1
|
Boubakri A, Elgharbi S, Bouguecha S, Orfi J, El Oudi M, Bechambi O, Hafiane A. An in-depth analysis of membrane distillation research (1990-2023): Exploring trends and future directions through bibliometric approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:121942. [PMID: 39067338 DOI: 10.1016/j.jenvman.2024.121942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
This bibliometric analysis offers a comprehensive investigation into membrane distillation (MD) research from 1990 to 2023. Covering 4389 publications, the analysis sheds light on the evolution, trends, and future directions of the field. It delves into authorship patterns, publication trends, prominent journals, and global contributions to reveal collaborative networks, research hotspots, and emerging themes within MD research. The findings demonstrate extensive global participation, with esteemed journals such as Desalination and the Journal of Membrane Science serving as key platforms for disseminating cutting-edge research. The analysis further identifies crucial themes and concepts driving MD research, ranging from membrane properties to strategies for mitigating membrane fouling. Co-occurrence analysis further highlights the interconnectedness of research themes, showcasing advancements in materials, sustainable heating strategies, contaminant treatment, and resource management. Overlay co-occurrence analysis provides temporal perspective on emerging research trends, delineating six key topics that will likely shape the future of MD. These include innovations in materials and surface engineering, sustainable heating strategies, emerging contaminants treatment, sustainable water management, data-driven approaches, and sustainability assessments. Finally, the study serves as a roadmap for researchers and engineers navigating the dynamic landscape of MD research, offering insights into current trends and future trajectories, ultimately aiming to propel MD technology towards enhanced performance, sustainability, and global relevance.
Collapse
Affiliation(s)
- Ali Boubakri
- Laboratory Water, Membranes and Environmental Biotechnology, Center of Water Research and Technologies (CERTE), PB 273, 8020, Soliman, Tunisia.
| | - Sarra Elgharbi
- Chemistry Department, College of Sciences, University of Ha'il, Hail, Saudi Arabia
| | - Salah Bouguecha
- Department of Mechanical Engineering, Faculty of Engineering, King Abdul-Aziz University, P.B: 80204, Jeddah, 21589, Saudi Arabia
| | - Jamel Orfi
- Mechanical Engineering Department, King Saud University, PO Box 800, Riyadh, 11421, Saudi Arabia; K.A.CARE Energy Research and Innovation Center, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mabrouka El Oudi
- Chemistry Department, College of Sciences, University of Ha'il, Hail, Saudi Arabia
| | - Olfa Bechambi
- Al Ghazalah, University of Hail, Ha'il, Saudi Arabia
| | - Amor Hafiane
- Laboratory Water, Membranes and Environmental Biotechnology, Center of Water Research and Technologies (CERTE), PB 273, 8020, Soliman, Tunisia
| |
Collapse
|
2
|
Politi D, Sakellis E, Sidiras D. Production of Low-Cost Adsorbents within a Circular Economy Approach: Use of Spruce Sawdust Pretreated with Desalination Brine to Adsorb Methylene Blue. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4317. [PMID: 39274710 PMCID: PMC11396110 DOI: 10.3390/ma17174317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024]
Abstract
A sustainable low-cost activated carbon substitute was produced based on pretreated lignocellulosic biomass, especially spruce sawdust. A harmful liquid waste, desalination brine, was used for the treatment of a solid wood industry waste, spruce sawdust. This approach is in the circular economy theory and aims at the decarbonization of the economy. Pretreated sawdust was tested as an adsorbent appropriate for the removal of a commonly used pollutant, methylene blue, from industrial wastewater. The adsorption capacity of the pretreated material was found to have increased four times compared to the untreated one in the case that the Freundlich equation was fitted to the isotherms' data, i.e., the one with the best fit to the isotherm's experimental data of the three isotherm models used herein. The treatment experimental conditions with desalination brine that gave maximum adsorption capacity correspond to a 1.97 combined severity factor in logarithmic form value. Moreover, a kinetic experiment was carried out with regard to the methylene blue adsorption process. The desalination brine-pretreated sawdust adsorption capacity increased approximately two times compared to the untreated one, in the case when the second-order kinetic equation was used, which had the best fit of the kinetic data of the three kinetic models used herein. In this case, the pretreatment experimental conditions that gave maximum adsorption capacity correspond to -1.049 combined severity factor in logarithmic form. Industrial scale applications can be based on the kinetic data findings, i.e., spruce sawdust optimal pretreatment conditions at 200 °C, for 25 min, with brine solution containing 98.12 g L-1 NaCl, as they are related to a much shorter adsorption period compared to the isotherm data.
Collapse
Affiliation(s)
- Dorothea Politi
- Laboratory of Simulation of Industrial Processes, Department of Industrial Management and Technology, School of Maritime and Industrial Studies, University of Piraeus, 80 Karaoli & Dimitriou, 18534 Piraeus, Greece
| | - Elias Sakellis
- Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research "Demokritos", Agia Paraskevi Attikis, 15310 Athens, Greece
| | - Dimitrios Sidiras
- Laboratory of Simulation of Industrial Processes, Department of Industrial Management and Technology, School of Maritime and Industrial Studies, University of Piraeus, 80 Karaoli & Dimitriou, 18534 Piraeus, Greece
| |
Collapse
|
3
|
Gong J, Wang C, Wang J, Yang Y, Kong X, Liu J, Tang M, Lou H, Wen Z, Yang S, Yi Y. Integrative study of transcriptome and microbiome to reveal the response of Rhododendron decorum to cadmium stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116536. [PMID: 38833983 DOI: 10.1016/j.ecoenv.2024.116536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/06/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024]
Abstract
The anomalies of cadmium (Cd) in karst region pose a severe threat to plant growth and development. In this study, the responses of Rhododendron decorum to Cd stress were investigated at physiological, molecular, and endophytic microbial levels, and the potential correlation among these responses was assessed. The Cd stress impeded R. decorum growth and led to an increase in malondialdehyde (MDA) and hydrogen peroxide (H2O2) levels, as well as enhanced superoxide dismutase (SOD) and catalase (CAT) activities. Meanwhile, Cd stress increased the Cd (up to 80 times compared to the control), sodium (Na), aluminum (Al), and zinc (Zn) contents, while decreased the magnesium (Mg) and manganese (Mn) contents in R. decorum leaves. Transcriptome suggested that Cd significantly regulated the pathways including "protein repair", "hormone-mediated signaling pathway", and "ATP-binding cassette (ABC) transporters". Additionally, q-PCR analysis showed that Cd stress significantly up-regulated the expressions of ABCB19-like and pleiotropic drug resistance, while down-regulated the expressions of indole-3-acetic acid-amido synthetase and cytokinin dehydrogenase. The Cd stress influenced the composition of endophytic microbial communities in R. decorum leaves and enhanced the interspecific bacterial associations. Furthermore, the bacterial genera Achromobacter, Aureimonas and fungal genus Vishniacozyma exhibited a high degree of connectivity with other nodes in networks constructed by the metal element contents, differentially expressed genes (DEGs), and microbial communities, respectively. These findings provide a comprehensive insight into the response of R. decorum to Cd-induced stress, which might facilitate the breeding of the Cd-tolerant R. decorum.
Collapse
Affiliation(s)
- Jiyi Gong
- College of Water Sciences, Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, Beijing Normal University, Beijing 100875, China; Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Normal University, Guiyang, Guizhou 550025, China
| | - Chao Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Jianfeng Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Yang Yang
- Gansu Yasheng Agricultural Research Institute Co., Ltd., Lanzhou 730010, China
| | - Xin Kong
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Normal University, Guiyang, Guizhou 550025, China
| | - Jie Liu
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Normal University, Guiyang, Guizhou 550025, China
| | - Ming Tang
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Normal University, Guiyang, Guizhou 550025, China
| | - Hezhen Lou
- College of Water Sciences, Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, Beijing Normal University, Beijing 100875, China
| | - Zhirui Wen
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Normal University, Guiyang, Guizhou 550025, China
| | - Shengtian Yang
- College of Water Sciences, Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, Beijing Normal University, Beijing 100875, China.
| | - Yin Yi
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Normal University, Guiyang, Guizhou 550025, China.
| |
Collapse
|
4
|
Panagopoulos A, Giannika V. A comprehensive assessment of the economic and technical viability of a zero liquid discharge (ZLD) hybrid desalination system for water and salt recovery. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:121057. [PMID: 38718606 DOI: 10.1016/j.jenvman.2024.121057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 04/06/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024]
Abstract
Brine, a by-product of desalination and industrial facilities, is becoming more and more of an environmental issue. This comprehensive techno-economic assessment (TEA), focusing on the technical and economic aspects, investigates the performance and viability of a novel hybrid desalination brine treatment system known as zero liquid discharge (ZLD). Notably, this research represents the first instance of evaluating the feasibility and effectiveness of integrating three distinct desalination processes, namely brine concentrator (BC), high-pressure reverse osmosis (HPRO), and membrane-promoted crystallization (MPC), within a ZLD framework. The findings of this study demonstrate an exceptional water recovery rate of 97.04%, while the energy requirements stand at a reasonable level of 17.53 kWh/m3. Financially, the ZLD system proves to be at least 3.28 times more cost-effective than conventional evaporation ponds and offers comparable cost efficiency to alternatives such as land application and deep-well injection. Moreover, the ZLD system exhibits profitability potential by marketing both drinking water and solid salt or solely desalinated water. The daily profit from the sale of generated water varies from US$194.08 to US$281.41, with Greece and Cyprus attaining the lowest and highest profit, respectively. When considering the sale of both salt and water, the profit rises by 8% across all locations.
Collapse
Affiliation(s)
- Argyris Panagopoulos
- School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou St., Zografou 15780 Athens, Greece.
| | - Vasiliki Giannika
- School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou St., Zografou 15780 Athens, Greece.
| |
Collapse
|
5
|
Gad M, Marouf MA, Abogabal A, Hu A, Nabet N. Commercial reverse osmosis point-of-use systems in Egypt failed to purify tap water. JOURNAL OF WATER AND HEALTH 2024; 22:905-922. [PMID: 38822469 DOI: 10.2166/wh.2024.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/10/2024] [Indexed: 06/03/2024]
Abstract
This study addresses the heightened global reliance on point-of-use (PoU) systems driven by water quality concerns, ageing infrastructure, and urbanization. While widely used in Egypt, there is a lack of comprehensive evaluation of these systems. We assessed 10 reverse osmosis point-of-use systems, examining physicochemical, bacteriological, and protozoological aspects of tap water (inlets) and filtered water (outlets), adhering to standard methods for the examination of water and wastewater. Results showed significant reductions in total dissolved solids across most systems, with a decrease from 210 ± 23.6 mg/L in tap water to 21 ± 2.8 mg/L in filtered water for PoU-10. Ammonia nitrogen levels in tap water decreased from 0.05 ± 0.04 to 2.28 ± 1.47 mg/L to 0.02 ± 0.04 to 0.69 ± 0.64 mg/L in filtered water. Despite this, bacterial indicators showed no significant changes, with some systems even increasing coliform levels. Protozoological analysis identified prevalent Acanthamoeba (42.5%), less frequent Naegleria (2.5%), Vermamoeba vermiformis (5%), and potentially pathogenic Acanthamoeba genotypes. Elevated bacterial indicators in filtered water of point-of-use systems, combined with essential mineral removal, indicate non-compliance with water quality standards, posing a public health concern. Further research on the long-term health implications of these filtration systems is essential.
Collapse
Affiliation(s)
- Mahmoud Gad
- Environmental Parasitology Laboratory, Water Pollution Research Department, National Research Centre, Giza 12622, Egypt E-mail:
| | - Mohamed A Marouf
- Environmental Parasitology Laboratory, Water Pollution Research Department, National Research Centre, Giza 12622, Egypt
| | - Amr Abogabal
- Reference Laboratory, Holding Company for Water and Wastewater, Cairo 12766, Egypt
| | - Anyi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Noura Nabet
- Zoology Department, Faculty of Science, Menoufia University, Menofia, Egypt
| |
Collapse
|
6
|
Ikuno Y, Tsujino H, Haga Y, Manabe S, Idehara W, Hokaku M, Asahara H, Higashisaka K, Tsutsumi Y. Polyethylene, whose surface has been modified by UV irradiation, induces cytotoxicity: A comparison with microplastics found in beaches. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116346. [PMID: 38669869 DOI: 10.1016/j.ecoenv.2024.116346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 04/02/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024]
Abstract
Microplastics, plastic particles 5 mm or less in size, are abundant in the environment; hence, the exposure of humans to microplastics is a great concern. Usually, the surface of microplastics found in the environment has undergone degradation by external factors such as ultraviolet rays and water waves. One of the characteristics of changes caused by surface degradation of microplastics is the introduction of oxygen-containing functional groups. Surface degradation alters the physicochemical properties of plastics, suggesting that the biological effects of environmentally degraded plastics may differ from those of pure plastics. However, the biological effects of plastics introduced with oxygen-containing functional groups through degradation are poorly elucidated owing to the lack of a plastic sample that imitates the degradation state of plastics found in the environment. In this study, we investigated the degradation state of microplastics collected from a beach. Next, we degraded a commercially available polyethylene (PE) particles via vacuum ultraviolet (VUV) irradiation and showed that chemical surface state of PE imitates that of microplastics in the environment. We evaluated the cytotoxic effects of degraded PE samples on immune and epithelial cell lines. We found that VUV irradiation was effective in degrading PE within a short period, and concentration-dependent cytotoxicity was induced by degraded PE in all cell lines. Our results indicate that the cytotoxic effect of PE on different cell types depends on the degree of microplastic degradation, which contributes to our understanding of the effects of PE microplastics on humans.
Collapse
Affiliation(s)
- Yudai Ikuno
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hirofumi Tsujino
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Museum Links, Osaka University, 1-13 Machikaneyamacho, Toyonaka, Osaka 560-0043, Japan.
| | - Yuya Haga
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Sota Manabe
- School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Wakaba Idehara
- School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mii Hokaku
- School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Haruyasu Asahara
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Institute for Open and Transdisciplinary Research Initiatives, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazuma Higashisaka
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Institute for Advanced Co-Creation Studies, Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasuo Tsutsumi
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Institute for Open and Transdisciplinary Research Initiatives, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Global Center for Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
7
|
Shen B, Zhao B, Du H, Ren Y, Tang J, Liu Y, Hua Q, Wang B. Influence of Organic Impurities on Fractional Crystallization of NaCl and Na 2SO 4 from High-Salinity Coal Chemical Wastewater: Thermodynamics and Nucleation Kinetics Analysis. Molecules 2024; 29:1928. [PMID: 38731419 PMCID: PMC11085368 DOI: 10.3390/molecules29091928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
It is a valid path to realize the zero discharge of coal chemical wastewater by using the fractional crystallization method to recycle the miscellaneous salt in high-salinity wastewater. In this study, the thermodynamics and nucleation kinetics of sodium chloride (NaCl) and sodium sulfate (Na2SO4) crystallization in coal chemical wastewater were systematically studied. Through analyses of solubility, metastable zone width, and induction period, it was found that the impurity dimethoxymethane would increase the solid-liquid interface energy and critical crystal size during the nucleation of Na2SO4. Ternary phase diagrams of the pseudo-ternary Na2SO4-NaCl-H2O systems in simulated wastewater were plotted in the temperature range of 303.15 to 333.15 K, indicating that a co-ionization effect existed between NaCl and Na2SO4, and NaCl had a strong salting out effect on Na2SO4. Finally, the nucleation rate and growth rate of Na2SO4 crystals under simulated wastewater conditions were determined by the intermittent dynamic method, and the crystallization kinetic models of Na2SO4 were established. The crystallization nucleation of Na2SO4 crystals was found to be secondary nucleation controlled by surface reactions. The basic theoretical research of crystallization in this study is expected to fundamentally promote the application of fractional crystallization to realize the resource utilization of high-salinity wastewater in the coal chemical industry.
Collapse
Affiliation(s)
- Bo Shen
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
- National Center for Research & Popularization on Calcium, Magnesium, Phosphate and Compound Fertilizer Technology, Zhengzhou 450001, China
- Research Centre of Engineering and Technology for Synergetic Control of Environmental Pollution and Carbon Emissions of Henan Province, Zhengzhou 450001, China
| | - Bo Zhao
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Hai Du
- National Center for Research & Popularization on Calcium, Magnesium, Phosphate and Compound Fertilizer Technology, Zhengzhou 450001, China
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yongsheng Ren
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Jianwei Tang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
- National Center for Research & Popularization on Calcium, Magnesium, Phosphate and Compound Fertilizer Technology, Zhengzhou 450001, China
- Research Centre of Engineering and Technology for Synergetic Control of Environmental Pollution and Carbon Emissions of Henan Province, Zhengzhou 450001, China
| | - Yong Liu
- National Center for Research & Popularization on Calcium, Magnesium, Phosphate and Compound Fertilizer Technology, Zhengzhou 450001, China
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Quanxian Hua
- National Center for Research & Popularization on Calcium, Magnesium, Phosphate and Compound Fertilizer Technology, Zhengzhou 450001, China
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Baoming Wang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
- National Center for Research & Popularization on Calcium, Magnesium, Phosphate and Compound Fertilizer Technology, Zhengzhou 450001, China
- Research Centre of Engineering and Technology for Synergetic Control of Environmental Pollution and Carbon Emissions of Henan Province, Zhengzhou 450001, China
| |
Collapse
|
8
|
Manríquez PH, González CP, Abarca A, Jofré V, Astudillo O, Aguilera VM. 'Behavioural and physiological responses of the surf clam Mesodesma donacium to brine discharges'. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171233. [PMID: 38417518 DOI: 10.1016/j.scitotenv.2024.171233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/15/2024] [Accepted: 02/22/2024] [Indexed: 03/01/2024]
Affiliation(s)
- Patricio H Manríquez
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile; Laboratorio de Ecología y Conducta de la Ontogenia Temprana (LECOT), Coquimbo, Chile.
| | - Claudio P González
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile; Laboratorio de Ecología y Conducta de la Ontogenia Temprana (LECOT), Coquimbo, Chile
| | - Alejandro Abarca
- Facultad de Ciencias de Mar, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo, Chile
| | - Viviana Jofré
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile
| | - Orlando Astudillo
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile
| | - Victor M Aguilera
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile; Facultad de Ciencias del Mar, Departamento de Biología Marina, Universidad Católica del Norte, Coquimbo, Chile
| |
Collapse
|
9
|
Zhang H, Ren X, Chen S, Xie G, Hu Y, Gao D, Tian X, Xiao J, Wang H. Deep optimization of water quality index and positive matrix factorization models for water quality evaluation and pollution source apportionment using a random forest model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123771. [PMID: 38493866 DOI: 10.1016/j.envpol.2024.123771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/26/2024] [Accepted: 03/10/2024] [Indexed: 03/19/2024]
Abstract
Effective evaluation of water quality and accurate quantification of pollution sources are essential for the sustainable use of water resources. Although water quality index (WQI) and positive matrix factorization (PMF) models have been proven to be applicable for surface water quality assessments and pollution source apportionments, these models still have potential for further development in today's data-driven, rapidly evolving technological era. This study coupled a machine learning technique, the random forest model, with WQI and PMF models to enhance their ability to analyze water pollution issues. Monitoring data of 12 water quality indicators from six sites along the Minjiang River from 2015 to 2020 were used to build a WQI model for determining the spatiotemporal water quality characteristics. Then, coupled with the random forest model, the importance of 12 indicators relative to the WQI was assessed. The total phosphorus (TP), total nitrogen (TN), chemical oxygen demand (CODCr), dissolved oxygen (DO), and five-day biochemical oxygen demand (BOD5) were identified as the top five significant parameters influencing water quality in the region. The improved WQI model constructed based on key parameters enabled high-precision (R2 = 0.9696) water quality prediction. Furthermore, the feature importance of the indicators was used as weights to adjust the results of the PMF model, allowing for a more reasonable pollutant source apportionment and revealing potential driving factors of variations in water quality. The final contributions of pollution sources in descending order were agricultural activities (30.26%), domestic sewage (29.07%), industrial wastewater (26.25%), seasonal factors (6.45%), soil erosion (6.19%), and unidentified sources (1.78%). This study provides a new perspective for a comprehensive understanding of the water pollution characteristics of rivers, and offers valuable references for the development of targeted strategies for water quality improvement.
Collapse
Affiliation(s)
- Han Zhang
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Xingnian Ren
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Sikai Chen
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Guoqiang Xie
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yuansi Hu
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Dongdong Gao
- Sichuan Academy of Environmental Science, Chengdu, 610000, China
| | - Xiaogang Tian
- Sichuan Academy of Environmental Science, Chengdu, 610000, China
| | - Jie Xiao
- Ya'an Ecological and Environment Monitoring Center Station, Ya'an, 625000, China
| | - Haoyu Wang
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| |
Collapse
|
10
|
Elsayed A, Ghaith M, Yosri A, Li Z, El-Dakhakhni W. Genetic programming expressions for effluent quality prediction: Towards AI-driven monitoring and management of wastewater treatment plants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120510. [PMID: 38490009 DOI: 10.1016/j.jenvman.2024.120510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/17/2024]
Abstract
Continuous effluent quality prediction in wastewater treatment processes is crucial to proactively reduce the risks to the environment and human health. However, wastewater treatment is an extremely complex process controlled by several uncertain, interdependent, and sometimes poorly characterized physico-chemical-biological process parameters. In addition, there are substantial spatiotemporal variations, uncertainties, and high non-linear interactions among the water quality parameters and process variables involved in the treatment process. Such complexities hinder efficient monitoring, operation, and management of wastewater treatment plants under normal and abnormal conditions. Typical mathematical and statistical tools most often fail to capture such complex interrelationships, and therefore data-driven techniques offer an attractive solution to effectively quantify the performance of wastewater treatment plants. Although several previous studies focused on applying regression-based data-driven models (e.g., artificial neural network) to predict some wastewater treatment effluent parameters, most of these studies employed a limited number of input variables to predict only one or two parameters characterizing the effluent quality (e.g., chemical oxygen demand (COD) and/or suspended solids (SS)). Harnessing the power of Artificial Intelligence (AI), the current study proposes multi-gene genetic programming (MGGP)-based models, using a dataset obtained from an operational wastewater treatment plant, deploying membrane aerated biofilm reactor, to predict the filtrated COD, ammonia (NH4), and SS concentrations along with the carbon-to-nitrogen ratio (C/N) within the effluent. Input features included a set of process variables characterizing the influent quality (e.g., filtered COD, NH4, and SS concentrations), water physics and chemistry parameters (e.g., temperature and pH), and operation conditions (e.g., applied air pressure). The developed MGGP-based models accurately reproduced the observations of the four output variables with correlation coefficient values that ranged between 0.98 and 0.99 during training and between 0.96 and 0.99 during testing, reflecting the power of the developed models in predicting the quality of the effluent from the treatment system. Interpretability analyses were subsequently deployed to confirm the intuitive understanding of input-output interrelations and to identify the governing parameters of the treatment process. The developed MGGP-based models can facilitate the AI-driven monitoring and management of wastewater treatment plants through devising optimal rapid operation and control schemes and assisting the plants' operators in maintaining proper performance of the plants under various normal and disruptive operational conditions.
Collapse
Affiliation(s)
- Ahmed Elsayed
- Department of Civil Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada; Department of Irrigation and Hydraulic Engineering, Faculty of Engineering, Cairo University, 1 Gamaa Street, Giza 12613, Egypt.
| | - Maysara Ghaith
- Department of Civil Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada; Department of Irrigation and Hydraulic Engineering, Faculty of Engineering, Cairo University, 1 Gamaa Street, Giza 12613, Egypt
| | - Ahmed Yosri
- Department of Civil Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada; Department of Irrigation and Hydraulic Engineering, Faculty of Engineering, Cairo University, 1 Gamaa Street, Giza 12613, Egypt
| | - Zhong Li
- Department of Civil Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada
| | - Wael El-Dakhakhni
- Department of Civil Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada; School of Computational Science and Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S4K1, Canada
| |
Collapse
|
11
|
Cui H, Tao Y, Li J, Zhang J, Xiao H, Milne R. Predicting and analyzing the algal population dynamics of a grass-type lake with explainable machine learning. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120394. [PMID: 38412729 DOI: 10.1016/j.jenvman.2024.120394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/31/2024] [Accepted: 02/11/2024] [Indexed: 02/29/2024]
Abstract
Algal blooms, exacerbated by climate change and eutrophication, have emerged as a global concern. In this study, we introduce a novel interpretable machine learning (ML) workflow tailored for investigating the dynamics of algal populations in grass-type lakes, Liangzi lake. Utilizing seven ML methods and incorporating the covariance matrix adaptation evolution strategy (CMA-ES), we predict algal density across three distinct time periods, resulting in the construction of a total of 30 ML models. The CMA-ES-CatBoost model consistently demonstrates superior predictive accuracy and generalization capability across these periods. Through the collective validation of various interpretable tools, we identify water temperature and permanganate index as the two most critical water quality parameters (WQIs) influencing algal density in Liangzi Lake. Additionally, we quantify the independent and interactive effects of WQIs on algal density, pinpointing key thresholds and trends. Furthermore, we determine the minimum combination of WQIs that achieves near-optimal predictive performance, striking a balance between accuracy and cost-effectiveness. These findings offer a scientific and economically efficient foundation for governmental agencies to formulate strategies for water quality management and sustainable development.
Collapse
Affiliation(s)
- Hao Cui
- School of Geoscience and Technology, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yiwen Tao
- School of Mathematics and Statistics, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Jian Li
- School of Geoscience and Technology, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Jinhui Zhang
- School of Mathematics and Information Science, Zhongyuan University of Technology, Zhengzhou, 450007, Henan, China
| | - Hui Xiao
- Department of Economics, Saint Mary's University, Halifax, B3H 3C3, Nova Scotia, Canada
| | - Russell Milne
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, T6G 2G1, Alberta, Canada
| |
Collapse
|
12
|
Duan L, Yun Q, Jiang G, Teng D, Zhou G, Cao Y. A review of chloride ions removal from high chloride industrial wastewater: Sources, hazards, and mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120184. [PMID: 38310791 DOI: 10.1016/j.jenvman.2024.120184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/23/2023] [Accepted: 01/20/2024] [Indexed: 02/06/2024]
Abstract
To reduce metal pipe corrosion, improve product quality, and meet zero liquid discharge (ZLD) criteria, managing chloride ion concentrations in industrial wastewaters from metallurgical and chemical sectors has become increasingly important. This review provides detailed information on the sources, concentration levels, and deleterious effects of chloride ions in representative industrial wastewaters, and also summarizes and discusses various chloride ion removal techniques, including precipitation, ion exchange, physical separation, and advanced oxidation (AOPs). Among these, AOPs are particularly promising due to their ability to couple with other technologies and the diversity of their auxiliary technologies. The development of dechlorination electrode materials by electro-adsorption (CDI) can be inspired by the electrode materials used in chloride ion battery (CIB). This review also provides insights into exploring the effective combination of multiple chloride removal mechanisms, as well as the development of environmentally friendly composite materials. This review provides a theoretical basis and development direction for the effective treatment and secondary utilization of chlorine-containing industrial wastewater in the future.
Collapse
Affiliation(s)
- Lizhe Duan
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Qinghang Yun
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Gaoliang Jiang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Daoguang Teng
- The Key Lab of Critical Metals Minerals Supernormal Enrichment and Extraction, Ministry of Education, Zhengzhou, 450001, China; Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Guoli Zhou
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, Henan, China; The Key Lab of Critical Metals Minerals Supernormal Enrichment and Extraction, Ministry of Education, Zhengzhou, 450001, China.
| | - Yijun Cao
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, Henan, China; The Key Lab of Critical Metals Minerals Supernormal Enrichment and Extraction, Ministry of Education, Zhengzhou, 450001, China; Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
13
|
Dong Y, Sun Y, Liu Z, Du Z, Wang J. Predicting dissolved oxygen level using Young's double-slit experiment optimizer-based weighting model. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119807. [PMID: 38100864 DOI: 10.1016/j.jenvman.2023.119807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
Accurate prediction of the dissolved oxygen level (DOL) is important for enhancing environmental conditions and facilitating water resource management. However, the irregularity and volatility inherent in DOL pose significant challenges to achieving precise forecasts. A single model usually suffers from low prediction accuracy, narrow application range, and difficult data acquisition. This study proposes a new weighted model that avoids these problems, which could increase the prediction accuracy of the DOL. The weighting constructs of the proposed model (PWM) included eight neural networks and one statistical method and utilized Young's double-slit experimental optimizer as an intelligent weighting tool. To evaluate the effectiveness of PWM, simulations were conducted using real-world data acquired from the Tualatin River Basin in Oregon, United States. Empirical findings unequivocally demonstrated that PWM outperforms both the statistical model and the individual machine learning models, and has the lowest mean absolute percentage error among all the weighted models. Based on two real datasets, the PWM can averagely obtain the mean absolute percentage errors of 1.0216%, 1.4630%, and 1.7087% for one-, two-, and three-step predictions, respectively. This study shows that the PWM can effectively integrate the distinctive merits of deep learning methods, neural networks, and statistical models, thereby increasing forecasting accuracy and providing indispensable technical support for the sustainable development of regional water environments.
Collapse
Affiliation(s)
- Ying Dong
- School of Statistics, Dongbei University of Finance and Economics, No. 217, Jianshan Road, Shahekou District, Dalian, Liaoning Province, 116025, China.
| | - Yuhuan Sun
- School of Statistics, Dongbei University of Finance and Economics, No. 217, Jianshan Road, Shahekou District, Dalian, Liaoning Province, 116025, China.
| | - Zhenkun Liu
- School of Management, Nanjing University of Posts and Telecommunications, No 66 Xinmofan Road, Gulou District, Nanjing, Jiangsu Province, 210023, China.
| | - Zhiyuan Du
- Department of Statistics, Virginia Polytechnic Institute and State University, 250 Drillfield Drive, Blacksburg, VA, 24060, United States.
| | - Jianzhou Wang
- Institute of Systems Engineering, Macau University of Science and Technology, Taipa Street, Macao, 999078, China.
| |
Collapse
|
14
|
Pundir A, Thakur MS, Radha, Goel B, Prakash S, Kumari N, Sharma N, Parameswari E, Senapathy M, Kumar S, Dhumal S, Deshmukh SV, Lorenzo JM, Kumar M. Innovations in textile wastewater management: a review of zero liquid discharge technology. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:12597-12616. [PMID: 38236573 DOI: 10.1007/s11356-024-31827-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/29/2023] [Indexed: 01/19/2024]
Abstract
Zero liquid discharge (ZLD) technology emerges as a transformative solution for sustainable wastewater management in the textile industry, emphasizing water recycling and discharge minimization. This review comprehensively explores ZLD's pivotal role in reshaping wastewater management practices within the textile sector. With a primary focus on water recycling and minimized discharge, the review thoroughly examines the economic and environmental dimensions of ZLD. Additionally, it includes a comparative cost analysis against conventional wastewater treatment methods and offers a comprehensive outlook on the global ZLD market. Presently valued at US $0.71 billion, the market is anticipated to reach US $1.76 billion by 2026, reflecting a robust annual growth rate of 12.6%. Despite ZLD's efficiency in wastewater recovery, environmental challenges, such as heightened greenhouse gas emissions, increased carbon footprint, elevated energy consumption, and chemical usage, are discussed. Methodologies employed in this review involve an extensive analysis of existing literature, empirical data, and case studies on ZLD implementation in the textile industry worldwide. While acknowledging existing adoption barriers, the review underscores ZLD's potential to guide the textile industry toward a more sustainable and environmentally responsible future.
Collapse
Affiliation(s)
- Ashok Pundir
- School of Core Engineering, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Mohindra Singh Thakur
- School of Core Engineering, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Bhaskar Goel
- School of Core Engineering, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Suraj Prakash
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Neeraj Kumari
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Niharika Sharma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Ettiyagounder Parameswari
- Nammazhvar Organic Farming Research Centre, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Marisennayya Senapathy
- Department of Rural Development and Agricultural Extension, College of Agriculture, Wolaita Sodo University, Wolaita Sodo, Ethiopia
| | - Sunil Kumar
- Indian Institute of Farming Systems Research, Modipuram, 250110, India
| | - Sangram Dhumal
- Division of Horticulture, RCSM College of Agriculture, Kolhapur, 416004, India
| | - Sheetal Vishal Deshmukh
- Bharati Vidyapeeth (Deemed to be) University, Yashwantrao Mohite Institute of Management, Karad, India
| | - Jose Manuel Lorenzo
- Centro Tecnológico de La Carne de Galicia, Parque Tecnológico de Galicia, Avd. Galicia No 4, San Cibrao das Viñas, 32900, Ourense, Spain
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, 400019, India.
| |
Collapse
|
15
|
Abdelfattah I, El-Shamy AM. Review on the escalating imperative of zero liquid discharge (ZLD) technology for sustainable water management and environmental resilience. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119614. [PMID: 38043309 DOI: 10.1016/j.jenvman.2023.119614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/16/2023] [Accepted: 11/11/2023] [Indexed: 12/05/2023]
Abstract
This comprehensive review delves into the forefront of wastewater treatment technology, with a specific focus on the revolutionary concept of Zero Liquid Discharge (ZLD). (ZLD), underpinned by a sustainable ethos, aspires to accomplish total water reclamation, constituting a pivotal response to pressing environmental issues. The paper furnishes a historical panorama of (ZLD), elucidating its motivating factors and inherent merits. It navigates a spectrum of (ZLD) technologies encompassing thermal methodologies, (ZLD) synergized with Reverse Osmosis (RO), High-Efficiency Reverse Osmosis (HERO), Membrane Distillation (MD), Forward Osmosis (FO), and Electrodialysis Reversal (EDR). Moreover, the study casts a global purview over the deployment status of (ZLD) systems in pursuit of resource recovery, accentuating nations such as the United States, China, India, assorted European Union members, Canada, and Egypt. Meticulous case studies take center stage, underscoring intricate scenarios involving heavily contaminated effluents from challenging sectors including tanneries, textile mills, petroleum refineries, and paper mills. The report culminates by distilling sagacious observations and recommendations, emanating from a collaborative brainstorming endeavor. This compendium embarks on an enlightening journey through the evolution of wastewater treatment, (ZLD)'s ascendancy, and its transformative potential in recalibrating water management paradigms while harmonizing industrial progress with environmental stewardship.
Collapse
Affiliation(s)
- I Abdelfattah
- Water Pollution Research Department, National Research Centre, El-Bohouth St. 33, Dokki, P.O. 12622, Giza, Egypt Giza, Egypt.
| | - A M El-Shamy
- Physical Chemistry Department, Electrochemistry and Corrosion Lab., National Research Centre, El-Bohouth St. 33, Dokki, P.O. 12622, Giza, Egypt Giza, Egypt.
| |
Collapse
|
16
|
Sekudewicz I, Syczewski M, Rohovec J, Matoušková Š, Kowalewska U, Blukis R, Geibert W, Stimac I, Gąsiorowski M. Geochemical behavior of heavy metals and radionuclides in a pit lake affected by acid mine drainage (AMD) in the Muskau Arch (Poland). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168245. [PMID: 37918728 DOI: 10.1016/j.scitotenv.2023.168245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/03/2023] [Accepted: 10/29/2023] [Indexed: 11/04/2023]
Abstract
Pit lakes in the 'anthropogenic lake district' in the Muskau Arch (western Poland; central Europe) are strongly affected by acid mine drainage (AMD). The studied acidic pit lake, ŁK-61 (pH <3), is also exposed to floods due to its location in the flood hazard area, which may significantly influence the geochemical behavior of elements. The elemental compositions of water and lake sediment samples were measured with ICP-OES and ICP-MS. The sediment profile was also examined for 137Cs and 210Po activity concentrations using gamma and alpha spectrometry, respectively. Grain size distribution, mineralogical composition, diatoms, and organic matter content in the collected core were also determined. The key factors responsible for the distribution of selected heavy metals (e.g., Cu, Ni, Pb, Zn) and radioisotopes (137Cs and 210Po) in the bottom sediments of Lake ŁK-61 are their coprecipitation/precipitation with Fe and Al secondary minerals and their sorption onto authigenic and allogenic phases. These processes are likely driven by the lake tributary, which is an important source of dissolved elements. The data also showed that the physiochemical parameters of Lake ŁK-61 water changed during an episodic depositional event, i.e., the flood of the Nysa Łużycka River in the summer of 2010. The flood caused an increase in the water pH, as interpreted from the subfossil diatom studies. The down-core profiles of the studied heavy metal and radionuclide (HMRs) contents were probably affected by this depositional event, which prevented a detailed age determination of the collected lake sediments with 137Cs and 210Pb dating methods. Geochemical modeling indicates that the flood-related shift in the physicochemical parameters of the lake water could have caused the scavenging of dissolved elements by the precipitation of fresh secondary minerals. Moreover, particles contaminated with HMRs have also possibly been delivered by the river, along with the nutrients (e.g., phosphorus and nitrogen).
Collapse
Affiliation(s)
- Ilona Sekudewicz
- Institute of Geological Sciences, Polish Academy of Sciences, 00818 Warszawa, Twarda 51/55, Poland.
| | - Marcin Syczewski
- Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
| | - Jan Rohovec
- Institute of Geology, Czech Academy of Sciences, 16500 Praha, Rozvojová 269, Czech Republic
| | - Šárka Matoušková
- Institute of Geology, Czech Academy of Sciences, 16500 Praha, Rozvojová 269, Czech Republic
| | - Urszula Kowalewska
- Institute of Geological Sciences, Polish Academy of Sciences, 00818 Warszawa, Twarda 51/55, Poland
| | - Roberts Blukis
- Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany; Leibniz-Institut für Kristallzüchtung, Max-Born-Str. 2, 12489 Berlin, Germany
| | - Walter Geibert
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Ingrid Stimac
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Michał Gąsiorowski
- Institute of Geological Sciences, Polish Academy of Sciences, 00818 Warszawa, Twarda 51/55, Poland
| |
Collapse
|
17
|
Du Z, Song J, Du S, Yang Y, Wu J, Wu J. Numerical modeling of geological sequestration of brine wastewater due to coal mining in the Ordos Basin, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168580. [PMID: 37967637 DOI: 10.1016/j.scitotenv.2023.168580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/08/2023] [Accepted: 11/12/2023] [Indexed: 11/17/2023]
Abstract
The coal resources play an indispensable role in the development of heavy industry in China, and coal mining activity leads to brine wastewater drainage, causing major risks for the aquatic environmental system. Thus, the effective and economic treatment of coal mine wastewater is vital to mitigate the environmental burdens, and geological sequestration by deep-well injection is a promising treatment technique. This study elucidates the physical and geochemical processes of coal mine wastewater transport in deep reservoirs and proposes an optimized injection scheme to satisfy environmental and economic benefits simultaneously in the Ordos Basin, China. First, a variable density and variable parameter groundwater reactive transport model is constructed to simulate the long-term process of deep-well injection for coal mine wastewater treatment. Then, the environmental metrics, i.e., the percentage of permeability reduction, the total mass and spatial second moment of the wastewater plume, and the economic metric defined as achieving a higher concentration at a higher injection rate are proposed to evaluate the performance of the injection scheme. The simulation results show that the secondary mineral anhydrite dominates the reduction of reservoir permeability due to the precipitation reactions with SO42- in the brine wastewater, and the permeability in the reaction zone decreases by 0.66 % ~ 1.26 % after 10 years in the basic scenario. Moreover, higher concentrations negatively affect reservoir permeability and increase total dissolved solids, while higher injection rates decrease reservoir permeability and increase the brine wastewater plume. The study also identifies promising schemes that can achieve an optimal trade-off between the conflicting metrics. Based on the economic and environmental benefits demanded in this study, an injection scenario with a concentration of C4 and an injection volume of 800 m3/d is recommended to maximize environmental benefits. Overall, this numerical study offers significant implications for designing an economically and environmentally sustainable treatment injection scheme for coal mining wastewater drainage.
Collapse
Affiliation(s)
- Zhuoran Du
- Key Laboratory of Surficial Geochemistry, Ministry of Education, Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Jian Song
- School of Earth Sciences and Engineering, Hohai University, Nanjing 211100, China
| | - Song Du
- General Prospecting Institute of China National Administration of Coal Geology, Beijing 100039, China
| | - Yun Yang
- School of Earth Sciences and Engineering, Hohai University, Nanjing 211100, China
| | - Jianfeng Wu
- Key Laboratory of Surficial Geochemistry, Ministry of Education, Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China.
| | - Jichun Wu
- Key Laboratory of Surficial Geochemistry, Ministry of Education, Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
18
|
Xue SM, Jiang SQ, Li RZ, Jiao YY, Kang Q, Zhao LY, Li ZH, Chen M. The decomposition of algae has a greater impact on heavy metal transformation in freshwater lake sediments than that of macrophytes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167752. [PMID: 37838060 DOI: 10.1016/j.scitotenv.2023.167752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/13/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
Heavy metal (HM) pollution is a major concern in freshwater ecosystem management. The different types of endogenous organic matter and the way their decomposition affects HM transformation in freshwater lakes is not well understood. An ex situ mesocosm study was conducted to compare HM transformation in sediments during anaerobic decomposition of cyanobacterial bloom biomass (CBB) and submerged cyanobacterial vegetation in Lake Taihu, known as Potamogeton malaianus (PM). Microbial community structures were examined through Illumina sequencing of 16S rDNA. Results indicate that Zn had a remarkably higher amount of potential mobile fraction than other heavy metals (Cr, Pb, Cu, Ni, and Cd) detected in sediments, especially in sediments collected from CBB-dominated areas (approximately 150 mg kg-1). CBB decomposition has caused a significant increase in exchangeable Zn content in sediments and a decrease in reducible Zn that was three times greater than PM decomposition. Additionally, oxidizable Zn content declined during CBB decomposition but increased during PM decomposition. Furthermore, the relative abundance of the main fermentative bacteria and some sulfate-reducing bacteria genera (e.g., Desulfomicrobium) were significantly associated with the HM content of exchangeable and reducible fractions during CBB decomposition. Overall, the findings indicate that Zn is more susceptible to endogenous organic matter decomposition than other metals in freshwater lakes, and the impacts of CBB decomposition on the transformation of heavy metals in sediment are greater than that of submerged macrophyte decomposition.
Collapse
Affiliation(s)
- Si-Min Xue
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Sciences, Hubei University, Wuhan 430062, China
| | - Shu-Qi Jiang
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Sciences, Hubei University, Wuhan 430062, China
| | - Rui-Ze Li
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Sciences, Hubei University, Wuhan 430062, China
| | - Yi-Ying Jiao
- Hubei Key Laboratory of Ecological Restoration for River-Lakes and Algal Utilization, College of Resources and Environmental Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Qun Kang
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Sciences, Hubei University, Wuhan 430062, China
| | - Li-Ya Zhao
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Sciences, Hubei University, Wuhan 430062, China
| | - Zhao-Hua Li
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Sciences, Hubei University, Wuhan 430062, China
| | - Mo Chen
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Sciences, Hubei University, Wuhan 430062, China.
| |
Collapse
|
19
|
Khan NA, Singh S, Ramamurthy PC, Aljundi IH. Exploring nutrient removal mechanisms in column-type SBR with simultaneous nitrification and denitrification. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119485. [PMID: 37976649 DOI: 10.1016/j.jenvman.2023.119485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/20/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023]
Abstract
A comprehensive investigation utilized a column-type sequencing batch reactor (SBR) to efficiently remove nutrients throughout various phases of its operational cycle by forming granules. This study assessed the influence and mechanisms of a simultaneous nitrification and denitrification (SND) system employing a column-type sequential batch reactor (SBR). The primary focus was on elucidating the functional groups involved in nitrogen transformation and removal within the extracellular polymeric substances (EPS). The research findings demonstrate the superior performance of the SBR process compared to the control group. It achieved an impressive SND efficiency of 69%, resulting in a remarkable 66% total nitrogen removal. Furthermore, a detailed analysis unveiled that the SBR process had a beneficial impact on the composition and properties of EPS. This impact was observed through increased EPS content and enhanced capacity to transport, convert, and retain nitrogen effectively. Additionally, after initial acclimatization, the SBR process showed its effectiveness in removing nutrients (88-98%) and COD (93%) from the generated wastewater within a hydraulic retention time (HRT) of 6 h. A statistically significant difference between the treatments for the investigated mixing ratios was found by univariate analysis of variance (ANOVA). Machine learning (CatBoost model) was employed to understand each parameter's relationship and predict the outcomes in measurable quantity. The findings of the SBR trials showed that the concentration of generated wastewater and the HRT impacted the treatment efficiency. However, the effluent may still need other physicochemical processes, such as membrane filtering, coagulation, electrocoagulation, etc., as post-treatment options, even though COD, nutrients, and turbidity have been entirely or significantly effectively removed. Overall, this work offers insightful information on the critical function of the SBR bacterial community in promoting SND.
Collapse
Affiliation(s)
- Nadeem A Khan
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Saudi Arabia.
| | - Simranjeet Singh
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 560012, India
| | - Praveen C Ramamurthy
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 560012, India
| | - Isam H Aljundi
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Saudi Arabia; Chemical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| |
Collapse
|
20
|
Kim DH, Alayande AB, Lee JM, Jang JH, Jo SM, Jae MR, Yang E, Chae KJ. Emerging marine environmental pollution and ecosystem disturbance in ship hull cleaning for biofouling removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167459. [PMID: 37788783 DOI: 10.1016/j.scitotenv.2023.167459] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 10/05/2023]
Abstract
Numerous marine sessile organisms adhere to ship hulls and increase the sailing resistance. Antibiofouling paints are employed to maintain the ship performance. However, the chemicals employed for antifouling purposes are becoming increasingly diverse, lacking clear toxicological information. Particularly, the imperfect antibiofouling efficacies of these chemicals necessitate periodic hull cleaning to dislodge attached marine organisms. This hull cleaning process inadvertently releases a plethora of hazardous substances, including antibiofouling chemicals, heavy metals, and cleaning agents, alongside exotic microorganisms. This results in profound marine pollution and ecosystem disruption. Specifically, these exotic microorganisms pose a novel ecological threat in coastal waters. However, despite the gravity of ship hull cleaning-related issues, comprehensive investigations have been lacking, and international regulatory measures are gaining attention recently. Aiming to provide solutions to the emerging challenges associated with hull cleaning, this review endeavors to comprehensively address the biofouling organisms and their mechanisms, potential antifouling paint hazards, and effective hull cleaning methodologies.
Collapse
Affiliation(s)
- Dong-Ho Kim
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Abayomi Babatunde Alayande
- Department of Marine Environmental Engineering, Gyeongsang National University, Gyeongsangnam-do 53064, Republic of Korea; Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29625, United States
| | - Jung-Min Lee
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Jin-Hyeok Jang
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Su-Min Jo
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Mi-Ri Jae
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Euntae Yang
- Department of Marine Environmental Engineering, Gyeongsang National University, Gyeongsangnam-do 53064, Republic of Korea.
| | - Kyu-Jung Chae
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea.
| |
Collapse
|
21
|
Li Z, Yu L, Ma H, Chen J, Meng J, Wang Y, Liu Y, Song Q, Dong Z, Miao M, Li B, Zhi C. An efficient interfacial solar evaporator featuring a hierarchical porous structure entirely derived from waste cotton. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166212. [PMID: 37567279 DOI: 10.1016/j.scitotenv.2023.166212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/23/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Interfacial solar evaporators are widely used to purify water. However, photothermal materials commonly constituting most interfacial solar evaporators remain expensive; additionally, the inherent structure of the evaporators limits their performance. Furthermore, the large amount of waste cotton produced by the textile industry is an environmental threat. To address these issues, we propose an interfacial solar evaporator, H-CA-CS, with a hierarchical porous structure. This evaporator is made entirely of waste cotton and uses carbon microspheres (CMS) and cellulose aerogel (CA) as photothermal and substrate materials, respectively. Additionally, its photothermal layer (CS layer) has large pores and a high porosity, which promote light absorption and timely vapor escape. In contrast, the water transport layer (CA layer) has small pores, providing a robust capillary effect for water transport. Combined with the outstanding light absorption properties of CMS, H-CA-CS exhibited superior overall performance. We found that H-CA-CS has an excellent evaporation rate (1.68 kg m-2 h-1) and an efficiency of 90.6 % under one solar illumination (1 kW m-2), which are superior to those of many waste-based solar evaporators. Moreover, H-CA-CS maintained a mean evaporation rate of 1.61 kg m-2 h-1, ensuring sustainable evaporation performance under long-term scenarios. Additionally, H-CA-CS can be used to purify seawater and various types of wastewater with removal efficiencies exceeding 99 %. In conclusion, this study proposes a method for efficiently using waste cotton to purify water and provides novel ideas for the high-value use of other waste fibers to further mitigate ongoing environmental degradation.
Collapse
Affiliation(s)
- Zhenzhen Li
- Key Laboratory of Functional Textile Material and Product, Ministry of Education, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China; School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
| | - Lingjie Yu
- Key Laboratory of Functional Textile Material and Product, Ministry of Education, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China; School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
| | - Haodong Ma
- Key Laboratory of Functional Textile Material and Product, Ministry of Education, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China; School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
| | - Jianglong Chen
- Key Laboratory of Functional Textile Material and Product, Ministry of Education, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China; School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
| | - Jiaguang Meng
- Key Laboratory of Functional Textile Material and Product, Ministry of Education, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China; School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
| | - Yongzhen Wang
- Key Laboratory of Functional Textile Material and Product, Ministry of Education, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China; School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
| | - Yaming Liu
- Key Laboratory of Functional Textile Material and Product, Ministry of Education, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China; School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
| | - Qingwen Song
- Key Laboratory of Functional Textile Material and Product, Ministry of Education, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China; School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
| | - Zijing Dong
- Key Laboratory of Functional Textile Material and Product, Ministry of Education, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China; School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
| | - Menghe Miao
- Department of Mechanical Engineering, The University of Melbourne, Grattan Street, Parkville, Victoria 3010, Australia
| | - Bo Li
- Key Laboratory of Functional Textile Material and Product, Ministry of Education, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China; School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
| | - Chao Zhi
- Key Laboratory of Functional Textile Material and Product, Ministry of Education, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China; School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China.
| |
Collapse
|
22
|
Wu H, Li A, Gao S, Xing Z, Zhao P. The performance, mechanism and greenhouse gas emission potential of nitrogen removal technology for low carbon source wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166491. [PMID: 37633391 DOI: 10.1016/j.scitotenv.2023.166491] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/24/2023] [Accepted: 08/20/2023] [Indexed: 08/28/2023]
Abstract
Excessive nitrogen can lead to eutrophication of water bodies. However, the removal of nitrogen from low carbon source wastewater has always been challenging due to the limited availability of carbon sources as electron donors. Biological nitrogen removal technology can be classified into three categories: heterotrophic biological technology (HBT) that utilizes organic matter as electron donors, autotrophic biological technology (ABT) that relies on inorganic electrons as electron donors, and heterotrophic-autotrophic coupling technology (CBT) that combines multiple electron donors. This work reviews the research progress, microbial mechanism, greenhouse gas emission potential, and challenges of the three technologies. In summary, compared to HBT and ABT, CBT shows greater application potential, although pilot-scale implementation is yet to be achieved. The composition of nitrogen removal microorganisms is different, mainly driven by electron donors. ABT and CBT exhibit the lowest potential for greenhouse gas emissions compared to HBT. N2O, CH4, and CO2 emissions can be controlled by optimizing conditions and adding constructed wetlands. Furthermore, these technologies need further improvement to meet increasingly stringent emission standards and address emerging pollutants. Common measures include bioaugmentation in HBT, the development of novel materials to promote mass transfer efficiency of ABT, and the construction of BES-enhanced multi-electron donor systems to achieve pollutant prevention and removal. This work serves as a valuable reference for the development of clean and sustainable low carbon source wastewater treatment technology, as well as for addressing the challenges posed by global warming.
Collapse
Affiliation(s)
- Heng Wu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Anjie Li
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Sicong Gao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Zhilin Xing
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China.
| | - Piao Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.
| |
Collapse
|
23
|
Yang X, Tan AJ, Zheng MM, Feng D, Mao K, Yang GL. Physiological response, microbial diversity characterization, and endophytic bacteria isolation of duckweed under cadmium stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166056. [PMID: 37558073 DOI: 10.1016/j.scitotenv.2023.166056] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/17/2023] [Accepted: 08/02/2023] [Indexed: 08/11/2023]
Abstract
Duckweed is a cadmium (Cd) hyperaccumulator. However, its enrichment characteristics and physiological responses to Cd have not been systematically studied. The physiological responses, enrichment characteristics, diversity of endophytic bacterial communities, and isolation of Cd-resistant endophytes in duckweed (Lemna minor 0014) were studied for different durations and Cd concentrations. The results indicated that peroxidase (POD) and catalase (CAT) activities decreased while superoxide dismutase activity first increased and then decreased with increasing Cd stress duration. POD activities, CAT activities, and O2- increased as Cd concentrations increased. Malondialdehyde content and Cd accumulation in duckweed increased with increasing concentrations and time. This endophytic diversity study identified 488 operational taxonomic units, with the dominant groups being Proteobacteria, Firmicutes, and Actinobacteria. Paenibacillus sp. Y11, a strain tolerant to high concentrations of Cd and capable of significantly promoting duckweed growth, was isolated from the plant. Our study revealed the effects of heavy metals on aquatic plants, providing a theoretical basis for the application of duckweed in water pollution.
Collapse
Affiliation(s)
- Xiao Yang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Ai-Juan Tan
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Meng-Meng Zheng
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Dan Feng
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Kang Mao
- Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, Guizhou Province, China
| | - Gui-Li Yang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China; Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, Guizhou Province, China.
| |
Collapse
|
24
|
Li Z, Wang T, Yang X, Wen X, Chen W, He Y, Yu Z, Zhang C. Microbial community function and methylmercury production in oxygen-limited paddy soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115585. [PMID: 37856980 DOI: 10.1016/j.ecoenv.2023.115585] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023]
Abstract
Methylmercury is a neurotoxic compound that can enter rice fields through rainfall or irrigation with contaminated wastewater, and then contaminate the human food chain through the consumption of rice. Flooded paddy soil has a porous structure that facilitates air exchange with the atmosphere, but the presence of trace amounts of oxygen in flooded rice field soil and its impact on microbial-mediated formation of methylmercury is still unclear. We compared the microbial communities and their functions in oxygen-depleted and oxygen-limited paddy soil. We discovered that oxygen-limited paddy soil had higher methylmercury concentration, which was strongly correlated with soil properties and methylation potential. Compared with oxygen-depleted soil, oxygen-limited soil altered the microbial composition based on 16 S rRNA sequences, but not based on hgcA sequences. Moreover, oxygen-limited soil enhanced microbial activity significantly, increasing the abundance of more than half of the KEGG pathways, especially the metabolic pathways that might be involved in methylation. Our study unveils how microbial communities influence methylmercury formation in oxygen-limited paddy soil. ENVIRONMENTAL IMPLICATIONS: This study examined how low oxygen input affects microbial-induced MeHg formation in anaerobic paddy soil. We found that oxygen-limited soil produced more MeHg than oxygen-depleted soil. Oxygen input altered the microbial community structure of 16 S rRNA sequencing in anaerobic paddy soil, but had little impact on the hgcA sequencing community structure. Microbial activity and metabolic functions related to MeHg formation were also higher in oxygen-limited paddy soil. We suggest that oxygen may not be a limiting factor for Hg methylators, and that insufficient oxygen input in flooded paddy soil increases the risk of human exposure to MeHg from rice consumption.
Collapse
Affiliation(s)
- Zihao Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Tantan Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Xu Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Xin Wen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Wenhao Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yubo He
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Zhigang Yu
- Australian Center for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Chang Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| |
Collapse
|
25
|
Lopez M, Cornaglia LM, Gutierrez LB, Bosko ML. Electrodialysis as a potential technology for 4-nitrophenol abatement from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:102198-102211. [PMID: 37665445 DOI: 10.1007/s11356-023-29510-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023]
Abstract
4-Nitrophenol is a widely used emerging pollutant in various industries, including the production of agrochemicals, drugs, and synthetic dyes. Due to its potential environmental harmful effects, there is a need to study its reuse and removal from wastewater. This study used electrodialysis technology to separate 4-nitrophenol ions using a four-compartment stack. The effects of supporting electrolyte concentration, pH, voltages, and current density on the performance of electrodialysis for separating 4-nitrophenol were investigated. A high extraction percentage of 77% was achieved with low energy consumption (107 kWh kg-1) when high 4-nitrophenol flows and transport numbers were reached.
Collapse
Affiliation(s)
- Manuel Lopez
- Instituto de Investigaciones en Catálisis y Petroquímica, Universidad Nacional del Litoral, CONICET, Facultad de Ingeniería Química, Santiago del Estero 2829, Santa Fe, S3000AOM, Argentina
| | - Laura María Cornaglia
- Instituto de Investigaciones en Catálisis y Petroquímica, Universidad Nacional del Litoral, CONICET, Facultad de Ingeniería Química, Santiago del Estero 2829, Santa Fe, S3000AOM, Argentina
| | - Laura Beatriz Gutierrez
- Instituto de Investigaciones en Catálisis y Petroquímica, Universidad Nacional del Litoral, CONICET, Facultad de Ingeniería Química, Santiago del Estero 2829, Santa Fe, S3000AOM, Argentina
| | - María Laura Bosko
- Instituto de Investigaciones en Catálisis y Petroquímica, Universidad Nacional del Litoral, CONICET, Facultad de Ingeniería Química, Santiago del Estero 2829, Santa Fe, S3000AOM, Argentina.
| |
Collapse
|
26
|
Dib EC, Kraus S, Machado RAF, Alves JLF, Marangoni C. A novel intensified approach for treating produced water from oil extraction using a multi-tube type falling-film distillation column equipped with a biphasic thermosiphon: a promising feasibility study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:95025-95034. [PMID: 37596477 DOI: 10.1007/s11356-023-29387-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
This study has the novel aim of experimentally examining the efficiency of a pilot-scale treatment plant, composed of a multi-tube type falling-film distillation column equipped with a biphasic thermosiphon, for treating a real sample of high-salinity produced water (electrical conductivity of 20,700 μS cm-1). It investigates the influence of operational parameters, including feed temperature and steam chamber temperature of the biphasic thermosiphon, on distillate flow rate and reduction of conductivity. All experimental conditions tested achieved a reduction greater than 98% in terms of electrical conductivity. The production of treated water increased with increasing feed temperature; the flow rate increased from 20.8 L h-1 to 28.2 L h-1 as the feed temperature was increased from 80 °C to 90 °C, when the steam chamber temperature was fixed at 119 °C. Within the temperature range of the steam chamber, the specific energy consumption during the treatment process, with respect to the biphasic thermosiphon, remained practically unchanged between 0.58 kWh L-1 and 0.60 kWh L-1, when the feed temperature was 90 °C. The results proved the potential of the falling-film distillation technology assisted by heat pipes to be a promising proposal for removing salinity from produced water from oil extraction operations.
Collapse
Affiliation(s)
- Eduardo Carpes Dib
- Laboratory of Control and Polymerization Processes, Department of Chemical and Food Engineering (EQA), Federal University of Santa Catarina (UFSC), Campus Reitor João David Ferreira Lima, Florianópolis, SC, 88040-900, Brazil
| | - Samaira Kraus
- Laboratory of Control and Polymerization Processes, Department of Chemical and Food Engineering (EQA), Federal University of Santa Catarina (UFSC), Campus Reitor João David Ferreira Lima, Florianópolis, SC, 88040-900, Brazil
| | - Ricardo Antonio Francisco Machado
- Laboratory of Control and Polymerization Processes, Department of Chemical and Food Engineering (EQA), Federal University of Santa Catarina (UFSC), Campus Reitor João David Ferreira Lima, Florianópolis, SC, 88040-900, Brazil
| | - José Luiz Francisco Alves
- Laboratory of Control and Polymerization Processes, Department of Chemical and Food Engineering (EQA), Federal University of Santa Catarina (UFSC), Campus Reitor João David Ferreira Lima, Florianópolis, SC, 88040-900, Brazil.
| | - Cintia Marangoni
- Laboratory of Control and Polymerization Processes, Department of Chemical and Food Engineering (EQA), Federal University of Santa Catarina (UFSC), Campus Reitor João David Ferreira Lima, Florianópolis, SC, 88040-900, Brazil
| |
Collapse
|
27
|
Malmir T, Héroux M, Lagos D, Eicker U. Assessment of landfill gas storage and application regarding energy management: A case study in the province of Quebec, Canada. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 171:155-162. [PMID: 37659122 DOI: 10.1016/j.wasman.2023.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/04/2023]
Abstract
Landfills are extensively applied to dispose of municipal solid wastes in developed and developing countries. Landfill gas generation from biodegradable organic wastes can be collected and converted to energy. When the gas collection system is shutdown, some of this gas can accumulate and be stored inside the landfill. Using the gas storage capacity of the landfill gets a better management of the landfill site because the collected stored gas could transform the landfill into a cheap gas storage system to provide short-term energy and use the energy when needed. This novel study analyzes the stored methane using the gas collection data of a landfill in Quebec province, Canada, for modulating energy production from landfill gas. Twenty episodes of the gas collection system's shutdown and restart as well as different gas flow durations were studied. The results showed that the collected stored methane is accumulated in an average of 2.5 h. Additionally, the collected stored methane represents 10.5% of landfill gas flow. Although the results are site-specific, the methodology of this paper can be used on other landfill sites with similar size and collection conditions. Designing new landfills could take into consideration some elements to enhance gas storage capacity. For instance, designing landfill daily covers with more granular materials and higher porosities can be the next step to enhance the landfill as a gas storage system during shutdowns.
Collapse
Affiliation(s)
- Tahereh Malmir
- Canada Excellence Research Chair Next Generation Cities, Gina Cody School of Engineering and Computer Science, Concordia University, H3G 1M8 Montreal, Canada; Department of Building, Civil and Environmental Engineering, Concordia University, H3G 1M8 Montreal, Canada.
| | - Martin Héroux
- Biothermica Technologies Inc., H2L 1J6 Montreal, Canada.
| | - Daniel Lagos
- Biothermica Technologies Inc., H2L 1J6 Montreal, Canada.
| | - Ursula Eicker
- Canada Excellence Research Chair Next Generation Cities, Gina Cody School of Engineering and Computer Science, Concordia University, H3G 1M8 Montreal, Canada; Department of Building, Civil and Environmental Engineering, Concordia University, H3G 1M8 Montreal, Canada.
| |
Collapse
|
28
|
Kumari P, Upadhyay P, Tripathi KM, Gupta R, Kulshrestha V, Awasthi K. Sulphonated poly(ethersulfone)/carbon nano-onions-based nanocomposite membranes with high ion-conducting channels for salt removal via electrodialysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:87343-87352. [PMID: 37421532 DOI: 10.1007/s11356-023-28570-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/29/2023] [Indexed: 07/10/2023]
Abstract
Herein, we are reporting the carbon nano onions (CNO)-based sulphonated poly(ethersulfone) (SPES) composite membranes by varying CNO content in SPES matrix for water desalination applications. CNOs were cost-effectively synthesized using flaxseed oil as a carbon source in an energy efficient flame pyrolysis process. The physico- and electrochemical properties of nanocomposite membranes were evaluated and compared to pristine SPES. Moreover, the chemical characterisation of composite membranes and CNOs were illustrated using techniques such as nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscope (FE-SEM), thermogravimetric analysis (TGA) and universal tensile machine (UTM). In the series of nanocomposite membranes, SPES-0.25 composite membrane displayed the highest water uptake (WU), ion exchange membrane (IEC) and ionic conductivity (IC) values that were enhanced by 9.25%, ~ 44.78% and ~ 6.10%, respectively, compared to pristine SPES membrane. The electrodialytic performance can be achieved maximum when membranes possess low power consumption (PC) and high energy efficiency (Ee). Therefore, the value of Ee and Pc for SPES-0.25 membrane has been determined to be 99.01 ± 0.97% and 0.92 ± 0.01 kWh kg-1, which are 1.12 and 1.11 times higher than the pristine SPES membrane. Hence, integrating CNO nanoparticles into the SPES matrix enhanced the ion-conducting channels.
Collapse
Affiliation(s)
- Poonam Kumari
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Rajasthan, 302017, India
| | - Prashant Upadhyay
- CSIR-Central Salt and Marine Chemical Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, 364002, India
| | - Kumud Malika Tripathi
- Department of Chemistry, Indian Institute of Petroleum and Energy, Vishakhapatnam, Andhra Pradesh, 530003, India
| | - Ragini Gupta
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Rajasthan, 302017, India
- Materials Research Centre, Malaviya National Institute of Technology Jaipur, Rajasthan, 302017, India
| | - Vaibhav Kulshrestha
- CSIR-Central Salt and Marine Chemical Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, 364002, India
| | - Kamlendra Awasthi
- Department of Physics, Malaviya National Institute of Technology Jaipur, Rajasthan, 302017, India.
| |
Collapse
|
29
|
Ebrahimi E, Safari H, Rezaee M, Rezaei A, Abdollahi H. An environmentally friendly method for extraction of cobalt and molybdenum from spent catalysts using deep eutectic solvents (DESs). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:90243-90255. [PMID: 37016257 DOI: 10.1007/s11356-023-26806-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
There has been a substantially increasing demand for energy critical elements (ECEs) in recent years as energy-related technology has advanced rapidly. Spent catalysts are known as potential sources of ECCs such as Ni, Co, Mo, W, V, and rare earth elements. This study developed a novel environmentally friendly process for recovering cobalt and molybdenum from spent hydroprocessing catalysts using deep eutectic solvents (DESs). DESs based on p-toluenesulfonic acid achieved high metal extraction at 100 °C and a pulp density of 20 g/L for 48 h which 93% of cobalt and 87% of molybdenum were dissolved. FT-IR and H-NMR analyses were conducted to determine whether hydrogen bonds form between p-toluenesulfonic acid-based DES components. Leaching kinetic models were also developed for DES systems. The experimental results were well-matched with the shrinking core models. The leaching controlling step of DES-1 was determined to be the diffusion through the product layer based on kinetic studies, with an activation energy of 22.56 kJ/mol for Co and 29.34 kJ/mol for Mo in DES-1. Similarly, the mixed control reaction with an activation energy of 38.09 kJ/mol for Co and 31.48 kJ/mol for Mo in DES-2 was found to control the leaching kinetic mechanism of the DES-2 sample.
Collapse
Affiliation(s)
- Ehsan Ebrahimi
- School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Hassan Safari
- School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mohammad Rezaee
- School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Ali Rezaei
- School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Hadi Abdollahi
- School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| |
Collapse
|
30
|
Wang R, Li J, Xu C, Xu X, Tang F, Huang M. Integrating reverse osmosis and forward osmosis (RO-FO) for printing and dyeing wastewater treatment: impact of FO on water recovery. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:92495-92506. [PMID: 37491487 DOI: 10.1007/s11356-023-28853-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/14/2023] [Indexed: 07/27/2023]
Abstract
Reverse osmosis (RO) alone has low water recovery efficiency because of membrane fouling and limited operating pressure. In this study, a combined reverse osmosis-forward osmosis (RO-FO) process was used for the first time to improve the water recovery efficiency of secondary effluent in printing and dyeing wastewater. The effects of operating pressure and pH on water recovery and removal efficiency of RO-FO were investigated. The results showed that the optimum conditions were an operating pressure of 1.5 MPa and a feed solution pH of 9.0. Under optimal operating conditions, most of the organic and inorganic substances in the wastewater can be removed, and the rejection of total organic carbon (TOC), Sb, Ca, and K were 98.7, 99.3, 97.0, and 92.7%, respectively. Fluorescence excitation-emission matrices coupled with parallel factor (EEM-PARAFAC) analysis indicated that two components (tryptophan and tyrosine) in the influent were effectively rejected by the hybrid process. The maximum water recovery (Rw, max) could reach 95%, which was higher than the current single RO process (75%). This research provided a feasible strategy to effectively recover water from printing and dyeing wastewater.
Collapse
Affiliation(s)
- Ruizhe Wang
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jun Li
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Chao Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xiaoyang Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Fengchen Tang
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Manhong Huang
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
- Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China.
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
31
|
Siddappa TM, Shivaswamy M, Mahadevappa M. 2D and 3D electrochemical degradation (ECD) of raw cotton industry wastewater (CIWW) using stainless steel and aluminium electrodes. JOURNAL OF WATER AND HEALTH 2023; 21:856-868. [PMID: 37515558 PMCID: wh_2023_009 DOI: 10.2166/wh.2023.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2023]
Abstract
Two-dimensional (2D) and three-dimensional (3D) batch electrochemical degradation (ECD) of raw cotton industry wastewater (CIWW) was adopted using stainless steel (SS) and aluminium (Al) electrodes. ECD as a treatment option was aimed at removing priority quality parameters, viz. chemical oxygen demand (COD), colour, chloride, nitrate, etc. COD removal of 85 and 80% were achieved by using 3D SS and 2D SS electrodes operated at 6 V (0.9 A) for a maximum electrolysis time (ET) of 30 min. Similarly, 76 and 70% COD removal were achieved for 3D Al and 2D Al electrodes, respectively. Simultaneous colour removal in the 2D ECD system using SS and Al electrodes was low by 12 and 11% compared to the 3D ECD system. Water quality parameters, viz. total dissolved solids, chloride, nitrate, phosphates, and sulphate were also removed by 3D (SS and Al) and 2D (SS and Al) electrodes. Higher pollutant removal efficiencies were observed at 30 min ET for 3D SS electrodes compared to 2D SS, 3D Al, and 2D Al. Post-ECD slurry showed good settling characteristics for SS electrodes generating dense and sturdy flocs giving a low sludge volume index values for 2D SS electrodes compared to other electrode options.
Collapse
Affiliation(s)
- Thanushree Mysuru Siddappa
- Department of Environmental Engineering, Sri Jayachamarajendra College of Engineering, Constituent College of JSS Science and Technology University, JSSTI Campus, Mysuru, Karnataka 570006, India E-mail:
| | - Mahesh Shivaswamy
- Department of Environmental Engineering, Sri Jayachamarajendra College of Engineering, Constituent College of JSS Science and Technology University, JSSTI Campus, Mysuru, Karnataka 570006, India
| | - Mahadevaswamy Mahadevappa
- Department of Environmental Engineering, Sri Jayachamarajendra College of Engineering, Constituent College of JSS Science and Technology University, JSSTI Campus, Mysuru, Karnataka 570006, India
| |
Collapse
|
32
|
Opoku P, Song H. Sustainability and affordability of Chinese-funded renewable energy project in sub-Saharan Africa: a hybridized solid oxide fuel cell, temperature sensors, and lithium-based solar system approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:80768-80790. [PMID: 37306880 PMCID: PMC10258784 DOI: 10.1007/s11356-023-27661-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 05/11/2023] [Indexed: 06/13/2023]
Abstract
Renewable energy projects are at the crux of all Chinese-funded investment in sub-Saharan Africa, which accounts for some 56% of all Chinese-led investments globally. However, the prevailing problem is that about 568 million people were still without electricity access in 2019 across urban and rural areas in sub-Saharan Africa, which does not commensurate with the United Nations Sustainable Development Goal (SDG7) of ensuring affordable and clean energy for all. Previous studies have assessed and improved the efficiency of integrated power generation systems often combined on three levels, power plant, solar panel, and fuel cells, and integrated into national grids or off-grid systems for a sustainable supply of power. This study has included a lithium-ion storage system as a key component in a hybridized renewable energy generation system for the first time that has proven to be efficient and investment worthy. The study also examines the operational parameters of Chinese-funded power plant projects in sub-Saharan Africa and their effectiveness in achieving SDG-7. The novelty of this study is evident in the proposed integrated multi-level hybrid technology model of solid oxide fuel cells, temperature point sensors, and lithium batteries powered by a solar system and embedded in thermal power plants as an alternative electrical energy system for domestic and industrial use in sub-Saharan Africa. Performance analysis of the proposed power generation model indicates its complementary capacity of generating additional energy output with thermodynamics energy and exergy efficiencies of 88.2% and 67.0% respectively. The outcome of this study draws the attention of Chinese investors, governments in sub-Saharan African countries, and top industry players to the following: to consider refocusing their energy sector policy initiatives and strategies towards exploring the lithium resource base in Africa, optimizing energy generation cost, recouping optimal profit from their renewable energy technology investments, and making electricity supply clean, sustainable, and affordable for use in sub-Saharan Africa.
Collapse
Affiliation(s)
- Prince Opoku
- School of Economics and Management, Nanjing University of Science and Technology, Nanjing, 210092 China
| | - Huaming Song
- School of Economics and Management, Nanjing University of Science and Technology, Nanjing, 210092 China
| |
Collapse
|
33
|
Syed S, Syed Z, Mahmood P, Haider S, Khan F, Syed MT, Syed S. Application of coupling machine learning techniques and linear Bias scaling for optimizing 10-daily flow simulations, Swat River Basin. WATER PRACTICE & TECHNOLOGY 2023; 18:1343-1356. [DOI: 10.2166/wpt.2023.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Abstract
Accurate hydrological simulations comply with the water (sixth) Sustainable Development Goals (SDGs). The study investigates the utility of ANN and SVR, as well as the post-simulation bias treatment of these simulations at Swat River basin, Pakistan. For this, climate variables were lag adjusted for the first time, then cross-correlated with the flow to identify the most associative delay time. In sensitivity analysis, seven combinations were selected as input with suitable hyperparameters. For SVR, grid search cross-validation determined the optimal set of hyper-parameters, while for ANN, neurons and hidden layers were optimized by trial and error. We ran model by using optimized hyperparameter configurations and input combinations. In comparison to SVRs (Root mean square error (RMSE) 34.2; mean absolute error (MAE) 3.0; CC 0.91) values, respectively, ANN fits the observations better than SVR with (RMSE 11.9; MAE 1.14; CC 0.99). Linear bias-corrected simulations greatly improved ANN performance (RMSE 3.98; MAE 0.625; CC 0.99), while the improvement was slight in the case of SVR (RMSE 35; MAE 0.58; CC 0.92). On seasonal scale, bias-corrected simulations remedy low- and high-flow seasonal discrepancies. Flow duration analysis results reveal deviation at low- and high-flow conditions by models, which were then reconciled by applying bias corrections.
Collapse
Affiliation(s)
- Sibtain Syed
- a Department of IT & CS, Pak-Austria Fachhochschule: Institute of Applied Sciences and Technology, Mang, Haripur, Pakistan
| | - Zain Syed
- b Department of Civil Engineering, National University of Science and Technology (NUST), H-12 Islamabad, Pakistan
| | - Prince Mahmood
- c School of Engineering and Applied sciences, ISRA University (Islamabad campus), Farash town, Islamabad, Pakistan
| | - Sajjad Haider
- b Department of Civil Engineering, National University of Science and Technology (NUST), H-12 Islamabad, Pakistan
| | - Firdos Khan
- d School of Natural Sciences (SNS), National University of Science and Technology (NUST), 44000 Islamabad, Pakistan
| | - Muhammad Talha Syed
- e Department of Space Sciences, Institute of Space Technology, Sector-H, DHA Phase II, Islamabad, Pakistan
| | - Saqlain Syed
- f Department of Electrical Engineering, University of Engineering (UET), Peshawar, Pakistan
| |
Collapse
|
34
|
Jendanklang P, Meksumpun S, Pokavanich T, Ruengsorn C, Kasamesiri P. Distribution and flux assessment of microplastic debris in the middle and lower Chao Phraya River, Thailand. JOURNAL OF WATER AND HEALTH 2023; 21:771-788. [PMID: 37387342 PMCID: wh_2023_013 DOI: 10.2166/wh.2023.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Microplastic (MP) debris is now a global concern. The Chao Phraya is the largest river in Thailand and transports MPs from terrestrial areas to the ocean. MP debris in its water and sediment were measured in March 2021, September 2021, and March 2022 in five provinces along the watercourse. Hydrological data were also collected to estimate the MP riverine flux between provinces. Size, shape, color, and types of MP polymers were observed, with sedimentation data collected for MP content. Results showed that MPs were found at all sample stations, with average abundance in all province water samples ranging from 0.54 ± 0.05 to 1.07 ± 0.28 pieces/L, while in sediment sample, numbers ranged from 183.84 ± 38.76 to 546.18 ± 86.84 pieces/kg dry weight throughout all seasons. Overall contamination and accumulation were similar between provinces but significantly different between seasons. Sizes of MPs in water varied between seasons with MPs in sediment mostly 330-5,000 μm (Kruskal-Wallis, P < 0.05). Sedimentation of MPs was different between seasons (Kruskal-Wallis, P < 0.05). The highest MP flux values discharged from Samut Prakan Province to the inner Gulf of Thailand were 1.83 × 105 and 1.60 × 105 million items/day in September 2021 and March 2022, respectively.
Collapse
Affiliation(s)
- Poratape Jendanklang
- Department of Marine Science, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand E-mail:
| | - Shettapong Meksumpun
- Department of Marine Science, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
| | - Tanuspong Pokavanich
- Department of Marine Science, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
| | - Chakhrit Ruengsorn
- Department of Marine Science, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
| | - Pattira Kasamesiri
- Department of Agricultural Technology (Fisheries), Faculty of Technology, Mahasarakham University, Maha Sarakham, Thailand
| |
Collapse
|
35
|
Entrena-Barbero E, Rebolledo-Leiva R, Vásquez-Ibarra L, Fernández M, Feijoo G, González-García S, Moreira MT. Water-Energy-Food nexus index proposal as a sustainability criterion on dairy farms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162507. [PMID: 36871744 DOI: 10.1016/j.scitotenv.2023.162507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Cow milk is a fundamental nutrients source for the human diet at all stages of life. However, the decline in cow milk consumption over the years has been driven by increased consumer awareness of animal welfare and the environmental burdens associated. In this regard, different initiatives have emerged to mitigate the impacts of livestock farming, but many of them without addressing the multi-perspective view of environmental sustainability. Thus, the Water-Energy-Food (WEF) nexus emerges as a framework to consider the complex synergies among carbon emissions, water demand, energy requirements and food production. In this study, a novel and harmonised WEF nexus approach has been proposed and applied to evaluate a set of 100 dairy farms. For that, the assessment, normalisation, and weighting of three lifecycle indicators such as carbon, water and energy footprints, as well as the milk yield were carried out to obtain a single value, the WEF nexus index (WEFni), which varies from 0 to 100. Results show that the WEF nexus scores obtained vary from 31 to 90, demonstrating large differences among the farms assessed. A cluster ranking was performed to identify those farms with the worst WEF nexus indexes. For this group, consisting of 8 farms with an average WEFni of 39, three improvement actions focused on the feeding, digestive process and wellbeing of the cows were applied to determine the potential reduction in the two main hotspots identified: cow feeding and milk production level. The proposed methodology can establish a roadmap for promoting a more environmentally sustainable food industry, although further studies are still required in the pathway of a standardised WEFni.
Collapse
Affiliation(s)
- Eduardo Entrena-Barbero
- CRETUS, Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain.
| | - Ricardo Rebolledo-Leiva
- CRETUS, Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain.
| | - Leonardo Vásquez-Ibarra
- Doctoral Program in Engineering Systems, Faculty of Engineering, Campus Curicó, Universidad de Talca, Camino a Los Niches, km 1, Curicó, Chile.
| | - Mario Fernández
- Galician Association of Agri-food Cooperatives, 15703 Santiago de Compostela, Spain.
| | - Gumersindo Feijoo
- CRETUS, Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain.
| | - Sara González-García
- CRETUS, Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain.
| | - María Teresa Moreira
- CRETUS, Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain.
| |
Collapse
|
36
|
AlSayed A, Soliman M, ElDyasti A. Mechanistic assessment reveals the significance of HRT and MLSS concentration in balancing carbon diversion and removal in the A-stage process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 334:117527. [PMID: 36801798 DOI: 10.1016/j.jenvman.2023.117527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/05/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Nowadays, the shift toward energy and resource-efficient wastewater treatment plants (WWTPs) has become a necessity rather than a choice. For this purpose, there has been a restored interest in replacing the typical energy and resource-extensive activated sludge process with the two-stage Adsorption/bio-oxidation (A/B) configuration. In the A/B configuration, the role of the A-stage process is to maximize organics diversion to the solids stream and control the following B-stage's influent to allow for the attainment of tangible energy savings. Operating at very short retention times and high loading rates, the influence of the operational conditions on the A-stage process become more tangible than typical activated sludge. Nonetheless, there is very limited understanding of the influence of operational parameters on the A-stage process. Moreover, no studies in the literature have explored the influence of any operational/design parameters on the Alternating Activated Adsorption (AAA) technology which is a novel A-stage variant. Hence, this article mechanistically investigates the independent effect of different operational parameters on the AAA technology. It was inferred that solids retention time (SRT) shall remain below 1 day to allow for energy savings up to 45% and redirecting up to 46% of the influent's COD to the recovery streams. In the meantime, the hydraulic retention time (HRT) can be increased up to 4 h to remove up to 75% of the influent's COD with only 19% decline of the system's COD redirection ability. Moreover, it was observed that the high biomass concentration (above 3000 mg/L) amplified the effect of the sludge poor settleability either due to pin floc settling or high SVI30 which resulted in COD removal below 60%. Meanwhile, the concentration of the extracellular polymeric substances (EPS) was not found to be influenced or to influence process performance. The findings of this study can be employed to formulate an integrative operational approach in which different operational parameters are incorporated to better control the A-stage process and achieve complex objectives.
Collapse
Affiliation(s)
- Ahmed AlSayed
- Department of Civil Engineering, Lassonde School of Engineering, York University, ON, M3J1P3, Canada
| | - Moomen Soliman
- Department of Civil Engineering, Lassonde School of Engineering, York University, ON, M3J1P3, Canada
| | - Ahmed ElDyasti
- Department of Civil Engineering, Lassonde School of Engineering, York University, ON, M3J1P3, Canada.
| |
Collapse
|
37
|
Gauhar SJ, Qurashi AW, Liaqat I, Zafar U, Virk MA, Ara C, Faheem M, Mubin M. Halotolerant bacterial biofilms for desalination and water treatment: a pilot study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27411-5. [PMID: 37171730 DOI: 10.1007/s11356-023-27411-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/30/2023] [Indexed: 05/13/2023]
Abstract
Salinity has a significant impact on the water quality and crop yield. Physical desalination techniques were once thought to be expensive and time-consuming. Among biological techniques, halotolerant bacteria were thought to be the fastest and most effective way to reduce the salt content in brackish saltwater water. In the current study, halotolerant bacterial biofilms were used to desalinate saline water on abiotic substrates (such as sand, pebbles, glass beads, and plastic beads), and studied subsequently for the effects on Zea mays germination. Briefly, salt samples (SLT7 and SLT8) from the Khewra site in Punjab, Pakistan, as well as seawater and sea sand samples (USW1, USW3, USW6, DSW1, DSW4, SS1, and SS3) from Karachi, Sindh, Pakistan's Arabian Sea, were collected. Halotolerant bacteria were isolated and characterized. Crystal violet ring assays and capsule staining were used to estimate extracellular polymeric substance (EPS) and biofilm development, respectively. All halotolerant bacterial strains were spore formers and produced EPS and formed biofilms well. 16S rRNA gene sequencing of the best halotolerant bacteria, USW6, showed the closest (100%) similarity to Bacillus aerius strain G-07 (a novel species) (accession number ON202984). A pilot-scale experiment for desalinating the artificial water (supplemented with 1 M NaCl) using biofilm adhered abiotic beads showed declined level of NaCl from 1 M to 0.00003 M after 15 days in treated water. Also, Zea mays germination was observed in the plants using treated water compared to no growth in the non-treated saline water. Estimations of chlorophyll, total soluble sugar, and protein revealed that plants cultivated using elute collected from a desalinated pilot scale setup contained less chlorophyll (i.e., 5.994 and 116.76). Likewise, plants grown with elute had a total soluble protein and sugar content of 1.45 mg/ml and 1.3 mg/ml, respectively. Overall, in treated water plants, a minor drop in chlorophyll content, a slight increase in total soluble sugar content, and a slight increase in protein content were noted. The study concluded that biofilm-treated desalt water has the potential to significantly reduce the effects of droughts, soil salinization, and economic and environmental issues associated with agricultural drainage. The results specified the application of halotolerant bacteria biofilms (Bacillus aerius, a novel species, USW6) for water desalination to overcome the problem of water scarcity caused by global warming and the increased salinity.
Collapse
Affiliation(s)
- Sadaf Jahan Gauhar
- Department of Biology, Faculty of Basic Sciences, Lahore Garrison University, Lahore, Pakistan
| | - Aisha Waheed Qurashi
- Department of Biology, Faculty of Basic Sciences, Lahore Garrison University, Lahore, Pakistan
| | - Iram Liaqat
- Microbiology Lab, Department of Zoology, Government College University, Lahore, 54000, Pakistan.
| | - Urooj Zafar
- Department of Microbiology, University of Karachi, Karachi, Pakistan
| | - Muhammad Arshad Virk
- CVAS, University of Veterinary and Animal Sciences Lahore, Jhang Campus, Jhang, Pakistan
| | - Chaman Ara
- Department of Zoology, University of the Punjab, Lahore, Pakistan
| | - Mehwish Faheem
- Microbiology Lab, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Muhammad Mubin
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
38
|
Syed N, Feng Y, Fahad R, Huang J, Mahar FK. Carbon‐based composite nanofibers for photocatalytic degradation of methylene blue dye under visible light. POLYM ADVAN TECHNOL 2023. [DOI: 10.1002/pat.6049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Affiliation(s)
- Noureen Syed
- School of Materials Science and Engineering Shaanxi University of Science and Technology Xi'an 710021 People's Republic of China
- Department of Textile Engineering Mehran University of Engineering and Technology Jamshoro 76060 Pakistan
| | - Yongqiang Feng
- School of Materials Science and Engineering Shaanxi University of Science and Technology Xi'an 710021 People's Republic of China
| | - Raja Fahad
- Department of Textile Engineering Mehran University of Engineering and Technology Jamshoro 76060 Pakistan
| | - Jianfeng Huang
- School of Materials Science and Engineering Shaanxi University of Science and Technology Xi'an 710021 People's Republic of China
| | - Faraz Khan Mahar
- Department of Textile Engineering Mehran University of Engineering and Technology Jamshoro 76060 Pakistan
| |
Collapse
|
39
|
Poćwiardowski W. The potential of swimming pool rinsing water for irrigation of green areas: a case study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:57174-57177. [PMID: 36869957 PMCID: PMC10121517 DOI: 10.1007/s11356-023-26126-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
The aim of the research was to check the possibility of using the rinsing water after rinsing the recreational pool filters, cleaned with the rinse water recovery system, for irrigation of green areas. The system consists of the following stages: flocculation, pre-filtration, and ultrafiltration based on filter tubes. The degree of contamination of the rinse waters before and after the treatment process was assessed by means of physicochemical and microbiological tests, and then compared with the permissible parameter values for wastewater discharged into the ground or water. Thanks to the use of flocculation and appropriate ultrafiltration, the high level of total suspended solids and total organic carbon was reduced, which allows for safe discharge of purified water into the environment. Circular economy, wash water, zero waste technologies, water footprint, water recycling.
Collapse
Affiliation(s)
- Wojciech Poćwiardowski
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3, 85-326, Bydgoszcz, Poland.
| |
Collapse
|
40
|
Wang S, Wu X, Xu S, Leng Q, Jin D, Wang P, Dong F, Wu D. Energetic evaluation of phenol wastewater treatment by reverse electrodialysis reactor using different anodes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 329:117089. [PMID: 36565499 DOI: 10.1016/j.jenvman.2022.117089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/17/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Efficient electrode materials are essential to convert salinity gradient energy into oxidative degradation energy and electrical energy by reverse electrodialysis reactor (REDR). In this context, comparative experiments of REDR using different anodes (Ti/IrO2-RuO2, Ti/PbO2 and Ti/Ti4O7) were conducted. The effects of output current and electrode rinse solution (ERS) flowrate on mineralization efficiency and energy output were discussed. Results demonstrated that the COD removal rate(ηCOD) rose almost linearly with output current and ERS flowrate when using Ti/Ti4O7 anode, but excessive operating conditions caused a slow increase or even decrease of ηCOD when using Ti/IrO2-RuO2 or Ti/PbO2 anodes. The order of electrode system potential loss (Eele) for the three anodes was Ti/Ti4O7> Ti/PbO2> Ti/IrO2-RuO2. High Eele was beneficial to ηCOD but had a negative effect on the net output power (Pnet) of REDR. Regardless of the applied anodes, increasing the current and decreasing the ERS flowrate was detrimental to Pnet due to higher Eele. Based on these findings, four energy efficiency parameters were defined to evaluate energy recovery from multiple perspectives by linking energy output with mineralization capacity. They were electrode efficiency (ηele), energy efficiency (EE), general current efficiency (GCE) and energy consumption (EC), respectively. Results showed that REDR with Ti/Ti4O7 anodes and suitable operating conditions achieved the optimal energy indicators and mineralization efficiency, which provided an efficient and economical option for wastewater treatment and energy recovery.
Collapse
Affiliation(s)
- Sixue Wang
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology, Dalian, 116024, Liaoning, China
| | - Xi Wu
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology, Dalian, 116024, Liaoning, China
| | - Shiming Xu
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology, Dalian, 116024, Liaoning, China.
| | - Qiang Leng
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology, Dalian, 116024, Liaoning, China
| | - Dongxu Jin
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology, Dalian, 116024, Liaoning, China
| | - Ping Wang
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology, Dalian, 116024, Liaoning, China
| | - Fujiang Dong
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology, Dalian, 116024, Liaoning, China
| | - Debing Wu
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology, Dalian, 116024, Liaoning, China
| |
Collapse
|
41
|
Romanovski V, Su X, Zhang L, Paspelau A, Smorokov A, Sehat AA, Akinwande AA, Korob N, Kamarou M. Approaches for filtrate utilization from synthetic gypsum production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:33243-33252. [PMID: 36478558 DOI: 10.1007/s11356-022-24584-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Waste recycling and industrial wastewater treatment have always been of interest. A green approach was developed for the filtrate of synthetic gypsum production from water treatment coagulation sediments and spent sulfuric acid. Due to the high concentration of iron sulfate, concentrated filtrate showed good coagulation results, which were 5% lower than pure iron sulfate. In addition, a high concentration of iron facilitates its use as a precursor for synthesizing magnetic sorbents and photocatalysts. Such materials were synthesized by the solution combustion synthesis method. Oil sorption capacity reached 1.8 g/g, comparable to some synthetic materials and higher than sorption materials based on natural materials. Photodegradation of acid telon blue dye after 90 min of irradiation time was 82.7% with catalyst derived from filtrate compared to the just dye solution with 17.6% efficiency. The reaction rate constant for the photocatalyst sample was up to 11.4-fold higher compared with only UV treatment. The neutralized filtrate containing sulfur, calcium, magnesium, and sodium has been tested as a complex fertilizer. The results of bioindication for oil radish showed up to a 15% increase in the shoot length. A number of techno-economic indicators show that such an approach is advantageous from a technological, environmental, and economic point of view.
Collapse
Affiliation(s)
- Valentin Romanovski
- Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA, 22904, USA.
- Science and Research Centre of Functional Nano-Ceramics, National University of Science and Technology "MISIS", Lenin Av., 4, 119049, Moscow, Russia.
| | - Xintai Su
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Lijuan Zhang
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Andrei Paspelau
- Centre for Physical and Chemical Investigation Methods, Belarusian State Technological University, Sverdlova, 13a, 220006, Minsk, Belarus
| | - Andrey Smorokov
- Division for Nuclear-Fuel Cycle, School of Nuclear Science & Engineering, National Research Tomsk Polytechnic University. Lenin Av, 30, Tomsk, 634050, Russia
| | - Ali Akbari Sehat
- Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA, 22904, USA
| | - Abayomi Adewale Akinwande
- Department of Metallurgical and Materials Engineering, Federal University of Technology, Akure, Ondo State, Nigeria
| | - Natalia Korob
- Department of Chemical Technology of Binding Materials, Belarusian State Technological University, Sverdlova, 13a, 220006, Minsk, Belarus
| | - Maksim Kamarou
- Department of Chemical Technology of Binding Materials, Belarusian State Technological University, Sverdlova, 13a, 220006, Minsk, Belarus
| |
Collapse
|
42
|
Tang L, Feng JC, Li C, Liang J, Zhang S, Yang Z. Global occurrence, drivers, and environmental risks of microplastics in marine environments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 329:116961. [PMID: 36542885 DOI: 10.1016/j.jenvman.2022.116961] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/26/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
With an increasing quantity of plastic waste being discharged into the oceans, marine microplastic (MP) pollution has received widespread attention. However, the global occurrence characteristics, environmental risks, driving factors, and source-sink relationships remain unclear. In this study, we conducted a meta-analysis based on 165 articles about marine MP pollution. It was found that the global marine MP abundance displayed a significant spatial heterogeneity, and the distribution pattern was influenced by offshore distance, population density, and economic development. The morphological characteristics of MPs showed a significant difference between seawater and marine sediment, and small-size MPs (<1 mm) accounted for the majority of all MPs in the marine environment. The environmental risk assessment revealed that most of the marine MP pollution still remains at low concentrations in the global context, with the Polyurethane (PU), Polyacrylonitrile (PAN), and Polyvinyl chloride (PVC) types of MPs showing high environmental-risk contributions. In addition, land-based waste and marine operations, which were considered to be the dominant sources of marine MPs, primarily aggregated at nearshore submarine areas, in the water column, and in the deep-sea bottom environment. This study suggested that the combination of a meta-analysis and Monte Carlo simulation can provide much valuable information regarding the global occurrence characteristics and environmental risks of marine MPs.
Collapse
Affiliation(s)
- Li Tang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, PR China
| | - Jing-Chun Feng
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, PR China.
| | - Canrong Li
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, PR China
| | - Jianzhen Liang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, PR China
| | - Si Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, PR China; South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China
| | - Zhifeng Yang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, PR China
| |
Collapse
|
43
|
Dayarathne HNP, Angove MJ, Shahid MK, Paudel SR, Aryal R, Mainali B. Characterisation of bushfire residuals in source water and removal by coagulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160800. [PMID: 36493816 DOI: 10.1016/j.scitotenv.2022.160800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
A bushfire is a spontaneous vegetation fire that can fundamentally affect lives, property, the environment, and even the global climate. Ash from fire carries hazardous pollutants like metal oxides/hydroxides, minerals, black carbons, and by-products of partial combustion, such as hydrocarbons and colloidal charcoal. Bushfire gases and residues can heavily pollute surface and groundwater resources. This paper focuses on the impact of bushfire residue on water quality and explores methods to remediate impacted water supplies. Soils burned in controlled furnace conditions between 150 °C, and 600 °C were characterised, suspended in water, and changes in water quality was measured following leaching from the burned residues. Results indicate that once the soil is burned at temperatures above 300 °C, there is little evidence of leached organic matter. At temperatures below 300 °C, the water discolouration was evident after 24 h leaching, and much higher quantities of leached organic matter were measured. Higher burning temperatures resulted in more alkaline residues. Leachate and charred sample characterisation data shows that the charcoal is highly porous and mainly consists of- amorphous material. The ash is a heterogeneous concoction of smaller particles and comprises significant mineral content. The results also indicate that the primary pollutant among the brushfire residuals is ash which increases pH, alkalinity, turbidity, and UV254. Coagulation experiments reveal that dual coagulation systems with metal salts- organic polyelectrolyte reduced the turbidity by 84 %, and dissolved organic carbon (DOC) reduced by 68 % of water containing ash residues. However, some other treatments are needed to reduce the alkalinity.
Collapse
Affiliation(s)
- H N P Dayarathne
- School of Computing, Engineering and Mathematical Sciences, La Trobe University, Bendigo, Australia; School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, Australia
| | - Michael J Angove
- Colloid and Environmental Chemistry (CEC) Research Laboratory, Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Bendigo, Australia
| | - Muhammad Kashif Shahid
- Research Institute of Environment & Biosystem, Chungnam National University, Daejeon, Republic of Korea
| | - Shukra Raj Paudel
- Department of Civil Engineering, Pulchowk Campus, Institute of Engineering, Tribhuvan University, Pulchowk, Lalitpur, Nepal; Department of Environmental Engineering, College of Science and Technology, Korea University, Sejong, Republic of Korea
| | - Rupak Aryal
- School of Computing, Engineering and Mathematical Sciences, La Trobe University, Bendigo, Australia
| | - Bandita Mainali
- School of Computing, Engineering and Mathematical Sciences, La Trobe University, Bendigo, Australia; School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, Australia.
| |
Collapse
|
44
|
Sobhi M, Zheng J, Li B, Gaballah MS, Aboagye D, Guo J, Dong R. Carbon footprint of dairy manure management chains in response to nutrient recovery by aerobic pre-treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 328:116975. [PMID: 36527801 DOI: 10.1016/j.jenvman.2022.116975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Aerobic pre-treatment of liquid dairy manure has previously been reported as an effective nutrient export and emissions mitigation approach. The first objective of this study was to experimentally determine the optimal intermittent aeration ratio for nutrient recovery from liquid dairy manure through an on-site pilot-scale reactor to partially reduce the required energy for the aerobic process. The second objective was to theoretically investigate the total carbon footprints of direct manure spreading on croplands and permanent manure storage in open anaerobic lagoons in response to nutrient removal by the optimal determined intermittent aerobic treatment ratio. Four scenarios (S) were included; S1 was the traditional scenario of manure spread on croplands without the aerobic pre-treatment, S2 was the modified scenario of manure spread on croplands that included the aerobic pre-treatment, S3 was the traditional scenario of manure storage in lagoons, and S4 was the modified scenario of manure storage in lagoons that included the aerobic pre-treatment. The results showed that comparable nutrient removal efficiencies could be obtained with a 5:1 intermittent aeration ratio. Total nitrogen (TN) and total phosphorus (TP) were recovered were 41.5 ± 1.3% and 37.0 ± 4.0%, respectively, in ammonium sulfate and phosphorus-rich sludge, while 55.3 ± 1.4% of the chemical oxygen demand (COD) was removed. The estimated total carbon footprint for S1, S2, S3, and S4 were 24.4, 37.9, 45.3, and 45.9 kg CO2-eqton-1, respectively. However, the total carbon footprint of S2' and S4', which used renewable-based energy to run the reactor instead of fossil-based energy used in S2 and S4, were estimated to 29.5 and 37.5 kg CO2-eqton-1, respectively. Clearly, applying the aerobic pre-treatment increased the total carbon footprint of all cases except S4', in which the total carbon footprint was mitigated by -17.2%. Accordingly, the aerobic pre-treatment is only recommended in the case of S4' from a carbon footprint point of view although it is an effective nutrient recovery technology.
Collapse
Affiliation(s)
- Mostafa Sobhi
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing, 100083, PR China; Agricultural and Bio-systems Engineering Department, Faculty of Agriculture, Alexandria University, Alexandria, 21526, Egypt
| | - Jiabao Zheng
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing, 100083, PR China
| | - Bowen Li
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing, 100083, PR China
| | - Mohamed S Gaballah
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing, 100083, PR China; National Institute of Oceanography and Fisheries, Cairo, Egypt
| | - Dominic Aboagye
- Department of Chemical Engineering, Universitat Rovira i Virgili, Tarragona, 43007, Spain
| | - Jianbin Guo
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing, 100083, PR China.
| | - Renjie Dong
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing, 100083, PR China
| |
Collapse
|
45
|
Zhang Y, Lei Y, Ma W, Ren Y. Simultaneous recycling of Si and Ti from diamond wire saw silicon powder and Ti-bearing blast furnace slag via reduction smelting: An investigation of the effects of refractories on recycling. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 157:36-46. [PMID: 36521299 DOI: 10.1016/j.wasman.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/23/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
The industrial wastes diamond wire saw silicon powder (DWSSP) and Ti-bearing blast furnace slag (TBFS) are important Si and Ti secondary resources, respectively. During the industrial application of recycling DWSSP and TBFS via reduction smelting, the refractories can dissolve into the molten slag, which can change the composition of the slag and influence the extraction of Si and Ti. Unfortunately, few studies on the reduction smelting of DWSSP and TBFS related to refractories have been reported, making such studies urgently needed. Therefore, the main purpose of this work was to reveal the dissolution mechanism of refractories (alumina and magnesia bricks) and the effect of refractory dissolution on Si-Ti alloy preparation. The results show that during the reduction smelting, the dissolution of alumina and magnesia bricks changed from direct dissolution into the molten slag to indirect dissolution, and the amount of magnesia bricks dissolved was less than that of aluminum bricks. Al3+ (aluminum brick) entering the slag could replace Si4+ in [SinO2n] to form [AlxSin-xO2n]x-, increasing the viscosity of the slag. The O2- (magnesia brick) entering the slag could dissociate [AlxSin-xO2n]x-, decreasing the viscosity of the slag. Therefore, compared with alumina bricks, magnesia bricks can promote slag-alloy separation and improve the extraction ratios of Ti and Si. In the case of magnesia bricks, the maximum reduction ratio of TiO2 was 98.4 %, and the maximum extraction ratio of Si was 95.8 %. This work provides essential experimental data for the Si-Ti alloys prepared via recycling DWSSP and TBFS.
Collapse
Affiliation(s)
- Yakun Zhang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China; National Engineering Research Center for Vacuum Metallurgy, Kunming 650093, China
| | - Yun Lei
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China; National Engineering Research Center for Vacuum Metallurgy, Kunming 650093, China.
| | - Wenhui Ma
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China; National Engineering Research Center for Vacuum Metallurgy, Kunming 650093, China; Pu'er University, Pu'er 665000, China
| | - Yongsheng Ren
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China; National Engineering Research Center for Vacuum Metallurgy, Kunming 650093, China
| |
Collapse
|
46
|
A Hybrid Data Collection Scheme to Achieve Load Balancing for Underwater Sensor Networks. JOURNAL OF KING SAUD UNIVERSITY - COMPUTER AND INFORMATION SCIENCES 2023. [DOI: 10.1016/j.jksuci.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
47
|
Poly(styrene-co-4-hydroxystyrene) nanofiber membrane for highly selective and efficient Rb+ capture from high salinity solution. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
48
|
Kumar P, Gupta R, Gupta A. Vitamin D deficiency in patients with diabetes and its correlation with water fluoride levels. JOURNAL OF WATER AND HEALTH 2023; 21:125-137. [PMID: 36705502 DOI: 10.2166/wh.2022.254] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Chronic exposure to fluoride through drinking water has been linked to insulin resistance and resulting type 2 diabetes mellitus (T2DM). Here, we aim to study the impact of water fluoride levels on blood glucose and vitamin D levels. A hospital-based study was conducted on diabetic patients (n = 303) at All India Institute of Medical Sciences (AIIMS), Raebareli outstation patient department (OPD). The relationship between vitamin D or fasting blood glucose levels (BGLs) with water fluoride levels was estimated through Spearman's rank correlation. We found a significant negative correlation between water fluoride and vitamin D levels [rs = -0.777, p-value < 0.001] and a positive correlation between water fluoride and fasting BGLs [rs = 0.178, p-value <0.05]. The participants residing in fluoride-endemic areas (F > 1.5 mg/L) had higher odds of severe vitamin D deficiency (odds ratio: 5.07, 95% CI: 1.9-13.2, p-value = 0.0009). The results demonstrate that vitamin D deficiency and fasting BGLs are significantly associated with water fluoride levels. This study signifies the role of fluoride toxicity in poor glycemic control and derived vitamin D deficiency. Vitamin D supplementation and the application of standard household water purification devices are recommended to tackle vitamin D deficiency in fluoride-endemic areas.
Collapse
Affiliation(s)
- Pramod Kumar
- Department of General Medicine, All India Institute of Medical Sciences (AIIMS), Raebareli, India
| | - Rasna Gupta
- Department of Biotechnology, Dr Ram Manohar Lohia Avadh University, Ayodhya, India
| | - Ankit Gupta
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Raebareli, India E-mail:
| |
Collapse
|
49
|
Preparation of Copper Ion Adsorbed Modified Montmorillonite/Cellulose Acetate Porous Composite Fiber Membrane by Centrifugal Spinning. Polymers (Basel) 2022; 14:polym14245458. [PMID: 36559826 PMCID: PMC9785991 DOI: 10.3390/polym14245458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
The natural adsorption material montmorillonite (MMT) was selected, and cellulose acetate (CA) was used as the loading substrate to design and prepare a kind of green and environment-friendly recyclable porous composite fiber membrane with good heavy metal ion adsorption performance. Acetic acid modified montmorillonite (HCl-MMT), sodium dodecyl sulfonate modified montmorillonite (SDS-MMT), and chitosan modified montmorillonite (CTS-MMT) were prepared by inorganic modification and organic modification, and the porous MMT/CA composite fiber membrane was constructed by centrifugal spinning equipment. The morphological and structural changes of MMT before and after modification and their effects on porous composite fiber membranes were investigated. The morphology, structure, and adsorption properties of the composite fibers were characterized by scanning electron microscopy (SEM) and atomic absorption spectrometry (ASS). The experimental results showed that the maximum adsorption capacity of Cu2+ on the prepared 5 wt% CTS-MMT composite fiber membrane was 60.272 mg/g after 10 h static adsorption. The adsorption of Cu2+ by a porous composite fiber membrane conforms to the quasi-second-order kinetic model and Langmuir isothermal adsorption model. The main factor of the Cu2+ adsorption rate is chemical adsorption, and the adsorption mechanism is mainly monolayer adsorption.
Collapse
|