1
|
Oh S, Nguyen AH, Kim JS, Chung SY, Maeng SK, Jung YH, Cho K. A microbiome-biochar composite synergistically eliminates the environmental risks of antibiotic mixtures and their toxic byproducts. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135474. [PMID: 39173370 DOI: 10.1016/j.jhazmat.2024.135474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/15/2024] [Accepted: 08/08/2024] [Indexed: 08/24/2024]
Abstract
This study developed a continuous reactor system employing a hybrid hydrogel composite synthesized using a complex sludge microbiome and an adsorbent (HSA). This HSA-based system effectively eliminated the environmental risks associated with a mixture of the antibiotics ciprofloxacin and sulfamethoxazole, which exhibited higher toxicity in combination than individually at environmentally relevant levels. Analytical chemistry experiments revealed the in-situ generation of various byproducts (BPs) within the bioreactor system, with two of these BPs recording toxicity levels that surpassed those of their parent compound. The HSA approach successfully prevented the functional microbiome from being washed out of the reactor, while HSA efficiently removed antibiotic residues in their original and BP forms through synergistic adsorptive and biotransformation mechanisms, ultimately reducing the overall ecotoxicity. The use of HSA thus demonstrates promise not only as a mean to reduce the threat posed by toxic antibiotic residues to aquatic ecosystems but also as a practical solution to operational challenges, such as biomass loss/washout, that are frequently encountered in various environmental bioprocesses.
Collapse
Affiliation(s)
- Seungdae Oh
- Department of Civil Engineering, College of Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea; KHU-KIST Department of Converging Science and Technology, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| | - Anh H Nguyen
- Department of Civil Engineering, College of Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Ji-Su Kim
- Department of Civil Engineering, University of Seoul, Dongdaemun-gu, Seoul, Republic of Korea
| | - Sang-Yeop Chung
- Department of Civil and Environmental Engineering, Yonsei University, Seodaemun-gu, Seoul, Republic of Korea
| | - Sung Kyu Maeng
- Department of Civil and Environmental Engineering, Sejong University, Gwangjin-gu, Seoul, Republic of Korea
| | - Young-Hoon Jung
- Department of Civil Engineering, College of Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Kyungjin Cho
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; Center for Water Cycle Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Energy & Environment Technology, KIST school, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| |
Collapse
|
2
|
Wijaya J, Park J, Yang Y, Siddiqui SI, Oh S. A metagenome-derived artificial intelligence modeling framework advances the predictive diagnosis and interpretation of petroleum-polluted groundwater. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134513. [PMID: 38735183 DOI: 10.1016/j.jhazmat.2024.134513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/16/2024] [Accepted: 04/30/2024] [Indexed: 05/14/2024]
Abstract
Groundwater (GW) quality monitoring is vital for sustainable water resource management. The present study introduced a metagenome-derived machine learning (ML) model aimed at enhancing the predictive understanding and diagnostic interpretation of GW pollution associated with petroleum. In this framework, taxonomic and metabolic profiles derived from GW metagenomes were combined for use as the input dataset. By employing strategies that optimized data integration, model selection, and parameter tuning, we achieved a significant increase in diagnostic accuracy for petroleum-polluted GW. Explanatory artificial intelligence techniques identified petroleum degradation pathways and Rhodocyclaceae as strong predictors of a pollution diagnosis. Metagenomic analysis corroborated the presence of gene operons encoding aminobenzoate and xylene biodegradation within the de novo assembled genome of Rhodocyclaceae. Our genome-centric metagenomic analysis thus clarified the ecological interactions associated with microbiomes in breaking down petroleum contaminants, validating the ML-based diagnostic results. This metagenome-derived ML framework not only enhances the predictive diagnosis of petroleum pollution but also offers interpretable insights into the interaction between microbiomes and petroleum. The proposed ML framework demonstrates great promise for use as a science-based strategy for the on-site monitoring and remediation of GW pollution.
Collapse
Affiliation(s)
- Jonathan Wijaya
- Department of Civil Engineering, College of Engineering, Kyung Hee University, Yongin, Republic of Korea
| | - Joonhong Park
- Department of Civil and Environmental Engineering, Yonsei University, Seoul, Republic of Korea
| | - Yuyi Yang
- Key laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Sharf Ilahi Siddiqui
- Department of Chemistry, Ramjas College, University of Delhi, New Delhi 110007, India
| | - Seungdae Oh
- Department of Civil Engineering, College of Engineering, Kyung Hee University, Yongin, Republic of Korea.
| |
Collapse
|
3
|
Nguyen AH, Oh S. Side effects of the addition of an adsorbent for the nitrification performance of a microbiome in the treatment of an antibiotic mixture. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133034. [PMID: 38035522 DOI: 10.1016/j.jhazmat.2023.133034] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/07/2023] [Accepted: 11/16/2023] [Indexed: 12/02/2023]
Abstract
This work determined the effect of biochar (BC) as an adsorbent on the nitrifying microbiome in regulating the removal, transformation, fate, toxicity, and potential environmental consequences of an antibiotic mixture containing oxytetracycline (OTC) and sulfamethoxazole (SMX). Despite the beneficial role of BC as reported in the literature, the present study revealed side effects for the nitrifying microbiome and its functioning arising from the presence of BC. Long-term monitoring revealed severe disruption to nitratation via the inhibition of both nitrite oxidizers (e.g., Nitrospira defluvii) and potential comammox species (e.g., Ca. Nitrospira nitrificans). Byproducts (BPs) more toxic than the parent compounds were found to persist at a high relative abundance, particularly in the presence of BC. Quantitative structure-activity relationship modeling determined that the physicochemical properties of the toxic BPs significantly differed from those of OTC and SMX. The results suggested that the BPs tended to mobilize and accumulate on the surface of the solids in the system (i.e., the BC and biofilm), disrupting the nitrifiers growing at the interface. Collectively, this study provides novel insights, demonstrating that the addition of adsorbents to biological systems may not necessarily be beneficial; rather, they may generate side effects for specific bacteria that have important ecosystem functions.
Collapse
Affiliation(s)
- Anh H Nguyen
- Department of Civil Engineering, College of Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, South Korea
| | - Seungdae Oh
- Department of Civil Engineering, College of Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, South Korea.
| |
Collapse
|
4
|
Nguyen HT, Maeng SK, Lee TK, Oh S. Environmental consequences of transformation products from an antibiotic mixture and their mitigation in a wastewater microbiome using an HCl-modified adsorbent. BIORESOURCE TECHNOLOGY 2024; 395:130402. [PMID: 38295960 DOI: 10.1016/j.biortech.2024.130402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/18/2024]
Abstract
This study enhanced our understanding of antibiotic mixtures' occurrence, transformation, toxicity, and ecological risks. The role of acid-modified biochar (BC) in treating antibiotic residues was explored, shedding light on how BC influences the fate, mobility, and environmental impact of antibiotics and transformation products (TPs) in an activated sludge (AS) microbiome. A mixture of oxytetracycline and sulfamethoxazole was found to synergistically (or additively) inhibit cell growth of AS and disrupt the microbiome structure, species richness/diversity, and function. The formation of TPs with potentially higher toxicity and persistence than the original compounds was identified, explaining the microbiome disruption. Agricultural waste-derived BC was optimized for contaminant adsorption, leading to a reduction in toxicity when added to AS by sequestering TPs on its surface. This work highlighted adsorbents as a practical engineering strategy for mitigating liquid-phase contaminants' toxicological consequences, proactively controlling the fate and effects of antibiotics and TPs.
Collapse
Affiliation(s)
- Hiep T Nguyen
- Department of Civil Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Sung Kyu Maeng
- Department of Civil and Environmental Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Tae Kwon Lee
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, 26493, Republic of Korea
| | - Seungdae Oh
- Department of Civil Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
5
|
Zeng JP, Zhang J, Hong JH, Zhao YF, Zhang J, Zhang Y, Huang XH, Xie FZ. Predicting the occurrence of antagonism within ternary guanidine mixture pollutants based on the concentration ratio of components. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169380. [PMID: 38123081 DOI: 10.1016/j.scitotenv.2023.169380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
The widespread prevalence and coexistence of diverse guanidine compounds pose substantial risks of potential toxicity interactions, synergism or antagonism, to environmental organisms. This complexity presents a formidable challenge in assessing the risks associated with various pollutants. Hence, a method that is both accurate and universally applicable for predicting toxicity interactions within mixtures is crucial, given the unimaginable diversity of potential combinations. A toxicity interaction prediction method (TIPM) developed in our past research was employed to predict the toxicity interaction, within guanidine compound mixtures. Here, antagonism were found in the mixtures of three guanidine compounds including chlorhexidine (CHL), metformin (MET), and chlorhexidine digluconate (CDE) by selecting Escherichia coli (E. coli) as the test organism. The antagonism in the mixture was probably due to the competitive binding of all three guanidine compounds to the anionic phosphates of E. coli cell membranes, which eventually lead to cell membrane rupture. Then, a good correlation between toxicity interactions (antagonisms) and components' concentration ratios (pis) within binary mixtures (CHL-MET, CHL-CDE, MET-CDE) was established. Based on the correlation, the TIPM was constructed and accurately predicted the antagonism in the CHL-MET-CDE ternary mixture, which once again proved the accuracy and applicability of the TIPM method. Therefore, TIPM can be suggested to identify or screen rapidly the toxicity interaction within ternary mixtures exerting potentially adverse effects on the environment.
Collapse
Affiliation(s)
- Jian-Ping Zeng
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui province, Hefei 230601, PR China; College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, PR China
| | - Jin Zhang
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui province, Hefei 230601, PR China; College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, PR China.
| | - Jun-Hua Hong
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui province, Hefei 230601, PR China; College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, PR China
| | - Yuan-Fan Zhao
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui province, Hefei 230601, PR China; College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, PR China
| | - Jing Zhang
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui province, Hefei 230601, PR China; College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, PR China
| | - Ying Zhang
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui province, Hefei 230601, PR China; College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, PR China
| | - Xian-Huai Huang
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui province, Hefei 230601, PR China
| | - Fa-Zhi Xie
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui province, Hefei 230601, PR China; College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, PR China
| |
Collapse
|
6
|
Gunawardhana T, Hong JG, Choi Y, Siddiqui SI, Nguyen HT, Oh S. Water quality characteristics and reuse potential using adsorption as a post-treatment option for a full-scale hydrocyclone, coagulation, flocculation, and dissolved air flotation system. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:8585-8598. [PMID: 37661232 DOI: 10.1007/s10653-023-01738-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023]
Abstract
This study established a full-scale hybrid water treatment system combining a hydrocyclone, coagulation, flocculation, and dissolved air flotation unit (HCFD) and evaluated its performance in treating anthropogenically impacted lake water. The HCFD system offered the stable and efficient treatment of fluctuating influent loadings, meeting most of the highest water reclamation quality criteria except for that of organic matter. Adsorption was subsequently examined as a post-treatment process for the HCFD effluent, which has not been examined in many previous studies. As the adsorbent for the post-treatment, pine bark, a locally available agricultural waste feedstock, was modified using H2O2 to maximize its adsorption capacity. The surface modification increased its adsorption capacity for organic matter by 53-112%. The HCFD system in conjunction with the synthesized adsorbent thus demonstrated the ability to meet the highest standards for all water quality parameters, highlighting their synergistic potential for enhancement of water treatment. Liquid chromatography-organic carbon detection and Fourier transform infrared analysis were then employed to determine the mechanisms involved in the removal of specific contaminants using the HCFD system and post-adsorption unit. While the HCFD system successfully eliminated particulate and colloidal matter (e.g., phosphorous and biopolymers with a high molecular weight) using centrifugal and floating separation with the aid of two complementary polymers, the post-adsorption unit effectively adsorbed small-sized dissolved substances (e.g., low molecular weight acids and building blocks) via surface functional groups (-CH, -OH, -CH2, C=O, C=C, and C=O) using van der Waals forces, hydrogen bonding, and π-π or n-π interactions.
Collapse
Affiliation(s)
- Thilini Gunawardhana
- Department of Civil Engineering, College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-Gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Jin Gi Hong
- Department of Civil Engineering and Construction Engineering Management, California State University, Long Beach, CA, USA
| | - Younghoa Choi
- BlueGreenLink Co., Ltd., 708, 709, Building B, Pangyo Global Biz Center, 43, Changeop-ro, Sujeong-gu, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Sharf Ilahi Siddiqui
- Department of Chemistry, Ramjas College, University of Delhi, Delhi, 110007, India
| | - Hiep T Nguyen
- Department of Civil Engineering, College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-Gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Seungdae Oh
- Department of Civil Engineering, College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-Gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea.
| |
Collapse
|
7
|
Nguyen AH, Oh S. Effect of antibiotic cocktail exposure on functional disturbance of nitrifying microbiome. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131571. [PMID: 37178533 DOI: 10.1016/j.jhazmat.2023.131571] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/17/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
The present study quantitatively determined the degree and type of functional disturbance in the nitrifying microbiome caused by exposure to a single oxytetracycline (OTC) and a two-antibiotic mixture containing OTC and sulfamethoxazole (SMX). While the single antibiotic had a pulsed disturbance on nitritation that was recoverable within three weeks, the antibiotic mixture caused a more significant pulsed disturbance on nitritation and a potential press disturbance on nitratation that was not recoverable for over five months. Bioinformatic analysis revealed significant perturbations for both canonical nitrite-oxidizing (Nitrospira defluvii) and potential complete ammonium-oxidizing (Ca. Nitrospira nitrificans) populations that were strongly associated with the press perturbation on nitratation. In addition to this functional disturbance, the antibiotic mixture reduced the biosorption of OTC and altered its biotransformation pathways, resulting in different transformation products compared with those produced when OTC was treated as a single antibiotic. Collectively, this work elucidated how the antibiotic mixture can affect the degree, type, and duration of the functional disturbance on nitrifying microbiome and offer new insights into the environmental consequences of antibiotic residues (e.g., their fate, transformation, and ecotoxicity) when present as an antibiotic mixture rather than single antibiotics.
Collapse
Affiliation(s)
- Anh H Nguyen
- Department of Civil Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Seungdae Oh
- Department of Civil Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
8
|
Didecyldimethylammonium Chloride- and Polyhexamethylene Guanidine-Resistant Bacteria Isolated from Fecal Sludge and Their Potential Use in Biological Products for the Detoxification of Biocide-Contaminated Wastewater Prior to Conventional Biological Treatment. BIOLOGY 2022; 11:biology11091332. [PMID: 36138811 PMCID: PMC9495721 DOI: 10.3390/biology11091332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Every year, more than a million tons of fecal sludge (FS) containing biocides based on quaternary ammonium compounds and guanidine derivatives, which are widely used for FS deodorization and control of microbial activity, are generated in the environmentally safe toilet complexes of Russian Railways trains. Higher disposal costs for such biocide-contaminated FS due to activated sludge toxicity increases pressure on sanitary equipment servicing companies («Ecotol Service» LLC) to more efficiently discharge FS to wastewater treatment plants. In this work, we have developed a new environmentally friendly approach to reducing the toxicity of FS, based on the use of biological products from biocide-resistant bacterial strains isolated from FS. Our approach has proven to be effective in a series of FS biodegradation experiments, biological oxygen demand tests, and a newly developed disk-diffusion bioassay. Abstract Toxic shock caused by the discharge of biocide-contaminated fecal sludge (FS) from chemical toilets to conventional wastewater treatment plants (WWTP) can be a major problem in activated sludge operation. It is necessary to develop new environmental approaches to mitigate the toxicity of biocides in order to avoid degrading the performance of WWTP. “Latrina”, a chemical toilet additive containing didecyldimethylammonium chloride and polyhexamethylene guanidine, is widely used in environmentally safe toilet complexes (ESTC) on Russian railway trains to deodorize FS and control microbial activity. In this work, seven biocide-resistant bacterial strains were isolated and identified from the FS of ESTC. The values of the minimum inhibitory and bactericidal concentrations of biocides for the isolated strains were 4.5–10 times higher than for the collection microorganisms. The bacterium Alcaligenes faecalis DOS7 was found to be particularly resistant to “Latrina”, the minimum inhibitory concentration of which was almost 30 times higher than recommended for ESTC. Biological products based on isolated bacterial strains proved to be effective for FS biodegradation under both aerobic and anaerobic conditions. The results of the biochemical oxygen demand test and the newly developed disk-diffusion bioassay confirmed that isolated strains contribute to reducing toxicity of biocidal agents in FS. Hyper-resistance, non-pathogenicity, and potential plant growth-promoting ability make A. faecalis DOS7 promising for use in various biological products for wastewater treatment and bioremediation of soils contaminated with biocides, as well as in agriculture to increase plant productivity.
Collapse
|
9
|
Zhang Y, Yang Z, Ni J, Ma Y, Xiong H, Jian W. Toxicity and modulation of silver nanoparticles synthesized using abalone viscera hydrolysates on bacterial community in aquatic environment. Front Microbiol 2022; 13:968650. [PMID: 36110292 PMCID: PMC9468672 DOI: 10.3389/fmicb.2022.968650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Polysaccharide decorated silver nanoparticles (AgNPs) are a new type of antibacterial agent in aquaculture, but their effects on the bacterial community structure in aquaculture water are still unknown. In this study, the primary hydrolysate from abalone (Haliotis discus hannai) viscera (AVH) was used to biosynthesize AVH-AgNPs by in situ reduction, and the crystallinity nature, size, morphology, and chemical composition were analyzed by high-resolution characterization techniques such as Ultraviolet–visible spectroscopy (UV–vis), X-rays diffraction (XRD), Transmission Electron Microscope (TEM), Dynamic light scattering (DLS), Zeta potential, inductively coupled plasma-optical emission spectrometry (ICP-OES) and Turbiscan stability index (TSI) values. Furthermore, the acute toxicity of AVH-AgNPs to zebrafish (Danio rerio) and their effects on bacterial community structure in fish culture water at low concentrations were studied. The results showed that the spherical AVH-AgNPs with an average diameter of 54.57 ± 12.96 nm had good stability, low toxicity, and good in vitro antibacterial activity. Within the experimental concentration range, all AVH-AgNPs treatments had decreased the bacterial diversity in zebrafish culture water to varying degrees. The bacteria with significantly decreased abundances were pathogenic or potential pathogenic, such as Aeromonas veronii, Flavobacterium columnare, and genera Flectobacillus and Bosea. The abundance of Haliscomenobacter sp. JS224, which might cause sludge swelling, also decreased significantly. On the other hand, the relative abundance of some bacterial taxa could remove xenobiotics (e.g., Runella defluvii and Phenylobacterium), control water eutrophication (Sediminibacterium), and reduce toxic algae proliferation (Candidatus Intestinusbacter nucleariae and Candidatus Finniella), increased significantly. Thus, the application of AVH-AgNPs in aquaculture water at low concentrations is relatively safe and has positive significance for improving the aquaculture environment. Also, AVH-AgNPs have good prospects in aquaculture.
Collapse
Affiliation(s)
- Yue Zhang
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fisheries College of Jimei University, Xiamen, China
| | - Zhuan Yang
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fisheries College of Jimei University, Xiamen, China
| | - Jing Ni
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fisheries College of Jimei University, Xiamen, China
| | - Ying Ma
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fisheries College of Jimei University, Xiamen, China
- *Correspondence: Ying Ma,
| | - Hejian Xiong
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
- Hejian Xiong,
| | - Wenjie Jian
- Institute of Respiratory Diseases, Xiamen Medical College, Xiamen, China
- Wenjie Jian,
| |
Collapse
|
10
|
Oh S, Kim Y, Choi D, Park JW, Noh JH, Chung SY, Maeng SK, Cha CJ. Effects of biochar addition on the fate of ciprofloxacin and its associated antibiotic tolerance in an activated sludge microbiome. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119407. [PMID: 35526648 DOI: 10.1016/j.envpol.2022.119407] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/31/2022] [Accepted: 04/30/2022] [Indexed: 06/14/2023]
Abstract
This study investigated the effects of adding biochar (BC) on the fate of ciprofloxacin (CIP) and its related antibiotic tolerance (AT) in activated sludge. Three activated sludge reactors were established with different types of BC, derived from apple, pear, and mulberry tree, respectively, and one reactor with no BC. All reactors were exposed to an environmentally relevant level of CIP that acted as a definitive selective pressure significantly promoting AT to four representative antibiotics (CIP, ampicillin, tetracycline, and polymyxin B) by up to two orders of magnitude. While CIP removal was negligible in the reactor without BC, the BC-dosed reactors effectively removed CIP (70-95% removals) through primarily adsorption by BC and biodegradation/biosorption by biomass. The AT in the BC-added reactors was suppressed by 10-99%, compared to that without BC. The BC addition played a key role in sequestering CIP, thereby decreasing the selective pressure that enabled the proactive prevention of AT increase. 16S rRNA gene sequencing analysis showed that the BC addition alleviated the CIP-mediated toxicity to community diversity and organisms related to phosphorous removal. Machine learning modeling with random forest and support vector models using AS microbiome data collectively pinpointed Achromobacter selected by CIP and strongly associated with the AT increase in activated sludge. The identification of Achromobacter as an important AT bacteria revealed by the machine learning modeling with multiple models was also validated with a linear Pearson's correlation analysis. Overall, our study highlighted Achromobacter as a potential useful sentinel for monitoring AT occurring in the environment and suggested BC as a promising additive in wastewater treatment to improve micropollutant removal, mitigate potential AT propagation, and maintain community diversity against toxic antibiotic loadings.
Collapse
Affiliation(s)
- Seungdae Oh
- Department of Civil Engineering, Kyung Hee University, 1732 Deogyeong-daero, Yongin-si, Gyeonggi-do, 17104, Republic of Korea.
| | - Youngjun Kim
- Department of Civil Engineering, Kyung Hee University, 1732 Deogyeong-daero, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Donggeon Choi
- Department of Civil Engineering, Kyung Hee University, 1732 Deogyeong-daero, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Ji Won Park
- Department of Civil and Environmental Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, Republic of Korea
| | - Jin Hyung Noh
- Department of Civil and Environmental Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, Republic of Korea
| | - Sang-Yeop Chung
- Department of Civil and Environmental Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, Republic of Korea
| | - Sung Kyu Maeng
- Department of Civil and Environmental Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, Republic of Korea
| | - Chang-Jun Cha
- Department of Systems Biotechnology and Center for Antibiotic Resistome, Chung-Ang University, 4726 Seodong-daero, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
| |
Collapse
|
11
|
Chlorhexidine residues in sludge from municipal wastewater treatment plants: analytical determination and toxicity evaluation. Anal Bioanal Chem 2022; 414:6571-6580. [PMID: 35829768 PMCID: PMC9278323 DOI: 10.1007/s00216-022-04214-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/22/2022] [Accepted: 07/04/2022] [Indexed: 11/23/2022]
Abstract
In this work, a procedure for the sensitive and selective determination of chlorhexidine in sludge from municipal sewage treatment plants (STPs) based on matrix solid-phase dispersion (MSPD) and liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS) was optimized and validated. Analysis of sewage sludge samples, obtained from different STPs in Northwest Spain from 2018 to 2021, showed that chlorhexidine was ubiquitous in this environmental compartment with concentrations between 0.3 and 16 µg g−1. The toxicity of this pollutant was assessed in in vitro assays considering three different model organisms: Candida albicans, Escherichia coli, and Staphylococcus aureus. C. albicans was the most sensitive of the tested microorganisms to chlorhexidine with a lethal threshold concentration of 0.1 mg L−1. Thus, the lowest observed sludge residue was 3 times higher than the acute toxicity threshold measured for C. albicans. Moreover, E. coli and S. aureus were also affected at chlorhexidine concentrations around 1.8 mg L−1 and 0.5 mg L−1, respectively. So, chlorhexidine residues might affect the population of microorganisms existing in STPs. In addition, the potential phytotoxicity of the compound was evaluated with germination experiments using different model seeds. At the evaluated dose (10 µg g−1 dried soil), chlorhexidine did not affect the germination of Sorghum saccharatum, Lepidium sativum, or Sinapis alba seeds. Thus, amending agriculture soils with chlorhexidine containing sludge is unlikely to affect the germination of plants.
Collapse
|
12
|
Bendová H, Kamenická B, Weidlich T, Beneš L, Vlček M, Lacina P, Švec P. Application of Raney Al-Ni Alloy for Simple Hydrodehalogenation of Diclofenac and Other Halogenated Biocidal Contaminants in Alkaline Aqueous Solution under Ambient Conditions. MATERIALS (BASEL, SWITZERLAND) 2022; 15:3939. [PMID: 35683235 PMCID: PMC9182476 DOI: 10.3390/ma15113939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022]
Abstract
Raney Al-Ni contains 62% of Ni2Al3 and 38% NiAl3 crystalline phases. Its applicability has been studied within an effective hydrodehalogenation of hardly biodegradable anti-inflammatory drug diclofenac in model aqueous concentrates and, subsequently, even in real hospital wastewater with the aim of transforming them into easily biodegradable products. In model aqueous solution, complete hydrodechlorination of 2 mM aqueous diclofenac solution (0.59 g L-1) yielding the 2-anilinophenylacetate was achieved in less than 50 min at room temperature and ambient pressure using only 9.7 g L-1 of KOH and 1.65 g L-1 of Raney Al-Ni alloy. The dissolving of Al during the hydrodehalogenation process is accompanied by complete consumption of NiAl3 crystalline phase and partial depletion of Ni2Al3. A comparison of the hydrodehalogenation ability of a mixture of diclofenac and other widely used halogenated aromatic or heterocyclic biocides in model aqueous solution using Al-Ni was performed to verify the high hydrodehalogenation activity for each of the used halogenated contaminants. Remarkably, the robustness of Al-Ni-based hydrodehalogenation was demonstrated even for the removal of non-biodegradable diclofenac in real hospital wastewater with high chloride and nitrate content. After removal of the insoluble part of the Al-Ni for subsequent hydrometallurgical recycling, the low quantity of residual Ni was removed together with insoluble Al(OH)3 obtained after neutralization of aqueous filtrate by filtration.
Collapse
Affiliation(s)
- Helena Bendová
- Chemical Technology Group, Institute of Environmental and Chemical Engineering, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic; (H.B.); (B.K.)
| | - Barbora Kamenická
- Chemical Technology Group, Institute of Environmental and Chemical Engineering, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic; (H.B.); (B.K.)
| | - Tomáš Weidlich
- Chemical Technology Group, Institute of Environmental and Chemical Engineering, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic; (H.B.); (B.K.)
| | - Ludvík Beneš
- Joint Laboratory of Solid State Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic; (L.B.); (M.V.)
| | - Milan Vlček
- Joint Laboratory of Solid State Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic; (L.B.); (M.V.)
| | - Petr Lacina
- GEOtest, a.s., Šmahova 1244/112, 627 00 Brno, Czech Republic;
| | - Petr Švec
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic;
| |
Collapse
|
13
|
Brazkova M, Koleva R, Angelova G, Yemendzhiev H. Ligninolytic enzymes in Basidiomycetes and their application in xenobiotics degradation. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20224502009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Variety of microorganisms have already proven their capabilities for degradation of wide range of wastes with anthropogenic nature. These pollutants, both liquid and solids, also include so called xenobiotics like phenol and its derivatives, PAHs, dyes, pesticides, pharmaceuticals, etc. Xenobiotics as bisphenol A (BPA), chlorhexidine (CHX), octenidine (OCT), other disinfectants and antiseptics have high ecotoxicological impact. Moreover, they can also impair our quality of life and our health interfering different metabolic and hormone receptors pathways in human body. Chemical treatment of such wastes is not a viable option because of its poor socio-economics and environmental merits. Therefore, applying effective, ecofriendly and cheap treatment methods is of great importance. Basidiomycetes are extensively investigated for their abilities to degrade numerous pollutants and xenobiotics. Through their extracellular ligninolytic enzymes they are capable of reducing or completely removing wide range of hazardous compounds. These enzymes can be categorized in two groups: oxidases (laccase) and peroxidases (manganese peroxidase, lignin peroxidase, versatile peroxidase). Due to the broad substrate specificity of the secreted enzymes Basidiomycetes can be applied as a powerful tool for bioremediation of diverse xenobiotics and recalcitrant compounds.
Collapse
|
14
|
Ofman P, Skoczko I, Włodarczyk-Makuła M. Biosorption of LMW PAHs on activated sludge aerobic granules under varying BOD loading rate conditions. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126332. [PMID: 34118540 DOI: 10.1016/j.jhazmat.2021.126332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/24/2021] [Accepted: 06/02/2021] [Indexed: 06/12/2023]
Abstract
Polycyclic aromatic hydrocarbons belong to the main priority substances for the aquatic environment. One of the emission sources of these compounds to environment is wastewater discharged from conventional wastewater treatment systems, which are not designed to cope with this type of pollution. Thus, due to the widely discussed properties of aerobic granular activated sludge in the literature - a conducted study has proven its ability to remove LMW PAHs (naphthalene (Nap), acenaphthylene (Acy), acenaphthene (Ace), fluorene (Flu), phenanthrene (Phe) and anthracene (Ant)) from wastewater by biosorption process at varying loadings of organic compounds expressed as BOD (kg/kg·d) on the activated sludge mass. The maximum biosorption of Nap was 605 µg/kgd.m., Acy equals to 134 µg/kgd.m., Ace equals to 355 µg/kgd.m. Flu equals to 104 µg/kgd.m. Phe equal to 204 µg/kgd.m. and Ant equal to 173 µg/kgd.m. The study showed that the BOD loading rate is one of the factors affecting the biosorption process of LMW PAHs. However, as the amount of adsorbed LMW PAHs increased, the condition of aerobic granular activated sludge deteriorated, which was evidenced by gradual increase in the values of technological parameters of activated sludge (SVI, HRT, SRT) and a smaller increase in activated sludge dry mass.
Collapse
Affiliation(s)
- Piotr Ofman
- Bialystok University of Technology, 45 Wiejska Str., 15-351 Bialystok, Poland.
| | - Iwona Skoczko
- Bialystok University of Technology, 45 Wiejska Str., 15-351 Bialystok, Poland.
| | | |
Collapse
|
15
|
Machine Learning Approach Reveals the Assembly of Activated Sludge Microbiome with Different Carbon Sources during Microcosm Startup. Microorganisms 2021; 9:microorganisms9071387. [PMID: 34202381 PMCID: PMC8304691 DOI: 10.3390/microorganisms9071387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/14/2021] [Accepted: 06/19/2021] [Indexed: 11/16/2022] Open
Abstract
Activated sludge (AS) microcosm experiments usually begin with inoculating a bioreactor with an AS mixed culture. During the bioreactor startup, AS communities undergo, to some extent, a distortion in their characteristics (e.g., loss of diversity). This work aimed to provide a predictive understanding of the dynamic changes in the community structure and diversity occurring during aerobic AS microcosm startups. AS microcosms were developed using three frequently used carbon sources: acetate (A), glucose (G), and starch (S), respectively. A mathematical modeling approach quantitatively determined that 1.7–2.4 times the solid retention time (SRT) was minimally required for the microcosm startups, during which substantial divergences in the community biomass and diversity (33–45% reduction in species richness and diversity) were observed. A machine learning modeling application using AS microbiome data could successfully (>95% accuracy) predict the assembly pattern of aerobic AS microcosm communities responsive to each carbon source. A feature importance analysis pinpointed specific taxa that were highly indicative of a microcosm feed source (A, G, or S) and significantly contributed for the ML-based predictive classification. The results of this study have important implications on the interpretation and validity of microcosm experiments using AS.
Collapse
|
16
|
Ozaltin K, Di Martino A, Capakova Z, Lehocky M, Humpolicek P, Saha T, Vesela D, Mozetic M, Saha P. Plasma Mediated Chlorhexidine Immobilization onto Polylactic Acid Surface via Carbodiimide Chemistry: Antibacterial and Cytocompatibility Assessment. Polymers (Basel) 2021; 13:polym13081201. [PMID: 33917700 PMCID: PMC8068050 DOI: 10.3390/polym13081201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 01/18/2023] Open
Abstract
The development of antibacterial materials has great importance in avoiding bacterial contamination and the risk of infection for implantable biomaterials. An antibacterial thin film coating on the surface via chemical bonding is a promising technique to keep native bulk material properties unchanged. However, most of the polymeric materials are chemically inert and highly hydrophobic, which makes chemical agent coating challenging Herein, immobilization of chlorhexidine, a broad-spectrum bactericidal cationic compound, onto the polylactic acid surface was performed in a multistep physicochemical method. Direct current plasma was used for surface functionalization, followed by carbodiimide chemistry to link the coupling reagents of N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDAC) and N-Hydroxysuccinimide (NHs) to create a free bonding site to anchor the chlorhexidine. Surface characterizations were performed by water contact angle test, X-ray photoelectron spectroscopy (XPS) and scanning electron microscope (SEM). X-ray photoelectron spectroscopy (XPS) and scanning electron microscope (SEM). The antibacterial activity was tested using Staphylococcus aureus and Escherichia coli. Finally, in vitro cytocompatibility of the samples was studied using primary mouse embryonic fibroblast cells. It was found that all samples were cytocompatible and the best antibacterial performance observed was the Chlorhexidine immobilized sample after NHs activation.
Collapse
Affiliation(s)
- Kadir Ozaltin
- Center of Polymer Systems, Tomas Bata University in Zlin, Trida Tomase Bati 5678, 760 01 Zlin, Czech Republic; (A.D.M.); (Z.C.); (M.L.); (P.H.); (D.V.); (P.S.)
- Correspondence: ; Tel.: +420-576031741
| | - Antonio Di Martino
- Center of Polymer Systems, Tomas Bata University in Zlin, Trida Tomase Bati 5678, 760 01 Zlin, Czech Republic; (A.D.M.); (Z.C.); (M.L.); (P.H.); (D.V.); (P.S.)
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Lenin Av. 30, 634050 Tomsk, Russia
| | - Zdenka Capakova
- Center of Polymer Systems, Tomas Bata University in Zlin, Trida Tomase Bati 5678, 760 01 Zlin, Czech Republic; (A.D.M.); (Z.C.); (M.L.); (P.H.); (D.V.); (P.S.)
| | - Marian Lehocky
- Center of Polymer Systems, Tomas Bata University in Zlin, Trida Tomase Bati 5678, 760 01 Zlin, Czech Republic; (A.D.M.); (Z.C.); (M.L.); (P.H.); (D.V.); (P.S.)
- Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 275, 760 01 Zlin, Czech Republic
| | - Petr Humpolicek
- Center of Polymer Systems, Tomas Bata University in Zlin, Trida Tomase Bati 5678, 760 01 Zlin, Czech Republic; (A.D.M.); (Z.C.); (M.L.); (P.H.); (D.V.); (P.S.)
- Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 275, 760 01 Zlin, Czech Republic
| | - Tomas Saha
- Footwear Research Center, University Institute, Tomas Bata University in Zlin, Nad Ovcirnou 3685, 760 01 Zlin, Czech Republic;
| | - Daniela Vesela
- Center of Polymer Systems, Tomas Bata University in Zlin, Trida Tomase Bati 5678, 760 01 Zlin, Czech Republic; (A.D.M.); (Z.C.); (M.L.); (P.H.); (D.V.); (P.S.)
| | - Miran Mozetic
- Department of Surface Engineering and Optoelectronics, Jozef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia;
| | - Petr Saha
- Center of Polymer Systems, Tomas Bata University in Zlin, Trida Tomase Bati 5678, 760 01 Zlin, Czech Republic; (A.D.M.); (Z.C.); (M.L.); (P.H.); (D.V.); (P.S.)
| |
Collapse
|
17
|
Ouyang J, Li C, Wei L, Wei D, Zhao M, Zhao Z, Zhang J, Chang CC. Activated sludge and other aerobic suspended culture processes. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1717-1725. [PMID: 32762078 DOI: 10.1002/wer.1427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/08/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
This paper provides an overview of activated sludge related to suspended growth processes for the year 2019. The review encompasses process modeling of activated sludge, microbiology of activated sludge, process kinetics and mechanism, nitrogen and phosphorus control, design, and operation in the activated sludge field. The fate and effect of xenobiotics in activated sludge, including trace organic contaminant and heavy metal xenobiotics, which had influence on the growth of suspended sludge, are covered in this review. Compared to past reviews, many topics show increase in activity in 2019. These include, biokinetics process of aerobic granular sludge formation, pyrolysis kinetic mechanism of granular sludge. These topics are referred to formation and disintegration of granular sludge. Other sections include activated sludge settling model, toxicity resistant microbial community, nitritation-anammox processes for nitrogen removal, and respirometry used in the operation of real wastewater treatment plant are especially highlighted in this review. PRACTITIONER POINTS: Biokinetics process of aerobic granular sludge formation Toxicity resistant microbial community in activated sludge Nitritation-anammox processes for nitrogen removal in activated sludge.
Collapse
Affiliation(s)
- Jia Ouyang
- Guangzhou HKUST Fok Ying Tung Research Institute, Guang Zhou, China
| | - Chunying Li
- School of Energy and Civil Engineering, Harbin University of Commerce, Harbin, China
| | - Li Wei
- Guangzhou HKUST Fok Ying Tung Research Institute, Guang Zhou, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, China
| | - Dong Wei
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, China
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang Province, China
| | - Min Zhao
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang Province, China
| | - Zhen Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, China
| | - Jie Zhang
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang Province, China
| | - Chein-Chi Chang
- Department of Engineering and Technical Services, DC Water and Sewer Authority, Washington, DC, USA
| |
Collapse
|
18
|
Biodegradability of Dental Care Antimicrobial Agents Chlorhexidine and Octenidine by Ligninolytic Fungi. Molecules 2020; 25:molecules25020400. [PMID: 31963668 PMCID: PMC7024351 DOI: 10.3390/molecules25020400] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/10/2020] [Accepted: 01/15/2020] [Indexed: 12/26/2022] Open
Abstract
Chlorhexidine (CHX) and octenidine (OCT), antimicrobial compounds used in oral care products (toothpastes and mouthwashes), were recently revealed to interfere with human sex hormone receptor pathways. Experiments employing model organisms—white-rot fungi Irpex lacteus and Pleurotus ostreatus—were carried out in order to investigate the biodegradability of these endocrine-disrupting compounds and the capability of the fungi and their extracellular enzyme apparatuses to biodegrade CHX and OCT. Up to 70% ± 6% of CHX was eliminated in comparison with a heat-killed control after 21 days of in vivo incubation. An additional in vitro experiment confirmed manganese-dependent peroxidase and laccase are partially responsible for the removal of CHX. Up to 48% ± 7% of OCT was removed in the same in vivo experiment, but the strong sorption of OCT on fungal biomass prevented a clear evaluation of the involvement of the fungi or extracellular enzymes. On the other hand, metabolites indicating the enzymatic transformation of both CHX and OCT were detected and their chemical structures were proposed by means of liquid chromatography–mass spectrometry. Complete biodegradation by the ligninolytic fungi was not achieved for any of the studied analytes, which emphasizes their recalcitrant character with low possibility to be removed from the environment.
Collapse
|
19
|
Nguyen LN, Commault AS, Johir MAH, Bustamante H, Aurisch R, Lowrie R, Nghiem LD. Application of a novel molecular technique to characterise the effect of settling on microbial community composition of activated sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 251:109594. [PMID: 31557668 DOI: 10.1016/j.jenvman.2019.109594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 09/04/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
Activated sludge (AS) and return activated sludge (RAS) microbial communities from three full-scale municipal wastewater treatment plants (denoted plant A, B and C) were compared to assess the impact of sludge settling (i.e. gravity thickening in the clarifier) and profile microorganisms responsible for nutrient removal and reactor foaming. The results show that all three plants were dominated with microbes in the phyla of Proteobacteria, Bacteroidetes, Verrucomicrobia, Actinobacteria, Chloroflexi, Firmicutes, Nitrospirae, Spirochaetae, Acidobacteria and Saccharibacteria. AS and RAS shared above 80% similarity in the microbial community composition, indicating that sludge thickening does not significantly alter the microbial composition. Autotrophic and heterotrophic nitrifiers were present in the AS. However, the abundance of autotrophic nitrifiers was significantly lower than that of the heterotrophic nitrifiers. Thus, ammonium removal at these plants was achieved mostly by heterotrophic nitrification. Microbes that can cause foaming were at 3.2% abundance, and this result is well corroborated with occasional aerobic biological reactor foaming. By contrast, these microbes were not abundant (<2.1%) at plant A and C, where aerobic biological reactor foaming has not been reported.
Collapse
Affiliation(s)
- Luong N Nguyen
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW, 2007, Australia.
| | - Audrey S Commault
- Climate Change Cluster (C3), University of Technology Sydney, NSW, 2007, Australia
| | - Md Abu Hasan Johir
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW, 2007, Australia
| | | | | | | | - Long D Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW, 2007, Australia; NTT Institute of Hi-Technology, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| |
Collapse
|