionic) and crystal violet (cationic) were selected because of their highly toxic and carcinogenic effects, for batch adsorption experiments. Antibacterial activity of the synthesized membranes was also evaluated against S. aureus. Results of the study revealed that CA-HA1 1:2 acted as the best adsorbent towards the removal of crystal violet, exhibiting removal efficiency of 98% with the contact time of 24 h while in case of congo red adsorption, CA-HA1 (1:2) proved as prime adsorbent with the removal efficiency of 96% for the same preceding contact time. Considering the antibacterial character of the synthesized membranes, CA-A1 (1:1) emerged as very efficient antibacterial agent with the inhibition zone of 50 mm after 48 h. The overall behavior of monolayer and multilayer adsorption was witnessed for both dyes while kinetic studies favored the pseudo-second order reaction for all adsorbents.
Collapse
Affiliation(s)
- Amina Khalid
- Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi, 46000, Pakistan.
| | - Sana Zulfiqar
- Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi, 46000, Pakistan.
| | - Noshabah Tabassum
- Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi, 46000, Pakistan
| | - Zahoor Ullah
- Department of Chemistry, Balochistan University of Information Technology, Engineering and Management Sciences (BUITEMS), Takatu Campus, Quetta, 87100, Pakistan
| | - Zaki I Zaki
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Ahmed M Fallatah
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Zeinhom M El-Bahy
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Sofia Laraib
- Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi, 46000, Pakistan
| | - Faizan Ahmad
- Faculty of Health, Education, and Life Sciences, School of Health Sciences, Birmingham City University, City South Campus, Westbourne Road, Birmingham, United Kingdom
| |
Collapse
|
20
|
Lotfi M, Bahram M, Najafi Moghadam P. The study of the removal of penconazole fungicide from surface water using carboxymethyl tragacanth-based hydrogel grafted with poly (acrylic acid-co-acrylamide). Sci Rep 2023; 13:13569. [PMID: 37604865 PMCID: PMC10442386 DOI: 10.1038/s41598-023-40862-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023] Open
Abstract
In this study, a polymeric adsorbent based on carboxymethyl tragacanth (CMT) grafted by poly acrylic acid-co-acrylamide (AAc-co-AAm) synthesized by radical polymerization for the first time was used to remove the fungicide penconazole (PEN) or Topas 20% from surface water. The parameters of solution pH, adsorption isotherm, and adsorption kinetics of PEN were studied by the synthetic adsorbent. The surface morphology and functional groups of CMT-g-poly (AAc-co-AAm) were confirmed by XRD, SEM and FT-IR techniques. Adsorption of PEN on CMT-g-poly (AAc-co-AAm) follows the Freundlich and pseudo-second-order models. The significant maximum adsorption capacity of the synthesized polymer was found to be 196.08 mg/g. The synthetic adsorbent had good reproducibility in PEN removal for up to 5 cycles. CMT-g-poly (AAc-co-AAm) is a cost-effective and non-toxic adsorbent for the decontamination of surface water from pesticides.
Collapse
Affiliation(s)
- Magsoud Lotfi
- Department of Analytical Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
| | - Morteza Bahram
- Department of Analytical Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran.
| | | |
Collapse
|
21
|
Betraoui A, Seddiki N, Souag R, Guerfi N, Semlali A, Aouak T, Aliouche D. Synthesis of New Hydrogels Involving Acrylic Acid and Acrylamide Grafted Agar-Agar and Their Application in the Removal of Cationic Dyes from Wastewater. Gels 2023; 9:499. [PMID: 37367168 DOI: 10.3390/gels9060499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/15/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023] Open
Abstract
Polyacrylic Acid grafted Agar-agar (AAc-graf-Agar), and polyacrylamide grafted Agar-Agar (AAm-graf-Agar) have been synthesised by free radical polymerisation route initiated by ammonium peroxodisulphate (APS), the grafted polymers were characterised by FTIR, TGA and SEM methods. The swelling properties were studied in deionised water and saline solution at room temperature. The prepared hydrogels were examined by removing cationic methylene blue (MB) dye from the aqueous solution, in which the adsorption kinetics and isotherms models were also investigated. It was found that the pseudo-second-order and Langmuir equations are the most suitable for the different sorption processes. The maximum dye adsorption capacity was 1035.96 mg∙g-1 for AAc-graf-Agar in pH medium 12 and 1015.7 mg∙g-1 for AAm-graf-Agar in neutral pH medium. This indicates that the AAc-graf-Agar hydrogel could be an excellent adsorbent for removing MB from aqueous solutions.
Collapse
Affiliation(s)
- Amina Betraoui
- Laboratory of Polymers Treatment and Forming, F.S.I., M'Hamed Bougara University, Boumerdes 35000, Algeria
| | - Nesrinne Seddiki
- Laboratory of Polymers Treatment and Forming, F.S.I., M'Hamed Bougara University, Boumerdes 35000, Algeria
| | - Rafika Souag
- Research Unit, Materials, Processes and Environment (URMPE), University of Boumerdes, Boumerdes 35000, Algeria
| | - Nabila Guerfi
- Centre de Recherche en Technologiedes Semi-Conducteurs pour l'Energétique (CRTSE), 02 Bd Frantz Fanon BP140, 7 Merveilles, Algiers 16038, Algeria
| | - Abdelhabib Semlali
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Taieb Aouak
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Djamel Aliouche
- Laboratory of Polymers Treatment and Forming, F.S.I., M'Hamed Bougara University, Boumerdes 35000, Algeria
| |
Collapse
|
22
|
Flores-Valenzuela LE, González-Fernández JV, Carranza-Oropeza MV. Hydrogel Applicability for the Industrial Effluent Treatment: A Systematic Review and Bibliometric Analysis. Polymers (Basel) 2023; 15:polym15112417. [PMID: 37299216 DOI: 10.3390/polym15112417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023] Open
Abstract
In recent decades, hydrogels, as adsorption materials, have received important attention due to their characteristics and properties, such as mechanical strength, biocompatibility, biodegradability, swellability, and stimuli sensitivity. In the actual framework of sustainable development, it has been imperative to develop practical studies of hydrogels in the treatment of actual industrial effluents. Accordingly, the current work has, as its objective, to make evident hydrogels' applicability in the treatment of actual industrial effluents. For this purpose, a bibliometric analysis and systematic review based on the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) method were conducted. The relevant articles were selected from the Scopus and Web of Science databases. Some important findings were that: (1) China is the leading country when it comes to hydrogel application in actual industrial effluents, (2) the motor studies are focalized on the treatment of wastewater by hydrogels, (3) the fixed-bed columns are suitable unit equipment for the treatment of industrial effluents of using hydrogels, and (4) the hydrogels show excellent adsorption capacities of ion and dye contaminants present in industrial effluents. In summary, since the implementation of sustainable development in 2015, the progress of practical hydrogel applications in the treatment of industrial effluent has been receiving more attention, and the selected studies demonstrate the implementation viability of these materials.
Collapse
|
23
|
Vijayan JG, Prabhu TN, Pal K. Poly(N-isopropyl acrylamide)-co-poly(sodium acrylate) hydrogel for the adsorption of cationic dyes from aqueous solution. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:11. [PMID: 36884157 DOI: 10.1140/epje/s10189-023-00266-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
In this study, we used radical polymerization to create poly (N-isopropyl acrylamide)-co-poly (sodium acrylate) [PNIPAM-co-PSA] hydrogels and analyzed the resulting products. N, N'-Methylenebisacrylamide was employed as a cross-linker, ammonium persulfate as an initiator, and N,N'-isopropyl acrylamide and sodium acrylamide as monomers. Structural analysis was measured by using FT-IR. Indeed, SEM analysis was used to characterize the morphological structure of the hydrogel. Studies on swelling were also done. The Taguchi approach was used to study and assess the adsorption studies of the hydrogels for the efficient removal of malachite green and methyl orange. For the optimization, a central composite surface methodology was applied. The effect of several parameters, including adsorbent dosage, pH, initial dye concentration, temperature, time, and mixing speed, was examined using the Taguchi technique, and the primary factors were chosen and examined using the central composite surface methodology. It was discovered that MG dye's (cationic) removal efficiency was higher than that of MO dye's (anionic). The results suggest that [PNIPAM-co-PSA] hydrogel can be used as an effective, alternative and promising adsorbent to be applied in the treatment of effluents containing the cationic dyes from wastewater. The synthesis of hydrogels provides a suitable recyclability platform for the adsorption of cationic dyes and allows for their recovery without the use of powerful reagents.
Collapse
Affiliation(s)
- Jyothy G Vijayan
- Department of Chemistry, Faculty of Mathematical and Physical Sciences, M.S. Ramaiah University of Applied Sciences, Bangalore, 560058, India
| | - T Niranjana Prabhu
- Department of Chemistry, Faculty of Mathematical and Physical Sciences, M.S. Ramaiah University of Applied Sciences, Bangalore, 560058, India.
| | - Kaushik Pal
- Department of Physics, University Centre for Research and Development (UCRD), Chandigarh University, Gharuan, Mohali, Punjab, 140413, India.
| |
Collapse
|
24
|
Singh VK, Kumar K, Das A, Tiwari R, Krishnamoorthi S. Ameliorated microgel for bimetallic Ag/CuO nanoparticles and their expeditious catalytic applications. IRANIAN POLYMER JOURNAL 2023. [DOI: 10.1007/s13726-023-01155-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
25
|
Neblea IE, Chiriac AL, Zaharia A, Sarbu A, Teodorescu M, Miron A, Paruch L, Paruch AM, Olaru AG, Iordache TV. Introducing Semi-Interpenetrating Networks of Chitosan and Ammonium-Quaternary Polymers for the Effective Removal of Waterborne Pathogens from Wastewaters. Polymers (Basel) 2023; 15:1091. [PMID: 36904332 PMCID: PMC10007103 DOI: 10.3390/polym15051091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
The present work aims to study the influence of ammonium-quaternary monomers and chitosan, obtained from different sources, upon the effect of semi-interpenetrating polymer network (semi-IPN) hydrogels upon the removal of waterborne pathogens and bacteria from wastewater. To this end, the study was focused on using vinyl benzyl trimethylammonium chloride (VBTAC), a water-soluble monomer with known antibacterial properties, and mineral-enriched chitosan extracted from shrimp shells, to prepare the semi-IPNs. By using chitosan, which still contains the native minerals (mainly calcium carbonate), the study intends to justify that the stability and efficiency of the semi-IPN bactericidal devices can be modified and better improved. The new semi-IPNs were characterized for composition, thermal stability and morphology using well-known methods. Swelling degree (SD%) and the bactericidal effect assessed using molecular methods revealed that hydrogels made of chitosan derived from shrimp shell demonstrated the most competitive and promising potential for wastewater (WW) treatment.
Collapse
Affiliation(s)
- Iulia E. Neblea
- Advanced Polymer Materials and Polymer Recycling Group, National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, Splaiul Independentei No. 202, 060021 Bucharest, Romania
- Department of Bioresources and Polymer Science, Faculty of Chemical Engineering and Biotechnologies, University “Politehnica” of Bucharest, 1–7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Anita-L. Chiriac
- Advanced Polymer Materials and Polymer Recycling Group, National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, Splaiul Independentei No. 202, 060021 Bucharest, Romania
| | - Anamaria Zaharia
- Advanced Polymer Materials and Polymer Recycling Group, National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, Splaiul Independentei No. 202, 060021 Bucharest, Romania
| | - Andrei Sarbu
- Advanced Polymer Materials and Polymer Recycling Group, National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, Splaiul Independentei No. 202, 060021 Bucharest, Romania
| | - Mircea Teodorescu
- Department of Bioresources and Polymer Science, Faculty of Chemical Engineering and Biotechnologies, University “Politehnica” of Bucharest, 1–7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Andreea Miron
- Advanced Polymer Materials and Polymer Recycling Group, National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, Splaiul Independentei No. 202, 060021 Bucharest, Romania
| | - Lisa Paruch
- Norwegian Institute of Bioeconomy Research (NIBIO), Division of Environment and Natural Resources, Oluf Thesens vei 43, 1433 Aas, Norway
| | - Adam M. Paruch
- Norwegian Institute of Bioeconomy Research (NIBIO), Division of Environment and Natural Resources, Oluf Thesens vei 43, 1433 Aas, Norway
| | - Andreea G. Olaru
- S.C. EDAS-EXIM S.R.L., Banat Street 23, 010933 Bucharest, Romania
| | - Tanta-V. Iordache
- Advanced Polymer Materials and Polymer Recycling Group, National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, Splaiul Independentei No. 202, 060021 Bucharest, Romania
| |
Collapse
|
26
|
Synthesis and characterization of hydrogel-based magnetite nanocomposite adsorbents for the potential removal of Acid Orange 10 dye and Cr(VI) ions from aqueous solution. Int J Biol Macromol 2023; 227:27-44. [PMID: 36528140 DOI: 10.1016/j.ijbiomac.2022.12.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/25/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Magnetic responsive hydrogels (CMX-cl-P4VP/M-NPs) were successfully synthesized through in situ co-precipitation procedure and investigated using various techniques. The surface morphology analysis revealed that the M-NPs were uniformly distributed within the hydrogel matrix and had average sizes ranging from 4.98 to 15.02 nm. The graft copolymer containing nanoparticles exhibited a sensitive magnetic response, and their recovery could be facilitated by applying a magnetic field. The purpose of this research is to study the ability of the prepared magnetic hydrogel to remove AO-10 dye and hexavalent chromium ions (Cr(VI)) from the aqueous solution under various factors, namely contact time, pH, amount of adsorbent, coexisting ions and AO-10 and Cr(VI) concentrations. The outcomes of the batch adsorption demonstrated that the adsorbent hydrogel incorporated with a low percentage (10 %) of M-NPs had a strong affinity for the removal of AO-10 dye and Cr(VI) ions at an optimum pH = 3, and the removal percentage reached 99.3 and 97.4 % for 500 mg L-1 and 300 mg L-1 of AO-10 dye and Cr(VI) ions within 90, 50 min, respectively. The data were well-fitted by pseudo-first-order kinetics. The maximum adsorption capacities of AO-10 dye and Cr(VI) ions onto adsorbent were 2448 and 574.7 mg g-1 at 298 K, calculated from the Langmuir model.
Collapse
|
27
|
Nano-carboxymethylcellulose, polyacrylamide, and γ-Fe2O3-SO3H cross-linked to a hydrophobic linker: An organic-inorganic hydrogel for adsorptive removal of dyes. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
Physicochemical Properties and Functional Characteristics of Ecologically Extracted Shrimp Chitosans with Different Organic Acids during Demineralization Step. Molecules 2022; 27:molecules27238285. [PMID: 36500378 PMCID: PMC9740848 DOI: 10.3390/molecules27238285] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The current study aims to develop eco-friendly and economical chitosans with a wide range of applications using organic acids for shrimp shells demineralization. Chitosan samples were extracted from shrimp (Parapenaeus longirostris) shells and the demineralization step was performed with three organic acids (citric, acetic, and lactic) and two mineral acids (hydrochloric and sulfuric). The chitosans were characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The chitosans’ physicochemical properties were also determined. The characteristic bands and functional groups of the chitosans were identified by FTIR spectra. The chitosans’ crystallinity order was as follows: ChHCl > ChCitric > ChH2SO4 > ChLactic > ChAcetic. The chitosans’ morphological characteristics revealed a smooth surface and fibrous structures with pores. Chitosans extracted by organic acids showed the highest extraction yields. ChHCl and ChCitric had higher degrees of deacetylation values; 83.67% and 81.47%, respectively. The solubility was proportional to the degree of deacetylation. Furthermore, ChH2SO4 and ChCitric had lower molecular weight values; 149 kDa and 183 kDa, respectively. Organic acids are as effective as mineral acids for shrimp shells demineralization. The developed process opens up possibilities to produce chitin and chitosan in a more eco-friendly way and at a lower cost in many industrial sectors.
Collapse
|
29
|
Hingrajiya RD, Kalola AG, Patel MP. Poly(AA-co-NVIm-co-AAm) sensor hydrogels for the simultaneous visual detection and removal of Cu2+ ions from aqueous media. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04544-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
30
|
Jayeoye TJ, Sirimahachai U, Wattanasin P, Rujiralai T. Eco-friendly poly(aniline boronic acid)/gum tragacanth stabilized silver nanoparticles nanocomposite for selective sensing of Hg2+. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Srikaew M, Jumpapaeng P, Suwanakood P, Kaiyasuan C, Promarak V, Saengsuwan S. Rapid synthesis and optimization of UV-photopolymerized cassava starch-based superabsorbent hydrogels as a biodegradable, low-cost, and effective adsorbent for MB removal. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.10.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
32
|
Ponce J, Peña J, Román J, Pastor J. Recyclable photocatalytic composites based on natural hydrogels for dye degradation in wastewaters. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
33
|
Mohammadzadeh Pakdel P, Peighambardoust SJ, Arsalani N, Aghdasinia H. Safranin-O cationic dye removal from wastewater using carboxymethyl cellulose-grafted-poly(acrylic acid-co-itaconic acid) nanocomposite hydrogel. ENVIRONMENTAL RESEARCH 2022; 212:113201. [PMID: 35413301 DOI: 10.1016/j.envres.2022.113201] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Copolymer of acrylic acid (AA) and itaconic acid (IA) grafted onto sodium carboxymethyl cellulose hydrogel (CMC-g-poly (AA-co-IA)) was successfully synthesized as an adsorbent to remove safranin-O from wastewater. The swelling and removal efficiencies of CMC-g-poly (AA-co-IA) were enhanced by increasing IA/AA molar ratio as well as by incorporation of montmorillonite clay nano-sheets (MMT). The surface area of MMT, CMC-g-poly (AA-co-IA), and CMC-g-poly (AA-co-IA) samples was 15.632, 0.61452, and 0.66584 m2/g, respectively, indicating the effectiveness of MMT nano-sheets in improving hydrogel surface area. The maximum removal efficiency of CMC-g-poly (AA-co-IA)/MMT under optimum conditions i.e., pH of 8, initial concentration of 10 mg/L, adsorbent dose of 2 g/L, and contact time of 40 min was ascertained 99.78% using a response surface methodology-central composite design (RSM-CCD). Pseudo-second-order and Langmuir models giving the maximum monolayer adsorption capacity of 18.5185 mg/g and 19.1205 mg/g for CMC-g-poly (AA-co-IA) and CMC-g-poly (AA-co-IA)/MMT samples, respectively are the best-fitted models for kinetic and equilibrium data. Thermodynamically, safranin-O decontamination was spontaneous, exothermic, and entropy decreasing. Moreover, ad (de)sorption behavior study showed that CMC-g-poly (AA-co-IA)/MMT performance was not changed after multiple recovery steps. Therefore, CMC-g-poly (AA-co-IA)/MMT was considered as a highly potential adsorbent for safranin-O removal from wastewater.
Collapse
Affiliation(s)
| | | | - Nasser Arsalani
- Research Laboratory of Polymer, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Hassan Aghdasinia
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, 5166616471, Iran
| |
Collapse
|
34
|
Alquwaizany AS, Hussain G, Al-Zarah AI. Changes in physico-chemical composition of wastewater by growing Phragmites australis and Typha latifolia in an arid environment in Saudi Arabia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:39838-39846. [PMID: 35112245 DOI: 10.1007/s11356-021-18369-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
The Kingdom of Saudi Arabia is facing an acute shortage of high-quality water, which is further aggravated due to inadequate and nonrenewable groundwater resources. Hence, it is crucial to explore other alternatives, such as natural wastewater treatment (phytoremediation), for water supplies that can both lower the dependence on groundwater resources and overcome the challenges and limitations associated with conventional wastewater treatment technologies. Therefore, the main objective of this research was to study the performance and efficiency of green plants such as Typha latifolia L. (T. latifolia) (broadleaf cattail) and Phragmites australis (Cav.) Train, ex Steud. (P. australis) (common reed) for wastewater treatment in eastern Saudi Arabia. The experiment was conducted in fiberglass tanks (each with a capacity of 4.0 × 7.0 × 0.5 m3) in the field. There were a total of 4 fiberglass tanks with 2 replications. A percent decrease of 72.86% and 49.74%, 39.30% and 18.07%, 39.84% and 52.87%, 38.73% and 40.86%, 74.49% and 57.82%, and 66.82% and 63.14% was observed for turbidity, TSS, nitrate, ammonia, BOD, and COD by growing P. australis and T. latifolia, respectively. Heavy metals such as aluminum, zinc, and arsenic showed a considerable reduction in pollutants in treated water compared to raw wastewater under both plants. Overall, it appears that the improvement in wastewater quality was better by growing P. australis than T. latifolia; however, there were no statistically significant differences (p > 0.05) between the two plant means in their performance of raw wastewater treatment. The study results indicate that green plants could be used in a phytoremediation system to treat wastewater in rural and small communities.
Collapse
Affiliation(s)
- Abdulaziz S Alquwaizany
- Energy and Water Research Institute, King Abdulaziz City for Science and Technology (KACST), P. O. Box 6086, Riyadh, 11442, Kingdom of Saudi Arabia.
| | - Ghulam Hussain
- Energy and Water Research Institute, King Abdulaziz City for Science and Technology (KACST), P. O. Box 6086, Riyadh, 11442, Kingdom of Saudi Arabia
| | - Abdullah I Al-Zarah
- Energy and Water Research Institute, King Abdulaziz City for Science and Technology (KACST), P. O. Box 6086, Riyadh, 11442, Kingdom of Saudi Arabia
| |
Collapse
|
35
|
Ren J, Li M, Wang X, Li R, Wang H, Yang W. Adsorption behaviors of dyes on a biodegradable gelatin/chitosan/β-cyclodextrin hydrogel from an aqueous solution. Colloid Polym Sci 2022. [DOI: 10.1007/s00396-022-04988-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
36
|
Darban Z, Shahabuddin S, Gaur R, Ahmad I, Sridewi N. Hydrogel-Based Adsorbent Material for the Effective Removal of Heavy Metals from Wastewater: A Comprehensive Review. Gels 2022; 8:gels8050263. [PMID: 35621561 PMCID: PMC9140941 DOI: 10.3390/gels8050263] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 02/01/2023] Open
Abstract
Water is a vital resource that is required for social and economic development. A rapid increase in industrialization and numerous anthropogenic activities have resulted in severe water contamination. In particular, the contamination caused by heavy metal discharge has a negative impact on human health and the aquatic environment due to the non-biodegradability, toxicity, and carcinogenic effects of heavy metals. Thus, there is an immediate need to recycle wastewater before releasing heavy metals into water bodies. Hydrogels, as potent adsorbent materials, are a good contenders for treating toxic heavy metals in wastewater. Hydrogels are a soft matter formed via the cross-linking of natural or synthetic polymers to develop a three-dimensional mesh structure. The inherent properties of hydrogels, such as biodegradability, swell-ability, and functionalization, have made them superior applications for heavy metal removal. In this review, we have emphasized the recent development in the synthesis of hydrogel-based adsorbent materials. The review starts with a discussion on the methods used for recycling wastewater. The discussion then shifts to properties, classification based on various criteria, and surface functionality. In addition, the synthesis and adsorption mechanisms are explained in detail with the understanding of the regeneration, recovery, and reuse of hydrogel-based adsorbent materials. Therefore, the cost-effective, facile, easy to modify and biodegradable hydrogel may provide a long-term solution for heavy metal removal.
Collapse
Affiliation(s)
- Zenab Darban
- Department of Chemistry, School of Technology, Pandit Deendayal Energy University, Raisan 382426, India;
| | - Syed Shahabuddin
- Department of Chemistry, School of Technology, Pandit Deendayal Energy University, Raisan 382426, India;
- Correspondence: or (S.S.); (R.G.); (N.S.); Tel.: +91-8585932338 (S.S.); +91-8266907756 (R.G.); +60-124-675-320 (N.S.)
| | - Rama Gaur
- Department of Chemistry, School of Technology, Pandit Deendayal Energy University, Raisan 382426, India;
- Correspondence: or (S.S.); (R.G.); (N.S.); Tel.: +91-8585932338 (S.S.); +91-8266907756 (R.G.); +60-124-675-320 (N.S.)
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia;
| | - Nanthini Sridewi
- Department of Maritime Science and Technology, Faculty of Defence Science and Technology, National Defence University of Malaysia, Kuala Lumpur 57000, Malaysia
- Correspondence: or (S.S.); (R.G.); (N.S.); Tel.: +91-8585932338 (S.S.); +91-8266907756 (R.G.); +60-124-675-320 (N.S.)
| |
Collapse
|
37
|
Wang ZK, Li TT, Peng HK, Ren HT, Lin JH, Lou CW. Natural-clay-reinforced hydrogel adsorbent: Rapid adsorption of heavy-metal ions and dyes from textile wastewater. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10698. [PMID: 35373412 DOI: 10.1002/wer.10698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/05/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
In this study, two natural clay minerals were combined with hydrogels to study the influence of natural adsorbents on the adsorption performance of hydrogels. Here, we separately doped bentonite and vermiculite and discussed their mechanical properties and adsorption properties. It was found that the compressive performance of the hydrogel added with clay increased by 21.6% and the swelling performance decreased or increased to varying degrees. Regarding the adsorption performance of hydrogels, it can be seen from the adsorption Langmuir isotherm model that the adsorption capacity of clay-hydrogels is improved to varying degrees (6.6%-15.8%) compared with non-clay-hydrogels, and clay-hydrogels have different degrees of improvement (6.6%-15.8%). The hydrogel has a removal efficiency of more than 95% for low concentrations of heavy-metal ions and dyes. In addition, the clay-hydrogel has low cost and is easy to prepare, and can be recycled many times. Therefore, the material is of great significance for the treatment of pollutants. PRACTITIONER POINTS: The effect of natural clay on the adsorption performance of hydrogels was studied. Clay can enhance the compression and adsorption properties of hydrogels. The adsorption mechanism and adsorption capacity of clay hydrogels were evaluated.
Collapse
Affiliation(s)
- Zhi-Ke Wang
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, China
| | - Ting-Ting Li
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, China
- Tianjin and Education Ministry Key Laboratory of Advanced Textile Composite Materials, Tiangong University, Tianjin, China
| | - Hao-Kai Peng
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, China
| | - Hai-Tao Ren
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, China
| | - Jia-Horng Lin
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, China
- Advanced Medical Care and Protection Technology Research Center, College of Textile and Clothing, Qingdao University, Qingdao, China
- Advanced Medical Care and Protection Technology Research Center, Department of Fiber and Composite Materials, Feng Chia University, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Ching-Wen Lou
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, China
- Advanced Medical Care and Protection Technology Research Center, College of Textile and Clothing, Qingdao University, Qingdao, China
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
38
|
Safarzadeh H, Peighambardoust SJ, Mousavi SH, Mohammadi R, Peighambardoust SH. Adsorption of methyl violet dye from wastewater using poly(methacrylic acid-co-acrylamide)/bentonite nanocomposite hydrogels. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-02956-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
39
|
Fengler C, Keller J, Ratzsch K, Wilhelm M. In Situ RheoNMR Correlation of Polymer Segmental Mobility with Mechanical Properties during Hydrogel Synthesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104231. [PMID: 35112813 PMCID: PMC8811812 DOI: 10.1002/advs.202104231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/05/2021] [Indexed: 05/23/2023]
Abstract
Understanding polymer gelation over multiple length-scales is crucial to develop advanced materials. An experimental setup is developed that combines rheological measurements with simultaneous time-domain 1 H NMR relaxometry (TD-NMR) techniques, which are used to study molecular motion (<10 nm) in soft matter. This so-called low-field RheoNMR setup is used to study the impact of varying degrees of crosslinking (DC) on the gelation kinetics of acrylic acid (AAc) and N,N'-methylene bisacrylamide (MBA) free radical crosslinking copolymerization. A stretched exponential function describes the T2 relaxation curves throughout the gelation process. The stretching exponent β decreases from 0.90 to 0.67 as a function of increasing DC, suggesting an increase in network heterogeneity with a broad T2 distribution at higher DC. The inverse correlation of the elastic modulus G' with T2 relaxation times reveals a pronounced molecular rigidity for higher DC at early gelation times, indicating the formation of inelastic, rigid domains such as crosslinking clusters. The authors further correlate G' with the polymer concentration during gelation using a T1 filter for solvent suppression. A characteristic scaling exponent of 2.3 is found, which is in agreement with theoretical predictions of G' based on the confining tube model in semi-dilute entangled polymer solutions.
Collapse
Affiliation(s)
- Christian Fengler
- Institute for Chemical Technology and Polymer ChemistryKarlsruhe Institute of Technology (KIT)Karlsruhe76131Germany
| | - Jonas Keller
- Institute for Chemical Technology and Polymer ChemistryKarlsruhe Institute of Technology (KIT)Karlsruhe76131Germany
| | | | - Manfred Wilhelm
- Institute for Chemical Technology and Polymer ChemistryKarlsruhe Institute of Technology (KIT)Karlsruhe76131Germany
| |
Collapse
|
40
|
Abousalman-Rezvani Z, Roghani-Mamaqani H, Riazi H, Abousalman-Rezvani O. Water treatment using stimuli-responsive polymers. Polym Chem 2022. [DOI: 10.1039/d2py00992g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Stimuli-responsive polymers are a new category of smart materials used in water treatment via a stimuli-induced purification process and subsequent regeneration processes.
Collapse
Affiliation(s)
- Zahra Abousalman-Rezvani
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia
- CSIRO, Manufacturing–Biomedical Manufacturing, Ian Wark Laboratory, Research Way, Clayton, VIC 3168, Australia
| | - Hossein Roghani-Mamaqani
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box: 51335-1996, Tabriz, Iran
| | - Hossein Riazi
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA 19104, USA
| | | |
Collapse
|
41
|
Sivakumar R, Lee NY. Adsorptive removal of organic pollutant methylene blue using polysaccharide-based composite hydrogels. CHEMOSPHERE 2022; 286:131890. [PMID: 34426282 DOI: 10.1016/j.chemosphere.2021.131890] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/28/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Methylene blue (MB) is categorized as an organic dye (OD) released as effluents after various industrial activities and is one of the most abundant pollutants in the aquatic environment. Significantly, because of its potential toxicity, removing MB from wastewater has been a matter of necessity in recent times. Numerous analytical techniques have been applied, among which polysaccharide-based composite hydrogels appear as the most favorable for MB removal because of their large surface area, excellent mechanical properties, swelling capability, and large-scale production. In this review, the first section gives adequate information about the ODs' adverse effects on the environment and the contribution of polysaccharide-based hydrogels for OD removal, especially MB. Next, various mechanisms such as electrostatic interactions, π-π interactions, hydrogen bonding, hydrophobic interaction, van der Waals force, and coordination interaction involved in the adsorption technique are investigated. The third section extensively describes the MB removal by incorporation of various materials such as monomers, metal oxides, magnetic nanoparticles, and clay into the polysaccharide matrix to produce composite hydrogels. Finally, the current limitations and future perspectives of the polysaccharide-based composite hydrogel techniques are addressed. Overall, this review acknowledged the vital role of polysaccharide-based composite hydrogels for MB adsorption by surveying 110 research articles published in the past five years (2015-2021).
Collapse
Affiliation(s)
- Rajamanickam Sivakumar
- Department of Industrial Environmental Engineering, College of Industrial Environmental Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, South Korea
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, South Korea.
| |
Collapse
|
42
|
Fengler C, Spange S, Sommer M, Wilhelm M. Synthesis of Superabsorbent Poly(vinylamine) Core–Shell Particles Monitored by Time-Domain NMR. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c02008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Christian Fengler
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstr. 18, 76131 Karlsruhe, Germany
| | - Stefan Spange
- Institute for Chemistry, Polymer Chemistry, Chemnitz University of Technology, Straße der Nationen 62, 09111 Chemnitz, Germany
| | - Michael Sommer
- Institute for Chemistry, Polymer Chemistry, Chemnitz University of Technology, Straße der Nationen 62, 09111 Chemnitz, Germany
| | - Manfred Wilhelm
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstr. 18, 76131 Karlsruhe, Germany
| |
Collapse
|
43
|
Borges MMC, Pires BC, Vieira SS, Borges KB, Guimarães LGDL. Magnetic and pH responsive composite hydrogel-based on poly(2-(diethylamino)ethyl methacrylate)/chitosan for fipronil removal from aqueous medium. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.105050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
44
|
Taktak F, Ciğeroğlu Z, Güler B. Preparation of a New Zwitterionic Sulfobetaine Methacrylate Based Superabsorbent Copolymer Hydrogel and Its Adsorption Behavior Toward Cationic and Anionic Dyes. J MACROMOL SCI B 2021. [DOI: 10.1080/00222348.2021.1995946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Fulya Taktak
- Department of Chemical Engineering, Engineering Faculty, Uşak University, Uşak, Turkey
| | - Zeynep Ciğeroğlu
- Department of Chemical Engineering, Engineering Faculty, Uşak University, Uşak, Turkey
| | - Binali Güler
- Department of Chemical Engineering, Engineering Faculty, Uşak University, Uşak, Turkey
| |
Collapse
|
45
|
Correa S, Grosskopf AK, Lopez Hernandez H, Chan D, Yu AC, Stapleton LM, Appel EA. Translational Applications of Hydrogels. Chem Rev 2021; 121:11385-11457. [PMID: 33938724 PMCID: PMC8461619 DOI: 10.1021/acs.chemrev.0c01177] [Citation(s) in RCA: 409] [Impact Index Per Article: 102.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Indexed: 12/17/2022]
Abstract
Advances in hydrogel technology have unlocked unique and valuable capabilities that are being applied to a diverse set of translational applications. Hydrogels perform functions relevant to a range of biomedical purposes-they can deliver drugs or cells, regenerate hard and soft tissues, adhere to wet tissues, prevent bleeding, provide contrast during imaging, protect tissues or organs during radiotherapy, and improve the biocompatibility of medical implants. These capabilities make hydrogels useful for many distinct and pressing diseases and medical conditions and even for less conventional areas such as environmental engineering. In this review, we cover the major capabilities of hydrogels, with a focus on the novel benefits of injectable hydrogels, and how they relate to translational applications in medicine and the environment. We pay close attention to how the development of contemporary hydrogels requires extensive interdisciplinary collaboration to accomplish highly specific and complex biological tasks that range from cancer immunotherapy to tissue engineering to vaccination. We complement our discussion of preclinical and clinical development of hydrogels with mechanical design considerations needed for scaling injectable hydrogel technologies for clinical application. We anticipate that readers will gain a more complete picture of the expansive possibilities for hydrogels to make practical and impactful differences across numerous fields and biomedical applications.
Collapse
Affiliation(s)
- Santiago Correa
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
| | - Abigail K. Grosskopf
- Chemical
Engineering, Stanford University, Stanford, California 94305, United States
| | - Hector Lopez Hernandez
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
| | - Doreen Chan
- Chemistry, Stanford University, Stanford, California 94305, United States
| | - Anthony C. Yu
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
| | | | - Eric A. Appel
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
- Bioengineering, Stanford University, Stanford, California 94305, United States
- Pediatric
Endocrinology, Stanford University School
of Medicine, Stanford, California 94305, United States
- ChEM-H Institute, Stanford
University, Stanford, California 94305, United States
- Woods
Institute for the Environment, Stanford
University, Stanford, California 94305, United States
| |
Collapse
|
46
|
da Costa JS, Bertizzolo EG, Bianchini D, Fajardo AR. Adsorption of benzene and toluene from aqueous solution using a composite hydrogel of alginate-grafted with mesoporous silica. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126405. [PMID: 34351297 DOI: 10.1016/j.jhazmat.2021.126405] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
Hydrogels are often claimed as optimal adsorbents for water treatment; however, their efficiency towards the removal of hydrophobic pollutants is still limited. As an alternative, hydrogels prepared from polymers functionalized with siliceous materials can overcome this issue. Here, a composite hydrogel (denoted as GEL-SBA15) was prepared using alginate grafted with mesoporous silica (SBA15) and poly(vinyl alcohol) for benzene and toluene adsorption from aqueous solutions. Adsorption studies demonstrated that a low dosage of GEL-SBA15 (10 mg) has a high adsorption capacity for benzene (1482.8 mg/g) and toluene (596.6 mg/g) under mild experimental conditions (pH 7.0, at 25 °C). Besides, the adsorption capacities of GEL-SBA15 for both pollutants were enhanced compared to the conventional hydrogel. Kinetic analysis showed that the adsorption of benzene and toluene follows a pseudo-second order model, while the experimental adsorption data were well-fitted by the Freundlich isotherm. According to this isotherm, the adsorption occurs via a collaborative process, and weak physical forces (π-π interactions, van der Waals and hydrophobic) are involved. Hence, the post-utilized GEL-SBA15 can be recycled and reused up to 6 times without losing adsorption performance. Although hydrogels are not common adsorbents for aromatic hydrocarbons, the results reported here rank GEL-SBA15 as a promising adsorbent for the removal of these pollutants from water.
Collapse
Affiliation(s)
- Juliê S da Costa
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão s/n, 96010-900 Pelotas, RS, Brazil
| | - Emanuel G Bertizzolo
- Laboratório de Sólidos Inorgânicos (Lasir), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão s/n, 96010-900 Pelotas, RS, Brazil
| | - Daniela Bianchini
- Laboratório de Sólidos Inorgânicos (Lasir), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão s/n, 96010-900 Pelotas, RS, Brazil
| | - André R Fajardo
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão s/n, 96010-900 Pelotas, RS, Brazil.
| |
Collapse
|
47
|
Wu M, Peng QY, Han LB, Zeng HB. Self-healing Hydrogels and Underlying Reversible Intermolecular Interactions. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2631-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
48
|
Büyükbektaş A, Delibaş A, Benk A, Coşkun R. Laponite-AMPS/AA composite hydrogels for efficient removal of methylene blue (MB). JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02677-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
Li K, Yan J, Zhou Y, Li B, Li X. β-cyclodextrin and magnetic graphene oxide modified porous composite hydrogel as a superabsorbent for adsorption cationic dyes: Adsorption performance, adsorption mechanism and hydrogel column process investigates. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116291] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
50
|
Medellín-Castillo NA, Isaacs-Páez ED, Rodríguez-Méndez I, González-García R, Labrada-Delgado GJ, Aragón-Piña A, García-Arreola ME. Formaldehyde and tripolyphosphate crosslinked chitosan hydrogels: Synthesis, characterization and modeling. Int J Biol Macromol 2021; 183:2293-2304. [PMID: 34097967 DOI: 10.1016/j.ijbiomac.2021.06.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/17/2021] [Accepted: 06/02/2021] [Indexed: 10/21/2022]
Abstract
In this work, the synthesis of crosslinked chitosan hydrogels was performed by ionic and covalent interactions using tripolyphosphate (TPP) and formaldehyde (CH2O), respectively. The hydrogels synthesis was performed using a D-Optimal combined experiment design with two mixing variables, A and B representing the TPP weight fraction (slack variable) and CH2O weight fraction, respectively, and three (3) process variables C-chitosan concentration, D-cross-linker concentration, and E-Contact time. The response variables studied were the point of zero charge (pHPZC), the swelling ratio (SW), and the equilibrium water content (EWC), which are relevant physicochemical properties in applications such as the pollutant removal from water. According to the ANOVA results, the model obtained was significant; this means it can be adequately used to predicting pHPZC, SW, and EWC from the mixing and process variables, obtaining coefficients of determination R2 of 0.9572, 0.8900, and 0.8447, respectively. The pHPZC is affected by chitosan concentration, while the crosslinker concentration influences the SW, and the contact time most significantly affected the EWC. Morphology and hardness tests, thermal stability, infrared spectroscopy, and scanning electron microscopy, allowed verifying the types of crosslinking of chitosan with TPP and CH2O.
Collapse
Affiliation(s)
- Nahum Andrés Medellín-Castillo
- Centro de Investigación y Estudios de Posgrado, Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P. 78290, Mexico.
| | - Elizabeth Diane Isaacs-Páez
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, A.C., San Luis Potosí, S.L.P 78216, Mexico
| | - Itzia Rodríguez-Méndez
- Centro de Investigación y Estudios de Posgrado, Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P. 78290, Mexico
| | - Raul González-García
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P. 78260, Mexico
| | - Gladis Judith Labrada-Delgado
- Laboratorio Nacional de Investigaciones en Nanociencias y Nanotecnologia, Instituto Potosino de Investigación Científica y Tecnológica, A.C., San Luis Potosí, S.L.P. 78216, Mexico
| | - Antonio Aragón-Piña
- Instituto de Metalurgía, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P. 78210, Mexico
| | | |
Collapse
|