1
|
Lin R, Li H, Wu H, Ren H, Kong X, Lu Z. Resting for viability: Gordonia polyisoprenivorans ZM27, a robust generalist for petroleum bioremediation under hypersaline stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124618. [PMID: 39067736 DOI: 10.1016/j.envpol.2024.124618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
The intrinsic issue associated with the application of microbes for practical pollution remediation involves maintaining the expected activity of engaged strains or consortiums as effectively as that noted under laboratory conditions. Faced with various stress factors, degraders with dormancy ability are more likely to survive and exhibit degradation activity. In this study, a hydrocarbonoclastic and halotolerant strain, Gordonia polyisoprenivorans ZM27, was isolated via stimulation with resuscitation-promoting factor (Rpf). Long-term exposure to dual stresses of 10% NaCl and starvation induced ZM27 to enter a viable but nonculturable (VBNC)-like state, and ZM27 cells could be resuscitated upon Rpf stimulation. Notable changes in both morphological and physiological characteristics between VBNC-like ZM27 cells and resuscitated cells confirmed the response to Rpf and their robust resistance against harsh environments. Whole-genome sequencing and analysis indicated ZM27 could be a generalist degrader with dormancy ability. Subsequently, VBNC-like ZM27 was applied in a soil microcosm experiment to investigate the practical application potential under harsh conditions. VBNC-like ZM27 combined with Rpf stimulation exhibited the most effective biodegradation performance, and the initial n-hexadecane content (1000 mg kg-1) decreased by 63.29% after 14-day incubation. Based on 16S rRNA amplicon sequencing and analysis, Gordonia exhibited a positive response to Rpf stimulation. The relative abundance of genus Gordonia was negatively correlated with that of Alcanivorax, a genus of obligate hydrocarbon degrader with the greatest abundance during soil incubation. Based on the degradation profile and community analysis, generalist Gordonia may be more efficient in hydrocarbon degradation than specialist Alcanivorax under harsh conditions. The characteristics of ZM27, including its sustainable culturability under long-term stress, response to Rpf and robust performance in soil microcosms, are valuable for the remediation of petroleum pollution under stressful conditions. Our work validated the importance of dormancy and highlighted the underestimated role of low-activity degraders in petroleum remediation.
Collapse
Affiliation(s)
- Renzhang Lin
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Hao Li
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Hao Wu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Hao Ren
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Xiangyu Kong
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Zhenmei Lu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Wu M, Feng S, Liu Z, Tang S. Bioremediation of petroleum-contaminated soil based on both toxicity risk control and hydrocarbon removal-progress and prospect. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59795-59818. [PMID: 39388086 DOI: 10.1007/s11356-024-34614-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/30/2024] [Indexed: 10/15/2024]
Abstract
Petroleum contamination remains a worldwide issue requiring cost-effective bioremediation techniques. However, establishing a universal bioremediation strategy for all types of oil-polluted sites is challenging. This difficulty arises from the heterogeneity of soil textures, the complexity of oil products, and the variations in local climate and environment across different oil-contaminated regions. Several factors can impede bioremediation efficacy: (i) differences in bioavailability and biodegradability between aliphatic and aromatic fractions of crude oil; (ii) inconsistencies between hydrocarbon removal efficiency and toxicity attenuation during remediation; (iii) varying adverse effect of aliphatic and aromatic fractions on soil microorganisms. This review examines the ecotoxicity risk of petroleum contamination to soil fauna and flora. It also discusses three primary bioremediation strategies: biostimulation with nutrients, bioaugmentation with petroleum degraders, and phytoremediation with plants. Based on current research and state-of-the-art challenges, we highlighted future research scopes should focus on (i) exploring the ecotoxicity differentiation of aliphatic and aromatic fractions of crude oil, (ii) establishing unified risk factors and indicators for evaluating oil pollution toxicity, (iii) determining the fate and transformation of aliphatic and aromatic fractions of crude oil using advanced analytical techniques, and (iv) developing combined bioremediation techniques that improve petroleum removal and ecotoxicity attenuation.
Collapse
Affiliation(s)
- Manli Wu
- Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an, 710055, China.
| | - Shuang Feng
- Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an, 710055, China
| | - Zeliang Liu
- Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an, 710055, China
| | - Shiwei Tang
- Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an, 710055, China
| |
Collapse
|
3
|
Okorie IE, Afuecheta E, Nadarajah S, Bright A, Akpanta AC. A Poisson regression approach for assessing morbidity risk and determinants among under five children in Nigeria. Sci Rep 2024; 14:21580. [PMID: 39284886 PMCID: PMC11405843 DOI: 10.1038/s41598-024-72373-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 09/06/2024] [Indexed: 09/22/2024] Open
Abstract
In this paper, we have provided more insights on the relationship between under five morbidity in Nigeria and some background characteristics using a Poisson regression model and the most recent 2018 NDHS data on Acute Respiratory Infection (ARI), diarrhoea and fever. Some of our results are that children 36-47 months old have the highest risk of ARI [OR = 1.45; CI (1.31,1.60)] while children less than 6 months old have the lowest risk of ARI [OR = 0.14; CI (0.11,0.17)]. The prevalence of diarrhoea is generally high among children under 48-59 months old but highest among children 6-11 months old [OR = 4.34; CI (3.69,5.09)]. Compared to children 48-59 months old, children in all other age categories except 24-34 months old have a high risk of fever [OR = 0.95; CI (0.73,1.24)]. ARI is more prevalent among female children [OR = 8.88; CI (8.02,9.82)] while diarrhoea [OR = 21.75; (19.10,24.76)] and fever [OR = 4.78; CI (4.31,5.32)] are more prevalent among male children. Children in urban areas are more likely to suffer ARI [OR = 9.49; CI (8.31,10.85)] while children in rural areas are more likely to suffer both diarrhoea [OR = 21.75; CI (19.10,24.76)] and fever [OR = 4.90; CI (4.26,5.63)]. Children in the South-South have the highest risk of ARI [OR = 4.03; CI (3.65,4.454)] while children in the North Central have the lowest risk of ARI [OR = 1.55; CI (1.38,1.74)] and highest risk of diarrhoea [OR = 3.34; CI (2.30,5.11)]. Children in the Northeast have the highest risk of fever [OR = 1.30; CI (1.14,1.48)]. In the Northcentral region, Kogi state has the highest prevalence of fever [OR = 2.27; CI (1.62,3.17)], while Benue state has the lowest [OR = 0.35; CI (0.20,0.60)]. Children in Abuja state face similar risks of fever and diarrhoea [OR = 0.84; CI (0.55,1.27)], with the risk of diarrhoea in Abuja being comparable to that in Plateau state [OR = 1.57; CI (0.92,2.70)]. Nasarawa state records the highest incidence of diarrhoea in the Northcentral [OR = 5.12; CI (3.03,8.65)], whereas Kogi state reports the lowest [OR = 0.29; CI (0.16,0.53)]. In the Northeast, Borno state has the highest rate of fever [OR = 3.28; CI (2.80,3.84)], and Bauchi state the lowest [OR = 0.38; CI (0.29,0.50)]. In Adamawa state, the risks of fever and diarrhoea are nearly equivalent [OR = 1.17; CI (0.97,1.41)], and the risk of fever there is similar to that in Taraba state [OR = 0.92; CI (0.75,1.12)]. Diarrhoea is most prevalent in Yobe state [OR = 3.17; CI (2.37,4.23)] and least prevalent in Borno state [OR = 0.26; CI (0.20,0.33)]. In the Northwest, the risk of fever is similarly high in Zamfara and Kebbi states [OR = 1.04; CI (0.93,1.17)], with Kastina state showing the lowest risk [OR = 0.39; CI (0.34,0.46)]. Children in Zamfara state experience notably different risks of fever and diarrhoea [OR = 0.07; CI (0.05,0.10)]. Kaduna state reports the highest incidence of diarrhoea [OR = 21.88; CI (15.54,30.82)], while Kano state has the lowest [OR = 2.50; CI (1.73,3.63)]. In the Southeast, Imo state leads in fever incidence [OR = 8.20; CI (5.61,11.98)], while Anambra state has the lowest [OR = 0.40; CI (0.21,0.78)]. In Abia state, the risk of fever is comparable to that in Enugu state [OR = 1.03; CI (0.63,1.71)], but the risks of fever and diarrhoea in Abia differ significantly [OR = 2.67; CI (1.75,4.06)]. Abia state also has the highest diarrhoea rate in the Southeast [OR = 2.67; CI (1.75,4.06)], with Ebonyi state having the lowest [OR = 0.05; CI (0.03,0.09)]. In the South-South region, Bayelsa and Edo states have similar risks of fever [OR = 1.28; CI (0.84,1.95)], with Akwa Ibom state reporting the highest fever rate [OR = 4.62; CI (3.27,6.52)] and Delta state the lowest [OR = 0.08; CI (0.02,0.25)]. Children in Bayelsa state face distinctly different risks of fever and diarrhoea [OR = 0.56; CI (0.34,0.95)]. Rivers state shows the highest incidence of diarrhoea in the South-South [OR = 10.50; CI (4.78,23.06)], while Akwa Ibom state has the lowest [OR = 0.30; CI (0.15,0.57)]. In the Southwest, Lagos and Osun states have similar risks of fever [OR = 1.00; CI (0.59,1.69)], with Ogun state experiencing the highest incidence [OR = 3.47; CI (2.28,5.28)] and Oyo state the lowest [OR = 0.18; CI (0.07,0.46)]. In Lagos state, the risks of fever and diarrhoea are comparable [OR = 0.96; CI (0.57,1.64)], and the risk of diarrhoea is similar to those in Ekiti, Ogun, and Ondo states. Oyo state has the highest diarrhoea rate in the Southwest [OR = 10.99; CI (3.81,31.67)], with Ogun state reporting the lowest [OR = 0.77; CI (0.42,1.42)]. Children of mothers with more than secondary education are significantly less likely to suffer ARI [OR = 0.35; CI (0.29,0.42)], whereas children of mothers without any education run a higher risk of diarrhoea [OR = 2.12; CI (1.89,2.38)] and fever [OR = 2.61; CI (2.34,2.91)]. Our analysis also indicated that household wealth quintile is a significant determinant of morbidity. The results in this paper could help the government and non-governmental agencies to focus and target intervention programs for ARI, diarrhoea and fever on the most vulnerable and risky under five groups and populations in Nigeria.
Collapse
Affiliation(s)
- Idika E Okorie
- Department of Mathematics, Khalifa University, P. O. Box 127788, Abu Dhabi, UAE
| | - Emmanuel Afuecheta
- Department of Mathematics and Statistics, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Saralees Nadarajah
- Department of Mathematics, University of Manchester, Manchester, M13 9PL, UK.
| | - Adaoma Bright
- Birmingham City Council, 10 Woodcock Street, Birmingham, B7 4BL, UK
| | - Anthony C Akpanta
- Department of Statistics, Abia State University, Uturu, Abia State, Nigeria
| |
Collapse
|
4
|
Adama KK, Ukhurebor KE, Pal K, Hossain I. Effect of neem oil biodiesel on the surface and structural integrity of carbon steel alloy: Chromatographic, spectroscopic, and morphological investigations. Int J Biol Macromol 2024; 269:132199. [PMID: 38723824 DOI: 10.1016/j.ijbiomac.2024.132199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/23/2024] [Accepted: 05/06/2024] [Indexed: 05/30/2024]
Abstract
This study explores the impacts of neem oil biodiesel (BD), which was produced and characterized using GC-MS, FTIR, and UV-Vis spectroscopic techniques to elucidate pure and corrosion-product neem oil BD at room temperature (25 °C) and different immersion durations of 0, 28, 42, and 56 days. The OM and SEM were also employed to study the surface, structural integrity, and interphase interaction between the BD and the carbon steel (C1020) before and after immersion for different durations. The dominant fatty acid (FA) group in both pure and corrosion-product neem oil BD was C18, with a total composition of 72.3 %, hence determining the nature of the BD interaction with the carbon steel. The study revealed that carbon steel (C1020) was susceptible to attacks by neem oil BD, and the duration of immersion had substantial influence on the surface morphology and structural integrity of the steel. It is therefore anticipated that this study will significantly advance the field of alternative fuel research.
Collapse
Affiliation(s)
- Kenneth Kennedy Adama
- Department of Chemical Engineering, Faculty of Engineering, Edo State University, Uzairue, Edo State, Nigeria.
| | | | - Kaushik Pal
- University Centre for Research and Development (UCRD), Department of Physics, Chandigarh University, Mohali, Gharuan, Punjab, India.
| | - Ismail Hossain
- Department of Nuclear and Renewable Energy, Ural Federal University, Yekaterinburg, 620002, Russia.
| |
Collapse
|
5
|
Muthukumar B, Duraimurugan R, Parthipan P, Rajamohan R, Rajagopal R, Narenkumar J, Rajasekar A, Malik T. Synthesis and characterization of iron oxide nanoparticles from Lawsonia inermis and its effect on the biodegradation of crude oil hydrocarbon. Sci Rep 2024; 14:11335. [PMID: 38760417 PMCID: PMC11101646 DOI: 10.1038/s41598-024-61760-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 05/09/2024] [Indexed: 05/19/2024] Open
Abstract
Crude oil hydrocarbons are considered major environmental pollutants and pose a significant threat to the environment and humans due to having severe carcinogenic and mutagenic effects. Bioremediation is one of the practical and promising technology that can be applied to treat the hydrocarbon-polluted environment. In this present study, rhamnolipid biosurfactant (BS) produced by Pseudomonas aeruginosa PP4 and green synthesized iron nanoparticles (G-FeNPs) from Lawsonia inermis was used to evaluate the biodegradation efficiency (BE) of crude oil. The surface analysis of G-FeNPs was carried out by using FESEM and HRTEM to confirm the size and shape. Further, the average size of the G-FeNPs was observed around 10 nm by HRTEM analysis. The XRD and Raman spectra strongly confirm the presence of iron nanoparticles with their respective peaks. The BE (%) of mixed degradation system-V (PP4+BS+G-FeNPs) was obtained about 82%. FTIR spectrum confirms the presence of major functional constituents (C=O, -CH3, C-O, and OH) in the residual oil content. Overall, this study illustrates that integrated nano-based bioremediation could be an efficient approach for hydrocarbon-polluted environments. This study is the first attempt to evaluate the G-FeNPs with rhamnolipid biosurfactant on the biodegradation of crude oil.
Collapse
Affiliation(s)
- Balakrishnan Muthukumar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu, 632115, India
| | - Ramanathan Duraimurugan
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu, 632115, India
| | - Punniyakotti Parthipan
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Rajaram Rajamohan
- Organic Materials Synthesis Lab, School of Chemical Engineering, Yeungnam University, Gyeongsan-si, 38541, Republic of Korea.
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Jayaraman Narenkumar
- Department of Environmental & Water Resources Engineering, School of Civil Engineering (SCE), Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Aruliah Rajasekar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu, 632115, India.
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University, 378, Jimma, Ethiopia.
- Adjunct Faculty, Division of Research and Development, Lovely Professional University, Phagwara, Punjab, 144411, India.
| |
Collapse
|
6
|
Gaur VK, Tripathi V, Gupta P, Thakur RS, Kaur I, Regar RK, Srivastava PK, Manickam N. Holistic approach to waste mobil oil bioremediation: Valorizing waste through biosurfactant production for soil restoration. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119207. [PMID: 37832293 DOI: 10.1016/j.jenvman.2023.119207] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/30/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023]
Abstract
The combustion of mobil oil leads to the emission of toxic compounds in the environment. In this study, the aromatic and aliphatic hydrocarbon fractions present in a waste mobil oil collected from automobile market were comprehensively identified and their toxicity was evaluated using wheat grain. Lysinibacillus sphaericus strain IITR51 isolated and characterized previously could degrade 30-80% of both aliphatic and aromatic hydrocarbons in liquid culture. Interestingly, the strain IITR51 produced 627 mg/L of rhamnolipid biosurfactant by utilizing 3% (v/v) of waste mobil oil in the presence of 1.5% glycerol as additional carbon source. In a soil microcosm study by employing strain IITR51, 50-86% of 3-6 ring aromatic hydrocarbons and 63-98% of aliphatic hydrocarbons (C8 to C22) were degraded. Addition of 60 μg/mL rhamnolipid biosurfactant enhanced the degradation of both aliphatic and aromatic hydrocarbons from 76.88% to 61.21%-94.11% and 78.27% respectively. The degradation of mobil oil components improved the soil physico-chemical properties and increased soil fertility to 64% as evident by the phytotoxicity assessments. The findings indicate that strain IITR51 with degradation capability coupled with biosurfactant production could be a candidate for restoring hydrocarbon contaminated soils.
Collapse
Affiliation(s)
- Vivek K Gaur
- FEST Division, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; School of Energy and Chemical Engineering, UNIST, Ulsan, 44919, Republic of Korea
| | - Varsha Tripathi
- FEST Division, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Pallavi Gupta
- FEST Division, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Ravindra S Thakur
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India; Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Ispreet Kaur
- Department of Environmental Technologies, CSIR-National Botanical Research Institute, Lucknow, India
| | - Raj K Regar
- FEST Division, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Pankaj K Srivastava
- Department of Environmental Technologies, CSIR-National Botanical Research Institute, Lucknow, India
| | - Natesan Manickam
- FEST Division, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
7
|
Kumar S, Singh H, Feder-Kubis J, Nguyen DD. Recent advances in nanobiosensors for sustainable healthcare applications: A systematic literature review. ENVIRONMENTAL RESEARCH 2023; 238:117177. [PMID: 37751831 DOI: 10.1016/j.envres.2023.117177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/15/2023] [Accepted: 09/17/2023] [Indexed: 09/28/2023]
Abstract
The need for novel healthcare treatments and drugs has increased due to the expanding human population, detection of newer diseases, and looming pandemics. The development of nanotechnology offers a platform for cutting-edge in vivo non-invasive monitoring and point-of-care-testing (POCT) for rehabilitative disease detection and management. The advancement and uses of nanobiosensors are currently becoming more common in a variety of scientific fields, such as environmental monitoring, food safety, biomedical, clinical, and sustainable healthcare sciences, since the advent of nanotechnology. The identification and detection of biological patterns connected to any type of disease (communicable or not) have been made possible in recent years by several sensing techniques utilizing nanotechnology concerning biosensors and nanobiosensors. In this work, 2218 articles are drawn and screened from six digital databases out of which 17 were shortlisted for this review by using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) technique. As a result, this study uses a systematic methodology to review some recently developed extremely sensitive nanobiosensors, along with their biomedical, point-of-care diagnostics (POCD), or healthcare applications and their capabilities, particularly for the prediction of some fatal diseases based on a few of the most recent publications. The potential of nanobiosensors for medicinal, therapeutic, or other sustainable healthcare applications, notably for ailments diagnostics, is also recognized as a way forward in the manifestation of future trends.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Electronics and Communication Engineering, Chandigarh University, Mohali, Punjab, India
| | - Harbinder Singh
- Department of Electronics and Communication Engineering, Chandigarh University, Mohali, Punjab, India.
| | - Joanna Feder-Kubis
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - D Duc Nguyen
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon 16227, South Korea
| |
Collapse
|
8
|
Eleryan A, Aigbe UO, Ukhurebor KE, Onyancha RB, Hassaan MA, Elkatory MR, Ragab S, Osibote OA, Kusuma HS, El Nemr A. Adsorption of direct blue 106 dye using zinc oxide nanoparticles prepared via green synthesis technique. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:69666-69682. [PMID: 37140854 DOI: 10.1007/s11356-023-26954-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/07/2023] [Indexed: 05/05/2023]
Abstract
Zinc oxide nanoparticles (ZnO-NPs) have in recent times shown effective adsorption capability for the confiscation of colour contaminants from aqueous environments (aquatic ecosystems or water bodies) due to the fact that ZnO contains more functional groups. Direct blue 106 (DB106) dye was selected for this present study as a model composite due to its wide range of uses in textiles (cotton and wools), woods, and paper industries, as well as their therapeutic applications, along with its potential for impairments. This study therefore focuses on the use of DB106 dye as a model composite due to its wide range of uses in textiles (cotton and wools), woods, and paper industries, as well as their therapeutic applications and their potential for impairments. Furthermore, the surface functionalization, shape, and composite pore size were revealed by TEM, FTIR, UV, and BET techniques. The current study uses green synthesis method to prepare ZnO-NPs as an adsorbent for the DB106 dye molecules adsorption under various conditions using the batch adsorption process. The adsorption of DB106 dye to the ZnO-NPs biosorbent was detected to be pH-dependent, with optimal adsorption of DB106 (anionic) dye particles observed at pH 7. DB106 dye adsorption to the synthesized ZnO-NPs adsorbent was distinct by means of the linearized Langmuir (LNR) and pseudo-second-order (SO) models, with an estimated maximum adsorption capacity (Qm) of 370.37 mg/g.
Collapse
Affiliation(s)
- Ahmed Eleryan
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, Alexandria, Egypt
| | - Uyiosa O Aigbe
- Department of Mathematics and Physics, Faculty of Applied Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Kingsley E Ukhurebor
- Department of Physics, Faculty of Science, Edo State University Uzairue, Edo State, Nigeria
| | - Robert B Onyancha
- Department of Technical and Applied Physics, School of Physics and Earth Sciences Technology, Technical University of Kenya, Nairobi, Kenya
| | - Mohamed A Hassaan
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, Alexandria, Egypt
| | - Marwa R Elkatory
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute, SRTA-City, New Borg El-Arab City 21934, Alexandria, Egypt
| | - Safaa Ragab
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, Alexandria, Egypt
| | - Otolorin A Osibote
- Department of Mathematics and Physics, Faculty of Applied Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Heri S Kusuma
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasionsal Veteran Yogyakarta, Sleman, Indonesia
| | - Ahmed El Nemr
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, Alexandria, Egypt.
| |
Collapse
|
9
|
Bhattu M, Singh J. Recent advances in nanomaterials based sustainable approaches for mitigation of emerging organic pollutants. CHEMOSPHERE 2023; 321:138072. [PMID: 36773680 DOI: 10.1016/j.chemosphere.2023.138072] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/25/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Emerging organic pollutants (EOPs) are a category of pollutants that are relatively new to the environment and recently garnered a lot of attention. The majority of EOPs includes endocrine-disrupting chemicals (EDCs), antibiotic resistance genes (ARGs), pesticides, dyes and pharmaceutical and personal care products (PPCPs). Exposure to contaminated water has been linked to an increase in incidences of malnutrition, intrauterine growth retardation, respiratory illnesses, liver malfunctions, eye and skin diseases, and fatalities. Consequently, there is a critical need for wastewater remediation technologies which are effective, reliable, and economical. Conventional wastewater treatment methods have several shortcomings that can be addressed with the help of nanotechnology. Unique characteristics of nanomaterials (NMs) make them intriguing and efficient alternative in wastewater treatment strategies. This review emphasis on the occurrence of divers emerging organic pollutants (EOPs) in water and their effective elimination via different NMs based methods with in-depth mechanisms. Furthermore, it also delves the toxicity assessment of NMs and critical challenges, which are crucial steps for practical implementations.
Collapse
Affiliation(s)
- Monika Bhattu
- Department of Chemistry, Chandigarh University, Mohali, 140413, Punjab, India; University Centre for Research and Development, Chandigarh University, Mohali, 140413, Punjab, India
| | - Jagpreet Singh
- University Centre for Research and Development, Chandigarh University, Mohali, 140413, Punjab, India.
| |
Collapse
|
10
|
Aidonojie PA, Ukhurebor KE, Oaihimire IE, Ngonso BF, Egielewa PE, Akinsehinde BO, Kusuma HS, Darmokoesoemo H. Bioenergy revamping and complimenting the global environmental legal framework on the reduction of waste materials: A facile review. Heliyon 2023; 9:e12860. [PMID: 36685427 PMCID: PMC9851859 DOI: 10.1016/j.heliyon.2023.e12860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
The challenges posed by climate change/global warming are very alarming, and they have become the focal point of attention for researchers within the global environmental domains. The development of bioenergy can help salvage this situation as a renewable energy source that makes use of recycled waste materials to create useful energy products. This review study found that the development of sustainable bioenergy is environmentally friendly, and it has been proven to be a better means of recycling waste materials into final energy products for sustainable development. The study hereby concluded and recommended that environmental policies concerning the sustainable development of bioenergy should be adopted within the various nations' local laws and the global environment at large, as this will result in adhering strictly to international environmental legal frameworks regulating the prevention and reduction of waste materials. The possible correlation of bioenergy with the Sustainable Development Goals is also highlighted.
Collapse
Affiliation(s)
- Paul Atagamen Aidonojie
- Department of Public and International Law, Faculty of Law, Edo State University Uzairue, Edo State, Nigeria
| | - Kingsley Eghonghon Ukhurebor
- Department of Physics, Faculty of Science, Edo State University Uzairue, Edo State, Nigeria,Corresponding author.;
| | | | | | | | | | - Heri Septya Kusuma
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran”, Yogyakarta, Indonesia,Corresponding author.
| | - Handoko Darmokoesoemo
- Department of Chemistry, Faculty of Science and Technology, Airlangga University, Mulyorejo, Surabaya, 60115, Indonesia,Corresponding author.
| |
Collapse
|
11
|
Biosorption of Methylene Blue using Clove Leaves Waste Modified with Sodium Hydroxide. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
12
|
Edegbene AO, Akamagwuna FC. Insights from the Niger Delta Region, Nigeria on the impacts of urban pollution on the functional organisation of Afrotropical macroinvertebrates. Sci Rep 2022; 12:22551. [PMID: 36581677 PMCID: PMC9800367 DOI: 10.1038/s41598-022-26659-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 12/19/2022] [Indexed: 12/30/2022] Open
Abstract
Anthropogenic activities, including urbanisation and industrialisation threaten stream ecological integrity, ecosystem community structure and ecosystem functioning of rivers and streams worldwide. However, developing sustainable monitoring strategies for ecological health remains a critical challenge in Africa. We examined the effects of urban disturbance on macroinvertebrate Functional Feeding Groups in selected streams in the Niger Delta Region of Nigeria. We sampled 11 sites between 2008 and 2012 and grouped into three site groups (Site groups 1 > 2 > 3). The groups represent an increasing gradient of urban pollution. Our result showed that urban-induced disturbances affected physicochemical variables in the study area (PERMANOVA; p < 0.05), with nutrients NO2-N, PO4-P, and electrical conductivity being significantly higher in impacted Site group 3 (ANOVA, p < 0.05). Predators and gatherers were the most dominant Functional Feeding Group recorded in the study area, while shredders were the least abundant macroinvertebrate Functional Feeding Groups. The multivariate RLQ analysis revealed that shredders, predators, and scrapers were tolerant of urban pollution, whereas gatherers were sensitive to increasing urban pollution. Overall, macroinvertebrates Functional Feeding Groups responded differentially to urban pollution in the Niger Delta Region. Identifying pollution indicator Functional Feeding Groups is seen as an important step towards developing a reliable, low-cost tool for riverine monitoring of urban pollution effects in Africa.
Collapse
Affiliation(s)
- Augustine Ovie Edegbene
- grid.91354.3a0000 0001 2364 1300Institute for Water Research, Rhodes University, Makhanda (Grahamstown), 6140 South Africa ,Department of Biological Sciences, Federal University of Health Sciences, Otukpo, Nigeria
| | - Frank Chukwuzuoke Akamagwuna
- grid.91354.3a0000 0001 2364 1300Institute for Water Research, Rhodes University, Makhanda (Grahamstown), 6140 South Africa
| |
Collapse
|
13
|
El-Nemr MA, Aigbe UO, Ukhurebor KE, Onyancha RB, El Nemr A, Ragab S, Osibote OA, Hassaan MA. Adsorption of Cr 6+ ion using activated Pisum sativum peels-triethylenetetramine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:91036-91060. [PMID: 35881295 PMCID: PMC9722890 DOI: 10.1007/s11356-022-21957-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/06/2022] [Indexed: 05/21/2023]
Abstract
The adsorption of Cr6+ ions from water-soluble solution onto activated pea peels (PPs) embellished with triethylenetetramine (TETA) was studied. The synthesized activated TETA-PP biosorbent was further characterized by SEM together with EDX, FTIR and BET to determine the morphology and elementary composition, functional groups (FGs) present and the biosorbent surface area. The confiscation of Cr6+ ions to activated TETA-PP biosorbent was observed to be pH-reliant, with optimum removal noticed at pH 1.6 (99%). Cr6+ ion adsorption to activated TETA-PP biosorbent was well defined using the Langmuir (LNR) and the pseudo-second-order (PSO) models, with a determined biosorption capacity of 312.50 mg/g. Also, it was found that the activated TETA-PP biosorbent can be restored up to six regeneration cycles for the sequestration of Cr6+ ions in this study. In comparison with other biosorbents, it was found that this biosorbent was a cost-effective and resourceful agro-waste for the Cr6+ ion confiscation. The possible mechanism of Cr6+ to the biosorbent was by electrostatic attraction following the surface protonation of the activated TETA-PP biosorbent sites.
Collapse
Affiliation(s)
- Mohamed A. El-Nemr
- Department of Chemical Engineering, Faculty of Engineering, Minia University, Minia, Egypt
| | - Uyiosa O. Aigbe
- Department of Mathematics and Physics, Faculty of Applied Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Kingsley E. Ukhurebor
- Department of Physics, Faculty of Science, Edo State University Uzairue, Iyamho, Edo State Nigeria
| | - Robert B. Onyancha
- Department of Technical and Applied Physics, School of Physics and Earth Sciences Technology, Technical University of Kenya, Nairobi, Kenya
| | - Ahmed El Nemr
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, Alexandria, Egypt
| | - Safaa Ragab
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, Alexandria, Egypt
| | - Otolorin A. Osibote
- Department of Mathematics and Physics, Faculty of Applied Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Mohamed A. Hassaan
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, Alexandria, Egypt
| |
Collapse
|
14
|
Goveas LC, Selvaraj R, Sajankila SP. Characterization of biosurfactant produced in response to petroleum crude oil stress by Bacillus sp. WD22 in marine environment. Braz J Microbiol 2022; 53:2015-2025. [PMID: 36053434 PMCID: PMC9679063 DOI: 10.1007/s42770-022-00811-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/25/2022] [Indexed: 01/13/2023] Open
Abstract
Bacillus sp. WD22, previously isolated from refinery effluent, degraded 71% of C8 hydrocarbons present in 1.0% v/v PCO in seawater (control medium), which reduced to 16.3%, on addition of yeast extract. The bacteria produced a biosurfactant in both media, whose surface was observed to be amorphous in nature under FESEM-EDAX analysis. The biosurfactant was characterized as a linear surfactin by LCMS and FT-IR analysis. The critical micelle concentration was observed as 50 mg/L and 60 mg/L at which the surface tension of water was reduced to 30 mN/m. Purified biosurfactant could emulsify petroleum-based oils and vegetable oils effectively and was stable at all tested conditions of pH, salinity and temperature up to 80 °C. The biosurfactant production was found to be mixed growth associated in control medium, while it was strictly growth associated in medium with yeast extract as studied by the Leudeking-Piret model.
Collapse
Affiliation(s)
- Louella Concepta Goveas
- Department of Biotechnology Engineering, NMAM Institute of Technology-Affiliated to NITTE (Deemed to Be University), Nitte, Karnataka, 574110, India.
| | - Raja Selvaraj
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shyama Prasad Sajankila
- Department of Biotechnology Engineering, NMAM Institute of Technology-Affiliated to NITTE (Deemed to Be University), Nitte, Karnataka, 574110, India
| |
Collapse
|
15
|
Ukhurebor KE, Aigbe UO, Onyancha RB, UK-Eghonghon G, Balogun VA, Egielewa PE, Ngonso BF, Osibote OA, Imoisi SE, Ndunagu JN, Kusuma HS, Darmokoesoemo H. Greenhouse Gas Emission: Perception during the COVID-19 Pandemic. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6166276. [PMID: 36246992 PMCID: PMC9553500 DOI: 10.1155/2022/6166276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/29/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022]
Abstract
The period 2020/2021 was an unprecedented and historic time for industrial, economic, and societal activities all over the world with great challenges to human health, the ecosystems, and other aspects of human endeavors owing to the COVID-19 or SARS-CoV-2 (CV-19) pandemic which is now a topical aspect of research interest. Despite the negative impacts of the CV-19 pandemic, there are also positive reports during the CV-19 pandemic such as the reduction of gas flare, reduction in the burning of fossil fuels from automobile exhaust and a reduction in the other ensuing factors of greenhouse gases emissions (which is one of the major drives for global warming and climate change as well as other environmental effluences). Hence, this brief perspective review study is centered on greenhouse gas (GHG) emission. The study employs a methodical approach to analyze some already available research studies from existing publications and databases on GHG emission using the perception during the CV-19 pandemic. The specific findings from this review show that, from the meteorological perspective, the global response to the catastrophe ensuing from the CV-19 pandemic has a great influence on the reduction of GHGs, the reduction in the burning of fossil fuels from automobiles and industrial devices, and the reduction in the other ensuing factors of GHG emission. Hence, it will not be far from the truth to conclude that there is a possible positive connection between the CV-19 pandemic and GHG emissions. The study has a direct impact on the environment owing to the negative and positive environmental consequences of the CV-19 pandemic. Suggestions and recommendations in the form of future prospects of GHG emission vis-à-vis global warming and climate change are also discussed. Furthermore, suggestions on how to improve food security and agriculture during a pandemic such as the CV-19 outbreak period are highlighted.
Collapse
Affiliation(s)
- Kingsley Eghonghon Ukhurebor
- Department of Physics, Faculty of Science, Edo State University Uzairue, P.M.B. 04, Auchi, 312101 Edo State, Nigeria
| | - Uyiosa Osagie Aigbe
- Department of Mathematics and Physics, Faculty of Applied Sciences, Cape Peninsula University of Technology, P.O. Box 1906, Cape Town, South Africa
| | - Robert Birundu Onyancha
- Department of Technical and Applied Physics, School of Physics and Earth Sciences Technology, Technical University of Kenya, P.O. Box 52428-00200, Nairobi, Kenya
| | - Gladys UK-Eghonghon
- Department of Nursing Services, University of Benin Teaching Hospital, P.M.B., 1111 Benin City, Nigeria
| | - Vincent Aizebeoje Balogun
- Department of Mechanical Engineering, Faculty of Engineering, Edo State University Uzairue, P.M.B. 04, Auchi, 312101 Edo State, Nigeria
| | - Peter Eshioke Egielewa
- Department of Mass Communication, Edo State University Uzairue, P.M.B. 04 Auchi, 312101 Edo State, Nigeria
| | - Blessed Frederick Ngonso
- Department of Mass Communication, Edo State University Uzairue, P.M.B. 04 Auchi, 312101 Edo State, Nigeria
| | - Otolorin Adelaja Osibote
- Department of Mathematics and Physics, Faculty of Applied Sciences, Cape Peninsula University of Technology, P.O. Box 1906, Cape Town, South Africa
| | - Simon Ejokema Imoisi
- Department of Public and International Law, Faculty of Law, Edo State University Uzairue, P.M.B. 04, Auchi, 312101 Edo State, Nigeria
| | - Juliana Ngozi Ndunagu
- Faculty of Sciences/Africa Centre of Excellence on Technology Enhanced Learning (ACETEL), National Open University of Nigeria, Abuja, Nigeria
| | - Heri Septya Kusuma
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran” Yogyakarta, Indonesia
| | - Handoko Darmokoesoemo
- Department of Chemistry, Faculty of Science and Technology, Airlangga University, Mulyorejo, Surabaya 60115, Indonesia
| |
Collapse
|
16
|
Kyzas GZ, McKay G, Al-Musawi TJ, Salehi S, Balarak D. Removal of Benzene and Toluene from Synthetic Wastewater by Adsorption onto Magnetic Zeolitic Imidazole Framework Nanocomposites. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3049. [PMID: 36080086 PMCID: PMC9457738 DOI: 10.3390/nano12173049] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 06/01/2023]
Abstract
Considering the risk associated with exposure to benzene and toluene in water resources, researchers have been motivated to conduct studies to remove them from aqueous solutions. Thus, by performing the present study, the potential of Fe3O4/zeolite imidazolate framework nanoparticles (Fe3O4@ZIF-8) was evaluated for the adsorption of benzene and toluene. Accordingly, the solution pH, Fe3O4@ZIF-8 dosage, mixing time, concentration of benzene and toluene, and temperature, were the parameters considered for conducting the batch experiments, for which their effect on adsorption efficiency was evaluated. Our conducted experiments introduced the neutral pH as the best pH range to obtain the maximum removal. Fitting the adsorption data into the various models revealed the aptness of the Langmuir isotherm equation in describing experimental information and highest adsorption capacity; for benzene it was 129.4, 134.2, 137.3, and 148.2 mg g-1, but for toluene it was 118.4, 125.2, 129.6, and 133.1 mg g-1, for temperature 20, 30, 40, and 50 °C, respectively. Using obtained optimal conditions, the adsorption efficiencies of benzene and toluene were obtained to be 98.4% and 93.1%, respectively. Kinetic studies showed acceptable coefficients for PSO kinetics and confirmed its suitability. Also, the recyclability results showed that for six consecutive periods of the adsorption-desorption process, the percentage of removal decreased by only 6% for benzene and toluene. Moreover, calculating thermodynamic parameter changes for benzene and toluene removal confirmed the favorability and spontaneity of the studied process and its endothermic nature. Considering the above findings, Fe3O4@ZIF-8 was found to be an operative adsorbent for removing pollutants.
Collapse
Affiliation(s)
- George Z. Kyzas
- Department of Chemistry, International Hellenic University, GR-654 04 Kavala, Greece
| | - Gordon McKay
- Division of Sustainable Development, College of Science, Engineering and Technology, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 5825, Qatar
| | - Tariq J. Al-Musawi
- Al–Mustqbal University College, Building and Construction Engineering Technologies, Babylon 51001, Iraq
| | - Sabereh Salehi
- Student Research Committee, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran
| | - Davoud Balarak
- Department of Environmental Health Engineering, Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran
| |
Collapse
|
17
|
Akbarian H, Jalali FM, Gheibi M, Hajiaghaei-Keshteli M, Akrami M, Sarmah AK. A sustainable Decision Support System for soil bioremediation of toluene incorporating UN sustainable development goals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119587. [PMID: 35680063 DOI: 10.1016/j.envpol.2022.119587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/15/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Decision Support System (DSS) is a novel approach for smart, sustainable controlling of environmental phenomena and purification processes. Toluene is one of the most widely used petroleum products, which adversely impacts on human health. In this study, Fusarium Solani fungi are utilized as the engine of the toluene bioremediation procedure for the monitoring part of DSS. Experiments are optimized by Central Composite Design (CCD) - Response Surface Methodology (RSM), and the behavior of the mentioned fungi is estimated by M5 Pruned model tree (M5P), Gaussian Processes (GP), and Sequential Minimal Optimization (SMOreg) algorithms as the prediction section of DSS. Finally, the control stage of DSS is provided by integrated Petri Net modeling and Failure Modes and Effects Analysis (FMEA). The findings showed that Aeration Intensity (AI) and Fungi load/Biological Waste (F/BW) are the most influential mechanical and biological factors, with P-value of 0.0001 and 0.0003, respectively. Likewise, the optimal values of main mechanical parameters include AI, and the space between pipes (S) are equal to 13.76 m3/h and 15.99 cm, respectively. Also, the optimum conditions of biological features containing F/BW and pH are 0.001 mg/g and 7.56. In accordance with the kinetic study, bioremediation of toluene by Fusarium Solani is done based on a first-order reaction with a 0.034 s-1 kinetic coefficient. Finally, the machine learning practices showed that the GP (R2 = 0.98) and M5P (R2 = 0.94) have the most precision for predicting Removal Percentage (RP) for mechanical and biological factors, respectively. At the end of the present research, it is found that by controlling seven possible risk factors in bioremediation operation through the FMEA- Petri Net technique, efficiency of the process can be adjusted to optimum value.
Collapse
Affiliation(s)
- Hadi Akbarian
- Department of Civil Engineering, Ferdowsi University of Mashhad, Iran
| | - Farhad Mahmoudi Jalali
- Department of Civil Engineering, Faculty of Engineering, Islamic Azad University, Tabriz Branch, Iran
| | - Mohammad Gheibi
- Departamento de Ingeniería Industrial, Tecnologico de Monterrey, Puebla, Mexico
| | | | - Mehran Akrami
- Department of Civil Engineering, Ferdowsi University of Mashhad, Iran; Departamento de Ingeniería Industrial, Tecnologico de Monterrey, Puebla, Mexico
| | - Ajit K Sarmah
- Department of Civil & Environmental Engineering, The Faculty of Engineering, The University of Auckland, Auckland, 1142, New Zealand.
| |
Collapse
|
18
|
A Facile Review on the Sorption of Heavy Metals and Dyes Using Bionanocomposites. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/8030175] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Presently, hazardous metal and dye removal from wastewater is one of the major areas of research focus. For the elimination of these contaminants, many approaches have been devised and applied. However, the accomplishment of various water treatment processes has largely depended on the medium utilized and the associated problem with the leaching of harmful compounds into the water process with most commercial and chemically manufactured materials for water treatment processes. Hence, this study is aimed at reviewing existing studies on the sorption of heavy metals (HMs) and dyes using bionanocomposites (BNCs). The key focus of this review is on the development of eco-friendly, effective, and appropriate nanoadsorbents that could accomplish superior and enhanced contaminant sequestration using BNCs owing to their biodegradability, biocompatible, environmentally friendly, and not posing as secondary waste to the environment. The sorption of most pollutants was observed to be pH, sorbent dosage, and initial contaminant concentration-dependent, with most contaminants’ elimination taking place in the pH range of 2-10. The sorption process of HMs and dyes to various BNCs was superlatively depicted utilizing the Langmuir (LNR) and Freundlich (FL) as well as the pseudo-second-order (PSO) models, suggestive of the sorption process of a monolayer and multilayer and the chemisorption process, the rate-limiting stage in surface sorption. The established sorption capacities for the reviewed sorption process for various contaminants ranged from 1.47 to 740.97 mg/g. Future prospective for the treatment and remediation of contaminated water using BNCs was also discussed.
Collapse
|
19
|
Ukhurebor KE, Onyancha RB, Aigbe UO, UK-Eghonghon G, Kerry RG, Kusuma HS, Darmokoesoemo H, Osibote OA, Balogun VA. A Methodical Review on the Applications and Potentialities of Using Nanobiosensors for Disease Diagnosis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1682502. [PMID: 35103234 PMCID: PMC8799955 DOI: 10.1155/2022/1682502] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/23/2021] [Accepted: 01/08/2022] [Indexed: 12/11/2022]
Abstract
Presently, with the introduction of nanotechnology, the evolutions and applications of biosensors and/or nanobiosensors are becoming prevalent in various scientific domains such as environmental and agricultural sciences as well as biomedical, clinical, and healthcare sciences. Trends in these aspects have led to the discovery of various biosensors/nanobiosensors with their tremendous benefits to mankind. The characteristics of the various biosensors/nanobiosensors are primarily based on the nature of nanomaterials/nanoparticles employed in the sensing mechanisms. In the last few years, the identification, as well as the detection of biological markers linked with any form of diseases (communicable or noncommunicable), has been accomplished by several sensing procedures using nanotechnology vis-à-vis biosensors/nanobiosensors. Hence, this study employs a systematic approach in reviewing some contemporary developed exceedingly sensitive nanobiosensors alongside their biomedical, clinical, or/and healthcare applications as well as their potentialities, specifically for the detection of some deadly diseases drawn from some of the recent publications. Ways forward in the form of future trends that will advance creative innovations of the potentialities of nanobiosensors for biomedical, clinical, or/and healthcare applications particularly for disease diagnosis are also highlighted.
Collapse
Affiliation(s)
- Kingsley Eghonghon Ukhurebor
- Department of Physics, Faculty of Science, Edo State University Uzairue, P.M.B. 04, Auchi, 312101 Edo State, Nigeria
| | - Robert Birundu Onyancha
- Department of Physics and Space Science, School of Physical Sciences and Technology, Technical University of Kenya, P.O. Box 52428, 00200 Nairobi, Kenya
| | - Uyiosa Osagie Aigbe
- Department of Mathematics and Physics, Faculty of Applied Sciences, Cape Peninsula University of Technology, P.O. Box 1906, Cape Town, South Africa
| | - Gladys UK-Eghonghon
- Nursing Services Department, University of Benin Teaching Hospital, P.M.B. 1111, Benin City, Nigeria
| | - Rout George Kerry
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha 751004, India
| | - Heri Septya Kusuma
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran”, Yogyakarta, Indonesia
| | - Handoko Darmokoesoemo
- Department of Chemistry, Faculty of Science and Technology, Airlangga University, Mulyorejo, Surabaya 60115, Indonesia
| | - Otolorin Adelaja Osibote
- Department of Mathematics and Physics, Faculty of Applied Sciences, Cape Peninsula University of Technology, P.O. Box 1906, Cape Town, South Africa
| | - Vincent Aizebeoje Balogun
- Department of Mechanical Engineering, Faculty of Engineering, Edo State University Uzairue, P.M.B. 04, Auchi, 312101 Edo State, Nigeria
| |
Collapse
|