1
|
Nuchan P, Kovitvadhi U, Sangsawang A, Kovitvadhi S, Klaimala P, Srakaew N. Potential utilization of bivalve hemolymph as a biomonitoring tool for assessment of atrazine contamination. JOURNAL OF HAZARDOUS MATERIALS 2024; 485:136927. [PMID: 39706011 DOI: 10.1016/j.jhazmat.2024.136927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
This study evaluated temporally dynamic bioaccumulation, fates, and biotransformation of atrazine (ATZ) in bivalve hemolymph. Male and female mussels, Hyriopsis bialata, were exposed to ATZ at environmentally-relevant (0.02 and 0.2 mg/L) and high (2 mg/L) concentrations. Untreated mussels served as a control. The hemolymph was collected from the anterior adductor muscle during 28 days of exposure. Pooled hemolymph from individuals of the same sex was subjected to chromatographic analysis of ATZ and its derivatives: desethylatrazine (DEA), desisopropylatrazine (DIA), and hydroxyatrazine (HA). The hemolymph was also used to determine phase I biotransformation via 7-ethoxyresorufin-O-deethylase activity. ATZ-treated mussels showed bioaccumulation of ATZ and its derivatives in their hemolymph, but the control mussels had none. There were no gender-dependent bioaccumulation patterns for these compounds, among which DEA revealed dose- and time-dependent bioaccumulation. Besides, hemolymph-to-water concentration ratios (HWRs) of DEA exhibited concentration and time dependency on nominal ATZ concentrations, especially in the female mussels. ATZ exposure generally did not alter phase I biotransformation capacity in the hemolymph. Interestingly, DEA, aside from ATZ, was a promising candidate marker representing degrees of ATZ contamination. Overall, this study offered opportunity for utilizing the bivalve hemolymph of minimal amounts for rapid, time-series biomonitoring of ATZ contamination in water.
Collapse
Affiliation(s)
- Pattanan Nuchan
- Department of Zoology, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Uthaiwan Kovitvadhi
- Department of Zoology, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Akkarasiri Sangsawang
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Satit Kovitvadhi
- Department of Agriculture, Faculty of Science and Technology, Bansomdejchaopraya Rajabhat University, Thonburi, Bangkok 10600, Thailand
| | - Pakasinee Klaimala
- Impact of Pesticide Use Subdivision, Pesticide Research Group, Agricultural Production Science Research and Development Office, Department of Agriculture, Ministry of Agriculture and Cooperatives, Chatuchak, Bangkok 10900, Thailand
| | - Nopparat Srakaew
- Department of Zoology, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand.
| |
Collapse
|
2
|
Wen X, Xiang L, Harindintwali JD, Wang Y, He C, Fu Y, Wei S, Hashsham SA, Jiang J, Jiang X, Wang F. Mitigating risks from atrazine drift to soybeans through foliar pre-spraying with a degrading bacterium. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136224. [PMID: 39442306 DOI: 10.1016/j.jhazmat.2024.136224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/29/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
Herbicides play a crucial role in managing weeds in agriculture, ensuring the productivity and quality of crops. However, herbicide drift poses a significant threat to sensitive plants, necessitating the consideration of ecosystem-based solutions to address this issue. In this study, foliar pre-spraying of atrazine-degrading Paenarthrobacter sp. AT5 was proposed as a new approach to mitigate the risks associated with atrazine drift on soybeans. Exposure to atrazine reduced chlorophyll levels and disturbed the antioxidant system and metabolic processes in soybean leaves, ultimately causing leaves to turn yellow. However, by pre-spraying, strain AT5 successfully colonized the surface of soybean leaves and mitigated the harmful effects of atrazine. This was achieved by slowing down atrazine absorption, expediting its reduction (half-life decreased from 2.22 d to 0.86 d), altering its degradation pathway (enhancing hydroxylation while weakening alkylation), and enhancing the interaction within phyllosphere bacteria communities. This study introduces a new approach that is both eco-friendly and user-friendly for reducing the risks of herbicide drift to sensitive crops, hence promoting the development of mixed cropping.
Collapse
Affiliation(s)
- Xin Wen
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Leilei Xiang
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jean Damascene Harindintwali
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Wang
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao He
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yuhao Fu
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siqi Wei
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Syed A Hashsham
- Center for Microbial Ecology, Department of Plant, Soil and Microbial Sciences, Michigan State University, MI 48824, USA; Department of Civil and Environmental Engineering, Michigan State University, MI 48824, USA
| | - Jiandong Jiang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Xin Jiang
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Wang
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Gao W, Yu Y, Xu G. Nickel oxide nanoparticles decrease the accumulation of atrazine in earthworms. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134771. [PMID: 38861898 DOI: 10.1016/j.jhazmat.2024.134771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/14/2024] [Accepted: 05/29/2024] [Indexed: 06/13/2024]
Abstract
Nickel oxide nanoparticles (NiO-NPs) are common nanomaterials that may be released into the environment, affecting the toxicity of other contaminants. Atrazine (ATZ) is a commonly used herbicide that can harm organisms due to its persistence and bioaccumulation in the environment. Although the toxicity of ATZ to earthworms is well-documented, the risk of co-exposure with NiO-NPs increases as more nanoparticles accumulate in the soil. In this study, we investigated the effects and mechanisms of NiO-NPs on the accumulation of ATZ in earthworms. The results showed that after day 21, the antioxidant system of the cells under ATZ treatment alone was adversely affected, with ROS content 36.05 % higher than that of the control (CK) group. However, the addition of NiO-NPs reduced the ROS contents in the earthworms by 0.6 %- 32.3 %. Moreover, analysis of earthworm intestinal sections indicates that NiO-NPs mitigated cellular and tissue damage caused by ATZ. High-throughput sequencing revealed that NiO-NPs in earthworm intestines increased the abundance of Pseudomonas aeruginosa and Aeromonas aeruginosa. Additionally, the enhanced function of the ABC transport system in the gut resulted in lower accumulation of ATZ in earthworms. In summary, NiO-NPs can reduce the accumulation and thus the toxicity of ATZ in earthworms. Our study contributes to a deeper understanding of the effects of NiO-NPs on co-existing pollutants.
Collapse
Affiliation(s)
- Wenqi Gao
- College of Geographic Science and Tourism, Jilin Normal University, Siping 136000, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yong Yu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Guanghui Xu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
4
|
Priya AK, Muruganandam M, Suresh S. Bio-derived carbon-based materials for sustainable environmental remediation and wastewater treatment. CHEMOSPHERE 2024; 362:142731. [PMID: 38950744 DOI: 10.1016/j.chemosphere.2024.142731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 05/22/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024]
Abstract
Biosynthesized nanocomposites, particularly those incorporating carbon-based materials, exhibit exceptional tunability and multifunctionality, surpassing the capabilities of conventional materials in these aspects. Developing practical solutions is critical to address environmental toxins from pharmaceuticals, heavy metals, pesticides, and dyes. Biomass waste is a readily available carbon source, which emerges as a promising material for producing biochar due to its inherent advantages: abundance, low cost, and environmentally friendly nature. This distribution mainly uses carbon-based materials (CBMs) and biomass waste in wastewater treatment. This review paper investigates several CBM types, including carbon aerogels, nanotubes, graphene, and activated carbon. The development of bio-derived carbon-based nanomaterials are discussed, along with the properties and composition of carbon materials derived from biomass waste and various cycles, such as photodegradation, adsorption, and high-level oxidation processes for natural remediation. In conclusion, this review examines the challenges associated with biochar utilization, including cost, recovery, and practical implementation.
Collapse
Affiliation(s)
- A K Priya
- Project Prioritization, Monitoring & Evaluation, and Knowledge Management Unit, ICAR Indian Institute of Soil & Water Conservation (ICAR-IISWC), Dehradun, India; Department of Chemical Engineering, KPR Institute of Engineering and Technology, Tamilnadu, India
| | - M Muruganandam
- Project Prioritization, Monitoring & Evaluation, and Knowledge Management Unit, ICAR Indian Institute of Soil & Water Conservation (ICAR-IISWC), Dehradun, India
| | - Sagadevan Suresh
- Nanotechnology & Catalysis Research Centre, Universiti Malaya, Kuala Lumpur, 50603, Malaysia; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, 603103, India.
| |
Collapse
|
5
|
Deng S, Chen C, Wang Y, Liu S, Zhao J, Cao B, Jiang D, Jiang Z, Zhang Y. Advances in understanding and mitigating Atrazine's environmental and health impact: A comprehensive review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121530. [PMID: 38905799 DOI: 10.1016/j.jenvman.2024.121530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/09/2024] [Accepted: 06/16/2024] [Indexed: 06/23/2024]
Abstract
Atrazine is a widely used herbicide in agriculture, and it has garnered significant attention because of its potential risks to the environment and human health. The extensive utilization of atrazine, alongside its persistence in water and soil, underscores the critical need to develop safe and efficient removal strategies. This comprehensive review aims to spotlight atrazine's potential impact on ecosystems and public health, particularly its enduring presence in soil, water, and plants. As a known toxic endocrine disruptor, atrazine poses environmental and health risks. The review navigates through innovative removal techniques across soil and water environments, elucidating microbial degradation, phytoremediation, and advanced methodologies such as electrokinetic-assisted phytoremediation (EKPR) and photocatalysis. The review notably emphasizes the complex process of atrazine degradation and ongoing scientific efforts to address this, recognizing its potential risks to both the environment and human health.
Collapse
Affiliation(s)
- Shijie Deng
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Cairu Chen
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yuhang Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shanqi Liu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jiaying Zhao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Bo Cao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Duo Jiang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Zhao Jiang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130132, PR China.
| |
Collapse
|
6
|
Li B, Jiang Y, Wang T, Liu W, Chen X, He J, Du Z, Yang R, Miao D, Li Y. MicroRNA-217-5p triggers dopaminergic neuronal degeneration via autophagy activation under Atrazine exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122811. [PMID: 37890694 DOI: 10.1016/j.envpol.2023.122811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/30/2023] [Accepted: 10/25/2023] [Indexed: 10/29/2023]
Abstract
Atrazine (ATR) is a widely used agricultural herbicide, and its accumulation in soil and water can cause various environmental health problems. ATR has neurotoxic effects on dopaminergic neurons, which can lead to a Parkinson's disease (PD)-like syndrome. Epigenetics regulates gene expression dynamically through DNA methylation, histone post-translational modification, microRNA (miRNA) interaction, and RNA methylation. MicroRNA (miRNA), representing one of the primary epigenetic mechanisms responsible for regulating gene expression, plays a crucial role in maintaining normal cellular function, while dysregulation of miRNA expression has been observed in PD. This study aims to investigate the regulatory mechanisms of miRNA in ATR exposure. The results show that ATR-exposure significantly upregulates the expression level of miR-217-5p. Both miR-217-5p overexpression and ATR exposure is able to trigger the autophagy process and apoptosis. Conversely, inhibiting the expression of miR-217-5p can reverse the levels of ATR-induced autophagy and apoptosis. Moreover, ATR causes damage to dopaminergic neurons, as indicated by the altered expression of tyrosine hydroxylase and α-synuclein. Taken together, these results suggest that ATR-induced autophagy can accelerate the progression of neurodegenerative diseases and that miR-217-5p is probably an important target involved in ATR-induced dopaminergic damage, shedding important light on the development of a novel strategy for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Bingyun Li
- College of Public Health, Shantou University, Shantou, 515063, Guangdong Province, China
| | - Yujia Jiang
- College of Public Health, Shantou University, Shantou, 515063, Guangdong Province, China; Department of Toxicology, College of Public Health, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Ting Wang
- Department of Toxicology, College of Public Health, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Weiwei Liu
- Weihai Municipal Hospital, Weihai, 264299, Shandong Province, China
| | - Xiaojuan Chen
- College of Public Health, Shantou University, Shantou, 515063, Guangdong Province, China
| | - Jinyi He
- College of Public Health, Shantou University, Shantou, 515063, Guangdong Province, China
| | - Zeyu Du
- Department of Toxicology, College of Public Health, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Ruijiao Yang
- Department of Toxicology, College of Public Health, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Danxiu Miao
- Department of Toxicology, College of Public Health, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Yanshu Li
- College of Public Health, Shantou University, Shantou, 515063, Guangdong Province, China.
| |
Collapse
|
7
|
Satapute P, De Britto S, Hadimani S, Abdelrahman M, Alarifi S, Govind SR, Jogaiah S. Bacterial chemotaxis of herbicide atrazine provides an insight into the degradation mechanism through intermediates hydroxyatrazine, N-N-isopropylammelide, and cyanuric acid compounds. ENVIRONMENTAL RESEARCH 2023; 237:117017. [PMID: 37652220 DOI: 10.1016/j.envres.2023.117017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/20/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
In recent times, the herbicide atrazine (ATZ) has been commonly used before and after the cultivation of crop plants to manage grassy weeds. Despite its effect, the toxic residues of ATZ affect soil fertility and crop yield. Hence, the current study is focused on providing insight into the degradation mechanism of the herbicide atrazine through bacterial chemotaxis involving intermediates responsive to degradation. A bacterium was isolated from ATZ-contaminated soil and identified as Pseudomonas stutzeri based on its morphology, biochemical and molecular characterization. Upon ultra-performance liquid chromatography analysis, the free cells of isolated bacterium strain was found to utilize 174 μg/L of ATZ after 3-days of incubation on a mineral salt medium containing 200 μg/L of ATZ as a sole carbon source. It was observed that immobilized based degradation of ATZ yielded 198 μg/L and 190 μg/L by the cells entrapped with silica beads and sponge, respectively. Furthermore, the liquid chromatography-mass spectroscopy revealed that the secretion of three significant metabolites, namely, cyanuric acid, hydroxyatrazine and N- N-Isopropylammelide is responsive to the biodegradation of ATZ by the bacterium. Collectively, this research demonstrated that bacterium strains are the most potent agent for removing toxic pollutants from the environment, thereby enhancing crop yield and soil fertility with long-term environmental benefits.
Collapse
Affiliation(s)
- Praveen Satapute
- Laboratory of Plant Healthcare and Diagnostics, P.G. Department of Biotechnology and Microbiology, Karnatak University, Dharwad, 580003, Karnataka, India
| | - Savitha De Britto
- Division of Biological Sciences, School of Science and Technology, University of Goroka, Goroka, 441, Papua New Guinea
| | - Shiva Hadimani
- Laboratory of Plant Healthcare and Diagnostics, P.G. Department of Biotechnology and Microbiology, Karnatak University, Dharwad, 580003, Karnataka, India
| | | | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | | | - Sudisha Jogaiah
- Laboratory of Plant Healthcare and Diagnostics, P.G. Department of Biotechnology and Microbiology, Karnatak University, Dharwad, 580003, Karnataka, India; Department of Environmental Science, Central University of Kerala, Tejaswini Hills, Periye (PO), 671316, Kasaragod (DT), Kerala, India.
| |
Collapse
|
8
|
Yang Z, Lou Y, Pan H, Wang H, Yang Q, Sun Y, Zhuge Y. Reinforced Bioremediation of Excessive Nitrate in Atrazine-Contaminated Soil by Biodegradable Composite Carbon Source. Polymers (Basel) 2023; 15:2765. [PMID: 37447411 DOI: 10.3390/polym15132765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/10/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Bioremediation is a good alternative to dispose of the excessive nitrate (NO3-) in soil and alleviate the secondary salinization of soil, but the presence of atrazine in soil interferes with the bioremediation process. In the present study, the biodegradable composite carbon source with different dosages was added to the atrazine-contaminated soil to intensify the bioremediation of excessive NO3-. The atrazine-contaminated soil with a 25 g/kg composite carbon source achieved the optimal NO3- removal performance (92.10%), which was slightly higher than that with a 5 g/kg composite carbon source (86.15%) (p > 0.05). Unfortunately, the negative effects of the former were observed, such as the distinctly higher emissions of N2O, CO2 and a more powerful global warming potential (GWP). Microbial community analysis showed that the usage of the composite carbon source clearly decreased the richness and diversity of the microbial community, and greatly stimulated nitrogen metabolism and atrazine degradation (p < 0.05). To sum up, the application of a 5 g/kg composite carbon source contributed to guaranteeing bioremediation performance and reducing adverse environmental impacts at the same time.
Collapse
Affiliation(s)
- Zhongchen Yang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Tai'an 271018, China
| | - Yanhong Lou
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Tai'an 271018, China
| | - Hong Pan
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Tai'an 271018, China
| | - Hui Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Tai'an 271018, China
| | - Quangang Yang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Tai'an 271018, China
| | - Yajie Sun
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Tai'an 271018, China
| | - Yuping Zhuge
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Tai'an 271018, China
| |
Collapse
|
9
|
Sun Q, Zhang Y, Ming C, Wang J, Zhang Y. Amended compost alleviated the stress of heavy metals to pakchoi plants and affected the distribution of heavy metals in soil-plant system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 336:117674. [PMID: 36967696 DOI: 10.1016/j.jenvman.2023.117674] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/13/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
With the development of the social economy, soil heavy metal pollution has become a common worldwide issue. Therefore, the remediation of soil heavy metal pollution is imminent. This study aimed to investigate the effect of amended compost on reducing heavy metal bioavailability in soil and relieving heavy metals stress on plants under Cu and Zn stress in a pot experiment. To model the restoration of heavy metal-polluted farming soil, conventional compost (CKw), activated carbon compost (ACw), modified biochar compost (BCw) and rhamnolipid compost (RLw) were utilized. The results showed that the application of amended compost could promote the growth and quality of pakchoi and enhance the stress ability of malondialdehyde and antioxidant enzymes to heavy metals. The distribution of Cu and Zn in different subcellular parts of pakchoi was also affected. The application of amended compost significantly reduced the heavy metals content in the shoot of pakchoi, among which the content of Cu and Zn in the shoot of pakchoi in RLw was significantly decreased by 57.29% and 60.07%, respectively. Our results can provide a new understanding for efficient remediation of contaminated farmland soil by multiple heavy metals.
Collapse
Affiliation(s)
- Qinghong Sun
- College of Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China; School of Resource and Environment, Northeast Agricultural University, Harbin, China
| | - Yuxin Zhang
- School of Resource and Environment, Northeast Agricultural University, Harbin, China
| | - Chenshu Ming
- School of Resource and Environment, Northeast Agricultural University, Harbin, China
| | - Jianmin Wang
- School of Resource and Environment, Northeast Agricultural University, Harbin, China
| | - Ying Zhang
- School of Resource and Environment, Northeast Agricultural University, Harbin, China.
| |
Collapse
|
10
|
Zhang H, Zheng K, Gu S, Wang Y, Zhou X, Yan H, Ma K, Zhao Y, Jin X, Lu G, Deng Y. Grass-Legume Mixture with Rhizobium Inoculation Enhanced the Restoration Effects of Organic Fertilizer. Microorganisms 2023; 11:1114. [PMID: 37317088 PMCID: PMC10224280 DOI: 10.3390/microorganisms11051114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/18/2023] [Accepted: 04/22/2023] [Indexed: 06/16/2023] Open
Abstract
The establishment of artificial grassland is crucial in restoring degraded grassland and resolving the forage-livestock conflict, and the application of organic fertilizer and complementary seeding of grass-legume mixture are effective methods to enhance grass growth in practice. However, its mechanism behind the underground is largely unclear. Here, by utilizing organic fertilizer in the alpine region of the Qinghai-Tibet Plateau, this study assessed the potential of grass-legume mixtures with and without the inoculation of Rhizobium for the restoration of degraded grassland. The results demonstrated that the application of organic fertilizer can increase the forage yield and soil nutrient contents of degraded grassland, and they were 0.59 times and 0.28 times higher than that of the control check (CK), respectively. The community composition and structure of soil bacteria and fungi were also changed by applying organic fertilizer. Based on this, the grass-legume mixture inoculated with Rhizobium can further increase the contribution of organic fertilizer to soil nutrients and thus enhance the restoration effects for degraded artificial grassland. Moreover, the application of organic fertilizer significantly increased the colonization of gramineous plant by native mycorrhizal fungi, which was ~1.5-2.0 times higher than CK. This study offers a basis for the application of organic fertilizer and grass-legume mixture in the ecological restoration of degraded grassland.
Collapse
Affiliation(s)
- Haijuan Zhang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China; (H.Z.); (K.Z.); (Y.W.); (X.Z.); (H.Y.); (K.M.); (Y.Z.); (X.J.)
| | - Kaifu Zheng
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China; (H.Z.); (K.Z.); (Y.W.); (X.Z.); (H.Y.); (K.M.); (Y.Z.); (X.J.)
| | - Songsong Gu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yingcheng Wang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China; (H.Z.); (K.Z.); (Y.W.); (X.Z.); (H.Y.); (K.M.); (Y.Z.); (X.J.)
| | - Xueli Zhou
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China; (H.Z.); (K.Z.); (Y.W.); (X.Z.); (H.Y.); (K.M.); (Y.Z.); (X.J.)
- Experimental Station of Grassland Improvement in Qinghai Province, Gonghe 813000, China
| | - Huilin Yan
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China; (H.Z.); (K.Z.); (Y.W.); (X.Z.); (H.Y.); (K.M.); (Y.Z.); (X.J.)
| | - Kun Ma
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China; (H.Z.); (K.Z.); (Y.W.); (X.Z.); (H.Y.); (K.M.); (Y.Z.); (X.J.)
| | - Yangan Zhao
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China; (H.Z.); (K.Z.); (Y.W.); (X.Z.); (H.Y.); (K.M.); (Y.Z.); (X.J.)
| | - Xin Jin
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China; (H.Z.); (K.Z.); (Y.W.); (X.Z.); (H.Y.); (K.M.); (Y.Z.); (X.J.)
| | - Guangxin Lu
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China; (H.Z.); (K.Z.); (Y.W.); (X.Z.); (H.Y.); (K.M.); (Y.Z.); (X.J.)
| | - Ye Deng
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
11
|
Jiang D, Li Y, Wang J, Lv X, Jiang Z, Cao B, Qu J, Ma S, Zhang Y. Exogenous application of Bradyrhizobium japonicum AC20 enhances soybean tolerance to atrazine via regulating rhizosphere soil microbial community and amino acid, carbohydrate metabolism related genes expression. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:472-483. [PMID: 36764263 DOI: 10.1016/j.plaphy.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/19/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Atrazine is used to control broad-leaved weeds in farmland and has negative impacts on soybean growth. Legume-rhizobium symbiosis plays an important role in regulating abiotic stress tolerance of plants, however, the mechanisms of rhizobia regulate the tolerance of soybean to atrazine based on the biochemical responses of the plant-soil system are limited. In this experiment, Glycine max (L.) Merr. Dongnong 252, planted in 20 mg kg-1 of atrazine-contaminated soil, was inoculated with Bradyrhizobium japonicum AC20, and the plant growth, rhizosphere soil microbial diversity and the expression of the genes related to soybean carbon and nitrogen metabolism were assessed. The results indicated that strain AC20 inoculation alleviated atrazine-induced growth inhibition via increasing the contents of leghemoglobin and total nitrogen in soybean seedlings. The psbA gene expression level of the soybean seedlings that inoculated strain AC20 was 1.4 times than that of no rhizobium inoculating treatments. Moreover, the inoculated AC20 increased the abundance of Acidobacteria and Actinobacteria in soybean rhizosphere. Transcriptome analysis demonstrated that strain AC20 regulated the genes expression of amino acid metabolism and carbohydrate metabolism of soybean seedlings. Correlation analysis between 16S rRNA and transcriptome showed that strain AC20 reduced Planctomycetes abundance so as to down-regulated the expression of genes Glyma. 13G087800, Glyma. 12G005100 and Glyma.12G098900 involved in starch synthesis pathway of soybean leaves. These results provide available information for the rhizobia application to enhance the atrazine tolerate in soybean seedlings.
Collapse
Affiliation(s)
- Duo Jiang
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yu Li
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jianmin Wang
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xinyu Lv
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Zhao Jiang
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Bo Cao
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jianhua Qu
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shouyi Ma
- Heilongjiang Academy of Land Reclamation Sciences, Harbin, 150030, PR China
| | - Ying Zhang
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, PR China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130132, PR China.
| |
Collapse
|
12
|
Jiang Z, Shao Q, Chu Y, An N, Cao B, Ren Z, Li J, Qu J, Dong M, Zhang Y. Mitigation of atrazine-induced oxidative stress on soybean seedlings after co-inoculation with atrazine-degrading bacterium Arthrobacter sp. DNS10 and inorganic phosphorus-solubilizing bacterium Enterobacter sp. P1. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:30048-30061. [PMID: 36418831 DOI: 10.1007/s11356-022-24070-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Atrazine toxicity is one of the limiting factors inhibiting sensitive plant growth. Previous studies showed that atrazine-degrading bacteria could alleviate atrazine toxicity. However, there is limited information on how atrazine-degrading bacteria and plant growth-promote bacteria alleviate atrazine toxicity in soybeans. Therefore, the current study aimed to explore the atrazine removal, phosphorus utilization, and the oxidative stress alleviation of atrazine-degrading bacterium Arthrobacter sp. DNS10 and/or inorganic phosphorus-solubilizing bacterium Enterobacter sp. P1 in the reduction of atrazine toxicity in soybean. The results showed that atrazine exposure to soybean seedlings led to significant inhibition in growth, atrazine removal, and phosphorus utilization. However, the co-inoculatied strains significantly increased seedlings biomass, chlorophyll a/b contents, and total phosphorus in leaves accompanied by great reduction of the atrazine-induced antioxidant enzymes activities and malonaldehyde (MDA) contents, as well as atrazine contents in soil and soybeans under atrazine stress. Furthermore, transcriptome analysis highlighted that co-inoculated strains increased the expression levels of genes related to photosynthetic-antenna proteins, carbohydrate metabolism, and fatty acid degradation in leaves. All the results suggest that the co-inoculation mitigates atrazine-induced oxidative stress on soybean by accelerating atrazine removal from soil and phosphorus accumulation in leaves, enhancing the chlorophyll contents, and regulating plant transcriptome. It may be suggested that co-inoculation of atrazine-degrading bacteria and inorganic phosphorus-solubilizing bacteria can be used as a potential method to alleviate atrazine toxicity to the sensitive crops.
Collapse
Affiliation(s)
- Zhao Jiang
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Qi Shao
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yuxin Chu
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Ning An
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Bo Cao
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Zheyi Ren
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jin Li
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jianhua Qu
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Maofeng Dong
- Pesticide Safety Evaluation Research Center, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, People's Republic of China
| | - Ying Zhang
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130132, People's Republic of China.
| |
Collapse
|
13
|
Jiang Z, Shao Q, Li Y, Cao B, Li J, Ren Z, Qu J, Zhang Y. Noval bio-organic fertilizer containing Arthrobacter sp. DNS10 alleviates atrazine-induced growth inhibition on soybean by improving atrazine removal and nitrogen accumulation. CHEMOSPHERE 2023; 313:137575. [PMID: 36563729 DOI: 10.1016/j.chemosphere.2022.137575] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/22/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Herbicide atrazine restricts nutrient accumulation and thus inhibits the growth of sensitive crops. The application of organic fertilizer is a common measure that contributes to modulating abiotic tolerance of crops and providing nutrients, but its advantages in combination with atrazine degrading microorganisms as bio-organic fertilizer to alleviate atrazine stress on sensitive crops and the associated mechanisms are unknown. We investigated the beneficial effects of organic and bio-organic fertilizer (named DNBF10) containing Arthrobacter sp. DNS10 applications on growth, leaf nitrogen accumulation, root surface structure and root physiological properties of soybean seedlings exposed to 20 mg kg-1 atrazine in soil. Compared with organic fertilizer, bio-organic fertilizer DNBF10 exhibited more reduction in soil atrazine residue and plant atrazine accumulation, as well as alleviation in atrazine-induced root oxidative stress and damaged cells of soybean roots. Transcriptome analysis revealed that DNBF10 application enhanced nitrogen utilization by improving the expression of genes involved in nitrogen metabolism in soybean leaves. Besides, genes expression of cytochrome P450 and ABC transporters involved in atrazine detoxification and transport in soybean leaves were also down-regulated by DNBF10 to diminish phytotoxicity of atrazine to soybean seedlings. These results illustrate the molecular mechanism by which the application of DNBF10 alleviates soybean seedlings growth under atrazine stress, providing a step forward for mitigate the atrazine induced inhibition on soybean seedlings growth through decreasing atrazine residues as well as enhancing damaged root repair and nitrogen accumulation.
Collapse
Affiliation(s)
- Zhao Jiang
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Qi Shao
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yu Li
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Bo Cao
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jin Li
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Zheyi Ren
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jianhua Qu
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ying Zhang
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, PR China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130132, PR China.
| |
Collapse
|
14
|
Wang B, Wang Y, Sun Y, Yu L, Lou Y, Fan X, Ren L, Xu G. Watermelon responds to organic fertilizer by enhancing root-associated acid phosphatase activity to improve organic phosphorus utilization. JOURNAL OF PLANT PHYSIOLOGY 2022; 279:153838. [PMID: 36334584 DOI: 10.1016/j.jplph.2022.153838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Organic fertilizer is commonly used to increase crop yields and improve soil quality. However, it is unclear whether crops adapt to organic fertilizer by regulating metabolic pathways that are involved in nutrient utilization. In this study, we focused on the organic phosphorus (Po) in organic fertilizer and, using watermelon, investigated changes in gene expression and metabolic pathways in response to organic fertilizer and the combination of chemical fertilizer and organic fertilizer (chemical fertilizer 70% and organic fertilizer 30%, based on phosphorus supply). Purple acid phosphatase (PAP) gene expression was upregulated in leaves and roots of watermelon grown in organic fertilizer alone and in the combination of chemical/organic fertilizer, resulting in enhanced phosphatase activity in roots. When the ratio of chemical to organic fertilizer was 85/15, root-associated acid phosphatase (APase) activity increased over chemical fertilizer alone. This formulation also resulted in increased inorganic phosphate (Pi) concentration in roots and leaves, and the upregulation of the secretory APase genes ClaPAP10/12/15/26, and ClaPAP18 in roots. In conclusion, watermelon responds to organic fertilizer by upregulating expression of secretory ClaPAP genes, subsequently enhancing root-associated APase activity further improving the hydrolysis of phosphomonoesters, and ultimately facilitating Po utilization by roots. The mechanisms of P utilization by roots comprise the enhancement of APase and phytase activity, absorption of small Po molecules, uptake of Pi, and the increase of lateral root number when organic fertilizer is applied to the plants. These findings help to establish the mechanisms by which plants respond to organic fertilizer by regulating metabolic pathways at the transcriptional level.
Collapse
Affiliation(s)
- Bingshuang Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, China; Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, No. 1 Weigang, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, No. 1 Weigang, Nanjing, 210095, China
| | - Yang Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, China; Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, No. 1 Weigang, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, No. 1 Weigang, Nanjing, 210095, China
| | - Yan Sun
- College of Resources and Environmental Sciences, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, China; Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, No. 1 Weigang, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, No. 1 Weigang, Nanjing, 210095, China
| | - Lirong Yu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, China; Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, No. 1 Weigang, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, No. 1 Weigang, Nanjing, 210095, China
| | - Yunsheng Lou
- School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Xiaorong Fan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, China; Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, No. 1 Weigang, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, No. 1 Weigang, Nanjing, 210095, China
| | - Lixuan Ren
- College of Resources and Environmental Sciences, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, China; Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, No. 1 Weigang, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, No. 1 Weigang, Nanjing, 210095, China.
| | - Guohua Xu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, China; Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, No. 1 Weigang, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, No. 1 Weigang, Nanjing, 210095, China
| |
Collapse
|
15
|
Tufail MA, Iltaf J, Zaheer T, Tariq L, Amir MB, Fatima R, Asbat A, Kabeer T, Fahad M, Naeem H, Shoukat U, Noor H, Awais M, Umar W, Ayyub M. Recent advances in bioremediation of heavy metals and persistent organic pollutants: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157961. [PMID: 35963399 DOI: 10.1016/j.scitotenv.2022.157961] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/02/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Heavy metals and persistent organic pollutants are causing detrimental effects on the environment. The seepage of heavy metals through untreated industrial waste destroys the crops and lands. Moreover, incineration and combustion of several products are responsible for primary and secondary emissions of pollutants. This review has gathered the remediation strategies, current bioremediation technologies, and their primary use in both in situ and ex situ methods, followed by a detailed explanation for bioremediation over other techniques. However, an amalgam of bioremediation techniques and nanotechnology could be a breakthrough in cleaning the environment by degrading heavy metals and persistant organic pollutants.
Collapse
Affiliation(s)
| | - Jawaria Iltaf
- Institute of Chemistry, University of Sargodha, 40100, Pakistan
| | - Tahreem Zaheer
- Department of Biological Physics, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
| | - Leeza Tariq
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 53700, Pakistan
| | - Muhammad Bilal Amir
- Key Laboratory of Insect Ecology and Molecular Biology, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Rida Fatima
- School of Science, Department of Chemistry, University of Management and Technology, Lahore, Pakistan
| | - Ayesha Asbat
- Department of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Tahira Kabeer
- Center of Agriculture Biochemistry and Biotechnology CABB, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Fahad
- Department of Plant Breeding and Genetics, Bahauddin Zakariya University, Multan, Pakistan
| | - Hamna Naeem
- Department of Environmental Sciences, Fatima Jinnah Women University, The Mall, 46000 Rawalpindi, Pakistan
| | - Usama Shoukat
- Integrated Genomics Cellular Development Biology Lab, Department of Entomology, University of Agriculture, Faisalabad, Pakistan
| | - Hazrat Noor
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Awais
- International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Wajid Umar
- Institute of Environmental Science, Hungarian University of Agriculture and Life Sciences, Gödöllő 2100, Hungary
| | - Muhaimen Ayyub
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Pakistan
| |
Collapse
|
16
|
Chang J, Fang W, Chen L, Zhang P, Zhang G, Zhang H, Liang J, Wang Q, Ma W. Toxicological effects, environmental behaviors and remediation technologies of herbicide atrazine in soil and sediment: A comprehensive review. CHEMOSPHERE 2022; 307:136006. [PMID: 35973488 DOI: 10.1016/j.chemosphere.2022.136006] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/18/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Atrazine has become one of the most popular applied triazine herbicides in the world due to its high herbicidal efficiency and low price. With its large-dosage and long-term use on a global scale, atrazine can cause widespread and persistent contamination of soil and sediment. This review systematically evaluates the toxicological effects, environmental risks, environmental behaviors (adsorption, transport and transformation, and bioaccumulation) of atrazine, and the remediation technologies of atrazine-contaminated soil and sediment. For the adsorption behavior of atrazine on soil and sediment, the organic matter content plays an extremely important role in the adsorption process. Various models and equations such as the multi-media fugacity model and solute transport model are used to analyze the migration and transformation process of atrazine in soil and sediment. It is worth noting that certain transformation products of atrazine in the environment even have stronger toxicity and mobility than its parent. Among various remediation technologies, the combination of microbial remediation and phytoremediation for atrazine-contaminated soil and sediment has wide application prospects. Although other remediation technologies such as advanced oxidation processes (AOPs) can also efficiently remove atrazine from soil, some potential problems still need to be further clarified. Finally, some related challenges and prospects are proposed.
Collapse
Affiliation(s)
- Jianning Chang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Wei Fang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Le Chen
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Panyue Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, 300130, China.
| | - Haibo Zhang
- College of Resources and Environment, Shanxi Agricultural University, Taigu, 030801, China
| | - Jinsong Liang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Qingyan Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Weifang Ma
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
17
|
Kiruba N JM, Saeid A. An Insight into Microbial Inoculants for Bioconversion of Waste Biomass into Sustainable "Bio-Organic" Fertilizers: A Bibliometric Analysis and Systematic Literature Review. Int J Mol Sci 2022; 23:13049. [PMID: 36361844 PMCID: PMC9656562 DOI: 10.3390/ijms232113049] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 12/31/2023] Open
Abstract
The plant-microbe holobiont has garnered considerable attention in recent years, highlighting its importance as an ecological unit. Similarly, manipulation of the microbial entities involved in the rhizospheric microbiome for sustainable agriculture has also been in the limelight, generating several commercial bioformulations to enhance crop yield and pest resistance. These bioformulations were termed biofertilizers, with the consistent existence and evolution of different types. However, an emerging area of interest has recently focused on the application of these microorganisms for waste valorization and the production of "bio-organic" fertilizers as a result. In this study, we performed a bibliometric analysis and systematic review of the literature retrieved from Scopus and Web of Science to determine the type of microbial inoculants used for the bioconversion of waste into "bio-organic" fertilizers. The Bacillus, Acidothiobacillus species, cyanobacterial biomass species, Aspergillus sp. and Trichoderma sp. were identified to be consistently used for the recovery of nutrients and bioconversion of wastes used for the promotion of plant growth. Cyanobacterial strains were used predominantly for wastewater treatment, while Bacillus, Acidothiobacillus, and Aspergillus were used on a wide variety of wastes such as sawdust, agricultural waste, poultry bone meal, crustacean shell waste, food waste, and wastewater treatment plant (WWTP) sewage sludge ash. Several bioconversion strategies were observed such as submerged fermentation, solid-state fermentation, aerobic composting, granulation with microbiological activation, and biodegradation. Diverse groups of microorganisms (bacteria and fungi) with different enzymatic functionalities such as chitinolysis, lignocellulolytic, and proteolysis, in addition to their plant growth promoting properties being explored as a consortium for application as an inoculum waste bioconversion to fertilizers. Combining the efficiency of such functional and compatible microbial species for efficient bioconversion as well as higher plant growth and crop yield is an enticing opportunity for "bio-organic" fertilizer research.
Collapse
Affiliation(s)
- Jennifer Michellin Kiruba N
- Department of Engineering and Technology of Chemical Processes, Faculty of Chemistry, Wroclaw University Science and Technology, 50-373 Wroclaw, Poland
| | - Agnieszka Saeid
- Department of Engineering and Technology of Chemical Processes, Faculty of Chemistry, Wroclaw University Science and Technology, 50-373 Wroclaw, Poland
| |
Collapse
|
18
|
Issaka E, Fapohunda FO, Amu-Darko JNO, Yeboah L, Yakubu S, Varjani S, Ali N, Bilal M. Biochar-based composites for remediation of polluted wastewater and soil environments: Challenges and prospects. CHEMOSPHERE 2022; 297:134163. [PMID: 35240157 DOI: 10.1016/j.chemosphere.2022.134163] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/13/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Pharmaceuticals, heavy metals, pesticides, and dyes are the main environmental contaminants that have serious effects on both land and aquatic lives and necessitate the development of effective methods to mitigate these issues. Although some conventional methods are in use to tackle soil contamination, but biochar and biochar-based composites represent a reliable and sustainable means to deal with a spectrum of toxic organic and inorganic pollutants from contaminated environments. The capacity of biochars and derived constructs to remediate inorganic dyes, pesticides, insecticides, heavy metals, and pharmaceuticals from environmental matrices is attributed to their extensive surface area, surface functional groups, pore size distribution, and high sorption capability of these pollutants in water and soil environments. Application conditions, biochar feedstock, pyrolysis conditions and precursor materials are the factors that influence the capacity and functionality of biochar to adsorb pollutants from wastewater and soil. These factors, when improved, can benefit biochar in agrochemical and heavy metal remediation from various environments. However, the processes involved in biochar production and their influence in enhancing pollutant sequestration remain unclear. Therefore, this paper throws light on the current strategies, operational conditions, and sequestration performance of biochar and biochar-based composites for agrochemical and heavy metal in soil and water environments. The main challenges associated with biochar preparation and exploitation, toxicity evaluation, research directions and future prospects for biochar in environmental remediation are also outlined.
Collapse
Affiliation(s)
- Eliasu Issaka
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | | | | | - Linda Yeboah
- School of Biological Sciences, University of Ghana, Legon, 00233, Accra, Ghana
| | - Salome Yakubu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, 382 010, Gujarat, India
| | - Nisar Ali
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Deep Utilization Technology of Rock-salt Resource, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| |
Collapse
|
19
|
Luo S, Ren L, Wu W, Chen Y, Li G, Zhang W, Wei T, Liang YQ, Zhang D, Wang X, Zhen Z, Lin Z. Impacts of earthworm casts on atrazine catabolism and bacterial community structure in laterite soil. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127778. [PMID: 34823960 DOI: 10.1016/j.jhazmat.2021.127778] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/01/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Atrazine accumulation in agricultural soil is prone to cause serious environmental problems and pose risks to human health. Vermicomposting is an eco-friendly approach to accelerating atrazine biodegradation, but the roles of earthworm cast in the accelerated atrazine removal remains unclear. This work aimed to investigate the roles of earthworm cast in promoting atrazine degradation performance by comprehensively exploring the change in atrazine metabolites and bacterial communities. Our results showed that earthworm cast amendment significantly increased soil pH, organic matters, humic acid, fulvic acid and humin, and achieved a significantly higher atrazine removal efficiency. Earthworm cast addition also remarkably changed soil microbial communities by enriching potential soil atrazine degraders (Pseudomonadaceae, Streptomycetaceae, and Thermomonosporaceae) and introducing cast microbial degraders (Saccharimonadaceae). Particularly, earthworm casts increased the production of metabolites deethylatrazine and deisopropylatrazine, but not hydroxyatrazine. Some bacterial taxa (Gaiellaceaea and Micromonosporaceae) and humus (humic acid, fulvic acid and humin) were strongly correlated with atrazine metabolism into deisopropylatrazine and deethylatrazine, whereas hydroxyatrazine production was benefited by higher pH. Our findings verified the accelerated atrazine degradation with earthworm cast supplement, providing new insights into the influential factors on atrazine bioremediation in vermicomposting.
Collapse
Affiliation(s)
- Shuwen Luo
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Lei Ren
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Weijian Wu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Yijie Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Gaoyang Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Weijian Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Ting Wei
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Yan-Qiu Liang
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun 130021, PR China
| | - Xinzi Wang
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Zhen Zhen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China.
| | - Zhong Lin
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, PR China; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518114, PR China.
| |
Collapse
|
20
|
Zhang Y, Yang C, Zheng Z, Cao B, You F, Liu Y, Jiang Z. Mechanism for various phytotoxicity of atrazine in soils to soybean: Insights from soil sorption abilities and dissolved organic matter properties. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 297:113220. [PMID: 34274768 DOI: 10.1016/j.jenvman.2021.113220] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/10/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
The pollutants in soils with different physicochemical properties usually exhibit various phytotoxicity due to their diverse environmental behavior. However, it is not clear that some components of dissolved organic matter (DOM) in soil affect the bioavailability of pollutants. In this study, the different phytotoxicity of atrazine in two different soils, black soil (BS) and yellow brown earth (YBE), to soybeen seedlings was investigated, and the potential mechanism were further discussed by examining the adsorption properties of atrazine with BS and YBE as well as the fluorescent characteristic variation of these two kinds of DOM extracted from BS and YBE during binding with atrazine. The results suggest that atrazine showed different phytotoxicity to soybean seedlings grown in BS and YBE. Specifically, the EC50 of atrazine on plant height and root length of soybean seedling in BS were 23.44 mg kg-1 and 54.29 mg kg-1, while those in YBE were 12.79 mg kg-1 and 21.48 mg kg-1. The adsorption amounts of BS and YBE was 41.56 mg kg-1 and 32.95 mg kg-1. In addition, 3D-EEM showed that humic acid-like substances were the main components of DOM in the two soils. With the increase of atrazine concentration, the fluorescence of these two kind of DOM was gradually quenched, but DOM-BS had a faster quenching rate. FT-IR showed that DOM-BS contained more polysaccharides and richer lipophilic groups. Meanwhile, the results of PARAFAC found that DOM-BS was easier to combine with atrazine. The findings of this study are significant to reveal phytotoxicity of atrazine in BS and YBE. The above results are helpful to better understand the components of DOM in different soils and their different role in regulating the environmental behavior and phytotoxicity of organic pollutants.
Collapse
Affiliation(s)
- Ying Zhang
- School of Resources &; Environment, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Chao Yang
- School of Resources &; Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Zhi Zheng
- School of Resources &; Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Bo Cao
- School of Resources &; Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Fengyuan You
- School of Resources &; Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yingying Liu
- School of Resources &; Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Zhao Jiang
- School of Resources &; Environment, Northeast Agricultural University, Harbin, 150030, PR China
| |
Collapse
|
21
|
Exploring the Influence Mechanism of Farmers’ Organic Fertilizer Application Behaviors Based on the Normative Activation Theory. LAND 2021. [DOI: 10.3390/land10111111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This paper establishes an analysis framework to investigate the effect of the awareness of consequences and the ascription of responsibility on farmers’ organic fertilizer application behaviors (OFABs). Using questionnaire survey data from Hubei Province, one of the main grain-producing areas in China, this study employed both mediating effects and moderating effect analytical methods to analyze the influencing mechanism of the awareness of consequences and ascription of responsibility on farmers’ OFABs. The results show that, firstly, the awareness of consequences and ascription of responsibility have a significant positive impact on farmers’ OFABs. The improvement in farmers’ awareness of consequences and ascription of responsibility can effectively promote the utilization of organic fertilizers for enhanced ecological production. Secondly, the awareness of consequences and ascription of responsibility have a significant positive impact on farmers’ OFABs through individual farmers’ personal norms. Increasing farmers’ awareness of consequences and ascription of responsibility firstly stimulates their personal norms; then, personal norms have a positive impact on farmers’ OFABs. Thirdly, farmers’ social norms can positively regulate the relationship between personal norms and their OFABs. The higher the social norms of farmers, the more their social norms can have a positive regulating effect on their OFABs. Therefore, in the future, it will be necessary to vigorously promote farmers’ awareness of consequences and ascription of responsibility, in order to enhance farmers’ social norms, and to improve the level of farmers’ social norms, in order to greatly promote farmers’ engagement in OFABs. This will ultimately better promote rural ecological environmental protection and ecological civilization construction.
Collapse
|
22
|
Luo S, Zhen Z, Zhu X, Ren L, Wu W, Zhang W, Chen Y, Zhang D, Song Z, Lin Z, Liang YQ. Accelerated atrazine degradation and altered metabolic pathways in goat manure assisted soil bioremediation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 221:112432. [PMID: 34166937 DOI: 10.1016/j.ecoenv.2021.112432] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
The intensive and long-term use of atrazine in agriculture has resulted in serious environmental pollution and consequently endangered ecosystem and human health. Soil microorganisms play an important role in atrazine degradation. However, their degradation efficiencies are relatively low due to their slow growth and low abundance, and manure amendment as a practice to improve soil nutrients and microbial activities can solve these problems. This study investigated the roles of goat manure in atrazine degradation performance, metabolites and bacterial community structure. Our results showed that atrazine degradation efficiencies in un-amended soils were 26.9-35.7% and increased to 60.9-84.3% in goat manure amended treatments. Hydroxyatrazine pathway was not significantly altered, whereas deethylatrazine and deisopropylatrazine pathways were remarkably enhanced in treatments amended with manure by encouraging the N-dealkylation of atrazine side chains. In addition, goat manure significantly increased soil pH and contents of organic matters and humus, explaining the change of atrazine metabolic pathway. Nocardioides, Sphingomonas and Massilia were positively correlated with atrazine degradation efficiency and three metabolites, suggesting their preference in atrazine contaminated soils and potential roles in atrazine degradation. Our findings suggested that goat manure acts as both bacterial inoculum and nutrients to improve soil microenvironment, and its amendment is a potential practice in accelerating atrazine degradation at contaminated sites, offering an efficient, cheap, and eco-friendly strategy for herbicide polluted soil remediation.
Collapse
Affiliation(s)
- Shuwen Luo
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Zhen Zhen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Xiaoping Zhu
- The Pearl River Hydraulic Research Institute, Guangzhou 510000, PR China
| | - Lei Ren
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Weijian Wu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Weijian Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Yijie Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Zhiguang Song
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, PR China; Shenzhen Research Institute of Guangdong Ocean University, Shenzhen 518108, PR China
| | - Zhong Lin
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, PR China; Shenzhen Research Institute of Guangdong Ocean University, Shenzhen 518108, PR China.
| | - Yan-Qiu Liang
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, PR China.
| |
Collapse
|
23
|
Zhang B, Li C, Zhang Y, Yuan M, Wang J, Zhu J, Ji J, Ma Y. Improved photocatalyst: Elimination of triazine herbicides by novel phosphorus and boron co-doping graphite carbon nitride. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143810. [PMID: 33279197 DOI: 10.1016/j.scitotenv.2020.143810] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 06/12/2023]
Abstract
A non-metallic and low-cost novel phosphorus and boron co-doping graphite carbon nitride (PB-g-C3N4) photocatalyst was prepared by a facile thermal copolymerization of urea with B2O3 and (NH4)2·HPO4. The novel PB-g-C3N4 exhibited excellent optical and electrical properties and the photocatalytic elimination efficiency for atrazine (AT, can make feminization of male frogs in the wild, and even induce reproductive cancers in humans.) has been greatly improved compared with the pristine g-C3N4. The results of characterization techniques indicate that the introduced B and P atoms most probably to substitute for sp2-hybridized C atoms in triazine rings. O2- and h+ are the dominant active species to induce the elimination of AT demonstrated by the radical-trapping experiments. And a possible elimination pathway is proposed according to the detected main intermediates. In addition, PB-g-C3N4 was applied to the simultaneous photocatalytic elimination of 9 triazine herbicides, and the effects of different initial concentrations, pH, fulvic acid (FA) and ion species on their elimination effects were studied. And it was proved that the photocatalytic performance of PB-g-C3N4 did not significant decrease after 4 times of reuse.
Collapse
Affiliation(s)
- Bingjie Zhang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Changsheng Li
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yunpeng Zhang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Meng Yuan
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Jianli Wang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Jianhui Zhu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Jiawen Ji
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yongqiang Ma
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
24
|
Li W, Shan R, Fan Y, Sun X. Effects of tall fescue biochar on the adsorption and desorption of atrazine in different types of soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:4503-4514. [PMID: 32939657 DOI: 10.1007/s11356-020-10821-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
The excessive application of atrazine in agriculture has resulted in serious environmental contamination. The addition of biochar could reduce the bioavailability and mobility of atrazine in soil through adsorption-desorption processes. In this study, tall fescue biochar was prepared at 500 °C, and its effect on the adsorption-desorption behavior of atrazine in red soil, brown soil, and black soil was investigated. The tall fescue biochar with the pH value of 9.64 had a developed porous structure and large specific area that contained abundant surface functional groups. The element composition of the tall fescue biochar was C (50.46%), O (15.01%), N (4.54%), H (2.56%), and S (1.47%). The adsorption process of atrazine in the three soil types with and without biochar addition was divided into a fast stage, slow stage, and equilibrium stage. A pseudo second-order kinetic model was suitable for fitting the adsorption process of atrazine, and the determination coefficient (R2) ranged from 0.985 to 0.999. The adsorption-desorption processes of atrazine were described accurately by the Freundlich model (R2 of 0.967-0.999). The adsorption capacity of the three soil types for atrazine increased significantly with the addition of biochar, whereby the equilibrium adsorption amount increased from an initial range of 3.968 to 5.902 μg g-1 to a final range of 21.397 to 21.968 μg g-1. The desorption of atrazine was also inhibited as the hysteresis coefficient (HI) increased from an initial range of 0.451 to 0.586 to a final range of 0.916 to 0.941. The adsorption capacity of the red soil improved more than did the brown soil or black soil. Moreover, spontaneous adsorption of atrazine by the biochar-soil system occurred more easily at 35 °C than at 15 °C and 25 °C. Overall, tall fescue biochar was a prospective soil amendment material.
Collapse
Affiliation(s)
- Wanting Li
- Key Laboratory of Nansihu Lake Wetland Ecological Conservation & Environmental Protection (Shandong Province), College of Geography and Tourism, Qufu Normal University, Rizhao, 276826, People's Republic of China
- Rizhao Key Laboratory of Territory Spatial Planning and Ecological Construction, Rizhao, 276826, People's Republic of China
| | - Ruifeng Shan
- Key Laboratory of Nansihu Lake Wetland Ecological Conservation & Environmental Protection (Shandong Province), College of Geography and Tourism, Qufu Normal University, Rizhao, 276826, People's Republic of China.
- Rizhao Key Laboratory of Territory Spatial Planning and Ecological Construction, Rizhao, 276826, People's Republic of China.
| | - Yuna Fan
- Key Laboratory of Nansihu Lake Wetland Ecological Conservation & Environmental Protection (Shandong Province), College of Geography and Tourism, Qufu Normal University, Rizhao, 276826, People's Republic of China
- Rizhao Key Laboratory of Territory Spatial Planning and Ecological Construction, Rizhao, 276826, People's Republic of China
| | - Xiaoyin Sun
- Key Laboratory of Nansihu Lake Wetland Ecological Conservation & Environmental Protection (Shandong Province), College of Geography and Tourism, Qufu Normal University, Rizhao, 276826, People's Republic of China
- Rizhao Key Laboratory of Territory Spatial Planning and Ecological Construction, Rizhao, 276826, People's Republic of China
| |
Collapse
|
25
|
Szewczyk R, Różalska S, Mironenka J, Bernat P. Atrazine biodegradation by mycoinsecticide Metarhizium robertsii: Insights into its amino acids and lipids profile. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 262:110304. [PMID: 32250788 DOI: 10.1016/j.jenvman.2020.110304] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 01/30/2020] [Accepted: 02/18/2020] [Indexed: 06/11/2023]
Abstract
Atrazine, is one of major concern pesticides contaminating agricultural areas and ground water. Its microbial biodegradation seems to be the most efficient in terms of economic and environmental benefits. In the present work the cometabolic biodegradation of atrazine by the fungus Metarhizum robertsii IM 6519 during 10-day batch cultures was characterized. The herbicide was transformed to several hydroxy-, dechlorinated or dealkylated metabolites with the involvement of cytochrome P450 monooxygenases. The obtained metabolomics data revealed that atrazine induced oxidative stress (increased the levels of L-proline, L-ornithine, L-arginine, GABA and L-methionine), disruptions of the carbon and nitrogen metabolism (L-aspartic acid, L-asparagine, L-tyrosine, L-threonine, L-isoleucine, L-phenylalanine, 1-methyl-L-histidine, L-tryptophan, L-valine, L-alanine, O-phospho-L-serine, L-sarcosine or L-lysine) and caused an increase in the membrane fluidity (a rise in the phosphatidylcholines/phosphatidylethanolamines (PC/PE) ratio together with the growth of the taurine level). The increased level of hydroxyl derivatives of linoleic acid (9-HODE and 13-HODE) confirmed that atrazine induced lipid peroxidation. The presented results suggesting that M. robertsii IM 6519 might be applied in atrazine biodegradation and may bring up the understanding of the process of triazine biodegradation by Metarhizum strains.
Collapse
Affiliation(s)
- Rafał Szewczyk
- Centre of Clinical and Aesthetic Medicine DiMedical, Legionów 40/19, 90-702, Łódź, Poland
| | - Sylwia Różalska
- University of Lodz, Faculty of Biology and Environmental Protection, Institute of Microbiology, Biotechnology and Immunology, Department of Industrial Microbiology and Biotechnology, Banacha 12/16, 90-237, Łódź, Poland
| | - Julia Mironenka
- University of Lodz, Faculty of Biology and Environmental Protection, Institute of Microbiology, Biotechnology and Immunology, Department of Industrial Microbiology and Biotechnology, Banacha 12/16, 90-237, Łódź, Poland
| | - Przemysław Bernat
- University of Lodz, Faculty of Biology and Environmental Protection, Institute of Microbiology, Biotechnology and Immunology, Department of Industrial Microbiology and Biotechnology, Banacha 12/16, 90-237, Łódź, Poland.
| |
Collapse
|