1
|
Tripathi A, Ekanayake A, Tyagi VK, Vithanage M, Singh R, Rao YRS. Emerging contaminants in polluted waters: Harnessing Biochar's potential for effective treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 373:123778. [PMID: 39721395 DOI: 10.1016/j.jenvman.2024.123778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/23/2024] [Accepted: 12/14/2024] [Indexed: 12/28/2024]
Abstract
Biochar is a carbon-rich, sponge-like material with intricate functionalities, making it suitable for various environmental remediation applications, including water treatment, soil amendment and, additives in construction materials, anaerobic digesters, and electrodes, among others. Its easy adaptability and low cost make it particularly attractive. This review highlights a range of biochar and surface-modified biochar exhibiting high uptake and degradation efficiencies for a broad spectrum of contaminants, including humic acid, disinfection by-products (DBPs), radioactive materials, dyes, heavy metals, antibiotics, microplastics, pathogens, Per- and polyfluoroalkyl substances (PFAS), and cytotoxins. The study provides a detailed discussion on different classes of pollutants and their removal mechanisms using biochar, covering processes like physical and chemical adsorption, electrostatic interactions, π-π interactions, hydrogen bonding, as well as surface complexation, chelation, among others. This review article stands out for its comprehensive exploration of biochar's effectiveness in removing a wide range of emerging contaminants, as well as recent advancements in the removal of conventional pollutants like heavy metals and antibiotics.
Collapse
Affiliation(s)
- Abhilasha Tripathi
- Department of Civil Engineering, Indian Institute of Technology Kanpur, 208016, India
| | - Anusha Ekanayake
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Vinay Kumar Tyagi
- Environmental Hydrology Division, National Institute of Hydrology, Roorkee, 247667, India.
| | - Meththika Vithanage
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, 248007, India; Institute of Agriculture, University of Western Australia, Perth, WA6009, Australia
| | - Rajesh Singh
- Environmental Hydrology Division, National Institute of Hydrology, Roorkee, 247667, India
| | - Y R S Rao
- Environmental Hydrology Division, National Institute of Hydrology, Roorkee, 247667, India
| |
Collapse
|
2
|
Masrura SU, Abbas T, Bhatnagar A, Khan E. Selective adsorption of antibiotics from human urine using biochar modified by dimethyl sulfoxide, deep eutectic solvent, and ionic liquid. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124588. [PMID: 39033844 DOI: 10.1016/j.envpol.2024.124588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 07/01/2024] [Accepted: 07/19/2024] [Indexed: 07/23/2024]
Abstract
Antibiotics present in human urine pose significant challenges for the use of urine-based fertilizers in agriculture. This study introduces a novel two-stage approach utilizing distinct biochar types to mitigate this concern. Initially, a modified biochar selectively adsorbed azithromycin (AZ), ciprofloxacin (CPX), sulfamethoxazole (SMX), trimethoprim (TMP), and tetracycline (TC) from human urine. Subsequently, a separate pristine biochar was employed to capture nutrients. Biochar, derived from sewage sludge and pyrolyzed at 550 and 700 °C, was modified using dimethyl sulfoxide, deep eutectic solvent, and ionic liquid to enhance antibiotic removal in the first stage. The modifications introduced hydrophilic functional groups (-OH/-COOH), which favor antibiotic adsorption. Adsorption kinetics followed the pseudo-second-order model, with the Langmuir isotherm model best describing the adsorption data. The maximum adsorption capacities for AZ, CPX, SMX, TMP, and TC after the modification were 196.08, 263.16, 81.30, 370.37, and 833.33 μg/g, respectively. Pristine biochar exhibited a superior ammonia adsorption capacity compared to the modified biochar. Hydrogen bonding, electrostatic attraction, and chemisorption drove antibiotic adsorption on the modified biochar. Regeneration efficiency declined due to solvent accumulation and potential byproduct formation on the biochar surface (<30% removal capacity after three cycles). This study presents innovative biochar modification strategies for selective antibiotic adsorption, laying the groundwork for environmentally friendly urine-based fertilizers in agriculture.
Collapse
Affiliation(s)
- Sayeda Ummeh Masrura
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA.
| | - Tauqeer Abbas
- Department of Chemistry and Chemical Engineering, Lahore University of Management Sciences, Lahore, Pakistan.
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, Mikkeli, FI, 50130, Finland.
| | - Eakalak Khan
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA
| |
Collapse
|
3
|
Haider MIS, Liu G, Yousaf B, Arif M, Aziz K, Ashraf A, Safeer R, Ijaz S, Pikon K. Synergistic interactions and reaction mechanisms of biochar surface functionalities in antibiotics removal from industrial wastewater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124365. [PMID: 38871166 DOI: 10.1016/j.envpol.2024.124365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/31/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024]
Abstract
Biochar, a carbon-rich material with a unique surface chemistry (high abundance of surface functional groups, large surface area, and well-distributed), has shown great potential as a sustainable solution for industrial wastewater treatment as compared to conventional industrial wastewater treatment techniques demand substantial energy consumption and generate detrimental byproducts. This critical review emphasizes the surface functionalities formation and development in biochar to enhance its physiochemical properties, for utilization in antibiotics removal. Factors affecting the formation of functionalities, including carbonization processes, feedstock materials, operating parameters, and the influence of pre-post treatments, are thoroughly highlighted to understand the crucial role of factors influencing biochar properties for optimal antibiotics removal. Furthermore, the research explores the removal mechanisms and interactions of biochar-based surface functionalities, hydrogen bonding, encompassing electrostatic interactions, hydrophobic interactions, π-π interactions, and electron donor and acceptor interactions, to provide insights into the adsorption/removal behavior of antibiotics on biochar surfaces. The review also explains the mechanism of factors influencing the removal of antibiotics in industrial wastewater treatment, including particle size and pore structure, nature and types of surface functional groups, pH and surface charge, temperature, surface modification strategies, hydrophobicity/hydrophilicity, biochar dose, pollutant concentration, contact time, and the presence of coexisting ions and other substances. Finally, the study offers reusability and regeneration, challenges and future perspectives on the development of biochar-based adsorbents and their applications in addressing antibiotics. It concludes by summarizing the key findings and emphasizing the significance of biochar as a sustainable and effective solution for mitigating antibiotics contamination in industrial wastewater.
Collapse
Affiliation(s)
- Muhammad Irtaza Sajjad Haider
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Guijian Liu
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China.
| | - Balal Yousaf
- Department of Technologies and Installations for Waste Management, Faculty of Energy and Environmental Engineering, Silesian University of Technology, 44 -100, Gliwice, Poland
| | - Muhammad Arif
- Department of Soil and Environmental Sciences, MNS University of Agriculture, Multan, 60000, Pakistan
| | - Kiran Aziz
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China; Department of Botany, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Aniqa Ashraf
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Rabia Safeer
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Samra Ijaz
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Krzysztof Pikon
- Department of Technologies and Installations for Waste Management, Faculty of Energy and Environmental Engineering, Silesian University of Technology, 44 -100, Gliwice, Poland
| |
Collapse
|
4
|
Zhang B, Zhu W, Hou R, Yue Y, Feng J, Ishag A, Wang X, Qin Y, Sun Y. Recent advances of application of bentonite-based composites in the environmental remediation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 362:121341. [PMID: 38824894 DOI: 10.1016/j.jenvman.2024.121341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/11/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Bentonite-based composites have been widely utilized in the removal of various pollutants due to low cost, environmentally friendly, ease-to-operate, whereas the recent advances concerning the application of bentonite-based composites in environmental remediation were not available. Herein, the modification (i.e., acid/alkaline washing, thermal treatment and hybrids) of bentonite was firstly reviewed; Then the recent advances of adsorption of environmental concomitants (e.g., organic (dyes, microplastics, phenolic and other organics) and inorganic pollutants (heavy metals, radionuclides and other inorganic pollutants)) on various bentonite-based composites were summarized in details. Meanwhile, the effect of environmental factors and interaction mechanism between bentonite-based composites and contaminants were also investigated. Finally, the conclusions and prospective of bentonite-based composites in the environmental remediation were proposed. It is demonstrated that various bentonite-based composites exhibited the high adsorption/degradation capacity towards environmental pollutants under the specific conditions. The interaction mechanism involved the mineralization, physical/chemical adsorption, co-precipitation and complexation. This review highlights the effect of different functionalization of bentonite-based composites on their adsorption capacity and interaction mechanism, which is expected to be helpful to environmental scientists for applying bentonite-based composites into practical environmental remediation.
Collapse
Affiliation(s)
- Bo Zhang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China; Research Center of Applied Geology of China Geological Survery, Chengdu, 610036, PR China
| | - Weiyu Zhu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Rongbo Hou
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Yanxue Yue
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Jiashuo Feng
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Alhadi Ishag
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China; Department of Chemical Engineering, Faculty of Engineering and Technical Studies, University of Kordofan, El Obeid, 51111, Sudan
| | - Xiao Wang
- Research Center of Applied Geology of China Geological Survery, Chengdu, 610036, PR China
| | - Yan Qin
- Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing, 100037, PR China.
| | - Yubing Sun
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China.
| |
Collapse
|
5
|
Ersan G, Gaber MS, Perreault F, Garcia-Segura S. Comparative study on electro-regeneration of antibiotic-laden activated carbons in reverse osmosis concentrate. WATER RESEARCH 2024; 255:121528. [PMID: 38555781 DOI: 10.1016/j.watres.2024.121528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
Electro-regeneration is emerging as a new technique to regenerate spent carbon adsorbents through an electrochemical process. In this study, sequential adsorption and electro-regeneration of ciprofloxacin (CIP)-laden carbon were investigated using both pristine and iron (Fe)-doped F400 activated carbon in distilled, deionized (DI) water and reverse osmosis (RO) concentrate water. The impact of reactor flow rate and sequential adsorption/electro-regeneration cycles on the regeneration efficiency were also evaluated. The results indicate that the breakthrough points for both adsorbents in DI water, where 100 % of the CIP molecules were adsorbed, occurred at around 7,800 bed volumes (BVs). Conversely, electro-regeneration for both adsorbents, where 94 % of the CIP molecules were desorbed, took place at 380 BVs. The main distinction between the two activated carbons lies in the initial range of BVs (<400 BVs).Fe doping on F400 appears to enhance its surface selectivity for CIP uptake, which can easily diffuse into the meso/macropore regions of Fe-doped F400. In contrast, pristine F400, being highly microporous, necessitated more contact time to fill its high-energy sites, resulting in a higher affinity for CIP adsorption. Over the four sequential adsorption/electro-regeneration cycles in DI water, a similar regeneration efficiency was observed at 190 BVs. As the flow rate increased from 2 to 6 mL/min, the CIP uptake on pristine F400 decreased in DI water, calculating 138, 74 and 57 mg/g for flow rates of 2, 4, and 6 mL/min, respectively. When the RO concentrate water was compared with DI water, the pristine F400 quickly reached saturation due to pore blockage caused by organic matter in RO concentrate. During electro-regeneration, up to 100 % of adsorbed CIP molecules were desorbed at around 120 BVs in RO concentrate, which is 3X faster than DI water. The effectiveness of this technology can be enhanced by implementing continuous flow systems, thereby improving the overall efficiency of CIP removal in RO concentrate.
Collapse
Affiliation(s)
- Gamze Ersan
- School of Sustainable Engineering and The Built Environment, Arizona State University, Tempe, AZ 85287-5306, USA.
| | - Mohamed S Gaber
- School of Sustainable Engineering and The Built Environment, Arizona State University, Tempe, AZ 85287-5306, USA; Chemistry Department, Faculty of Science, Helwan University, Ain Helwan, Helwan 11795, Cairo, Egypt
| | - François Perreault
- School of Sustainable Engineering and The Built Environment, Arizona State University, Tempe, AZ 85287-5306, USA; Department of Chemistry, University of Quebec in Montreal, CP 8888, Succ. Centre-Ville, Montreal, QC, H3C 3P8, Canada
| | - Sergi Garcia-Segura
- School of Sustainable Engineering and The Built Environment, Arizona State University, Tempe, AZ 85287-5306, USA.
| |
Collapse
|
6
|
Essa HL, Farghal HH, Madkour TM, El-Sayed MM. Environmentally safe biopolymer-clay composite for efficient adsorption of ciprofloxacin in fresh and saline solutions. Heliyon 2024; 10:e28641. [PMID: 38571597 PMCID: PMC10988047 DOI: 10.1016/j.heliyon.2024.e28641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 01/25/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024] Open
Abstract
In alignment with the sustainable development goals (SDGs), recent trends in water management have been directed toward using environmentally friendly bio-based materials for removing contaminants. In this work, we prepared a biocomposite of chitosan (CS) intercalated into acid activated calcium bentonite (Bent). A thermally stable mesoporous CS-Bent composite was prepared with a zeta potential of 15.5 to -34.4 mV in the pH range of 2.22-10. The biocomposite successfully removed up to 99.2% and 50 mg/g of the antibiotic ciprofloxacin HCl (CPX) at pH 5.5 via electrostatic and hydrogen bonding forces. In a multi-component aqueous system of heavy metal and CPX, the composite was more selective to CPX than to the heavy metals and removal of CPX in this system was comparable to that in a single-component system. The composite also maintained its high adsorption efficiency in NaCl solutions which makes it suitable for treating fresh and saline solutions. The combination of CS and bent produced a biodegradable eco-friendly composite characterized with good thermal and surface properties along with efficient and selective adsorption performance.
Collapse
Affiliation(s)
- Hanaa L. Essa
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo, Cairo, 11835, Egypt
- Pesticides Phytotoxicity Department, Central Agricultural Pesticides Lab, Agricultural Research Center, Dokki, Giza, 12627, Egypt
| | - Hebatullah H. Farghal
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo, Cairo, 11835, Egypt
| | - Tarek M. Madkour
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo, Cairo, 11835, Egypt
| | - Mayyada M.H. El-Sayed
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo, Cairo, 11835, Egypt
| |
Collapse
|
7
|
Xu X, Lin X, Ma W, Huo M, Tian X, Wang H, Huang L. Biodegradation strategies of veterinary medicines in the environment: Enzymatic degradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169598. [PMID: 38157911 DOI: 10.1016/j.scitotenv.2023.169598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
One Health closely integrates healthy farming, human medicine, and environmental ecology. Due to the ecotoxicity and risk of transmission of drug resistance, veterinary medicines (VMs) are regarded as emerging environmental pollutants. To reduce or mitigate the environmental risk of VMs, developing friendly, safe, and effective removal technologies is an important means of environmental remediation for VMs. Many previous studies have proved that biodegradation has significant advantages in removing VMs, and biodegradation based on enzyme catalysis presents higher operability and specificity. This review focused on biodegradation strategies of environmental pollutants and reviewed the enzymatic degradation of VMs including antimicrobial drugs, insecticides, and disinfectants. We reviewed the sources and catalytic mechanisms of peroxidase, laccase, and organophosphorus hydrolases, and summarized the latest research status of immobilization methods and bioengineering techniques in improving the performance of degrading enzymes. The mechanism of enzymatic degradation for VMs was elucidated in the current research. Suggestions and prospects for researching and developing enzymatic degradation of VMs were also put forward. This review will offer new ideas for the biodegradation of VMs and have a guide significance for the risk mitigation and detoxification of VMs in the environment.
Collapse
Affiliation(s)
- Xiangyue Xu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Xvdong Lin
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Wenjin Ma
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Meixia Huo
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Xiaoyuan Tian
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Hanyu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China; National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Lingli Huang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China; National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China.
| |
Collapse
|
8
|
Huynh NC, Nguyen TTT, Nguyen DTC, Tran TV. Production of MgFe 2O 4/activated carbons derived from a harmful grass Cynodon dactylon and their utilization for ciprofloxacin removal. CHEMOSPHERE 2023; 343:139891. [PMID: 37604337 DOI: 10.1016/j.chemosphere.2023.139891] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/29/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
Cynodon dactylon, an invasive species, exhibits its robust adaptability, reproduction and nutrient regime against the local species. Taking advantage of this harmful grass as a raw precursor to produce valuable materials for wastewater treatment has paid much attention. Herein, we report on the fabrication of Cynodom dactylon derived MgFe2O4@AC with a main goal of effective removal of ciprofloxacin antibiotic from water. Our findings showed that MgFe2O4@ACK1 composites attained mesoporous textures, high specific surface areas (884.3-991.6 m2 g-1), and MgFe2O4-20%@ACK1 was the most effective with a very high removal efficiency of 96.7%. The Elovich model was suitable for describing the kinetic of adsorption with (Radj)2 of 0.9988. Meanwhile, the isotherm data obeyed the Langmuir model corresponding to (Radj)2 of 0.9993. Qmax value of MgFe2O4-20%@ACK1 was determined at 211.67 mg g-1. The proposed adsorption mechanism primarily comprises five routes as follows, (i) pore-filling, (ii) π-π interaction, (iii) electrostatic interaction, (iv) hydrogen bonding, and (v) hydrophobic interaction. MgFe2O4-20%@ACK1 adsorbent could reuse with three cycles. We recommend that MgFe2O4/ACs derived from Cynodom dactylon could be high-efficiency adsorbents for the elimination of antibiotics.
Collapse
Affiliation(s)
- Nguyen Chi Huynh
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam; Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000, Viet Nam
| | - Thuy Thi Thanh Nguyen
- Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000, Viet Nam
| | - Duyen Thi Cam Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam.
| | - Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam.
| |
Collapse
|
9
|
Maged A, Elgarahy AM, Hlawitschka MW, Haneklaus NH, Gupta AK, Bhatnagar A. Synergistic mechanisms for the superior sorptive removal of aquatic pollutants via functionalized biochar-clay composite. BIORESOURCE TECHNOLOGY 2023; 387:129593. [PMID: 37558100 DOI: 10.1016/j.biortech.2023.129593] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/11/2023]
Abstract
This study investigated the successful synthesis of functionalized algal biochar-clay composite (FBKC). Subsequently, the sorption performance of FBKC towards norfloxacin (NFX) antibiotic and crystal violet dye (CVD) from water was extensively assessed in both batch and continuous flow systems. A series of characterization techniques were carried out for FBKC and the utilized precursors, indicating that the surface area of FBKC was increased thirty-fold with a well-developed pore structure compared to the original precursors. FBKC demonstrated a maximum sorption capacity of 192.80 and 281.24 mg/g for NFX and CVD, respectively. The suited fitting of the experimental data to Freundlich and Clark models suggested multi-layer sorption of NFX/CVD molecules. The mechanistic studies of NFX/CVD sorption onto FBKC unveiled multiple mechanisms, including π-π interaction, hydrogen bonding, electrostatic attraction, and surface/pore filling effect. The estimated cost of 5.72 €/kg and superior sorption capacity makes FBKC an efficient low-cost sorbent for emergent water pollutants.
Collapse
Affiliation(s)
- Ali Maged
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130 Mikkeli, Finland; Geology Department, Faculty of Science, Suez University, P.O. Box 43518, El Salam City, Suez Governorate, Egypt.
| | - Ahmed M Elgarahy
- Environmental Chemistry Division, Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt; Egyptian Propylene and Polypropylene Company (EPPC), Port Said, Egypt.
| | - Mark W Hlawitschka
- Institute of Process Engineering, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria
| | - Nils H Haneklaus
- Td Lab Sustainable Mineral Resources, University for Continuing Education Krems, Dr. Karl-Dorrek-Straße 30, 3500 Krems, Austria
| | - Ashok Kumar Gupta
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130 Mikkeli, Finland
| |
Collapse
|
10
|
Ramanayaka S, Vithanage M, Zhang H, Semple KT. Role of soil organic matter on the retention and mobility of common plastic additives, Di(2-ethylhexyl) phthalate, bisphenol A and benzophenone, in soil. ENVIRONMENTAL RESEARCH 2023; 236:116725. [PMID: 37487922 DOI: 10.1016/j.envres.2023.116725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/03/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
The objectives of this study were to assess the role of soil organic matter on retaining plastic additives, Di(2-ethylhexyl) phthalate (DEHP), Bisphenol A (BPA) and Benzophenone (BP), to postulate the retention mechanisms and mobility in soil. Batch experiments were conducted for red yellow podzolic soil (OM) and soil subjected to high temperature oxidation at 600 °C for 2 h to remove total organic matter (OMR). Pristine soil, which contains organic matter abbreviated as OM (soil with organic matter) whereas total organic matter removed soil is abbreviated as OMR (organic matter removed soil). The pH edge and kinetic experiments were conducted with 20 g/L soil suspension spiked with 10 mg/L of each additive, whereas 1-20 mg/L concentration range was used in isotherm experiments and analyzed using high performance liquid chromatography. DEHP demonstrated the highest retention, 331 and 615.16 mg/kg in OM and OMR soils respectively, at pH 6.6. However, BPA and BP showed highest retentions of 132 and 128 mg/kg, respectively around pH 4.3 in pristine soil. DEHP interaction with soil OM indicated weak physical bonding whereas chemisorption to OMR soil. In the case of BPA, physisorption governed its interaction with both soil organic matter and mineral fraction. Nevertheless, BP demonstrated chemical interactions with OM and minerals. Desorption of DEHP was close to 100% however, BPA and BP were <15%. Overall, DEHP and BPA could be easily released into soil water and possibly be available for plant uptake while, BP is immobilized in soil.
Collapse
Affiliation(s)
- Sammani Ramanayaka
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK.
| | - Meththika Vithanage
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka; The UWA Institute of Agriculture, University of Western Australia, Perth, WA, 6009, Australia
| | - Hao Zhang
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Kirk T Semple
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| |
Collapse
|
11
|
Bhandari G, Gangola S, Dhasmana A, Rajput V, Gupta S, Malik S, Slama P. Nano-biochar: recent progress, challenges, and opportunities for sustainable environmental remediation. Front Microbiol 2023; 14:1214870. [PMID: 37547682 PMCID: PMC10400457 DOI: 10.3389/fmicb.2023.1214870] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/28/2023] [Indexed: 08/08/2023] Open
Abstract
Biochar is a carbonaceous by-product of lignocellulosic biomass developed by various thermochemical processes. Biochar can be transformed into "nano-biochar" by size reduction to nano-meters level. Nano-biochar presents remarkable physico-chemical behavior in comparison to macro-biochar including; higher stability, unique nanostructure, higher catalytic ability, larger specific surface area, higher porosity, improved surface functionality, and surface active sites. Nano-biochar efficiently regulates the transport and absorption of vital micro-and macro-nutrients, in addition to toxic contaminants (heavy metals, pesticides, antibiotics). However an extensive understanding of the recent nano-biochar studies is essential for large scale implementations, including development, physico-chemical properties and targeted use. Nano-biochar toxicity on different organisms and its in-direct effect on humans is an important issue of concern and needs to be extensively evaluated for large scale applications. This review provides a detailed insight on nanobiochar research for (1) development methodologies, (2) compositions and properties, (3) characterization methods, (4) potentiality as emerging sorbent, photocatalyst, enzyme carrier for environmental application, and (5) environmental concerns.
Collapse
Affiliation(s)
- Geeta Bhandari
- Department of Biosciences, Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India
| | - Saurabh Gangola
- School of Agriculture, Graphic Era Hill University, Bhimtal Campus, Uttarakhand, India
| | - Archna Dhasmana
- Department of Biosciences, Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India
| | - Vishal Rajput
- Department of Biosciences, Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India
| | - Sanjay Gupta
- Department of Biosciences, Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand, India
- Guru Nanak College of Pharmaceutical Sciences, Dehradun, Uttarakhand, India
| | - Petr Slama
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| |
Collapse
|
12
|
Arif M, Liu G, Zia Ur Rehman M, Mian MM, Ashraf A, Yousaf B, Rashid MS, Ahmed R, Imran M, Munir MAM. Impregnation of biochar with montmorillonite and its activation for the removal of azithromycin from aqueous media. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27908-z. [PMID: 37269518 DOI: 10.1007/s11356-023-27908-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/21/2023] [Indexed: 06/05/2023]
Abstract
An inexpensive and environmentally friendly composite synthesized from rice husk, impregnated with montmorillonite and activated by carbon dioxide, was investigated for the removal of azithromycin from an aqueous solution. Various techniques were used to characterize adsorbents in detail. The sorption process was primarily regulated by the solution pH, pollutant concentration, contact duration, adsorbent dose, and solution temperature. The equilibrium data were best analyzed using the nonlinear Langmuir and Sips (R2 > 0.97) isotherms, which revealed that adsorption occurs in a homogenous manner. The adsorption capacity of pristine biochar and carbon dioxide activated biochar-montmorillonite composite was 33.4 mg g-1 and 44.73 mg g-1, respectively. Kinetic studies identified that the experimental data obeyed the pseudo-second-order and Elovich models (R2 > 0.98) indicating the chemisorption nature of adsorbents. The thermodynamic parameters determined the endothermic and spontaneous nature of the reaction. The ion exchange, π-π electron-donor-acceptor (EDA) interactions, hydrogen-bonding, and electrostatic interactions were the plausible mechanisms responsible for the adsorption process. This study revealed that a carbon dioxide activated biochar-montmorillonite composite may be used as an effective, sustainable, and economical adsorbent for the removal of azithromycin from polluted water.
Collapse
Affiliation(s)
- Muhammad Arif
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
- Department of Soil and Environmental Sciences, MNS University of Agriculture, Multan, 60000, Pakistan
| | - Guijian Liu
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China.
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, 710075, Shaanxi, China.
| | - Muhammad Zia Ur Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Md Manik Mian
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Aniqa Ashraf
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Balal Yousaf
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Muhammad Saqib Rashid
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Rafay Ahmed
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Muhammad Imran
- Nuclear Institute for Agriculture and Biology (NIAB), Jhang Road, Faisalabad, 38000, Pakistan
| | - Mehr Ahmed Mujtaba Munir
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
13
|
Che H, Wei G, Fan Z, Zhu Y, Zhang L, Wei Z, Huang X, Wei L. Super facile one-step synthesis of sugarcane bagasse derived N-doped porous biochar for adsorption of ciprofloxacin. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 335:117566. [PMID: 36867900 DOI: 10.1016/j.jenvman.2023.117566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/30/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
A new N-doped biochar derived from sugarcane bagasse (NSB) was prepared by one-pot pyrolysis with sugarcane bagasse as feedstock, melamine as nitrogen source and NaHCO3 as pore-forming agent, and then NSB was used to adsorb ciprofloxacin (CIP) in water. The optimal preparation conditions of NSB were determined based on the evaluation index of adsorbability of NSB for CIP. SEM, EDS, XRD, FTIR, XPS and BET characterizations were used to analyze the physicochemical properties of the synthetic NSB. It was found that the prepared NSB had excellent pore structure, high specific surface area and more nitrogenous functional groups. Meanwhile, it was demonstrated that the synergistic interaction between melamine and NaHCO3 increased the pores of NSB and the largest surface area of NSB was 1712.19 m2/g. The CIP adsorption capacity of 212 mg/g was obtained under optimal parameters as follows: NSB amount 0.125 g/L, initial pH 6.58, adsorption temperature 30 °C, CIP initial concentration 30 mg/L and adsorption time 1 h. The isotherm and kinetics studies elucidated that the adsorption of CIP conformed both D-R model and Pseudo-second-order kinetic model. The high CIP adsorption capacity of NSB for CIP was due to the combined filling pore, π-π conjugation and hydrogen bonding. All results demonstrated that adsorption of CIP by the low-cost N-doped biochar of NSB is a reliable technology for the disposal of CIP wastewater.
Collapse
Affiliation(s)
- Huixian Che
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| | - Guangtao Wei
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China; Guangxi Key Laboratory of Processing for Non-ferrous Metallic and Featured Materials, Guangxi Zhuang Autonomous Region, Nanning, 530004, PR China
| | - Zuodan Fan
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| | - Youlian Zhu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| | - Linye Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China; Guangxi Key Laboratory of Bio-refinery, Guangxi Zhuang Autonomous Region, Nanning 530007, PR China.
| | - Zhaozhou Wei
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| | - Xinlan Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| | - Linru Wei
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| |
Collapse
|
14
|
Moustafa MT. Preparation and characterization of low-cost adsorbents for the efficient removal of malachite green using response surface modeling and reusability studies. Sci Rep 2023; 13:4493. [PMID: 36934177 PMCID: PMC10024755 DOI: 10.1038/s41598-023-31391-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/10/2023] [Indexed: 03/20/2023] Open
Abstract
Malachite green used in textile and dyeing industries is a common persistent pollutant in wastewater and the environment causing major hazards to human health and aquatic organisms. In this study, the response surface methodology was applied to optimize the adsorptive removal of malachite green using nano-bentonite, MgO-impregnated clay, and Mucor sp. composites. The nano materials and Mucor sp. composite were characterized by FTIR, SEM and X-ray diffractometry. According to the obtained results, nano-bentonite exhibits a maximum MG adsorption efficiency of 98.6% at 35 °C, pH 7.0, 60 min contact time, 1.0 g/L adsorbent dosage, and 50 mg/L initial MG concentration. On the other hand, the maximum efficiency for MG adsorption on MgO-impregnated clay of 97.04% is observed at pH 9.0, 60 min contact time, 0.7 g/L adsorbent dosage, and 50 mg/L initial MG concentration. The Malachite green (MG) adsorption isotherm on MgO-impregnated clay corresponded with the Freundlich isotherm, with a correlation coefficient (R2) of 0.982. However, the Langmuir adsorption isotherm was a superior fit for nano-bentonite (R2 = 0.992). The adsorption activities of nano-bentonite and MgO-impregnated clay were fitted into a pseudo-second-order kinetic model with R2 of 0.996 and 0.995, respectively. Additionally, despite being recycled numerous times, the adsorbent maintained its high structural stability and removal effectiveness for nano-bentonite (94.5-86%) and MgO-impregnated clay (92-83%).
Collapse
Affiliation(s)
- Mohammed Taha Moustafa
- Central Laboratory for Environmental Quality Monitoring, National Water Research Center, Shubra El Kheima 1, Al Qalyubia Governorate, 6210001, Egypt.
| |
Collapse
|
15
|
Zhao F, Shan R, Li S, Yuan H, Chen Y. Characterization and Co-Adsorption Mechanism of Magnetic Clay-Biochar Composite for De-Risking Cd(II) and Methyl Orange Contaminated Water. Int J Mol Sci 2023; 24:ijms24065755. [PMID: 36982828 PMCID: PMC10054263 DOI: 10.3390/ijms24065755] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/06/2023] [Accepted: 03/11/2023] [Indexed: 03/19/2023] Open
Abstract
The application of the adsorption method in sewage treatment has recently become a hot spot. A novel magnetic clay-biochar composite (BNT-MBC) was fabricated by co-pyrolysis of bentonite and biomass after being impregnated with Fe (NO3)3·9H2O. Its adsorption capacity for Cd(II) and methyl orange was approximately doubled, reaching a maximum of 26.22 and 63.34 mg/g, and could be easily separated from the solution by using external magnets with its saturation magnetization of 9.71 emu/g. A series of characterizations including surface morphology and pore structure, elemental analysis, functional group analysis and graphitization were carried out, showing that the specific surface area was increased 50 times by loading 20 wt.% bentonite, while its graphitization and oxygen-containing functional groups were also enhanced. The isotherm fitting indicated that Cd(II) was adsorbed in multiple layers, while methyl orange was in both monolayer and multilayer adsorptions. The kinetic fitting indicated that chemisorption was the rate-limiting step of both, and it was also a complex process controlled by two steps with the fitting of intra-particle diffusion. In the binary system of Cd(II) and methyl orange, the co-existing pollutants facilitated the adsorption of the original one, and there was no competition between adsorption sites of Cd(II) and methyl orange. BNT-MBC also exhibited good reusability and can be magnetically recovered for recycling. Thus, the magnetic clay-biochar composite BNT-MBC is a cost-effective and promising adsorbent for simultaneous removing Cd(II) and methyl orange from wastewater.
Collapse
Affiliation(s)
- Fengxiao Zhao
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- School of Energy Science and Engineering, University of Science and Technology of China, Guangzhou 510640, China
- Xiamen Key Laboratory of Clean and High-Valued Utilization for Biomass, Fujian Engineering and Research Center of Clean and High-Valued Technologies for Biomass, College of Energy, Xiamen University, Xiamen 361102, China
- CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Rui Shan
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- School of Energy Science and Engineering, University of Science and Technology of China, Guangzhou 510640, China
- CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Shuang Li
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- School of Energy Science and Engineering, University of Science and Technology of China, Guangzhou 510640, China
- CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Haoran Yuan
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- School of Energy Science and Engineering, University of Science and Technology of China, Guangzhou 510640, China
- CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
- Correspondence: ; Tel.: +86-020-8701-3241
| | - Yong Chen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- School of Energy Science and Engineering, University of Science and Technology of China, Guangzhou 510640, China
- Xiamen Key Laboratory of Clean and High-Valued Utilization for Biomass, Fujian Engineering and Research Center of Clean and High-Valued Technologies for Biomass, College of Energy, Xiamen University, Xiamen 361102, China
- CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| |
Collapse
|
16
|
Liu J, Zhang W, Jin H, Li Z, Liu G, Xing F, Tang L. Exploring the carbon capture and sequestration performance of biochar-artificial aggregate using a new method. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160423. [PMID: 36427720 DOI: 10.1016/j.scitotenv.2022.160423] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/03/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
To achieve the ambitious goal of carbon neutrality, more carbon sequestration channels need to be developed. In this study, we tried to combine biochar with cold-bonded artificial lightweight coarse aggregate (ALCA) which is made from municipal solid household waste incineration bottom ash (MSWIBA).The strong carbon capture ability of biochar was used to attract external CO2 into the interior of ALCAs, which combined with CaO in MSWIBA to form CaCO3 to achieve the effect of chemical carbon sequestration. The total carbon sequestration and carbon sequestration rate of biochar-ALCAs were quantified by a self-designed CO2 concentration change test box, the physical and mechanical properties of biochar-ALCAs were investigated, as well as the changes before and after carbonization. The results showed that biochar and ALCAs had good synergistic carbon sequestration ability. The total carbon sequestration of biochar-ALCAs could reach 30.58-33.06 kg/ton. The carbon sequestration efficiency could reach 70.2 % and 84.9 % at 28 d/56 d in a low CO2 concentration environment (0.05 % VOL). In addition, the water absorption of biochar-ALCAs decreased by 4.3 %-13.9 %, the apparent density increased by 0.9 %-2.8 %, and the strength increased by 4.3 %-7.0 % after carbon sequestration, and the physical and mechanical properties were significantly improved. The purpose of this paper is to investigate the synergistic carbon sequestration of biochar in combination with ALCAs and to quantitatively assess its ability to solidify low concentrations of CO2 in the natural environment. A new test apparatus and test method were designed for this purpose. This paper may contribute for an important advance on the preparation of recyclable cement-type composites able to capture and solidify CO2 from the natural environment.
Collapse
Affiliation(s)
- Jun Liu
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, PR China; Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Weizhuo Zhang
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Hesong Jin
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Zhenlin Li
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, PR China.
| | - Guang Liu
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Feng Xing
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, PR China; Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Luping Tang
- Department of Architecture and Civil Engineering, Division of Building Technology, Chalmers University of Technology, 41296 Gothenburg, Sweden
| |
Collapse
|
17
|
Ajala OA, Akinnawo SO, Bamisaye A, Adedipe DT, Adesina MO, Okon-Akan OA, Adebusuyi TA, Ojedokun AT, Adegoke KA, Bello OS. Adsorptive removal of antibiotic pollutants from wastewater using biomass/biochar-based adsorbents. RSC Adv 2023; 13:4678-4712. [PMID: 36760292 PMCID: PMC9897205 DOI: 10.1039/d2ra06436g] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/22/2022] [Indexed: 02/05/2023] Open
Abstract
This study explores adsorptive removal measures to shed light on current water treatment innovations for kinetic/isotherm models and their applications to antibiotic pollutants using a broad range of biomass-based adsorbents. The structure, classifications, sources, distribution, and different techniques for the remediation of antibiotics are discussed. Unlike previous studies, a wide range of adsorbents are covered and adsorption of comprehensive classes of antibiotics onto biomass/biochar-based adsorbents are categorized as β-lactam, fluoroquinolone, sulfonamide, tetracycline, macrolides, chloramphenicol, antiseptic additives, glycosamides, reductase inhibitors, and multiple antibiotic systems. This allows for an assessment of their performance and an understanding of current research breakthroughs in applying various adsorbent materials for antibiotic removal. Distinct from other studies in the field, the theoretical basis of different isotherm and kinetics models and the corresponding experimental insights into their applications to antibiotics are discussed extensively, thereby identifying the associated strengths, limitations, and efficacy of kinetics and isotherms for describing the performances of the adsorbents. In addition, we explore the regeneration of adsorbents and the potential applications of the adsorbents in engineering. Lastly, scholars will be able to grasp the present resources employed and the future necessities for antibiotic wastewater remediation.
Collapse
Affiliation(s)
- Oluwaseyi Aderemi Ajala
- Department of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University 1-4-1, Kagamiyama Higashi-Hiroshima 739-8527 Japan
| | - Solomon Oluwaseun Akinnawo
- Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology P. M. B. 4000 Ogbomoso Oyo State Nigeria
- Department of Chemical Sciences, Olusegun Agagu University of Science and Technology P. M. B. 353 Okitipupa Ondo State Nigeria
| | - Abayomi Bamisaye
- Department of Chemical Sciences, Faculty of Natural and Applied Sciences, Lead City University Ibadan Oyo State Nigeria
| | - Demilade Tunrayo Adedipe
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong SAR China
| | - Morenike Oluwabunmi Adesina
- Department of Chemical Sciences, Faculty of Natural and Applied Sciences, Lead City University Ibadan Oyo State Nigeria
| | - Omolabake Abiodun Okon-Akan
- Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology P. M. B. 4000 Ogbomoso Oyo State Nigeria
- Wood and Paper Technology Department, Federal College of Forestry Jericho Ibadan Nigeria
| | | | - Adedamola Titi Ojedokun
- Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology P. M. B. 4000 Ogbomoso Oyo State Nigeria
| | - Kayode Adesina Adegoke
- Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology P. M. B. 4000 Ogbomoso Oyo State Nigeria
| | - Olugbenga Solomon Bello
- Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology P. M. B. 4000 Ogbomoso Oyo State Nigeria
| |
Collapse
|
18
|
Yang X, Shao X, Tong J, Zhou J, Feng Y, Chen R, Yang Q, Han Y, Yang X, Wang L, Ma X, Fan Z, Song Z, Zimmerman AR, Gao B. Removal of Aqueous Eriochrome Blue-Black R by novel Na-Bentonite/Hickory Biochar Composites. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
19
|
Yang G, Xie S, Yang M, Tang S, Zhou L, Jiang W, Zhou B, Li Y, Si B. A critical review on retaining antibiotics in liquid digestate: Potential risk and removal technologies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158550. [PMID: 36075409 DOI: 10.1016/j.scitotenv.2022.158550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/09/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Substantial levels of antibiotics remain in liquid digestate, posing a significant threat to human safety and the environment. A comprehensive assessment of residual antibiotics in liquid digestate and related removal technologies is required. To this end, this review first evaluates the potential risks of the residual antibiotics in liquid digestate by describing various anaerobic digestion processes and their half-lives in the environment. Next, emerging technologies for removing antibiotics in liquid digestate are summarized and discussed, including membrane separation, adsorption, and advanced oxidation processes. Finally, this study comprehensively and critically discusses these emerging technologies' prospects and challenges, including techno-economic feasibility and environmental impacts.
Collapse
Affiliation(s)
- Gaixiu Yang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Shihao Xie
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China; College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Min Yang
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Shuai Tang
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Lei Zhou
- Center for Professional Training and Service, China Association for Science and Technology, Beijing 100081, China
| | - Weizhong Jiang
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Bo Zhou
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Yunkai Li
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Buchun Si
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
20
|
Chauhan S, Shafi T, Dubey BK, Chowdhury S. Biochar-mediated removal of pharmaceutical compounds from aqueous matrices via adsorption. WASTE DISPOSAL & SUSTAINABLE ENERGY 2022; 5:37-62. [PMID: 36568572 PMCID: PMC9757639 DOI: 10.1007/s42768-022-00118-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 12/23/2022]
Abstract
Pharmaceutical is one of the noteworthy classes of emerging contaminants. These biologically active compounds pose a range of deleterious impacts on human health and the environment. This is attributed to their refractory behavior, poor biodegradability, and pseudopersistent nature. Their large-scale production by pharmaceutical industries and subsequent widespread utilization in hospitals, community health centers, and veterinary facilities, among others, have significantly increased the occurrence of pharmaceutical residues in various environmental compartments. Several technologies are currently being evaluated to eliminate pharmaceutical compounds (PCs) from aqueous environments. Among them, adsorption appears as the most viable treatment option because of its operational simplicity and low cost. Intensive research and development efforts are, therefore, currently underway to develop inexpensive adsorbents for the effective abatement of PCs. Although numerous adsorbents have been investigated for the removal of PCs in recent years, biochar-based adsorbents have garnered tremendous scientific attention to eliminate PCs from aqueous matrices because of their decent specific surface area, tunable surface chemistry, scalable production, and environmentally benign nature. This review, therefore, attempts to provide an overview of the latest progress in the application of biochar for the removal of PCs from wastewater. Additionally, the fundamental knowledge gaps in the domain knowledge are identified and novel strategic research guidelines are laid out to make further advances in this promising approach towards sustainable development.
Collapse
Affiliation(s)
- Sahil Chauhan
- grid.429017.90000 0001 0153 2859School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302 India
| | - Tajamul Shafi
- grid.429017.90000 0001 0153 2859School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302 India
| | - Brajesh Kumar Dubey
- grid.429017.90000 0001 0153 2859Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302 India
| | - Shamik Chowdhury
- grid.429017.90000 0001 0153 2859School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302 India
| |
Collapse
|
21
|
Zou M, Tian W, Chu M, Gao H, Zhang D. Biochar composite derived from cellulase hydrolysis apple branch for quinolone antibiotics enhanced removal: Precursor pyrolysis performance, functional group introduction and adsorption mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120104. [PMID: 36075339 DOI: 10.1016/j.envpol.2022.120104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/16/2022] [Accepted: 09/01/2022] [Indexed: 05/27/2023]
Abstract
In this study, magnetic biochar (MAB) and humic acid (HA)-coated magnetic biochar produced from apple branches without and after cellulase hydrolysis (HMAB and CHMAB, respectively) were prepared and tested as adsorbents of enrofloxacin (ENR) and moxifloxacin (MFX) in aqueous solution. Compared with MAB and HMAB, novel adsorbent CHMAB possessed a superior mesoporous structure, greater graphitization degree and abundant functional groups. When antibiotic solutions ranged from 2 to 20 mg L-1, the theoretical maximum adsorption capacities of CHMAB for ENR and MFX were 48.3 and 61.5 mg g-1 at 35 °C with adsorbent dosage of 0.4 g L-1, respectively, while those of MAB and HMAB were 39.6 and 54.4 mg g-1, and 44.7 and 59.0 mg g-1, respectively. The pseudo-second-order kinetic model and Langmuir model presented a better fitting to the spontaneous and endothermic adsorption process. The maximum adsorption capacity of ENR and MFX onto CHMAB was achieved at initial pH values of 5 and 8, respectively. Additionally, the adsorption capacity of ENR and MFX decreased with increasing concentrations of K+ and Ca2+ (0.02-0.1 mol L-1). Synergism between the pore-filling effect, π-π electron-donor-acceptor interactions, regular and negative charge-assisted H-bonding, surface complexation, electrostatic interactions and hydrophobic interactions may dominate the adsorption process. This study demonstrated that a novel magnetic biochar composite prepared through pyrolysis of agricultural waste lignocellulose hydrolyzed by cellulase in combination with HA coating was a promising adsorbent for eliminating quinolone antibiotics from aqueous media.
Collapse
Affiliation(s)
- Mengyuan Zou
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, PR China
| | - Weijun Tian
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, PR China; Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266234, PR China.
| | - Meile Chu
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, PR China
| | - Huizi Gao
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, PR China
| | - Dantong Zhang
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, PR China
| |
Collapse
|
22
|
Tang J, Ma Y, Cui S, Ding Y, Zhu J, Chen X, Zhang Z. Insights on ball milling enhanced iron magnesium layered double oxides bagasse biochar composite for ciprofloxacin adsorptive removal from water. BIORESOURCE TECHNOLOGY 2022; 359:127468. [PMID: 35710050 DOI: 10.1016/j.biortech.2022.127468] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Both ciprofloxacin (CIP) and sugarcane bagasse have brought enormous pressure on environmental safety. Here, an innovative technique combining Fe-Mg-layered double oxides and ball milling was presented for the first time to convert bagasse-waste into a new biochar adsorbent (BM-LDOs-BC) for aqueous CIP removal. The maximum theoretical adsorption capacity of BM-LDOs-BC reached up to 213.1 mg g-1 due to abundant adsorption sites provided by well-developed pores characteristics and enhanced functional groups. The results of characterization, data fitting and environmental parameter revealed that pore filling, electrostatic interactions, H-bonding, complexation and π-π conjugation were the key mechanisms for CIP adsorptive removal. BM-LDOs-BC exhibited satisfactory environmental safety and outstanding adsorption capacity under various environmental situations (pH, inorganic salts, humic acid). Moreover, BM-LDOs-BC possessed excellent reusability. These superiorities illustrated that BM-LDOs-BC was a promising adsorbent and created a new avenue for rational placement of biowaste and high-efficiency synthesis of biochar for antibiotic removal.
Collapse
Affiliation(s)
- Jiayi Tang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Yongfei Ma
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Song Cui
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Yongzhen Ding
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Jinyao Zhu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Xi Chen
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Zulin Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China; The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK.
| |
Collapse
|
23
|
Wang T, He J, Lu J, Zhou Y, Wang Z, Zhou Y. Adsorptive removal of PPCPs from aqueous solution using carbon-based composites: A review. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Cao X, Meng Z, Song E, Sun X, Hu X, Liu Z, Gao S, Song B. Co-adsorption capabilities and mechanisms of bentonite enhanced sludge biochar for de-risking norfloxacin and Cu 2+ contaminated water. CHEMOSPHERE 2022; 299:134414. [PMID: 35346740 DOI: 10.1016/j.chemosphere.2022.134414] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 05/27/2023]
Abstract
Various bentonite-sludge biochar composites were fabricated by a sequence of loading and pyrolysis for the simultaneous removal of norfloxacin (NOR) and copper (Cu2+) from an aqueous solution. The morphology and characteristics of obtained composites were reflected through cation exchange capacity (CEC), BET specific surface area (SBET), SEM, XRD, FTIR and XPS. The isothermal adsorption results showed that Sips adsorption model fitted better for the adsorption of NOR and Cu2+ during co-adsorption. The theoretical maximum adsorption capacity of BT:2 SB (the mass ratio of bentonite to sludge is 1:2) for NOR and Cu2+ was 89.36 mg g-1 and 104.10 mg g-1 at 25 °C in the co-adsorption system. The thermodynamic results showed the capture of NOR and Cu2+ was spontaneous, accompanied by an endothermic reaction with different randomness. In the co-adsorption system, the two were antagonistic to each other due to competition for the adsorption sites of hydroxyl, carboxylic acid and negatively charged provided by bentonite-sludge biochar. This study suggests that using natural mineral as a pyrolysis improver for sludge biochar can product the value-enhanced biochar for simultaneous removal of antibiotic and metal contaminants.
Collapse
Affiliation(s)
- Xuewen Cao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Zhaofu Meng
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Yangling, 712100, China.
| | - En Song
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Xiuxian Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Xiaolong Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Ze Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Yangling, 712100, China
| | - Shuai Gao
- School of Chemical Engineering, The University of Queensland, QLD, 4072, Australia
| | - Bing Song
- Scion, Te Papa Tipu Innovation Park, 49 Sala Street, Private Bag 3020, Rotorua, 3046, New Zealand
| |
Collapse
|
25
|
Keerthanan S, Jayasinghe C, Bolan N, Rinklebe J, Vithanage M. Retention of sulfamethoxazole by cinnamon wood biochar and its efficacy of reducing bioavailability and plant uptake in soil. CHEMOSPHERE 2022; 297:134073. [PMID: 35227748 DOI: 10.1016/j.chemosphere.2022.134073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/16/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
The objective of this research was to evaluate the efficacy of cinnamon wood biochar (CWBC) in adsorbing sulfamethoxazole (SUL), which alleviates bioavailability and plant uptake. Batch studies at various pH, contact times, and initial SUL loading were used to study SUL adsorption in CWBC, soil, and 2.5% CWBC amended soil. SUL mitigation from plant uptake were examined using Ipomoea aquatica at different SUL contamination levels in the soil. The kinetic results were described by pseudo-second-order with maximum adsorption capacities (Qmax) of 95.64 and 0.234 mg/g for pristine CWBC and amendment, respectively implying that chemical interactions are rate-determining stages. Hill and Toth's model described the isotherm data for pristine CWBC, soil and CWBC amended soil as Qmax of 113.44, 0.72, and 3.45 mg/g. Column data showed a great mobilization of SUL in loamy sand; however, when CWBC was added to the loamy sand, the mobilization was drastically reduced by 98.8%. The Ipomoea aquatica showed a great potential to SUL uptake and it depended on the contamination level; the SUL accumulation in plant was 9.6-13.8 and 19.1-48 mg/kg when soil was spiked with 5 and 50 mg/kg, respectively. The addition of 2.5% CWBC reduced root and shoot uptake by 30 and 95%, respectively in 5 mg/kg of SUL, whereas with 50 mg/kg of SUL, the root and shoot uptake was reduced by 60 and 61%, respectively. The current study suggested CWBC as a possible adsorbent that may be employed to reduce SUL bioavailability in environmental matrices.
Collapse
Affiliation(s)
- S Keerthanan
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Chamila Jayasinghe
- Department of Food Science and Technology, Faculty of Livestock, Fisheries and Nutrition, Wayamba University of Sri Lanka. Makandura, Gonawila, Sri Lanka
| | - Nanthi Bolan
- School of Agriculture and Environment, The UWA Institute of Agriculture, The University of Western Australia, M079, Perth WA, 6009, Australia
| | - Jörg Rinklebe
- Soil- and Groundwater-Management, Institute of Soil Engineering, Waste- and Water Science, Faculty of Architecture und Civil Engineering, University of Wuppertal, Germany
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka.
| |
Collapse
|
26
|
Hettithanthri O, Rajapaksha AU, Keerthanan S, Ramanayaka S, Vithanage M. Colloidal biochar for enhanced adsorption of antibiotic ciprofloxacin in aqueous and synthetic hydrolyzed human urine matrices. CHEMOSPHERE 2022; 297:133984. [PMID: 35202666 DOI: 10.1016/j.chemosphere.2022.133984] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/14/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Objectives of the present research were to examine the capacity of disc-milled high lignin biochar colloids (CBC) for the removal of ciprofloxacin (CPX) from aqueous solution and synthetic hydrolyzed human urine. In this study, adsorption of CPX was tested against the initial pH (3-10), ionic strength (0.001-0.1 M NaNO3), resident time (up to 8 h), initial CPX concentration (5-100 mg/L) and temperature (25, 35, and 45 °C). The surface morphology was examined using Brunauer-Emmett-Teller (BET) specific surface area. The CBC was observed to be < 300 nm whereas the BET surface area was 284 m2/g. Best CPX adsorption demonstrated at pH 5-6 and however, indicated ionic strength dependency. Experimental kinetics data in aqueous media were well-fitted to the pseudo-second-order (r2 of 0.98), while the Hill and Langmuir isotherm models best described the isotherm data (r2 of 0.95 and 0.94, respectively) confirming chemisorption followed by physisorption interactions. The thermodynamics results indicate that CPX adsorption onto CBC is spontaneous (-ΔG), endothermic (+ΔH) and has increased randomness (+ΔS) in the aqueous system. The kinetic experimental data in synthetic urine matrix was fitted with Elovich (r2 = 0.99) and fractional power (r2 = 0.96) models whereas Hills (r2 = 0.99) and Langmuir (r2 = 0.97) models were the most fitted with isotherm data suggesting the adsorption of CPX on the CBC by chemisorption mechanisms. In conclusion, CBC demonstrated effective removal of CPX indicating its potential to be used in wastewater treatment.
Collapse
Affiliation(s)
- Oshadi Hettithanthri
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Anushka Upamali Rajapaksha
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka; Instrument Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - S Keerthanan
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Sammani Ramanayaka
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka; Instrument Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka.
| |
Collapse
|
27
|
Patel AK, Singhania RR, Pal A, Chen CW, Pandey A, Dong CD. Advances on tailored biochar for bioremediation of antibiotics, pesticides and polycyclic aromatic hydrocarbon pollutants from aqueous and solid phases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:153054. [PMID: 35026237 DOI: 10.1016/j.scitotenv.2022.153054] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/20/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Biochar is gaining incredible importance for remediation applications due to their attractive removal properties. Moreover, it is becoming ecofriendly, cost-effective and sustainable bioadsorbents towards replacing expensive activated carbons. Studies reveal biochar effectiveness for removal of important and potentially severe organic pollutants such as antibiotics and pesticides. Recent research advancements on biochar modification (physical, chemical and biological) opens greater opportunity to form tailored biochar with improved surface properties than their native forms for offering better removal efficiencies. Further attentions paid towards emergent new modification methods to cover broad-spectrum pollutants using tailored biochar. Current review aims to summarize recent updates upon biochar tailoring, comparative account of tailored biochars removal efficiencies with respect to their native forms and to provide in-depth discussion covering specific interactions of tailored biochars with antibiotics, polycyclic aromatic hydrocarbons (PAHs) and pesticides for their effective removals and degradation from polluted environments. Application of inducer compounds e.g., peroxymonosulfate and sodium percarbonate further improved the biochar role towards degradation of toxic organic pollutants into their less or nontoxic forms. Biochar engineered with specific metals enable them for the same role without inducer compounds. Moreover, microbial interactions with biochar not only improve the bioremediation level further but also degrade the pollutants from the environment and open up better environmental and socio-economic prospects. Application of green, cost-effective and sustainable biochar for remediation of environmentally potential organic pollutants offers economical treatment methods as well as safe environment. These benefits are inline with global trends towards developing a sustainable process for biocircular economy.
Collapse
Affiliation(s)
- Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Anugunj Pal
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, India
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
28
|
Promising adsorptive materials derived from agricultural and industrial wastes for antibiotic removal: A comprehensive review. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120286] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
29
|
Nguyen TB, Truong QM, Chen CW, Doong RA, Chen WH, Dong CD. Mesoporous and adsorption behavior of algal biochar prepared via sequential hydrothermal carbonization and ZnCl 2 activation. BIORESOURCE TECHNOLOGY 2022; 346:126351. [PMID: 34798257 DOI: 10.1016/j.biortech.2021.126351] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
In this study, biochar derived from brown algal Ascophyllum nodosum was synthesized through hydrothermal carbonization (HTC) coupling with ZnCl2 chemical activation and applied as a sustainable adsorbent for antibiotic removal from water exemplified by ciprofloxacin (CIP). Various surface analysis techniques such as Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and zeta potential were used to clarify the surface properties of prepared biochars. The adsorption performance of biochars was investigated using batch adsorption experiments with a variety of parameters (initial pH, ionic types, temperature and water matrixes). The application of prepared biochar in CIP removal showed a good result of adsorption capacity (150-400 mg g-1) in different conditions. Overall, algal biochars, as a product recycled from biowaste, demonstrated a novel and promising adsorbent for effective and sustainable method for removal of antibiotics from water.
Collapse
Affiliation(s)
- Thanh-Binh Nguyen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Quoc-Minh Truong
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Ruey-An Doong
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan.
| |
Collapse
|
30
|
Natural and engineered clays and clay minerals for the removal of poly- and perfluoroalkyl substances from water: State-of-the-art and future perspectives. Adv Colloid Interface Sci 2021; 297:102537. [PMID: 34624725 DOI: 10.1016/j.cis.2021.102537] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022]
Abstract
Poly- and perfluoroalkyl substances (PFAS) present globally in drinking-, waste-, and groundwater sources are contaminants of emerging concern due to their long-term environmental persistence and toxicity to organisms, including humans. Here we review PFAS occurrence, behavior, and toxicity in various water sources, and critically discuss their removal via mineral adsorbents, including natural aluminosilicate clay minerals, oxidic clays (Al, Fe, and Si oxides), organoclay minerals, and clay-polymer and clay‑carbon (biochar and graphene oxide) composite materials. Among the many remediation technologies, such as reverse osmosis, adsorption, advanced oxidation and biologically active processes, adsorption is the most suitable for PFAS removal in aquatic systems. Treatment strategies using clay minerals and oxidic clays are inexpensive, eco-friendly, and efficient for bulk PFAS removal due to their high surface areas, porosity, and high loading capacity. A comparison of partition coefficient values calculated from extracted data in published literature indicate that organically-modified clay minerals are the best-performing adsorbent for PFAS removal. In this review, we scrutinize the corresponding plausible mechanisms, factors, and challenges affecting the PFAS removal processes, demonstrating that modified clay minerals (e.g., surfactant, amine), including some commercially available products (e.g., FLUORO-SORB®, RemBind®, matCARE™), show good efficacy in PFAS remediation in contaminated media under field conditions. Finally, we propose future research to focus on the challenges of using clay-based adsorbents for PFAS removal from contaminated water due to the regeneration and safe-disposal of spent clay adsorbents is still a major issue, whilst enhancing the PFAS removal efficiency should be an ongoing scientific effort.
Collapse
|
31
|
Adsorption Behavior of Crystal Violet and Congo Red Dyes on Heat-Treated Brazilian Palygorskite: Kinetic, Isothermal and Thermodynamic Studies. MATERIALS 2021; 14:ma14195688. [PMID: 34640085 PMCID: PMC8510337 DOI: 10.3390/ma14195688] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 02/04/2023]
Abstract
The effect of heat treatment on the adsorptive capacity of a Brazilian palygorskite to remove the dyes crystal violet (CV) and congo red (CR) was investigated. The natural palygorskite was calcined at different temperatures (300, 500 and 700 °C) for 4 h. Changes in the palygorskite structure were evaluated using X-ray diffraction, X-ray fluorescence, thermogravimetric and differential thermal analysis, N2 adsorption/desorption and Fourier transform infrared spectroscopy. The adsorption efficiency of CV and CR was investigated through the effect of initial concentration, contact time, temperature, pH and dosage of adsorbent. The calcination increased the adsorption capacity of palygorskite, and the greatest adsorption capacity of CV and CR dyes occurred in the sample calcined at 700 °C (Pal-700T). The natural and calcined samples at 300 and 500 °C followed the Freundlich isothermal model, while the Pal-700T followed the Langmuir isothermal model. Adsorption kinetics results were well described by the Elovich model. Pal-700T showed better adsorption performance at basic pH, with removal greater than 98%, for both dyes. Pal-700T proved to be a great candidate for removing cationic and anionic dyes present in water.
Collapse
|
32
|
Ashiq A, Vithanage M, Sarkar B, Kumar M, Bhatnagar A, Khan E, Xi Y, Ok YS. Carbon-based adsorbents for fluoroquinolone removal from water and wastewater: A critical review. ENVIRONMENTAL RESEARCH 2021; 197:111091. [PMID: 33794177 DOI: 10.1016/j.envres.2021.111091] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/23/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
This review summarizes the adsorptive removal of Fluoroquinolones (FQ) from water and wastewater. The influence of different physicochemical parameters on the adsorptive removal of FQ-based compounds is detailed. Further, the mechanisms involved in the adsorption of FQ-based antibiotics on various adsorbents are succinctly described. As the first of its kind, this paper emphasizes the performance of each adsorbent for FQ-type antibiotic removal based on partition coefficients of the adsorbents that is a more sensitive parameter than adsorption capacity for comparing the performances of adsorbents under various adsorbate concentrations and heterogeneous environmental conditions. It was found that π-π electron donor-acceptor interactions, electrostatic interactions, and pore-filling were the most prominent mechanisms for FQ adsorption by carbon and clay-based adsorbents. Among all the categories of adsorbents reviewed, graphene showed the highest performance for the removal of FQ antibiotics from water and wastewater. Based on the current state of knowledge, this review fills the gap through methodolically understanding the mechanism for further improvement of FQ antibiotics adsorption performance from water and wastewater.
Collapse
Affiliation(s)
- Ahmed Ashiq
- Ecosphere Resilience Research Centre, Faculty of Applied Science, University of Sri Jayewardenepura, Sri Lanka
| | - Meththika Vithanage
- Ecosphere Resilience Research Centre, Faculty of Applied Science, University of Sri Jayewardenepura, Sri Lanka.
| | - Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom
| | - Manish Kumar
- Department of Earth Sciences, Indian Institute of Technology Gandhinagar, India
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130, Mikkeli, Finland
| | - Eakalak Khan
- Civil and Environmental Engineering and Construction Department, University of Nevada - Las Vegas, Las Vegas, NV, USA
| | - Yunfei Xi
- Institute for Future Environments & School of Earth and Atmospheric Sciences, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland, 4001, Australia
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, South Korea.
| |
Collapse
|
33
|
Jayawardhana Y, Keerthanan S, Lam SS, Vithanage M. Ethylbenzene and toluene interactions with biochar from municipal solid waste in single and dual systems. ENVIRONMENTAL RESEARCH 2021; 197:111102. [PMID: 33798520 DOI: 10.1016/j.envres.2021.111102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
The present study investigated adsorptive removal of toluene and ethylbenzene from the aqueous media via using biochar derived from municipal solid waste (termed "MSW-BC") in a single and binary contaminant system at 25-45 °C. The adsorption was evaluated at different pH (3-10), experimental time (up to 24 h), and initial adsorbate concentrations (10-600 μg/L) in single and binary contaminant system. A fixed-bed column experiment was also conducted using MSW-BC (0.25%) and influent concentration of toluene and ethylbenzene (4 mg/L) at 2 mL/min of flow rate. The adsorption of toluene and ethylbenzene on the MSW-BC was mildly dependent on the pH, and the peak adsorption ability (44-47 μg/g) was recorded at a baseline pH of ~8 in mono and dual contaminant system. Langmuir and Hill are the models that match the isotherm results in a single contaminant environment for both toluene (R2 of 0.97 and 0.99, respectively) and ethylbenzene (R2 of 0.99 and 0.99, respectively) adsorption. In the binary system, the isotherm models matched in the order of Langmuir > Hill > Freundlich for toluene, whereas Hill > Freundlich > Langmuir for ethylbenzene. The adsorption in the batch experiment was likely to take place via cooperative and multilayer adsorption onto MSW-BC involving hydrophobic, π- π and n- π attractions, specific interaction such as hydrogen-π and cation-π interactions, and van der Waals interactions. The thermodynamic results indicate exothermic adsorption occurred by physical attractions between toluene and ethylbenzene, and MSW-BC. The breakthrough behavior of toluene and ethylbenzene was successfully described with Yoon-Nelson and Thomas models. The data demonstrate that the low-cost adsorbent derived from the municipal solid waste can be utilized to remove toluene and ethylbenzene in landfill leachate.
Collapse
Affiliation(s)
- Yohan Jayawardhana
- Environmental Chemodynamics Research Group, National Institute of Fundamental Studies, Kandy, 20000, Sri Lanka
| | - S Keerthanan
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Meththika Vithanage
- Environmental Chemodynamics Research Group, National Institute of Fundamental Studies, Kandy, 20000, Sri Lanka; Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka.
| |
Collapse
|
34
|
Rahman N, Varshney P. Facile Synthesis and Characterization of Zn(II)-Impregnated Chitosan/Graphene Oxide: Evaluation of Its Efficiency for Removal of Ciprofloxacin from Aqueous Solution. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-01981-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
35
|
Rasheed U, Ain QU, Yaseen M, Yao X, Liu B. Synthesis and characterization of tannic acid pillared bentonite composite for the efficient adsorption of aflatoxins. Colloids Surf B Biointerfaces 2021; 202:111679. [PMID: 33752087 DOI: 10.1016/j.colsurfb.2021.111679] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/04/2021] [Accepted: 03/04/2021] [Indexed: 11/28/2022]
Abstract
Tannic acid (TA) is a hydrolysable polyphenol with established antioxidant and antibacterial activity along with its tendency to bind both organic and inorganic ions/molecules. In the present study, the sequestration performance of TA pillared bentonite for various aflatoxins (AFs) including AFB1, AFB2, AFG1 and AFG2 from aqueous solutions and simulated poultry gastrointestinal model solution was studied via adsorption. The adsorbents were characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), N2 adsorption-desorption study and X-ray photoelectron spectroscopy (XPS). The reaction conditions including pH, agitation time, initial toxin concentration and temperature were systematically optimized. The Langmuir adsorption capacity of the adsorbent reached to 86, 71, 74 and 149 mg/g for AFB1, AFB2, AFG1 and AFG2 respectively. Adsorption kinetics and thermodynamic studies showed rapid AFs uptake and the exothermicity of the adsorption reaction respectively. Simultaneous removal of AFs by BTA3 revealed their independent and uninterrupted adsorption and the adsorption mechanism of AFs over BTA3 was elaborated with the help of XPS results. The outstanding AFs sequestering capability of BTA3 in aqueous solution and simulated poultry gastrointestinal model can be envisioned of great promise for the remediation of AFs and other hazardous pollutants from food and poultry industrial products.
Collapse
Affiliation(s)
- Usman Rasheed
- Institute of Applied Microbiology, College of Agriculture, Guangxi University, Nanning, 530005, China.
| | - Qurat Ul Ain
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China; College of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China.
| | - Muhammad Yaseen
- Institute of Chemical Sciences, University of Peshawar, 25120, KP, Pakistan.
| | - Xiaohua Yao
- Institute of Applied Microbiology, College of Agriculture, Guangxi University, Nanning, 530005, China.
| | - Bin Liu
- Institute of Applied Microbiology, College of Agriculture, Guangxi University, Nanning, 530005, China.
| |
Collapse
|
36
|
Basak BB, Saha A, Sarkar B, Kumar BP, Gajbhiye NA, Banerjee A. Repurposing distillation waste biomass and low-value mineral resources through biochar-mineral-complex for sustainable production of high-value medicinal plants and soil quality improvement. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:143319. [PMID: 33199015 DOI: 10.1016/j.scitotenv.2020.143319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/26/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
High cost of synthetic fertilizers and their hazardous effects catapult the exploration of alternative nutrient formulations and soil amendments. This study aimed to synthesize a novel biochar-mineral-complex (BMC), and evaluate its nutrient supplying and soil improvement performances. In a hydrothermal reaction, the BMC was prepared using a biochar derived from distillation waste of Lemongrass (Cymbopogon flexuosus) and farmyard manure, for the first time via fortification with low-grade rock phosphate and waste mica. The BMC showed improved physico-chemical properties and nutrient availability than the pristine biochar. When applied to a deeply weathered acidic soil, the BMC significantly (P < 0.05) improved the herbage and bioactive compound (sennoside) yields of a medicinal plant (senna; Cassia angustifolia Vahl.) compared to the pristine biochar, farmyard manure, vermicompost, and chemical fertilizers. The BMC also improved the soil quality by increasing nutrient and carbon contents, and microbial activities. Soil quality improvement facilitated greater nutrient uptake in senna plants under BMC compared to the pristine biochar, and conventional organic and chemical fertilizer treatments. This study thus encourages the development of BMC formulations not only to overcome the limitation of sole biochar application to soils, but also to phaseout chemical fertilizers in agriculture. Moreover, BMC could bestow resilience and sustainability to crop production via value-added recycling of waste biomass and low-grade mineral resources.
Collapse
Affiliation(s)
- B B Basak
- ICAR-Directorate of Medicinal and Aromatic Plants Research, Anand 387310, India.
| | - Ajoy Saha
- ICAR-Directorate of Medicinal and Aromatic Plants Research, Anand 387310, India; ICAR-Central Inland Fisheries Research Institute, Bangalore Research Centre, Bangalore 560089, India
| | - Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom.
| | - B Prem Kumar
- Department Soil Science and Agricultural Chemistry, Anand Agricultural University, Anand 388110, India
| | - N A Gajbhiye
- ICAR-Directorate of Medicinal and Aromatic Plants Research, Anand 387310, India
| | - Atanu Banerjee
- Dr. K C Patel Research & Development Centre, Charotar University of Science and Technology, Changa, Anand 388421, India
| |
Collapse
|
37
|
Ansari-Asl Z, Darvish Pour-Mogahi S, Darabpour E. Zeolitic imidazolate frameworks/polyacrylonitile composites for oil sorption and antibacterial applications. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01745-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
38
|
Imanipoor J, Ghafelebashi A, Mohammadi M, Dinari M, Ehsani MR. Fast and effective adsorption of amoxicillin from aqueous solutions by L-methionine modified montmorillonite K10. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125792] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
39
|
|
40
|
Ouyang J, Zhou L, Liu Z, Heng JY, Chen W. Biomass-derived activated carbons for the removal of pharmaceutical mircopollutants from wastewater: A review. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117536] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
41
|
Vithanage M, Ashiq A, Ramanayaka S, Bhatnagar A. Implications of layered double hydroxides assembled biochar composite in adsorptive removal of contaminants: Current status and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 737:139718. [PMID: 32526569 DOI: 10.1016/j.scitotenv.2020.139718] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/23/2020] [Accepted: 05/24/2020] [Indexed: 06/11/2023]
Abstract
In recent years, biochar composites have received considerable attention for environmental applications. This paper reviews the current state of research on Layered Double Hydroxides (LDHs) tailored biochar composites in terms of their synthesis methods, characteristics, and their use as adsorbents for the removal of various pollutants from water, highlighting and discussing the key advancement in this area. The adsorption potential of LDHs-biochar composites for different inorganic and organic contaminants, important factors affecting composites' properties and the adsorption process, and the mechanisms involved in adsorption are discussed in this review. Though the adsorption capacities are high for the composites studied, partition coefficient which suggest the performance of composites remain low for most adsorbents. Despite the recent progress in the synthesis of LDHs-biochar composites, further research is needed to improve the performance of composites for different classes of aquatic pollutants, and to test their applicability in pilot-scale with real wastewater under real environmental conditions.
Collapse
Affiliation(s)
- Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka.
| | - Ahmed Ashiq
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Sammani Ramanayaka
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Amit Bhatnagar
- Department of Environmental and Biological Sciences, University of Eastern Finland, P. O. Box 1627, FI-70211 Kuopio, Finland.
| |
Collapse
|
42
|
Bai Y, Su J, Wen Q, Li G, Xue L, Huang T. Removal of tetracycline by denitrifying Mn(II)-oxidizing bacterium Pseudomonas sp. H117 and biomaterials (BMO and MBMO): Efficiency and mechanisms. BIORESOURCE TECHNOLOGY 2020; 312:123565. [PMID: 32454439 DOI: 10.1016/j.biortech.2020.123565] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/17/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
Coexistence of multiple pollutants such as antibiotic, nitrate and heavy metal has received increasing attention resently. In this study, the functions of Pseudomonas sp.H117 on the removal of tetracycline(TC), nitrate and Mn(II), and biological materials (BMO(biogenic manganese oxides), MBMO(magnetic BMO)) on the removal of TC were investigated. Strain H117 showed higher TC removal efficiency of 68.86% (0.071 mg·L-1·h-1) within 96 h. Meanwhile, NO3-N and Mn(II) achieved high removal efficiency of 100% (0.211 mg·L-1·h-1) and 64.64% (0.265 mg·L-1·h-1), respectively. Furthermore, trapping experiments testified that Mn(III) intermediate formed during the biological manganese oxidation process, which contribute to the TC degradation. 91.29% and 96.63% of TC removal efficiency within 12 h were achieved by BMO and MBMO. Moreover, XPS, FTIR spectra, kinetics analysis and adsorption isotherms elucidated Mn(III) oxidation, chemical adsorption and ligand exchange reactions contribute to the removal of TC by biomaterials.
Collapse
Affiliation(s)
- Yihan Bai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Qiong Wen
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - GuoQing Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Lei Xue
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
43
|
Ramola S, Belwal T, Li CJ, Wang YY, Lu HH, Yang SM, Zhou CH. Improved lead removal from aqueous solution using novel porous bentonite - and calcite-biochar composite. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 709:136171. [PMID: 31905582 DOI: 10.1016/j.scitotenv.2019.136171] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/13/2019] [Accepted: 12/15/2019] [Indexed: 06/10/2023]
Abstract
Biochar-mineral (bentonite/calcite) composite (BC-CM) prepared at different temperatures were tested under varied conditions for effective removal of lead (Pb) from aqueous solution. With increasing pyrolysis temperature, increased surface area, pore volume, bentonite decomposition and less or no decomposition of calcite occurred. Bentonite-biochar (BCS) and calcite-biochar (CCS) prepared at 700 °C were found most suitable for efficient removal of Pb (99.9%). Bentonite and calcite acted as catalyst and contributed to changes in yield, pH, texture, functional groups, minerals and carbonization that facilitated efficient Pb removal by BCS 700 and CCS 700. Pb concentration, pH, dose of BCS and CCS, and contact time were further optimized using response surface methodology (RSM) for maximizing removal percentage (R%) of Pb and adsorption capacity (qt). Both BCS 700 and CCS 700 showed similar effects (positive/negative) of factors on R% and qt. Under optimized conditions, 0.21 g of BCS 700 effectively removed 99.2% of 431 mg/L in 3.6 h at solution pH of 4.2, while 0.07 g CCS 700 removed 97.06% of 232 mg/L in 3.5 h at 5.5 pH. Removal of Pb onto both BCS and CCS was by monolayer adsorption with maximum adsorption capacity of 500 mg/g. Rapid Pb removal was observed within 2 h of contact time (CCS 700 > BCS 700) and equilibrium was achieved within 10 h. BCS 700 followed first order and CCS 700 followed second order kinetic model. Electrostatic attraction between Pb ions and mineral groups present in BCS 700 and CCS 700 also played important role in Pb removal. This study clearly demonstrated that composite of biochar with bentonite or calcite under optimized conditions significantly improved Pb removal and adsorption capacity that can be further utilized for larger scale applications.
Collapse
Affiliation(s)
- Sudipta Ramola
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang 242804, An Hui, China
| | - Tarun Belwal
- Zhejiang University, College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agri-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Hangzhou, 310058, China
| | - Cun Jun Li
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang 242804, An Hui, China
| | - Yu Ying Wang
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Engineering Research Center of Biochar of Zhejiang Province, Hangzhou 310021, China
| | - Hao Hao Lu
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Engineering Research Center of Biochar of Zhejiang Province, Hangzhou 310021, China
| | - Sheng Mao Yang
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Engineering Research Center of Biochar of Zhejiang Province, Hangzhou 310021, China.
| | - Chun Hui Zhou
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang 242804, An Hui, China.
| |
Collapse
|
44
|
Ramanayaka S, Tsang DCW, Hou D, Ok YS, Vithanage M. Green synthesis of graphitic nanobiochar for the removal of emerging contaminants in aqueous media. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:135725. [PMID: 31940729 DOI: 10.1016/j.scitotenv.2019.135725] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
This study reports the preparation of nanobiochar (NBC) via top-down approach of bioenergy waste-derived dendro biochar through mechanised grinding in order to assess its capacity to remove emerging contaminants, such as antibiotics, agrochemicals, and potentially toxic elements from aqueous media. Preconditioned biochar was disc milled in ethanol media, and the resulting colloidal biochar was dispersed in water to obtain the NBC fraction by centrifugation. Adsorption edge and isotherm experiments were carried out at pH 3 to 8 and NBC dosages of 0.5 g/L for oxytetracycline (OTC), glyphosate (GL), hexavalent chromium (CrVI), and cadmium (CdII). NBC was characterised by scanning electron microscopy, X-ray photoelectron spectroscopy, Brunauer-Emmett-Teller surface area, and Fourier transform infrared spectroscopy, which demonstrated the flakey and graphitic nature of the NBC particles with a surface area of 28 m2/g and the presence of different functional groups, such as OH, CO, NH, and CH3. The best pH for OTC and Cd(II) was 9, whereas the best pH levels for GL and Cr(VI) were 7 and 4, respectively. Isotherms depicted a positive cooperative adsorption mechanism by providing the best fit to the Hills equation, with high removal capacities for four contaminants. Dendro NBC showed the best performance, demonstrated by the high partition coefficient for the removal of OTC, GL, Cr(VI), and Cd(II) over various types of adsorbents. The overall results indicated that graphitic NBC produced by mechanical grinding of dendro biochar is a promising material for the removal of OTC, GL, Cr(VI), and Cd(II) from aqueous media.
Collapse
Affiliation(s)
- Sammani Ramanayaka
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, South Korea.
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka.
| |
Collapse
|
45
|
Madanayake NH, Rienzie R, Adassooriya NM. Nanoparticles in Nanotheranostics Applications. Nanotheranostics 2019. [DOI: 10.1007/978-3-030-29768-8_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|