1
|
Xing G, Wang Y, Chen T, Yao Z, Chen J, Xiong J. Biological and ecological consequences of combined biofilm, shellfish and phytoremediation along a wastewater treatment system from shrimp aquafarm. AQUACULTURE 2025; 597:741937. [DOI: 10.1016/j.aquaculture.2024.741937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Jiao F, Zhang X, Zhang T, Hu Y, Lu R, Ma G, Chen T, Guo H, Li D, Pan Y, Li YY, Kong Z. Insights into carbon-neutral treatment of rural wastewater by constructed wetlands: A review of current development and future direction. ENVIRONMENTAL RESEARCH 2024; 262:119796. [PMID: 39147183 DOI: 10.1016/j.envres.2024.119796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/27/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
In recent years, with the global rise in awareness regarding carbon neutrality, the treatment of wastewater in rural areas is increasingly oriented towards energy conservation, emission reduction, low-carbon output, and resource utilization. This paper provides an analysis of the advantages and disadvantages of the current low-carbon treatment process of low-carbon treatment for rural wastewater. Constructed wetlands (CWs) are increasingly being considered as a viable option for treating wastewater in rural regions. In pursuit of carbon neutrality, advanced carbon-neutral bioprocesses are regarded as the prospective trajectory for achieving carbon-neutral treatment of rural wastewater. The incorporation of CWs with emerging biotechnologies such as sulfur-based autotrophic denitrification (SAD), pyrite-based autotrophic denitrification (PAD), and anaerobic ammonia oxidation (anammox) enables efficient removal of nitrogen and phosphorus from rural wastewater. The advancement of CWs towards improved removal of organic and inorganic pollutants, sustainability, minimal energy consumption, and low carbon emissions is widely recognized as a viable low-carbon approach for achieving carbon-neutral treatment of rural wastewater. This study offers novel perspectives on the sustainable development of wastewater treatment in rural areas within the framework of achieving carbon neutrality in the future.
Collapse
Affiliation(s)
- Feifei Jiao
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xinzheng Zhang
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Tao Zhang
- College of Design and Innovation, Shanghai International College of Design & Innovation, Tongji University, Shanghai, 200092, China
| | - Yong Hu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Rui Lu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Guangyi Ma
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Tao Chen
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Hongbo Guo
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Dapeng Li
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yang Pan
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi, 980-8579, Japan
| | - Zhe Kong
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
3
|
Zheng J, Guo D, Zhang J, Zhang T, Yang L, Li B, Lan J, Ren Y. Construction of an ideotype root system architecture of subsurface flow constructed wetland macrophytes by vertical spatial stress: strengthening of rhizosphere effects and determination of appropriate substrate depth. ENVIRONMENTAL RESEARCH 2024; 259:119523. [PMID: 38960352 DOI: 10.1016/j.envres.2024.119523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/26/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Strengthening rhizosphere effects to enhance pollutant removal is a hotspot of constructed wetlands (CWs) research in recent years, and improving the root traits and metabolic capacity of macrophytes is crucial for strengthening rhizosphere effects. In the field experiment, two types of subsurface flow (SSF) CWs (CW10 and CW20, with substrate depths of 10 and 20 cm, respectively) under the vertical spatial stress of roots (VSSR) and two types of non-VSSR SSF CWs (CW40 and CW60) were adopted with Typha orientalis as cultivated plants to investigate the variability of root development, metabolism, and pollutant removal at different substrate depths. VSSR induced substantial redundant root development, which significantly increased root-shoot ratio, fine and lateral root biomass, root porosity, and root activity, with lateral and fine root biomass of CW20 reaching 409.17 and 237.42 g/m2, respectively, which were 3.18 and 5.28 times those of CW60. The radical oxygen loss (ROL) and dissolved organic carbon (DOC) levels of CW20 single plant were 1.36 and 4.57 times higher than those of CW60, respectively, and more types of root exudates were determined (e.g., aldehydes, ketones and amides). More aerobic heterotrophs (e.g., Massilia, Planomicrobium), nitrification bacteria (e.g., Ellin6067, Nitrospira), aerobic denitrification bacteria (e.g., Bacillu, Chryseobacterium, Pseudomonas) and denitrification phosphorus accumulating organisms (e.g., Flavobacterium) were enriched in the rhizosphere of CW20. This changed the main transformation pathways of pollutants and enhanced the removal of pollutants, with the COD, TN and TP average removal rates of CW20 increasing by 9.99%, 13.28% and 8.92%, respectively, compared with CW60. The ideotype root system architecture CW (RSACW; CW20) constructed in this study, which consists of a large number of fine and lateral roots, can stimulate more efficient rhizosphere effects stably and continuously.
Collapse
Affiliation(s)
- Jiewen Zheng
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Dun Guo
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Jingying Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Tongyao Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Lei Yang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Bin Li
- Xi'an Botanical Garden of Shaanxi Province, Botanical Institute of Shaanxi Province, Xi'an, 710061, China
| | - Jun Lan
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yongxiang Ren
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| |
Collapse
|
4
|
Pastor-Lopez EJ, Casas ME, Hellman D, Müller JA, Matamoros V. Nature-based solutions for antibiotics and antimicrobial resistance removal in tertiary wastewater treatment: Microbiological composition and risk assessment. WATER RESEARCH 2024; 261:122038. [PMID: 38996727 DOI: 10.1016/j.watres.2024.122038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/15/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
This field-scale study evaluates the seasonal effectiveness of employing nature-based solutions (NBSs), particularly surface flow and horizontal subsurface flow constructed wetland configurations, as tertiary treatment technologies for the removal of antibiotics (ABs) and antibiotic resistance genes (ARGs) compared to a conventional treatment involving UV and chlorination. Out of the 21 monitored ABs, 13 were detected in the influent of three tertiary wastewater treatments, with concentrations ranging from 2 to 1218 ng·L-1. The ARGs sul1 and dfrA1 exhibited concentrations ranging from 1 × 105 to 9 × 106 copies/100 mL. NBSs were better at reducing ABs (average 69 to 88 %) and ARGs (2-3 log units) compared to the conventional tertiary system (average 36 to 39 % and no removal to 2 log units) in both seasons. Taxonomic compositions in influent water samples shifted from wastewater-impacted communities (Actinomycetota and Firmicutes) to a combination of plant rhizosphere-associated and river communities in NBS effluents (Alphaproteobacteria). In contrast, the conventional technology showed no substantial differences in community composition. Moreover, NBSs substantially reduced the ecotoxicological risk assessment (cumulative RQs). Furthermore, NBSs reduced the ecotoxicological risk (cumulative RQs) by an average of over 70 % across seasons, whereas the benchmark technology only achieved a 6 % reduction. In conclusion, NBSs present a robust alternative for minimizing the discharge of ABs and ARGs into surface water bodies.
Collapse
Affiliation(s)
- Edward J Pastor-Lopez
- Department of Environmental Chemistry. IDAEA-CSIC, Jordi Girona, 18-26, 08034, Barcelona, Spain
| | - Mònica Escola Casas
- Department of Environmental Chemistry. IDAEA-CSIC, Jordi Girona, 18-26, 08034, Barcelona, Spain
| | - Dominik Hellman
- Institute for Biological Interfaces (IBG-5), Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany
| | - Jochen A Müller
- Institute for Biological Interfaces (IBG-5), Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany
| | - Víctor Matamoros
- Department of Environmental Chemistry. IDAEA-CSIC, Jordi Girona, 18-26, 08034, Barcelona, Spain.
| |
Collapse
|
5
|
A D, Guo QM, Deng YY, Jiang Y, Chen CX. Purification of the secondary treatment tail water for wastewater reclamation by integrated subsurface-constructed wetlands. ENVIRONMENTAL TECHNOLOGY 2024; 45:2450-2458. [PMID: 36730286 DOI: 10.1080/09593330.2023.2176260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
A whole-year investigation of full-scale integrated subsurface-constructed wetlands (ISCWs) was carried out to purify the tail water from a wastewater treatment plant (WWTP) for wastewater reclamation under four plant species, four hydraulic loading rates (HLRs), and four seasons. The results showed that ISCWs were effective for the purification of WWTP discharge, with the average removal efficiencies of COD, NH4+-N, TN, and TP being 48%, 49%, 9%, and 30%, respectively. Typical pollutant concentrations in the treated effluent of ISCWs were 8.19 mg/L COD, 1.76 mg/L NH4+-N, 11.57 mg/L TN, and 0.36 mg/L TP, which met most of the water quality standards for reusing recycling water. Emergent plants with well-developed root systems may be capable of promoting the decontamination of ISCWs. Seasonal change played an important role in the treatment process: the removal of phosphorus by plant uptake and microbial utilization was more active in the warm season and the co-occurrence of organic degradation and nitrification, whereas the cold season is conducive to exothermic adsorption process of pollutants to substrates. Properly increasing the HLRs may improve the availability of ISCWs according to the requirement of effluent quality. Furthermore, the C/N ratio might be the key factor for the purification effect of ISCWs, because the COD level of WWTP discharge may change the process of NH4+-N biotransformation.
Collapse
Affiliation(s)
- Dan A
- Engineering and Technology Research Center for Agricultural Land Pollution Integrated Prevention and Control of Guangdong Higher Education Institute, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, People's Republic of China
| | - Qin-Mei Guo
- Engineering and Technology Research Center for Agricultural Land Pollution Integrated Prevention and Control of Guangdong Higher Education Institute, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, People's Republic of China
| | - Yang-Yang Deng
- Engineering and Technology Research Center for Agricultural Land Pollution Integrated Prevention and Control of Guangdong Higher Education Institute, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, People's Republic of China
| | - Yu Jiang
- Engineering and Technology Research Center for Agricultural Land Pollution Integrated Prevention and Control of Guangdong Higher Education Institute, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, People's Republic of China
| | - Chun-Xing Chen
- Shenzhen Academy of Environmental Sciences, Shenzhen, People's Republic of China
- State Environmental Protection Key Laboratory of Drinking Water Source Management and Technology, Shenzhen, People's Republic of China
| |
Collapse
|
6
|
Sanz C, Sunyer-Caldú A, Casado M, Mansilla S, Martinez-Landa L, Valhondo C, Gil-Solsona R, Gago-Ferrero P, Portugal J, Diaz-Cruz MS, Carrera J, Piña B, Navarro-Martín L. Efficient removal of toxicity associated to wastewater treatment plant effluents by enhanced Soil Aquifer Treatment. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133377. [PMID: 38237439 DOI: 10.1016/j.jhazmat.2023.133377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 02/08/2024]
Abstract
The regeneration of wastewater has been recognized as an effective strategy to counter water scarcity. Nonetheless, Wastewater Treatment Plant (WWTP) effluents still contain a wide range of contaminants of emerging concern (CECs) even after water depuration. Filtration through Soil Aquifer Treatment (SAT) systems has proven efficient for CECs removal although the attenuation of their associated biological effects still remains poorly understood. To evaluate this, three pilot SAT systems were monitored, two of them enhanced with different reactive barriers. SATs were fed with secondary effluents during two consecutive campaigns. Fifteen water samples were collected from the WWTP effluent, below the barriers and 15 m into the aquifer. The potential attenuation of effluent-associated biological effects by SATs was evaluated through toxicogenomic bioassays using zebrafish eleutheroembryos and human hepatic cells. Transcriptomic analyses revealed a wide range of toxic activities exerted by the WWTP effluents that were reduced by more than 70% by SAT. Similar results were observed when HepG2 hepatic cells were tested for cytotoxic and dioxin-like responses. Toxicity reduction appeared partially determined by the barrier composition and/or SAT managing and correlated with CECs removal. SAT appears as a promising approach to efficiently reduce effluent-associated toxicity contributing to environmental and human health preservation.
Collapse
Affiliation(s)
- Claudia Sanz
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - Adrià Sunyer-Caldú
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - Marta Casado
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - Sylvia Mansilla
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - Lurdes Martinez-Landa
- Associated Unit: Hydrogeology Group (UPC-CSIC), Spain; Dept. of Civil and Environmental Engineering. Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Cristina Valhondo
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain; Associated Unit: Hydrogeology Group (UPC-CSIC), Spain; Geosciences Montpellier, Université de Montpellier, CNRS, Montpellier, France
| | - Ruben Gil-Solsona
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - Pablo Gago-Ferrero
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - Jose Portugal
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - M Silvia Diaz-Cruz
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - Jesús Carrera
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain; Associated Unit: Hydrogeology Group (UPC-CSIC), Spain
| | - Benjamin Piña
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - Laia Navarro-Martín
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain.
| |
Collapse
|
7
|
Guo B, Li G, Xu H, Fang Y, Gao Z, Zhao Y, Zhang J. Enhanced denitrification performance in iron-carbon wetlands through biomass addition: Impact on nitrate and ammonia transformation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169913. [PMID: 38185167 DOI: 10.1016/j.scitotenv.2024.169913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
This study investigated the influence of biomass addition on the denitrification performance of iron-carbon wetlands. During long-time operation, the effluent NO3--N concentration of CW-BFe was observed to be the lowest, registering at 0.418 ± 0.167 mg/L, outperforming that of CW-Fe, which recorded 1.467 ± 0.467 mg/L. However, the effluent NH4+-N for CW-BFe increased to 1.465 ± 0.121 mg/L, surpassing CW-Fe's 0.889 ± 0.224 mg/L. Within a typical cycle, when establishing first-order reaction kinetics based on NO3--N concentrations, the introduction of biomass was found to amplify the kinetic constants across various stages in the iron-carbon wetland, ranging between 2.4 and 5.4 times that of CW-Fe. A metagenomic analysis indicated that biomass augments the reduction of NO3--N and NO2--N nitrogen and significantly bolsters the dissimilation nitrate reduction to ammonia pathway. Conversely, it impedes the reduction of N2O, leading to a heightened proportion of 2.715 % in CW-BFe's nitrogen mass balance, a stark contrast to CW-Fe's 0.379 %.
Collapse
Affiliation(s)
- Baolei Guo
- School of Ecology and Environment, Zhengzhou University, Henan 450001, China
| | - Guoqiang Li
- School of Ecology and Environment, Zhengzhou University, Henan 450001, China.
| | - Hongbin Xu
- School of Ecology and Environment, Zhengzhou University, Henan 450001, China.
| | - Yingke Fang
- School of Ecology and Environment, Zhengzhou University, Henan 450001, China
| | - Zhao Gao
- School of Ecology and Environment, Zhengzhou University, Henan 450001, China
| | - Yuxin Zhao
- School of Ecology and Environment, Zhengzhou University, Henan 450001, China
| | - Jingyi Zhang
- School of Ecology and Environment, Zhengzhou University, Henan 450001, China
| |
Collapse
|
8
|
Silva LDC, Bernardelli JKB, Souza ADO, Lafay CBB, Nagalli A, Passig FH, Kreutz C, Carvalho KQD. Biodegradation and sorption of nutrients and endocrine disruptors in a novel concrete-based substrate in vertical-flow constructed wetlands. CHEMOSPHERE 2024; 346:140531. [PMID: 37918529 DOI: 10.1016/j.chemosphere.2023.140531] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
Removing phosphorus and endocrine-disruptors (EDC) is still challenging for low-cost sewage treatment systems. This study investigated the efficiency of three vertical-flow constructed wetlands (VFCW) vegetated with Eichhornia crassipes onto red clay (CW-RC), autoclaved aerated concrete (CW-AC), and composite from the chemical activation of autoclaved aerated concrete with white cement (CW-AAC) in the removal of organic matter, nutrients, and estrone, 17β-estradiol, and 17α-ethinylestradiol. The novelty aspect of this study is related to selecting these clay and cementitious-based materials in removing endocrine disruptors and nutrients in VFCW. The subsurface VFCW were operated in sequencing-batch mode (cycles of 48-48-72 h), treating synthetic wastewater for 308 days. The operation consisted of Stages I and II, different by adding EDC in Stage II. The presence of EDC increased the competition for dissolved oxygen (DO) and reduced the active sites available for adsorption, diminishing the removal efficiencies of TKN and TAN and total phosphorus in the systems. CW-RC showed a significant increase in COD removal from 65% to 91%, while CW-AC and CW-AAC maintained stable COD removal (84%-82% and 78%-81%, respectively). Overall, the substrates proved effective in removing EDC, with CW-AC and CW-AAC achieving >60% of removal. Bacteria Candidatus Brocadia and Candidatus Jettenia, responsible for carrying out the Anammox process, were identified in assessing the microbial community structure. According to the mass balance analysis, adsorption is the main mechanism for removing TP in CW-AC and CW-AAC, while other losses were predominant in CW-RC. Conversely, for TN removal, the adsorption is more representative in CW-RC, and the different metabolic routes of microorganisms, biofilm assimilation, and partial ammonia volatilization in CW-AC and CW-AAC. The results suggest that the composite AAC is the most suitable material for enhancing the simultaneous removal of organic matter, nutrients, and EDC in VFCW under the evaluated operational conditions.
Collapse
Affiliation(s)
- Lucas de Carvalho Silva
- Federal University of Technology - Paraná (UTFPR), Civil Engineering Graduate Program, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340. Curitiba, Paraná, Brazil.
| | - Jossy Karla Brasil Bernardelli
- Federal University of Technology - Paraná (UTFPR), Civil Engineering Graduate Program, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340. Curitiba, Paraná, Brazil.
| | - Adelania de Oliveira Souza
- Federal University of Technology - Paraná (UTFPR), Civil Engineering Graduate Program, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340. Curitiba, Paraná, Brazil.
| | - Cíntia Boeira Batista Lafay
- Federal University of Technology - Paraná (UTFPR), Chemistry Academic Department. Via do Conhecimento, s/n - Km 01, Fraron, 85503-390. Pato Branco, Paraná, Brazil.
| | - André Nagalli
- Federal University of Technology - Paraná (UTFPR), Civil Construction Academic Department, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340. Curitiba, Paraná, Brazil.
| | - Fernando Hermes Passig
- Federal University of Technology - Paraná (UTFPR), Chemistry and Biology Academic Department, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340. Curitiba, Paraná, Brazil.
| | - Cristiane Kreutz
- Federal University of Technology - Paraná (UTFPR), Environmental Academic Department, Rosalina Maria dos Santos St., 1233, 87301-899, Campo Mourão, Paraná, Brazil.
| | - Karina Querne de Carvalho
- Federal University of Technology - Paraná (UTFPR), Civil Construction Academic Department, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340. Curitiba, Paraná, Brazil.
| |
Collapse
|
9
|
Yang L, Jin X, Hu Y, Zhang M, Wang H, Jia Q, Yang Y. Technical structure and influencing factors of nitrogen and phosphorus removal in constructed wetlands. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:271-289. [PMID: 39219130 PMCID: wst_2023_414 DOI: 10.2166/wst.2023.414] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Constructed wetlands purify water quality by synergistically removing nitrogen and phosphorus pollutants from water, among other pollutants such as organic matter through a physical, chemical, and biological composite remediation mechanism formed between plants, fillers, and microorganisms. Compared with large-scale centralized wastewater treatment systems with high cost and energy consumption, the construction and operation costs of artificial wetlands are relatively low, do not require large-scale equipment and high energy consumption treatment processes, and have the characteristics of green, environmental protection, and sustainability. Gradually, constructed wetlands are widely used to treat nitrogen and phosphorus substances in wastewater. Therefore, this article discusses in detail the role and interaction of the main technical structures (plants, microorganisms, and fillers) involved in nitrogen and phosphorus removal in constructed wetlands. At the same time, it analyses the impact of main environmental parameters (such as pH and temperature) and operating conditions (such as hydraulic load and hydraulic retention time, forced ventilation, influent carbon/nitrogen ratio, and feeding patterns) on nitrogen and phosphorus removal in wetland systems, and addresses the problems currently existing in relevant research, the future research directions are prospected in order to provide theoretical references for scholars' research.
Collapse
Affiliation(s)
- Lei Yang
- Yellow River Institute of Hydraulic Research, Yellow River Conservancy Commission, Zhengzhou, Henan 450003, China; Rural Water Environmental Engineering Technology Research Center of Henan Province, Zhengzhou, Henan 450003, China; Key Laboratory of Ecological Environment Protection and Restoration in the Yellow River Basin of Henan Province, Zhengzhou, Henan 450003, China E-mail:
| | - Xiaohui Jin
- Yellow River Institute of Hydraulic Research, Yellow River Conservancy Commission, Zhengzhou, Henan 450003, China; Rural Water Environmental Engineering Technology Research Center of Henan Province, Zhengzhou, Henan 450003, China; Key Laboratory of Ecological Environment Protection and Restoration in the Yellow River Basin of Henan Province, Zhengzhou, Henan 450003, China
| | - Yawei Hu
- Yellow River Institute of Hydraulic Research, Yellow River Conservancy Commission, Zhengzhou, Henan 450003, China; Rural Water Environmental Engineering Technology Research Center of Henan Province, Zhengzhou, Henan 450003, China; Key Laboratory of Ecological Environment Protection and Restoration in the Yellow River Basin of Henan Province, Zhengzhou, Henan 450003, China
| | - Mingqi Zhang
- Yellow River Institute of Hydraulic Research, Yellow River Conservancy Commission, Zhengzhou, Henan 450003, China; Rural Water Environmental Engineering Technology Research Center of Henan Province, Zhengzhou, Henan 450003, China
| | - Huihui Wang
- Yellow River Institute of Hydraulic Research, Yellow River Conservancy Commission, Zhengzhou, Henan 450003, China; Rural Water Environmental Engineering Technology Research Center of Henan Province, Zhengzhou, Henan 450003, China
| | - Qian Jia
- Yellow River Institute of Hydraulic Research, Yellow River Conservancy Commission, Zhengzhou, Henan 450003, China; Rural Water Environmental Engineering Technology Research Center of Henan Province, Zhengzhou, Henan 450003, China
| | - Yafei Yang
- Yellow River Engineering Consulting Co., Ltd., Zhengzhou, Henan 450003, China
| |
Collapse
|
10
|
Li Y, Wu X, Wang Y, Gao Y, Li K. A microbial flora with superior pollutant removal efficiency and its fermentation process optimization. AMB Express 2023; 13:113. [PMID: 37848696 PMCID: PMC10581995 DOI: 10.1186/s13568-023-01604-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/06/2023] [Indexed: 10/19/2023] Open
Abstract
Microbial flora plays an important role in microorganism-enhanced technology. The pollutant degradation ability and viable counts of these agents are crucial to guarantee their practical application. In this study, an efficient pollutant-degrading microbial flora was screened, its medium components and culture conditions were optimized, and its effect was verified in zeolite trickling filter towers. After a 24 h culture under the optimal conditions, the viable count reached 4.76 × 109 cfu/mL, with the degradation rates of ammonia nitrogen (NH4+-N), nitrate nitrogen (NO3--N), total nitrogen (TN), total phosphorus (TP), and chemical oxygen demand (COD) increased to 93.5%, 100%, 68.3%, 32.6%, and 85%, respectively. After optimizing the feeding strategy, the concentration of viable bacteria reached 5.80 × 109 cfu/mL. In the application effect verification experiment, the degradation rates of NH4+-N, TN, TP, and COD in the experimental group reached 96.69%, 75.18%, 73.82%, and 90.83%, respectively, showing a significant improvement compared to the results of the control group. The main components in the control group were Dokdonella, Brevundimonas, Alishewanella, Rhodobacter, Pseudoxanthomonas, and Thauera, whereas those in the experimental group were Dokdonella, Proteocatella, Rhodobacter, Dechlomonas, and Nitrospira. Proteocatella, Dechlomonas, and Nitrosra, which were unique to the experimental group, are common bacteria used for nitrogen and phosphorus removal. This explains the difference in the sewage treatment capacity between the two groups. This study provides an alternative sewage treatment microbial flora with a reasonable production cost and high degradation efficiency for NH4+-N, TN, TP, and COD.
Collapse
Affiliation(s)
- Yonghong Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xiuxiu Wu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yun Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yingman Gao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Keke Li
- HeNanJinBaiHe Biotechnology Co., LTD, Anyang, 450000, Henan, China.
| |
Collapse
|
11
|
Hou X, Chu L, Wang Y, Song X, Liu Y, Li D, Zhao X. Microelectrolysis-integrated constructed wetland with sponge iron filler to simultaneously enhance nitrogen and phosphorus removal. BIORESOURCE TECHNOLOGY 2023:129270. [PMID: 37290705 DOI: 10.1016/j.biortech.2023.129270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/26/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Integrating sponge iron (SI) and microelectrolysis individually into constructed wetlands (CWs) to enhance nitrogen and phosphorus removal are challenged by ammonia (NH4+-N) accumulation and limited total phosphorus (TP) removal efficiency, respectively. In this study, a microelectrolysis-assisted CW using SI as filler surrounding the cathode (e-SICW) was successfully established. Results indicated that e-SICW reduced NH4+-N accumulation and intensified nitrate (NO3--N), the total nitrogen (TN) and TP removal. The concentration of NH4+-N in the effluent from e-SICW was lower than that from SICW in the whole process with 39.2-53.2 % decrease, and as the influent NO3--N concentration of 15 mg/L and COD/N ratio of 3, the removal efficiencies of NO3--N, TN and TP in e-SICW achieved 95.7 ± 1.9 %, 79.8 ± 2.5 % and 98.0 ± 1.3 %, respectively. Microbial community analysis revealed that hydrogen autotrophic denitrifying bacteria of Hydrogenophaga was highly enriched in e-SICW.
Collapse
Affiliation(s)
- Xiaoxiao Hou
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, PR China.
| | - Linglong Chu
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, PR China.
| | - Yifei Wang
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, PR China.
| | - Xinshan Song
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, PR China.
| | - Yingying Liu
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, PR China.
| | - Dongpeng Li
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, PR China.
| | - Xiaoxiang Zhao
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, PR China.
| |
Collapse
|
12
|
Zheng X, Xu S, Bi Y, Cheng G, Ma S, Zhang H, Jiang C, Wang C, Lyu P, Qin Y, Zhuang X. Purification performance from bypass ecological treatment systems treating WWTPs effluents and improvement of water quality in receiving rivers: A case study in southern China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 329:117052. [PMID: 36535139 DOI: 10.1016/j.jenvman.2022.117052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Effluents from wastewater treatment plants (WWTPs) is the main source of pollution in rivers in developing countries. In this case study, three bypass ecological treatment systems along urban rivers achieved high removal efficiencies for chemical oxygen demand (COD; 55.7-64.0%), ammonium N (NH4+-N; 63.1-89.4%) and total phosphorous (TP; 27.6-76.7%). 16 S rRNA gene sequencing analysis confirmed that Proteobacteria was the main bacterial phylum (44.4%) in the ecological treatment system, and members were enriched significantly in the non-aeration area (59.3%). The relative abundance of Nitrospirae was highest in the inflow area (25.0%), but restrained in the non-aeration area (5.7%). 18 S rRNA gene annotation results indicated that phylum Rotifer was gradually inhibited with the direction of water flow and diffusion, while phylum Rhodophyta displayed the opposite trend. After implementation of bypass ecological treatment systems, receiving rivers were improved significantly from Grade Ⅴ to Ⅳ, and the biodiversity of zooplankton, zoobenthos and fish communities was greatly improved.
Collapse
Affiliation(s)
- Xiaoxu Zheng
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shengjun Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yeliang Bi
- School of Water Conservancy and Hydroelectric Power, Hebei University of Engineering, Handan, 056038, China
| | - Gong Cheng
- Shenzhen Academy of Environmental Sciences, Shenzhen, 518001, China
| | - Shuanglong Ma
- Shenzhen BLY Landscape & Architecture Planning & Design Institute, Shenzhen, 518055, China
| | - Hao Zhang
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Cancan Jiang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cong Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ping Lyu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yu Qin
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xuliang Zhuang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
13
|
Wang H, Zang S, Teng H, Wang X, Xu J, Sheng L. Characteristic of KMnO 4-modified corn straw biochar and its application in constructed wetland to treat city tail water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:49948-49962. [PMID: 36787063 DOI: 10.1007/s11356-023-25856-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 02/06/2023] [Indexed: 02/15/2023]
Abstract
Biochar prepared from straw as constructed wetland (CW) substrate reduces straw pollution and simultaneously promotes the wastewater treatment efficiency of CW. In order to further analyze the pollutant removal mechanism of KMnO4-modified biochar substrate, the KMnO4-modified biochar was characterized. The experiment on city tail water treatment by CW with biochar was analyzed. The research showed that the surface property improvement on KMnO4 (0.1 mol/L)-modified biochar was the most obvious. The biochar modified by 0.1 mol/L KMnO4 increased the SSA and the number of oxygen functional groups and alcohol hydroxyl. KMnO4-modified biochar improved the removal efficiency of NO3--N in CW. KMnO4-modified biochar substrate with plants improved the TP removal efficiency (about 45%). KMnO4 as modifier reduced the influence of biochar on electrical conductivity tracing experiment. This study will improve the utilization value of straw and the removal efficiency of CW.
Collapse
Affiliation(s)
- Hanxi Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Key Laboratory of Vegetation Ecology of Ministry of Education, School of Environment, Institute of Grassland Science, Northeast Normal University, Jingyue Street 2555, Changchun, 130017, China.,Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, School of Geographical Sciences, Harbin Normal University, Harbin, 150025, China
| | - Shuying Zang
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, School of Geographical Sciences, Harbin Normal University, Harbin, 150025, China
| | - Haowen Teng
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, School of Geographical Sciences, Harbin Normal University, Harbin, 150025, China
| | - Xinyu Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Key Laboratory of Vegetation Ecology of Ministry of Education, School of Environment, Institute of Grassland Science, Northeast Normal University, Jingyue Street 2555, Changchun, 130017, China
| | - Jianling Xu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Key Laboratory of Vegetation Ecology of Ministry of Education, School of Environment, Institute of Grassland Science, Northeast Normal University, Jingyue Street 2555, Changchun, 130017, China.
| | - Lianxi Sheng
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Key Laboratory of Vegetation Ecology of Ministry of Education, School of Environment, Institute of Grassland Science, Northeast Normal University, Jingyue Street 2555, Changchun, 130017, China
| |
Collapse
|
14
|
Kpannieu DE, Mallet M, André E, Coulibaly L, Ruby C. Efficiency of saturated vertical-flow filters planted with Panicum maximum reeds for passive wastewater treatment. ENVIRONMENTAL TECHNOLOGY 2023; 44:708-720. [PMID: 34529526 DOI: 10.1080/09593330.2021.1982022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
A vertical-flow unit containing four filters filled with shale was used to study the removal of phosphorous, nitrogen and organic matter of an urban residual wastewater during a period of 90 days. The influence of both the shale granulometry and the plant density of Panicum Maximum were studied. The decrease of the shale granulometry led to a significant improvement of all the measured parameters, while the presence of plants did only influence the phosphate retention with a lower extent. By comparing the results to previous studies, we hypothesised that the effect of the root system of Panicum maximum would be different depending on the size and the depth of the reactors. For practical application, adjusting the material granulometry was proposed to be the most important parameter for improving the filtration efficiency. Concomitantly, adjusting the plant density helps to control the clogging percentage of the filters.
Collapse
Affiliation(s)
- Dan Eude Kpannieu
- Laboratoire de Chimie Physique et Microbiologie Pour les Matériaux et L'environnement, LCPME, UMR 7564 CNRS, Université de Lorraine, Villers-lès-Nancy, France
- UFR Sciences et Technologies, Université de Man BP 20, Man, Cote d'Ivoire
| | - Martine Mallet
- Laboratoire de Chimie Physique et Microbiologie Pour les Matériaux et L'environnement, LCPME, UMR 7564 CNRS, Université de Lorraine, Villers-lès-Nancy, France
| | - Erwan André
- Laboratoire de Chimie Physique et Microbiologie Pour les Matériaux et L'environnement, LCPME, UMR 7564 CNRS, Université de Lorraine, Villers-lès-Nancy, France
| | - Lacina Coulibaly
- Laboratoire d'environnement et biologie aquatique, Université Nangui-Abrogoua, Abidjan, Cote d'Ivoire
| | - Christian Ruby
- Laboratoire de Chimie Physique et Microbiologie Pour les Matériaux et L'environnement, LCPME, UMR 7564 CNRS, Université de Lorraine, Villers-lès-Nancy, France
| |
Collapse
|
15
|
Niu Y, Qu M, Du J, Wang X, Yuan S, Zhang L, Zhao J, Jin B, Wu H, Wu S, Cao X, Pang L. Effects of multiple key factors on the performance of petroleum coke-based constructed wetland-microbial fuel cell. CHEMOSPHERE 2023; 315:137780. [PMID: 36623598 DOI: 10.1016/j.chemosphere.2023.137780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
In this study, two constructed wetland-microbial fuel cells (CW-MFC), including a closed-circuit system (CCW-MFC) and an open-circuit system (OCW-MFC) with petroleum coke as electrode and substrate, were constructed to explore the effect of multiple key factors on their operation performances. Compared to a traditional CW, the CCW-MFC system showed better performance, achieving an average removal efficiency of COD, NH4+-N, and TN of 94.49 ± 1.81%, 94.99 ± 4.81%, and 84.67 ± 5.6%, respectively, when the aeration rate, COD concentration, and hydraulic retention time were 0.4 L/min, 300 mg/L, and 3 days. The maximum output voltage (425.2 mV) of the CCW-MFC system was achieved when the aeration rate was 0.2 L/min. In addition, the CCW-MFC system showed a greater denitrification ability due to the higher abundance of Thiothrix that might attract other denitrifying bacteria, such as Methylotenera and Hyphomicrobium, to participate in the denitrifying process, indicating the quorum sensing could be stimulated within the denitrifying microbial community.
Collapse
Affiliation(s)
- Yulong Niu
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Mingxiang Qu
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Jingjing Du
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China; Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Henan, China.
| | - Xilin Wang
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Shuaikang Yuan
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Lingyan Zhang
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Jianguo Zhao
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China; Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Henan, China
| | - Baodan Jin
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China; Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Henan, China
| | - Haiming Wu
- School of Environmental Science & Engineering, Shandong University, Qingdao, China
| | - Shubiao Wu
- Department of Agroecology, Aarhus University, Tjele, Denmark
| | - Xia Cao
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China; Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Henan, China.
| | - Long Pang
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China; Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Henan, China
| |
Collapse
|
16
|
Zhang L, Hong W, Pan Z, Fang W, Shen Z, Cai H. Wastewater treatment effectiveness is facilitated by crucial bacterial communities in the wetland ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159375. [PMID: 36240933 DOI: 10.1016/j.scitotenv.2022.159375] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Microorganisms play essential roles in nutrient removal and biogeochemical cycling during wastewater treatment. However, little is known about the main roles of key functional bacterial communities in wastewater treatment processes. We collected 18 water samples and 15 sediment samples from the six operational subsystems of the constructed wetland, among which the contact oxidation pond, enhanced hybrid biofilm reactor, and central stabilization pond are the main wastewater treatment units in the constructed wetland, and then investigated the bacterial communities using 16S rRNA gene targeting and sequencing to address this knowledge gap. The results indicated that the composition of the bacterial community is closely related to the efficiency of pollutant removal. The abundant carbon metabolism function increased the removal of nitrate‑nitrogen (NO3--N) and total nitrogen (TN) by the contact oxidation pond by 89.84 % and 38.91 %, respectively. The overlap of ecological niches and the presence of pathogenic bacteria substantially affect effluent wastewater treatment. Second, NO3--N (p < 0.001) was the most important factor driving the bacterial community composition in water and sediments. Furthermore, the positive structure was prevalent in the cooccurrence network of water samples (87.24 %) and sediments (76.53 %) of the wetland, and this positive structure with keystone species was critical for the adaptation of the bacterial community to environmental filtration. In summary, this study reveals the distribution patterns of bacterial communities in different wastewater treatment processes and their driving factors and provides new perspectives on the link between the bacterial community composition and wastewater treatment.
Collapse
Affiliation(s)
- Lei Zhang
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou 239000, China.
| | - Wenqing Hong
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou 239000, China
| | - Zhongling Pan
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou 239000, China
| | - Wangkai Fang
- School of Earth and Environment, Anhui University of Science & Technology, Huainan 232000, China
| | - Zhen Shen
- Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Hua Cai
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou 239000, China
| |
Collapse
|
17
|
Ahghari MR, Amiri-Khamakani Z, Maleki A. Synthesis and characterization of Se doped Fe 3O 4 nanoparticles for catalytic and biological properties. Sci Rep 2023; 13:1007. [PMID: 36653396 PMCID: PMC9849448 DOI: 10.1038/s41598-023-28284-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
In this study, Se-doped Fe3O4 with antibacterial properties was synthesized using by a coprecipitation method. The chemistry and morphology of the Se doped Fe3O4 nanocomposite were characterized by energy-dispersive X-ray spectroscopy, field-emission scanning electron microscopy, X-ray diffraction, vibrating sample magnetometry, and Brunauer-Emmett-Teller spectroscopy. The antibacterial activity of the Fe3O4/Se nanocomposite was examined against G+ (Gram-positive) and G- (Gram-negative) bacteria, in the order Staphylococcus aureus, Staphylococcus saprophyticus, Pseudomonas aeruginosa, Klebsiella pneumonia, and Escherichia coli, which are the most harmful and dangerous bacteria. Fe3O4/Se, as a heterogeneous catalyst, was successfully applied to the synthesis of pyrazolopyridine and its derivatives via a one-pot four-component reaction of ethyl acetoacetate, hydrazine hydrate, ammonium acetate, and various aromatic aldehydes. Fe3O4/Se was easily separated from the bacteria-containing solution using a magnet. Its admissible magnetic properties, crystalline structure, antibacterial activity, mild reaction conditions, and green synthesis are specific features that have led to the recommendation of the use of Fe3O4/Se in the water treatment field and medical applications. Direct Se doping of Fe3O4 was successfully realized without additional complicated procedures.
Collapse
Affiliation(s)
- Mohammad Reza Ahghari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Zeinab Amiri-Khamakani
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| |
Collapse
|
18
|
Zhou M, Cao J, Lu Y, Zhu L, Li C, Wang Y, Hao L, Luo J, Ren H. The performance and mechanism of iron-modified aluminum sludge substrate tidal flow constructed wetlands for simultaneous nitrogen and phosphorus removal in the effluent of wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157569. [PMID: 35882329 DOI: 10.1016/j.scitotenv.2022.157569] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Aiming at the poor N and P removal performance in the effluent of wastewater treatment plants by constructed wetlands (CWs), aluminum sludge (AS) from water supply plants was used to prepare iron-modified aluminum sludge (IAS), and tidal flow constructed wetlands (TFCWs) using IAS as substrates were constructed. By means of high-throughput sequencing, X-ray diffractometer (XRD), etc., the removal mechanism of N and P in the system and fate analysis of key elements were also interpreted. Results showed that an interlayer structure beneficial to adsorbing pollutants was formed in the IAS, due to the iron scraps entering into the molecular layers of AS. The removal rates of TP and TN by IAS-TFCWs reached 95 % and 47 %, respectively, when the flooding/resting time (F/R) and C/N were 6 h/2 h and 6. During the three-year operation of the IAS-TFCWs, the effluent concentrations of CODCr, NH4+-N, and TP could comply with Class IV Standard of "Environmental Quality Standards for Surface Water" (GB3838-2002). The mechanism analysis showed that the N removal was effectuated through Fe2+ as the electron donor of Fe(II)-driven the autotrophic denitrifying bacteria to reduce nitrate, while the P removal mainly depended on the adsorption reaction between FeOOH in IAS and phosphate. In conclusion, the stable Fe-N cycle in the IAS-TFCWs achieved simultaneous and efficient N and P removal.
Collapse
Affiliation(s)
- Ming Zhou
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China; Henan Yongze Environmental Technology Co., LTD, Zhengzhou 451191, China
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Yanhong Lu
- Henan Yongze Environmental Technology Co., LTD, Zhengzhou 451191, China
| | - Lisha Zhu
- Henan Yongze Environmental Technology Co., LTD, Zhengzhou 451191, China
| | - Chao Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Yantang Wang
- Henan Yongze Environmental Technology Co., LTD, Zhengzhou 451191, China
| | - Liangshan Hao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Hongqiang Ren
- College of Environment, Nanjing University, Nanjing 210093, China
| |
Collapse
|
19
|
Knowledge Atlas on the Relationship between Water Management and Constructed Wetlands—A Bibliometric Analysis Based on CiteSpace. SUSTAINABILITY 2022. [DOI: 10.3390/su14148288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Water management is a crucial resource conservation challenge that mankind faces, and encouraging the creation of manmade wetlands with the goal of achieving long-term water management is the key to long-term urban development. To summarise and analyse the status of the research on the relationship between water management and constructed wetlands, this paper makes use of the advantages of the bibliometric visualization of CiteSpace to generate country/region maps and author-collaboration maps, and to analyse research hotspots and research dynamics by using keywords and literature co-citations based on 1248 pieces of related literature in the core collection in the Web of Science (WoS) database. The existing research shows that the research content and methods in the field of constructed-wetland and water-management research are constantly being enriched and deepened, including the research methods frequently used in constructed wetlands in water management and in the research content under concern, the functions and roles of constructed wetlands, the relevant measurement indicators of the purification impact of constructed wetlands on water bodies, and the types of water bodies treated by constructed wetlands in water management. We summarise the impact pathways of constructed wetlands on water management, as well as the impact factors of constructed wetlands under water-management objectives, by analysing the future concerns in the research field to provide references for research.
Collapse
|
20
|
Wu H, Li A, Wang J, Li X, Cui M, Yang N, Liu Y, Zhang L, Wang X, Zhan G. A novel electrochemical sensor based on autotropic and heterotrophic nitrifying biofilm for trichloroacetic acid toxicity monitoring. ENVIRONMENTAL RESEARCH 2022; 210:112985. [PMID: 35192804 DOI: 10.1016/j.envres.2022.112985] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/22/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Trichloroacetic acid (TCA), a toxic substance produced in the disinfection process of wastewater treatment plants, will accumulate in the receiving water. The detection of TCA in the water can achieve the purpose of early warning. However, currently there are few reports on microbial sensors used for TCA detection, and the characteristics of their microbial communities are still unclear. In this work, a toxicity monitoring microbial system (TMMS) with nitrifying biofilm as a sensing element and cathode oxygen reduction as a current signal was successfully constructed for TCA detection. The current and nitrification rate showed a linear relationship with low TCA concentration from 0 to 50 μg/L (R2current = 0.9892, R2nitrification = 0.9860), and high concentration range from 50 to 5000 μg/L (R2current = 0.9883, R2nitrification = 0.9721). High-throughput sequencing revealed that the TMMS was composed of autotrophic/heterotrophic nitrifying and denitrifying microorganisms. Further analysis via symbiotic relationship network demonstrated that Arenimonas and Hyphomicrobium were the core nodes for maintaining interaction between autotropic and heterotrophic nitrifying bacteria. Kyoto Encyclopedia of Genes and Genomes analysis showed that after adding TCA to TMMS, the carbon metabolism and the abundance of the tricarboxylic acid cycle pathway were reduced, and the activity of microorganisms was inhibited. TCA stress caused a low abundance of nitrifying and denitrifying functional enzymes, resulting in low oxygen consumption in the nitrification process, but more oxygen supply for cathode oxygen reduction. This work explored a novel sensor combined with electrochemistry and autotrophic/heterotrophic nitrification, which provided a new insight into the development of microbial monitoring of toxic substances.
Collapse
Affiliation(s)
- Heng Wu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China; College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Anjie Li
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Jingting Wang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Xiaoyun Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Mengyao Cui
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Nuan Yang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Yiliang Liu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Lixia Zhang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Xiaomei Wang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Guoqiang Zhan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China.
| |
Collapse
|
21
|
Zhang N, Lu D, Kan P, Yangyao J, Yao Z, Zhu DZ, Gan H, Zhu B. Impact analysis of hydraulic loading rate on constructed wetland: Insight into the response of bulk substrate and root-associated microbiota. WATER RESEARCH 2022; 216:118337. [PMID: 35358875 DOI: 10.1016/j.watres.2022.118337] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/20/2021] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Constructed wetland (CW) is an environment-friendly and low-cost technology for nutrients removal from domestic wastewater. For a well-tuned CW, hydraulic loading rate (HLR) is one of the critical factors, particularly under the challenging circumstance of more frequent heavy rainfall events brought by global warming. In this study, a comprehensive investigation was conducted to explore the influence of different HLRs on the CW's bulk substrate and root-associated microbiota aiming to yield new insight for CW management from a hybrid perspective of environmental microbiology and engineering science. The response of the microbial community and associated nutrients removal performance under different HLR settings were analyzed after a one-year operation. Results showed that the bulk substrate and rhizosphere genera involved in desulfurization and denitrification, such as Ferritrophicum, Sulfurimonas, and Sulfurisoma, were enriched in the higher HLR condition and associated with the higher total nitrogen (TN) and nitrate nitrogen (NO3--N) removal compared to the lower HLR condition. Co-occurrence network analysis demonstrated a more complex network under the higher HLR condition. Besides, it was observed that more stochastic in microbial assembly under the higher HLR condition. Surprisingly, zoonotic pathogens were observed and showed a greater prevalence under the higher HLR condition, indicating the potential correlation between HLR and pathogen intrusion. Collectively, this study revealed that the microbiota could be significantly altered under different HLR conditions, thereby resulting in differences in nutrients removal performance.
Collapse
Affiliation(s)
- Nan Zhang
- School of Civil and Environmental Engineering, Ningbo University, Ningbo 315211, China; Institute of Ocean Engineering, Ningbo University, Ningbo 315211, China
| | - Dingnan Lu
- School of Civil and Environmental Engineering, Ningbo University, Ningbo 315211, China; Institute of Ocean Engineering, Ningbo University, Ningbo 315211, China
| | - Peiying Kan
- School of Civil and Environmental Engineering, Ningbo University, Ningbo 315211, China; Institute of Ocean Engineering, Ningbo University, Ningbo 315211, China
| | - Jiannan Yangyao
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Zhiyuan Yao
- School of Civil and Environmental Engineering, Ningbo University, Ningbo 315211, China; Institute of Ocean Engineering, Ningbo University, Ningbo 315211, China.
| | - David Z Zhu
- School of Civil and Environmental Engineering, Ningbo University, Ningbo 315211, China; Institute of Ocean Engineering, Ningbo University, Ningbo 315211, China
| | - Huihui Gan
- School of Civil and Environmental Engineering, Ningbo University, Ningbo 315211, China; Institute of Ocean Engineering, Ningbo University, Ningbo 315211, China
| | - Baoyu Zhu
- Ningbo housing and urban-rural development bureau, Ningbo 315211, China
| |
Collapse
|
22
|
Feng M, Liang J, Wang P, Wang Y, Li J. Use of sponge iron dosing in baffled subsurface-flow constructed wetlands for treatment of wastewater treatment plant effluents during autumn and winter. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 24:1405-1417. [PMID: 35570740 DOI: 10.1080/15226514.2022.2031866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Sponge iron (SI) is widely used in water treatment. As effluents from wastewater treatment plant (WWTP) require advanced treatment methodology, three forms of constructed wetlands (CWs): wetlands with sponge iron (SI), copper sulfate modified sponge iron (Cu/SI), and sponge iron coupled with solid carbon sources (C/SI), have been investigated in this paper for the removal effects of organic matter and nutrients in WWTP effluents, and the corresponding mechanisms have been analyzed. The results showed the effect of baffled subsurface-flow constructed wetland (BSFCW) with SI dosing to purify the WWTP effluents after the stable operation. The water flow of this BSFCW is the repeated combination of upward flow and downward flow, which can provide a longer treatment pathway and microbial exposure time. The average removal rates of total inorganic nitrogen (TIN) were 27.80%, 30.17%, and 44.83%, and the average removal rates of chemical oxygen demand (COD) were 19.96%, 23.73%, and 18.38%. The average removal rates of total phosphorus (TP) were 85.94%, 82.14%, and 83.95%. Cu/SI improved the dissolution of iron, C/SI improved denitrification, and a winter indoor temperature retention measure was adopted to increase the effectiveness of wetland treatment during the winter months. After comprehensively analyzing X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and two-dimensional numerical simulation diagrams, a plausible conjecture that microbes use electrons from SI for autotrophic denitrification is presented. Moreover, the stress effect of wetlands dosed with SI on plants decreased stepwise along the course since C/SI used on wetlands had less impact on plant stress.
Collapse
Affiliation(s)
- Muyu Feng
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, China
- Key laboratory of Yellow River Water Environment in Gansu Province, Lanzhou, China
| | - Jinming Liang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, China
- Key laboratory of Yellow River Water Environment in Gansu Province, Lanzhou, China
| | - Peng Wang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, China
- Key laboratory of Yellow River Water Environment in Gansu Province, Lanzhou, China
| | - Ya'e Wang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, China
- Key laboratory of Yellow River Water Environment in Gansu Province, Lanzhou, China
| | - Jie Li
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, China
- Key laboratory of Yellow River Water Environment in Gansu Province, Lanzhou, China
| |
Collapse
|
23
|
Man Q, Li H, Ma X, Gao P, Ren G, Zhou B, Liu H. Distribution coefficients of nitrogen pollutants between water and sediment and their environmental risks in Lingang hybrid constructed wetland fed by industrial tailwater, Tianjin, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:26312-26321. [PMID: 34853995 DOI: 10.1007/s11356-021-17741-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
Exploring the fate of nitrogen pollutants in constructed wetlands (CWs) fed by industrial tailwater is significant to strengthen its pollution control and promoting the development of CWs in the field of micro-polluted water treatment. In this study, the distribution coefficients and the environmental risks of nitrogen pollutants between water and sediment of the hybrid CW in Tianjin were systematically investigated. From a spatial perspective, the nitrogen pollutants could be removed in this hybrid CW, and subsurface flow wetland played a key role in nitrogen pollutant removal. From a temporal perspective, the concentration of nitrogen pollutants was largely affected by the dissolved oxygen (DO) and temperature. The distribution coefficient of nitrogen pollutants between water and sediment was further clarified, suggesting that NH4+-N was more likely to be enriched in sediments due to microbial process. The overall level of pollution in hybrid CW was moderate according to the nutritional pollution index (NPI) analysis. The risk assessment indicated that timely dredging control measures should be considered to maintain the performance of hybrid CW.
Collapse
Affiliation(s)
- Quanli Man
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Hongrui Li
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Xiaodong Ma
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| | - Peng Gao
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Gengbo Ren
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| | - Bin Zhou
- Tianjin Academy of Environmental Sciences, Tianjin, 300191, China
| | - Honglei Liu
- Tianjin Academy of Environmental Sciences, Tianjin, 300191, China
| |
Collapse
|
24
|
Chen T, Zou C, Chen F, Yuan Y, Pan J, Zhao Q, Wang M, Qiao L, Cheng H, Ding C, Wang A. Response of 2,4,6-trichlorophenol-reducing biocathode to burial depth in constructed wetland sediments. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128066. [PMID: 34915250 DOI: 10.1016/j.jhazmat.2021.128066] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/29/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Biocathode systems could be used for in-situ bioremediation of chlorophenols (CPs) in constructed wetland (CW) sediments. However, little is known regarding whether or how cathode burial depths affect the dechlorination of CPs in sediments. Here, 2,4,6-trichlorophenol (2,4,6-TCP)-dechlorinating biocathode systems were constructed under a cathode potential of - 0.7 V (vs. a saturated calomel electrode, SCE) at three different cathode burial depths (5, 10, and 15 cm). The 2,4,6-TCP removal efficiency and average transformation rate with the biocathode increased by 21.46-36.86% and 14.63-34.88% compared to those in the non-electrode groups. Deeper cathode burial depths enhanced the 2,4,6-TCP dechlorination performance. Furthermore, the oxidation-reduction potential (ORP) of the sediment decreased with sediment depth and the applied potential created a more favorable redox environment for the enrichment of functional bacteria. Deeper cathode burial depths also promoted the selective enrichment of electro-active and dechlorinating bacteria (e.g., Bacillus and Dehalobacter, respectively). The biocathode thus served as the carrier, electron source, and regulator of functional bacteria to accelerate the transformation of 2,4,6-TCP (2,4,6-TCP → 2,4-dichlorophenol → 4-chlorophenol → phenol) in sediments. These results offer insights into the effects of cathode burial depth on 2,4,6-TCP dechlorination in sediments from a redox environment and microbial community structure standpoint.
Collapse
Affiliation(s)
- Tianming Chen
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng 224051, China
| | - Chao Zou
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Fan Chen
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710129, China
| | - Ye Yuan
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Jingjing Pan
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Qi Zhao
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Mansi Wang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Liang Qiao
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng 224051, China
| | - Haoyi Cheng
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Cheng Ding
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng 224051, China
| | - Aijie Wang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng 224051, China.
| |
Collapse
|
25
|
Purification of Micro-Polluted Lake Water by Biofortification of Vertical Subsurface Flow Constructed Wetlands in Low-Temperature Season. WATER 2022. [DOI: 10.3390/w14060896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, a novel lab-scale biofortification-combination system (BCS) of Oenanthe javanica and Bacillus series was developed to improve the treatment ability of vertical subsurface flow constructed wetlands (VSFCW) at low temperatures (0–10 °C). The results showed that BCS-VSFCW overcame the adverse effects of low temperature and achieved the deep removal of nutrients. In addition, the removal rates of chemical oxygen demand (COD), ammonia nitrogen (NH4+-N), total nitrogen (TN), and total phosphorus (TP) by BCS-VSFCW were 38.65%, 28.20%, 18.82%, and 14.57% higher than those of blank control, respectively. During the experiment, Oenanthe javanica and low temperature tolerant Bacillus complemented each other in terms of microbial activity and plant uptake. Therefore, VSFCW combined with Oenanthe javanica and low temperature tolerant Bacillus has a promising future in low temperature (<10 °C) areas of northern China.
Collapse
|
26
|
Ruan W, Cai H, Xu X, Man Y, Wang R, Tai Y, Chen Z, Vymazal J, Chen J, Yang Y, Zhang X. Efficiency and plant indication of nitrogen and phosphorus removal in constructed wetlands: A field-scale study in a frost-free area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149301. [PMID: 34371418 DOI: 10.1016/j.scitotenv.2021.149301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Frost-free areas have suitable climate for wetland plant growth and constructed wetlands (CW) technology. Information on the quantification of plant biomass and uptake efficiency in field-scale CWs is limited in these climates. The removal efficiency of total nitrogen (TN), total phosphorus (TP), chemical oxygen demand (COD), and total suspended solids (TSS) in wastewater from sewage plants, domestic sewage, and an industrial park in 15 rural and urban CWs in Guangdong Province, China, with an average temperature of 30 °C was evaluated. The effects of influent concentration, hydraulic load, the wastewater's physicochemical properties, operating conditions, and plant uptake were analysed. The mean removal rates were 40.0%, 45.2%, 41.1%, and 71.7% for TN, TP, COD, and TSS, respectively, which were higher than the removal load of the field-scale CWs in temperate regions. Removal loads of TN, TP, COD, and TSS were highest in CWs that have been operating for 5-6 years, treating wastewater volumes of over 1 m3/m2·d. The removal efficiency was mainly related to the inflow concentration and less affected by the type of CWs. Nutrient accumulation trends were primarily linked to influent concentrations (TN: r2 = 0.89, P = 0.007; TP: r2 = 0.96, P = 0.001) and plant biomass (TN: r2 = 0.96, P = 0.001; TP: r2 = 0.92, P = 0.004). Plant biomass contributed 2%-29% and 2%-70%, respectively, to removing N and P in CWs. The average uptake concentration of N and P in aboveground plant organs (15.66 ± 4.44 mg N/g, 2.15 ± 1.18 mg P/g) was generally higher than that of other temperate plants. A strong relationship between TN and TP in the biomass was also observed; however, the relationship is only restricted by the influent TP concentration. Arundo donax is well-adapted for nutrient accumulation and adaptation and is an ideal wetland plant to purify wastewater in frost-free climates.
Collapse
Affiliation(s)
- Weifeng Ruan
- Institute of Hydrobiology and Department of Ecology, Jinan University, Guangzhou 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, China
| | - Hongbo Cai
- Institute of Hydrobiology and Department of Ecology, Jinan University, Guangzhou 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, China
| | - Xiaomin Xu
- Institute of Hydrobiology and Department of Ecology, Jinan University, Guangzhou 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, China
| | - Ying Man
- Institute of Hydrobiology and Department of Ecology, Jinan University, Guangzhou 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, China
| | - Rui Wang
- College of Life Science, Sichuan Normal University, Chengdu 610041, China
| | - Yiping Tai
- Institute of Hydrobiology and Department of Ecology, Jinan University, Guangzhou 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, China.
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16521 Prague, Czech Republic
| | - Jan Vymazal
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16521 Prague, Czech Republic
| | - Juexin Chen
- Institute of Hydrobiology and Department of Ecology, Jinan University, Guangzhou 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, China
| | - Yang Yang
- Institute of Hydrobiology and Department of Ecology, Jinan University, Guangzhou 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, China.
| | - Xiaomeng Zhang
- Institute of Hydrobiology and Department of Ecology, Jinan University, Guangzhou 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, China.
| |
Collapse
|
27
|
Malyan SK, Yadav S, Sonkar V, Goyal VC, Singh O, Singh R. Mechanistic understanding of the pollutant removal and transformation processes in the constructed wetland system. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:1882-1909. [PMID: 34129692 DOI: 10.1002/wer.1599] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/12/2021] [Accepted: 05/29/2021] [Indexed: 06/12/2023]
Abstract
Constructed wetland systems (CWs) are biologically and physically engineered systems to mimic the natural wetlands which can potentially treat the wastewater from the various point and nonpoint sources of pollution. The present study aims to review the various mechanisms involved in the different types of CWs for wastewater treatment and to elucidate their role in the effective functioning of the CWs. Several physical, chemical, and biological processes substantially influence the pollutant removal efficiency of CWs. Plants species Phragmites australis, Typha latifolia, and Typha angustifolia are most widely used in CWs. The rate of nitrogen (N) removal is significantly affected by emergent vegetation cover and type of CWs. Hybrid CWs (HCWS) removal efficiency for nutrients, metals, pesticides, and other pollutants is higher than a single constructed wetland. The contaminant removal efficiency of the vertical subsurface flow constructed wetlands (VSSFCW) commonly used for the treatment of domestic and municipal wastewater ranges between 31% and 99%. Biochar/zeolite addition as substrate material further enhances the wastewater treatment of CWs. Innovative components (substrate materials, plant species) and factors (design parameters, climatic conditions) sustaining the long-term sink of the pollutants, such as nutrients and heavy metals in the CWs should be further investigated in the future. PRACTITIONER POINTS: Constructed wetland systems (CWs) are efficient natural treatment system for on-site contaminants removal from wastewater. Denitrification, nitrification, microbial and plant uptake, sedimentation and adsorption are crucial pollutant removal mechanisms. Phragmites australis, Typha latifolia, and Typha angustifolia are widely used emergent plants in constructed wetlands. Hydraulic retention time (HRT), water flow regimes, substrate, plant, and microbial biomass substantially affect CWs treatment performance.
Collapse
Affiliation(s)
- Sandeep K Malyan
- Research Management and Outreach Division, National Institute of Hydrology, Roorkee, India
| | - Shweta Yadav
- Research Management and Outreach Division, National Institute of Hydrology, Roorkee, India
| | - Vikas Sonkar
- Research Management and Outreach Division, National Institute of Hydrology, Roorkee, India
| | - V C Goyal
- Research Management and Outreach Division, National Institute of Hydrology, Roorkee, India
| | - Omkar Singh
- Research Management and Outreach Division, National Institute of Hydrology, Roorkee, India
| | - Rajesh Singh
- Environmental Hydrology Division, National Institute of Hydrology, Roorkee, Uttarakhand, India
| |
Collapse
|
28
|
Zhao C, Xu J, Shang D, Zhang Y, Zhang J, Xie H, Kong Q, Wang Q. Application of constructed wetlands in the PAH remediation of surface water: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146605. [PMID: 34030309 DOI: 10.1016/j.scitotenv.2021.146605] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) pose adverse risks to ecosystems and public health because of their carcinogenicity and mutagenicity. As such, the extensive occurrence of PAHs represents a worldwide concern that requires urgent solutions. Wastewater treatment plants are not, however, designed for PAH removal and often become sources of the PAHs entering surface waters. Among the technologies applied in PAH remediation, constructed wetlands (CWs) exhibit several cost-effective and eco-friendly advantages, yet a systematic examination of the application and success of CWs for PAH remediation is missing. This review discusses PAH occurrence, distribution, and seasonal patterns in surface waters during the last decade to provide baseline information for risk control and further treatment. Furthermore, based on the application of CWs in PAH remediation, progress in understanding and optimising PAH-removal mechanisms is discussed focussing on sediments, plants, and microorganisms. Wetland plant traits are key factors affecting the mechanisms of PAH removal in CWs, including adsorption, uptake, phytovolatilization, and biodegradation. The physico-chemical characteristics of PAHs, environmental conditions, wetland configuration, and operation parameters are also reviewed as important factors affecting PAH removal efficiency. Whilst significant progress has been made, several key problems need to be addressed to ensure the success of large-scale CW projects. These include improving performance in cold climates and addressing the toxic threshold effects of PAHs on wetland plants. Overall, this review provides future direction for research on PAH removal using CWs and their large-scale operation for the treatment of PAH-contaminated surface waters.
Collapse
Affiliation(s)
- Congcong Zhao
- College of Geography and Environment, Shandong Normal University, Jinan 250014, China
| | - Jingtao Xu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Dawei Shang
- College of Geography and Environment, Shandong Normal University, Jinan 250014, China
| | - Yanmeng Zhang
- College of Geography and Environment, Shandong Normal University, Jinan 250014, China
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Technology, Shandong University, Jinan 250100, China.
| | - Huijun Xie
- Environment Research Institute, Shandong University, Jinan 250100, China
| | - Qiang Kong
- College of Geography and Environment, Shandong Normal University, Jinan 250014, China
| | - Qian Wang
- College of Geography and Environment, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
29
|
Kataki S, Chatterjee S, Vairale MG, Dwivedi SK, Gupta DK. Constructed wetland, an eco-technology for wastewater treatment: A review on types of wastewater treated and components of the technology (macrophyte, biolfilm and substrate). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 283:111986. [PMID: 33486195 DOI: 10.1016/j.jenvman.2021.111986] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/12/2020] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
Constructed wetland (CW) represents an efficient eco-technological conglomerate interweaving water security, energy possibility and environmental protection. In the context of wastewater treatment technologies requiring substantial efficiency at reduced cost, chemical input and low environmental impact, applications of CW is being demonstrated at laboratory and field level with reasonably high contaminant removal efficiency and ecological benefits. However, along with the scope of applications, role of individual wetland component has to be re-emphasized through related research interventions. Hence, this review distinctively explores the concerns for extracting maximum benefit of macrophyte (focusing on interface of pollutant removal, root radial oxygen loss, root iron plaque, endophyte-macrophyte assisted treatment in CW, and prospects of energy harvesting from macrophyte) and role of biofilm (effect on treatment efficiency, composition and factors affecting) in a CW. Another focus of the review is on recent advances and developments in alternative low-cost substrate materials (including conventional type, industrial by-products, organic waste, mineral based and hybrid type) and their effect on target pollutants. The remainder of this review is organized to discuss the concerns of CW with respect to wastewater type (municipal, industrial, agricultural and farm wastewater). Attempt is made to analyze the practical relevance and significance of these aspects incorporating all recent developments in the areas to help making informed decisions about future directions for research and development related to CW.
Collapse
Affiliation(s)
- Sampriti Kataki
- Biodegradation Technology Division, Defence Research Laboratory, DRDO, Tezpur, Assam, India
| | - Soumya Chatterjee
- Biodegradation Technology Division, Defence Research Laboratory, DRDO, Tezpur, Assam, India.
| | - Mohan G Vairale
- Biodegradation Technology Division, Defence Research Laboratory, DRDO, Tezpur, Assam, India
| | - Sanjai K Dwivedi
- Biodegradation Technology Division, Defence Research Laboratory, DRDO, Tezpur, Assam, India
| | - Dharmendra K Gupta
- Ministry of Environment, Forest and Climate Change (MoEFCC), Indira Paryavaran Bhavan, New Delhi, India
| |
Collapse
|