1
|
Cho S, Kim S, Kim Y, Chung H. Raman spectroscopic quantification of polyethylene particles in water using polydimethylsiloxane-coated nickel foam as a particle-capturing platform. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125269. [PMID: 39418683 DOI: 10.1016/j.saa.2024.125269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
Nickel foam (NF) was evaluated as a medium for the capture of polyethylene (PE) particles in water. NF is a hydrophobic and porous material with a large surface area, making it a promising candidate for attracting PE particles. However, the particle-capturing efficiency using bare NF was only 69.5%. To increase capturing efficiency, a circular polydimethylsiloxane (PDMS)-coated NF (PDMS@NF, diameter: 6 mm) was employed to enhance the hydrophobicity. The capturing efficiency using the PDMS@NF was substantially increased to 97.6 % owing to the increase in hydrophobicity. To quantify the captured PE particles on/in the PDMS@NF using Raman spectroscopy, a wide area illumination (WAI) scheme providing 6 mm-diameter laser illumination was adopted to fully cover the PDMS@NF for representative spectroscopic sampling and accurate quantification. The intensity ratios of PE to PDMS peaks in the collected spectra clearly increased with the quantity of dispersed PE particles (0.1 ∼ 4.0 mg range, R2: 0.992) in the water samples, and the limit of detection was 0.08 mg. Moreover, the capturing efficiencies for polypropylene (PP), polystyrene (PS), and polyethylene terephthalate (PET) particles (1 mg of each) using the PDMS@NF were also superior, ranging from 96.4 to 98.2 %. Therefore, the proposed scheme incorporating the PDMS@NF as a particle-capturing and Raman measurement platform has potential as a method for on-line detection of microplastics in water.
Collapse
Affiliation(s)
- Sanghoon Cho
- Department of Chemistry and Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Sangjae Kim
- Department of Chemistry and Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Yunjung Kim
- Department of Chemistry and Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Hoeil Chung
- Department of Chemistry and Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
2
|
Soltani Tehrani R, Yang X, van Dam J. Rainfall-induced microplastic fate and transport in unsaturated Dutch soils. JOURNAL OF CONTAMINANT HYDROLOGY 2025; 268:104456. [PMID: 39549326 DOI: 10.1016/j.jconhyd.2024.104456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/07/2024] [Accepted: 10/31/2024] [Indexed: 11/18/2024]
Abstract
Microplastic pollution has become a growing concern in terrestrial ecosystems, with significant implications for environmental and human health. Understanding the fate and transport of microplastics in soil environment is crucial for effective mitigation strategies. This study investigates the dynamics of microplastic (Low-density polyethylene (LDPE), polybutylene adipate terephthalate (PBAT), and starch-based biodegradable plastic) transport in unsaturated soils under varying rainfall intensities and soil types, aiming to elucidate the factors influencing their behavior. Effluent samples were analyzed to measure microplastic transport, with microplastic balance analysis ensuring experimental accuracy. The setup replicated real-world flow conditions, providing insights into microplastic transport in unsaturated porous media. Microplastic balance analysis revealed high recovery factors (between 64 % and 104 %), indicating the reliability of the experimental approach. Microplastic transport varied significantly between sandy loam and loamy sand soils, with loamy sand soils exhibiting higher wash-off rates due to their unique properties. LDPE microplastics showed a higher tendency to detach from soil columns compared to PBAT and starch-based particles. Higher rainfall intensity in loamy sand soil columns resulted in an increased washout of LDPE, PBAT, and starch-based particles by 92 %, 144 %, and 85 %, respectively, compared to low rainfall intensity. In sandy loam soil, increased rainfall intensity resulted in a significantly higher washout of LDPE, PBAT, and starch-based particles with percentages of 93 %, 69 %, and 45 %, respectively. This underscores the important role of water flow in mobilizing microplastics within the soil matrix.
Collapse
Affiliation(s)
- Rozita Soltani Tehrani
- Department of Soil Physics and Land Management, Wageningen University and Research, Wageningen, the Netherlands.
| | - Xiaomei Yang
- Department of Soil Physics and Land Management, Wageningen University and Research, Wageningen, the Netherlands.
| | - Jos van Dam
- Department of Soil Physics and Land Management, Wageningen University and Research, Wageningen, the Netherlands.
| |
Collapse
|
3
|
Córdoba P, Berenstein G, Montserrat JM. Factors that influence the migration of sorbed pesticides in polyethylene and biodegradable mesoplastics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 364:125205. [PMID: 39542166 DOI: 10.1016/j.envpol.2024.125205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/21/2024] [Accepted: 10/26/2024] [Indexed: 11/17/2024]
Abstract
Trifluralin, Chlorpyrifos, and Procymidone migration performance from polyethylene (PE) and biodegradable (Mater-Bi: M-B) mulching films was examined. Desorption of pesticides from PE and M-B was studied using soil-plastic microcosms, considering temperature, soil humidity, and mulching film type as experimental variables. Trifluralin and Chlorpyrifos desorption was higher for PE than for M-B under all experimental conditions. In both cases, as the temperature increased from 25 °C to 40 °C, pesticide migration also increased, whereas as the soil humidity raised from 30% to 60%, pesticide desorption decreased. In the case of Procymidone, migration from PE and M-B at 25 °C was similar under both soil moisture conditions. Migration percentages were similar for both mulch films at 40 °C and 30% soil humidity. However, at higher soil moisture (60%), migration from M-B was greater than from PE. A linear relationship was observed between the percentage of migration and the vapor pressure of the pesticides. In all cases, migration increased with higher vapor pressure, indicating a possible migration mechanism in the vapor phase. Pesticide migration increased at high temperatures (40 °C). The effect of soil humidity in reducing pesticide migration was more significant at lower levels (30%). In addition, the mesoplastic sorption of pesticides in soil columns was studied using PE and M-B films. While the recoveries for Trifluralin, Chlorpyrifos, and Procymidone in the PE films were 0.05% ± 0.01%, 0.13% ± 0.03%, and non-detectable, the recoveries for M-B were: 0.49% ± 0.07%, 0.31% ± 0.09%, and 0.17% ± 0.10%, respectively, indicating that M-B was a better adsorbent than PE in all cases. This behavior should be considered in combination with the lower migration percentages observed for this type of mulching film in the microcosm experiments. These results could indicate a potential carrier effect of pesticide on biomesoplastic in the environment.
Collapse
Affiliation(s)
- Paulina Córdoba
- Instituto de Ciencias, Universidad Nacional de General Sarmiento (UNGS), J. M. Gutiérrez 1150, (B1613GSX) Los Polvorines, Prov. de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Giselle Berenstein
- Instituto de Ciencias, Universidad Nacional de General Sarmiento (UNGS), J. M. Gutiérrez 1150, (B1613GSX) Los Polvorines, Prov. de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - Javier M Montserrat
- Instituto de Ciencias, Universidad Nacional de General Sarmiento (UNGS), J. M. Gutiérrez 1150, (B1613GSX) Los Polvorines, Prov. de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
4
|
Basu AG, Paul RS, Wang F, Roy S. Impact of microplastics on aquatic flora: Recent status, mechanisms of their toxicity and bioremediation strategies. CHEMOSPHERE 2024; 370:143983. [PMID: 39701309 DOI: 10.1016/j.chemosphere.2024.143983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
The accumulation of microplastics (MPs) in aquatic environments has occurred pervasively. The MPs affect almost all the aquatic plants including the aquatic microorganisms, ultimately disturbing the food chain. Aquatic flora attracts MPs due to the formation of several chemical bonds and interactions, including hydrogen bonds, electrostatic, hydrophobic, and van der Waals. Consequently, they hinder plant growth when adsorbed to the plant surfaces. Moreover, the major metabolic processes, including photosynthesis, reproduction, and nutrient uptake, get affected due to the pore-filling of plant tissues and the blockage of sunlight. Subsequently, prolonged exposure to MPs inflicts excessive generation of reactive oxygen species (ROS), ultimately accelerating programmed cell death. However, it has been realized that bioremediation techniques, including phytoremediation, can effectively mitigate MPs pollution by adsorbing or accumulating MPs by 25-80% at the laboratory scale. In this connection, several microorganisms are vital in deteriorating MPs due to their ability to form biofilm over the MPs' surface. Additionally, the secretion of extracellular enzymes such as styrene monooxygenase, styrene oxide isomerase, phenylacetaldehyde dehydrogenase, PETase, etc., facilitates the degradation of MPs. Moreover, the inherent ability of plants to adsorb and accumulate MPs can be utilized to manage the MPs in aquatic ecosystems. However, there is a dearth of literature and comprehensive reviews highlighting the potential of bioremediation strategies. Therefore, apart from addressing the impact of MPs on aquatic flora, this article attempts to elucidate the physical and chemical basis of plant-plastic interaction and the potential strategies aquatic flora including microorganisms employ to mitigate plastic pollution.
Collapse
Affiliation(s)
- Anindita Ghosh Basu
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal, India.
| | - Rita Som Paul
- Department of Botany, Siliguri College, Siliguri, Dist. Darjeeling, West Bengal, India.
| | - Fayuan Wang
- College of Environment and Safety Engineering, Qingdao University of Science & Technology, Qingdao, Shandong Province, PR China.
| | - Swarnendu Roy
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal, India.
| |
Collapse
|
5
|
Bagheri S, Soltanian S, Heidari AA, Gholamhosseini A. Toxicity effects of microplastics individually and in combination with Aeromonas hydrophila on freshwater crayfish (Astacus leptodactylous). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-35638-z. [PMID: 39718694 DOI: 10.1007/s11356-024-35638-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 11/21/2024] [Indexed: 12/25/2024]
Abstract
Opportunistic pathogens, such as Aeromonas hydrophila, can cause damage to freshwater crayfish (Astacus leptodactylous) in some situations. In addition to direct damage to the body, microplastics (MPs) can also be responsible for transmitting pathogens to the animal. Accordingly, this research was prepared to investigate the effects of MP on the damage caused by A. hydrophila exposure in A. leptodactylous. Hepatic oxidative biomarkers, blood biochemical indices, and clinical signs were investigated in freshwater crayfish co-exposed to MPs (500 and 1000 mg kg-1) and A. hydrophila (5 and 10% of the median lethal dose (LD50)) for 30 days. In the hemolymph of infested crayfish with A. hydrophila, there were no significant changes in glutathione peroxidase activity or total antioxidant level. However, in some of the clinical parameters, exposure to MP alone had a significant effect. Cholesterol levels, glutathione peroxidase, catalase, and the activity of γ-glutamyltransferase reduced, conversely, glucose, malondialdehyde, and aspartate aminotransferase increased. After co-exposure to A. hydrophila and MPs, certain parameters elevated in the hemolymph of crayfish such as glucose, activity of alkaline phosphatase, aspartate aminotransferase, alanine aminotransferase, and lactate dehydrogenase. However, total protein, cholesterol, γ-glutamyltransferase, glutathione peroxidase, catalase activity, and total antioxidants decreased. In contrast, elevation in malondialdehyde content and superoxide dismutase activity was observed in the hepatocytes of crayfish after co-exposure to A. hydrophila and MPs. To summarize, the investigation demonstrated that the interaction of MPs and A. hydrophila in crayfish has a synergistic effect on various factors.
Collapse
Affiliation(s)
- Sara Bagheri
- Division of Aquatic Animal Health & Diseases, Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Siyavash Soltanian
- Division of Aquatic Animal Health & Diseases, Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Amir Ali Heidari
- Division of Aquatic Animal Health & Diseases, Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Amin Gholamhosseini
- Division of Aquatic Animal Health & Diseases, Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
6
|
Wang LC, Lin JCT, Ye JA, Lim YC, Chen CW, Dong CD, Liu TK. Enrichment of Persistent Organic Pollutants in Microplastics from Coastal Waters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22391-22404. [PMID: 39629940 DOI: 10.1021/acs.est.4c10835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Despite the adsorption of microplastics (MPs), the precise quantification of their concentrating effect on persistent organic pollutants (POPs) remains uncertain. Therefore, in this study, POPs in MPs, POPs in suspended particulate matter (SPM), and dissolved POPs in seawater were distinguished to quantify the enrichment factor (EF) for characterizing the concentrating effects of MPs and SPM on POPs. The results showed that the logarithm of EF (log EF) for POPs in MPs was 5.94 to 7.14. For POPs, the concentrating effect of MPs was 1 to 2 orders of magnitude greater than that of SPM. Moreover, for PCDD/Fs, PBDD/Fs, and PBDEs, the concentrating effect of MPs was roughly comparable to that of organic matter in SPM, while it was 1 to 2 orders of magnitude higher than that of organic matter for dioxin-like PCBs and PBBs. The MPs were prone to sorbing highly toxic POP congeners. When the logarithm of the n-octanol-water partition coefficient (log KOW) of POP homologues ranged from 5.5 to 8.25, the log EF for POP homologues in MPs approximately was between 5 and 7. The heterogeneous MPs from the field environment affected their capacity to sorb POPs, causing a nonsignificant correlation between the enrichment factor and log KOW.
Collapse
Affiliation(s)
- Lin-Chi Wang
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 811213, Taiwan
| | - Justin Chun-Te Lin
- Department of Environmental Engineering and Science, Feng Chia University, Taichung City 407102, Taiwan
| | - Jia-An Ye
- Institute of Ocean Technology and Marine Affairs, National Cheng Kung University, No. 1, University Road, Tainan City 701401, Taiwan
| | - Yee Cheng Lim
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 811213, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 811213, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 811213, Taiwan
| | - Ta-Kang Liu
- Institute of Ocean Technology and Marine Affairs, National Cheng Kung University, No. 1, University Road, Tainan City 701401, Taiwan
| |
Collapse
|
7
|
Godasiaei SH. Predictive modeling of microplastic adsorption in aquatic environments using advanced machine learning models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 958:178015. [PMID: 39675298 DOI: 10.1016/j.scitotenv.2024.178015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/22/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024]
Abstract
This study addresses the critical environmental concerns surrounding microplastics, aiming to elucidate the intricate factors influencing their behavior and interactions with organic pollutants. Utilizing advanced artificial neural network modeling techniques, including GRU, LSTM, RNN, and CNN, a comprehensive analysis of microplastic sorption capacity and underlying mechanisms is conducted. The research relies on a meticulously curated dataset encompassing fundamental parameters such as organic compound composition, n-octanol/water partition coefficient, covalent acidity, covalent basicity, molecular polarizability to volume ratio, and the logarithm of the partition coefficient. Findings underscore the significance of understanding the n-octanol/water distribution coefficient (Log D) in predicting organic pollutant fate in aquatic environments, with compounds displaying higher Log D values exhibiting heightened affinity for microplastics, posing substantial ecological and human health risks. Additionally, the study highlights the importance of selecting appropriate models to accurately capture complex sorption processes, especially in varied aquatic environments. Furthermore, the profound impact of acidity, molecular polarizability to volume ratio, and covalent basicity on microplastic behavior is elucidated. Notably, machine learning models and CNNs demonstrate remarkable speed in prediction generation. A comparative analysis of four robust machine learning models establishes fundamental alignment between model predictions and empirical findings. Particularly noteworthy is the RNN model, emerging as the most accurate with an impressive accuracy of 0.967 and a minimum absolute error of 0.38. These results underscore the efficacy of the RNN model in predicting microplastic dynamics, holding promise for significant contributions to addressing microplastic pollution.
Collapse
|
8
|
Zhou L, Sun C, Li J, Zhao C, Ding J, Cao W, Jiang F. Microplastic occurrence and hydrodynamic-sedimentary driving effects in the Bohai Strait region of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 958:177947. [PMID: 39674153 DOI: 10.1016/j.scitotenv.2024.177947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/18/2024] [Accepted: 12/04/2024] [Indexed: 12/16/2024]
Abstract
The ubiquity of microplastics in oceans has led to an increased interest in microplastics in society. The Bohai Strait is in a key position in the Yellow and Bohai Seas and plays a key role in the exchange of materials and environmental changes in these waters. In this study, seawater, surface sediments, and column sediments, were collected from the Bohai Strait region. Among all seawater samples, the abundance of microplastics in the Bohai Strait region ranged between 0.38 and 3.20 items/L, and that of microplastics in surface sediments was between 15.80 and 94.41 items/kg d.w.. The average microplastics abundance in columnar sediments was 72.62 ± 29.86 items/kg d.w., which provided key information on the spatial distribution of microplastics and sedimentation phenomena in the Bohai Strait region. The abundance of microplastics was higher in regions where currents flowed more slowly, which suggests that ocean currents exert a crucial effect on microplastic distribution. In addition, the abundance of microplastics in sediments showed a close relation to the deposition rate, which implies that the deposition rate contribute to the deposition process of microplastics on the seafloor. The type of microplastics in seawater influences the kind of microplastics in sediments, which further emphasizes the importance of microplastics in seawater during microplastic transport and the deposition process. The results of this research contribute to the in-depth understanding of the behavior and propagation pathways of microplastics in oceans and provide a valuable reference for the reduction of microplastic pollution.
Collapse
Affiliation(s)
- Long Zhou
- Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Chengjun Sun
- Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Jingxi Li
- Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Chang Zhao
- Key Laboratory of Marine Science and Numerical Modeling, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Jinfeng Ding
- Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Wei Cao
- Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Fenghua Jiang
- Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| |
Collapse
|
9
|
Shi X, Shi R, Fu X, Zhao Y, Ge Y, Liu J, Chen C, Liu W. Impact of microplastics on plant physiology: A meta-analysis of dose, particle size, and crop type interactions in agricultural ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177245. [PMID: 39477098 DOI: 10.1016/j.scitotenv.2024.177245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/03/2024]
Abstract
The increasing prevalence of plastic pollution has led to widespread environmental concerns, particularly with microplastics (MPs) that persist in various ecosystems. As MPs accumulate in terrestrial environments, their potential impact on plant health and agricultural productivity has become a growing area of focus. This study presents a comprehensive meta-analysis evaluating the effects of MPs on plant physiological and biochemical parameters, synthesizing data from 37 studies comprising 2886 observations. Our findings indicate that MPs significantly decrease plant biomass by 13 % (95 % CI: 7-19 %) and chlorophyll content by 28 % (95 % CI: 23-34 %), impairing crop growth and quality. Notably, higher doses and smaller MP particle sizes exert more pronounced inhibitory effects, particularly on root activity and biomass, while larger MPs predominantly damage plant roots. Furthermore, MPs were found to significantly increase oxidative stress in plants, evidenced by a 20 % rise in oxidative damage (95 % CI: 15-25 %) and a 14 % increase in antioxidant capacity (95 % CI: 8-19 %). This study highlights intricate interactions between MP type, particle size, dose, and plant species, with particle size having a greater impact than dose. This study emphasizes the importance of accounting for crop diversity and environmental factors to fully elucidate the potential risks posed by MP pollution to agricultural ecosystems.
Collapse
Affiliation(s)
- Xinwei Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ruiying Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiuping Fu
- Department of Intelligent Medical Engineering, School of Life Sciences, Tiangong University, Tianjin 300387, China.
| | - Yuexing Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yichen Ge
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jinzheng Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Cuihong Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
10
|
Gao S, Zhang S, Feng Z, Lu J, Fu G, Yu W. The bio-accumulation and -magnification of microplastics under predator-prey isotopic relationships. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135896. [PMID: 39378590 DOI: 10.1016/j.jhazmat.2024.135896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024]
Abstract
Recent studies on microplastics (MPs) in marine ecosystems have focused on their bioaccumulation and biomagnification within food chains, emphasizing their potential health risks to humans. However, these bio-effects of MPs in marine ecosystems remain a contentious issue. Employing the "consumer-dietary source" tracking function in stable isotope analysis can enhance our comprehension of how MPs magnify in organisms. In our research conducted in the coastal waters of Haizhou Bay, Jiangsu, China, we examined two commercially important fish species, Larimichthys polyactis and Collichthys lucidus, through stable isotope analysis to investigate the accumulation of MPs in their dietary sources. Results revealed fiber, blue, and PET as the primary shapes, colors, and polymers of MPs in the region. C. lucidus displayed a broader isotopic niche and a higher propensity for MP accumulation than L. polyactis. Biomagnification analysis indicated that dominant MP shapes, colors, and polymers were magnified in both fish species, with MPs smaller than 3 mm exhibiting substantial biomagnification. Factors such as feeding strategies and habitat preferences may influence MP ingestion by fish. We conclude that a high proportion of dietary sources in fish does not necessarily equate to a high concentration of MPs. Neglecting the proportion of dietary sources might lead to underestimating MP biomagnification. Therefore, a multidimensional approach to exploring the biomagnification of MPs is essential to accurately grasp this unique pollutant's impact.
Collapse
Affiliation(s)
- Shike Gao
- College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai 201306, China; Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan
| | - Shuo Zhang
- College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai 201306, China; Joint Laboratory for Monitoring and Conservation of Aquatic Living Resources In the Yangtze Estuary, Shanghai 200000, China.
| | - Zhihua Feng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Jikun Lu
- Marine and Fishery Development Promotion Center In Lianyungang, Lianyungang 222002, Jiangsu, China.
| | - Guanghui Fu
- Marine and Fishery Development Promotion Center In Lianyungang, Lianyungang 222002, Jiangsu, China
| | - Wenwen Yu
- Jiangsu Research Institute of Marine Fisheries, Nantong 226007, China.
| |
Collapse
|
11
|
Anandavelu I, Karthik R, Robin RS, Hariharan G, Mugilarasan M, Ramesh R, Purvaja R. Morphometric characteristics and spatiotemporal heterogeneity of microplastics on the north-east coast of India. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136180. [PMID: 39427351 DOI: 10.1016/j.jhazmat.2024.136180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/27/2024] [Accepted: 10/13/2024] [Indexed: 10/22/2024]
Abstract
The study analysed microplastics (MPs) in surface waters along the north-east coast of India and focused on the spatiotemporal distribution and morphometric characteristics of 800 particles for environmental insights. The MPs were consistently present in all water masses, with an average abundance of 0.67 ± 0.66 particles/m3 during the monsoon and 0.12 ± 0.08 particles/m3 post-monsoon. Fragments and fibers were dominant in both seasons, comprising over 83 % and 12 %, respectively. In terms of colours, blue was significantly dominant during the post-monsoon (H, χ2 (5) = 15.38, p < 0.01); however, such variation was absent during the monsoon. Spatially, significant variance in abundance (F4, 34 = 8.542; p < 0.01) and across colours and forms during the monsoon was correlated with land-based inputs from the Hooghly River. FTIR analysis revealed ten polymer types, predominantly polyethylene (44 %). SEM observations indicated that 80 % of particles exhibited polymer ageing from oxidative weathering. The size distribution of MPs varied notably, with a higher proportion of < 0.3 mm (16.7 %) during the monsoon, possibly due to increased particle disintegration. The study noted MPs had low to moderate circularity, with increased irregularity during the monsoon due to heavy precipitation and river flushing. An initial risk assessment of MP pollution in surface waters on the north-east coast revealed a low-risk state. Acrylonitrile butadiene styrene (ABS) was identified as the most hazardous MP polymer. A wide range of toxic trace elements were found in MPs in these waters. The findings from the study deepen our knowledge of MPs and their fate in the pelagic zone, which supports the development of science-based policies that effectively reduce MP pollution.
Collapse
Affiliation(s)
- I Anandavelu
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600025, India
| | - R Karthik
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600025, India
| | - R S Robin
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600025, India.
| | - G Hariharan
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600025, India
| | - M Mugilarasan
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600025, India
| | - R Ramesh
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600025, India
| | - R Purvaja
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600025, India
| |
Collapse
|
12
|
Yin L, Nie X, Deng G, Tian J, Xiang Z, Abbasi S, Chen H, Zhang W, Xiao R, Gan C, Zhang Y, Wen X. Hydrodynamic driven microplastics in Dongting Lake, China: Quantification of the flux and transportation. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136049. [PMID: 39368360 DOI: 10.1016/j.jhazmat.2024.136049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
Hydrodynamic conditions have a significant effect on the fate of microplastics (MPs). Moreover, research on the relation between hydrodynamic conditions and MPs in freshwater environments is critical and unquantified. In this regard, herein, a methodological framework integrating system monitoring with numerical simulation has been developed and successfully implemented for Dongting Lake, a large freshwater lake fed by multiple rivers. According to time-series monitoring and hydrological data, 199.29/128.50 trillion MP items entered or exited Dongting Lake in 2021. In addition, a coupled numerical model identified four key areas of MP accumulation, which overlap with nature reserves and agricultural zones, posing considerable risks to the ecological gene pool and food security. The quantitative results obtained using the developed framework enable calculation of MP inflow and outflow fluxes and facilitate analysis of MP transportation. Overall, this study provides a scientific basis for preventing and controlling MP pollution in Dongting Lake and offers valuable insights for future research on related issues in freshwater ecosystems.
Collapse
Affiliation(s)
- Lingshi Yin
- College of Water Resources & Civil Engineering, Hunan Agricultural University, Changsha 410128, China; College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| | - Xiuzhen Nie
- College of Water Resources & Civil Engineering, Hunan Agricultural University, Changsha 410128, China
| | - Guanying Deng
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China
| | - Jiayi Tian
- College of Water Resources & Civil Engineering, Hunan Agricultural University, Changsha 410128, China
| | - Ziyi Xiang
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China
| | - Sajjad Abbasi
- Department of Earth Sciences, College of Science, Shiraz University, Shiraz 71454, Iran; Centre for Environmental Studies and Emerging Pollutants (ZISTANO), Shiraz University, Shiraz, Iran
| | - Haojie Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Wenping Zhang
- College of Water Resources & Civil Engineering, Hunan Agricultural University, Changsha 410128, China
| | - Ruihao Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Chuneng Gan
- College of Water Resources & Civil Engineering, Hunan Agricultural University, Changsha 410128, China
| | - You Zhang
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China
| | - Xiaofeng Wen
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China.
| |
Collapse
|
13
|
Sun Y, Wang F, Zhong X, Xu G. Do microplastics dramatically shape the homogeneity of protozoan colonization in marine environments? MARINE POLLUTION BULLETIN 2024; 211:117390. [PMID: 39631187 DOI: 10.1016/j.marpolbul.2024.117390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/24/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
The impacts of microplastics (MPs) on the marine ecosystem have remained the focus of global attention. The microbial colonization plays an important role in driving the functional process of entire marine ecosystems, during which protozoa employ primary contributors for transferring the energy flow from the low to high trophic levels. To investigate the effects of MPs on microbial colonization, the protozoan assemblages were used as test organisms and exposed to a gradient of MP concentrations. With the increase of MP stress, the homogeneity of the test organisms was significantly altered: (1) the α- and γ-diversity indices decreased; (2) both univariate β-diversity and multivariate dispersions in species composition with weighted relative abundance increased; and (3) the traditional β-diversity showed a close linear relationship with multivariate dispersions in both the species composition and weighted relative abundance. Therefore, the results suggest that microplastics may dramatically impact the homogeneity of protozoan colonization in marine ecosystems.
Collapse
Affiliation(s)
- Yixiang Sun
- College of Environment and Safety Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Fayuan Wang
- College of Environment and Safety Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Xiaoxiao Zhong
- College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao, China
| | - Guangjian Xu
- College of Environment and Safety Engineering, Qingdao University of Science & Technology, Qingdao 266042, China.
| |
Collapse
|
14
|
Chakraborty S, Banerjee M, Jayaraman G, Rajeswari V D. Evaluation of the health impacts and deregulation of signaling pathways in humans induced by microplastics. CHEMOSPHERE 2024; 369:143881. [PMID: 39631686 DOI: 10.1016/j.chemosphere.2024.143881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/29/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
This review assesses the diverse health risk factors associated with microplastic (MP) exposure and their impact on cellular signaling pathways. MPs induce chronic inflammation, oxidative stress, endocrine disruption, apoptosis, and immune dysregulation. They activate signaling pathways such as NF-κB, MAPK, and Nrf2, exacerbating inflammatory responses, oxidative damage, and hormonal imbalances. Understanding the interplay between MPs and signaling pathways is crucial for elucidating the mechanisms underlying MP-induced health effects. Effective risk assessment and management strategies are essential to mitigate the adverse health impacts of MPs on human populations. This research underscores the urgent need for interdisciplinary collaboration to safeguard human health and environmental sustainability in the face of rising MP pollution. In this paper, we also assess the risk factors caused by the microplastics in the pregnant women and the development of the fetus. This review explores the potential risks and challenges associated with MP exposure in newborn babies. It is quite concerning that microplastic particles were recently found in the placental tissue of newborn children for the first time. Although it is unclear how these tiny particles affect different organs, researchers believe that these tiny particles could potentially carry harmful chemicals or disrupt the developing immune system of the fetus. This review overall focuses on the impact of microplastic disrupting different signaling including reproductive health in humans.
Collapse
Affiliation(s)
- Shreya Chakraborty
- Department of Bio-Medical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Manosi Banerjee
- Department of Bio-Medical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Gurunathan Jayaraman
- Department of Bio-Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Devi Rajeswari V
- Department of Bio-Medical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
15
|
Fang L, Wang S, Sun X, Wang K. Bioaccumulation and biochemical impact of polyethylene terephthalate microplastics in Cipangopaludina chinensis: Tissue-specific analysis and homeostasis disruption. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 277:107144. [PMID: 39520844 DOI: 10.1016/j.aquatox.2024.107144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/19/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Microplastics are a novel pollutant that adversely affect freshwater benthic organisms. However, few studies have investigated the mechanism underlying the bioaccumulation and the toxicity of microplastics. In this study, microplastics bioaccumulation of wild Cipangopaludina chinensis in the Songhua River were utilized, and a 28-day aquatic toxicity test was performed to determine the effects of exposure to polyethylene terephthalate (PET), the bioaccumulation of PET, and changes in multiple biomarkers in the muscle, gill, and kidney tissues. The concentration pattern of microplastics was as follows: kidney tissue > muscle tissue > gill tissue. Microplastic ingestion caused AChE inhibition led to significant increases in redox and energy metabolism indicators. Furthermore, the IBR analysis presented a "response-resistance-breakdown" process, indicating that Cipangopaludina chinensis possessed resistance with time (D14 and D21) and concentration (0.10 mg/L and 1.00 mg/L) thresholds. Tissue sensitivity to microplastics was ranked as gill > muscle > kidney, which was the opposite order of microplastic accumulation. These findings implied that less sensitive tissues stored a larger amount of pollutants, suggesting a reduction in tissue sensitivity to microplastics with higher microplastic occurrence rates. This study provides new insights into biological resistance to pollutant stress, warranting further investigation into the underlying mechanisms.
Collapse
Affiliation(s)
- Lanjin Fang
- College of Forest, Northeast Forest University, Harbin 150040, China
| | - Shuangshuang Wang
- College of Forest, Northeast Forest University, Harbin 150040, China
| | - Xingbin Sun
- College of Forest, Northeast Forest University, Harbin 150040, China.
| | - Kejing Wang
- Ecological and Environmental Monitoring Centre of Heilongjiang Province, Harbin 150056, China.
| |
Collapse
|
16
|
Sun Y, Wang N, Zhong X, Xu G. Can microplastics variability drive the colonization dynamics of periphytic protozoan fauna in marine environments? MARINE POLLUTION BULLETIN 2024; 209:117148. [PMID: 39432984 DOI: 10.1016/j.marpolbul.2024.117148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/12/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024]
Abstract
In recent years, microplastics have become a global environmental hot topic of concern. To explore the effects of different concentrations of microplastics on colonization dynamics of periphytic protozoan fauna, a 21-day study was conducted in temperature-controlled circulation systems. Periphytic protozoan communities were used as test organisms and exposed to five concentrations of MPs: 0, 1, 5, 25, and 125 mg l-1, identification and enumeration were conducted on days 3, 5, 7, 10, 14 and 21. The results showed that the colonization dynamics were driven by MPs and significantly shifted at concentrations over 5 mg l-1. However, a notable decline in maximum species richness and abundance was observed in the high concentrations of microplastic, along with significant deviations in colonization patterns from the control group (0 mg l-1). Therefore, it is suggested that the colonization dynamics of periphytic protozoa can serve as a bioindicator for assessing microplastic concentrations in marine environments.
Collapse
Affiliation(s)
- Yixiang Sun
- College of Environment and Safety Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Ning Wang
- Laboratory of Microbial Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiaoxiao Zhong
- College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Guangjian Xu
- College of Environment and Safety Engineering, Qingdao University of Science & Technology, Qingdao 266042, China.
| |
Collapse
|
17
|
Tong NX, Khuyen VTK, Thao NTT, Nguyen BT. Unraveling microplastic pollution patterns in sediments of a river system: The combined impacts of seasonal changes and waterway differences. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123348. [PMID: 39547024 DOI: 10.1016/j.jenvman.2024.123348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/29/2024] [Accepted: 11/10/2024] [Indexed: 11/17/2024]
Abstract
Microplastic (MP) distribution in river sediment, influenced by water regimes and pollution sources, remains understudied in the current literature. This study examines the combined impacts of seasonal variation and waterway differences on MP concentration in the sediment of the Saigon River and its tributaries, while identifying potential sources. Paired sediment samples were collected from eleven sites along the river and its tributaries during rainy and dry seasons. MPs from these 44 samples were separated, quantified, and characterized for a comprehensive assessment. The results revealed that MP concentrations in sediments ranged from 140 to 1200 items kg-1, with predominant characteristics of fiber particles, white color, and particle sizes ranging from 200 to 500 μm. During the rainy season, MP concentrations were similar between the river (584 items kg-1) and tributaries (553 items kg-1), while during the dry season, tributaries exhibited statistically higher MP concentrations (737 items kg-1) than the river (351 items kg-1). Notably, the river, despite being farther from the sources, had a higher proportion of smaller MPs (<200 μm), while larger particles (>200 μm) were more prevalent in tributaries. These discrepancies are attributed to the combined impacts of water flow patterns and pollution sources, derived from residential, industrial, and agricultural activities. In brief, MP pollution in the river and tributary sediments is influenced by the interplay of seasonal variation and waterway characteristics, determined by water flow patterns and pollution sources. These findings emphasize the need for specific management strategies that account for spatial and temporal variations in MP distribution.
Collapse
Affiliation(s)
- Nguyen Xuan Tong
- Institute for Environmental Science, Engineering and Management, Industrial University of Ho Chi Minh City, 12 Nguyen Van Bao, Go Vap District, Ho Chi Minh City, Viet Nam
| | - Vo Thi Kim Khuyen
- Faculty of Pharmcy, University of Medicine and Pharmacy at Ho Chi Minh City, 41 Đinh Tiên Hoang, District 1, Ho Chi Minh City, Vietnam
| | - Nguyen Thi Thanh Thao
- Institute for Environmental Science, Engineering and Management, Industrial University of Ho Chi Minh City, 12 Nguyen Van Bao, Go Vap District, Ho Chi Minh City, Viet Nam
| | - Binh Thanh Nguyen
- Institute for Environmental Science, Engineering and Management, Industrial University of Ho Chi Minh City, 12 Nguyen Van Bao, Go Vap District, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
18
|
Dueñas-Moreno J, Mora A, Capparelli MV, González-Domínguez J, Mahlknecht J. Potential ecological risk assessment of microplastics in environmental compartments in Mexico: A meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124812. [PMID: 39182811 DOI: 10.1016/j.envpol.2024.124812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/30/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Microplastic (MP) environmental contamination has been widely studied in Mexico. However, the evaluation of the associated risk to MPs in environmental compartments is scarce. Therefore, this study addresses this issue using diverse indicators such as the Pollution Load Index (PLI), the Polymer Risk Index (PRI), and the Potential Ecological Risk Index (PERI). The results of a meta-analysis revealed high MP contamination levels in most of the studied compartments, which included marine and estuarine waters, beach sand, freshwater, sediments, and biota. Regarding the risk assessment indicators, PLIs indicated low (56%), dangerous (22%), moderate (12%), and high (10%) levels across compartments. Meanwhile, PRIs displayed concerning values, with 36%, 35%, 20%, and 9% exhibiting dangerous, high, moderate, and low levels, respectively. Thus, high PRI values emphasized the significant rise in MP pollution, largely attributed to high-hazard polymer compositions. Otherwise, PERIs showed low (56%), very dangerous (29%), moderate (6%), high (5%), and dangerous (4%) levels. Thus, the ecological risk in Mexico is widespread and mainly linked to MP abundance, polymer type, environmental matrix, and characteristics of organisms. This study represents the first attempt at MP ecological risk assessment in Mexico, providing crucial insights for developing mitigation strategies to address concerns about MP contamination.
Collapse
Affiliation(s)
- Jaime Dueñas-Moreno
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64700, Mexico
| | - Abrahan Mora
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64700, Mexico.
| | - Mariana V Capparelli
- Instituto de Ciencias del Mar y Limnología, Estación El Carmen, Universidad Nacional Autónoma de México, Ciudad del Carmen, 24157, Mexico
| | - Janeth González-Domínguez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64700, Mexico
| | - Jürgen Mahlknecht
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64700, Mexico
| |
Collapse
|
19
|
Men C, Xie Z, Li K, Xing X, Li Z, Zuo J. Single and combined effect of polyethylene microplastics (virgin and naturally aged) and cadmium on pakchoi (Brassica rapa subsp. chinensis) under different growth stages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175602. [PMID: 39155006 DOI: 10.1016/j.scitotenv.2024.175602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
To protect agro-systems and food security, study on the effect of microplastics and heavy metals on edible plants is of great significance. Existing studies mostly used virgin microplastics to evaluate their effects on plants, effects of naturally aged microplastics and their combined effects with heavy metals are rarely explored. In this study, single and combined effect of polyethylene microplastics (PE, both virgin and naturally aged) and cadmium (Cd) on pakchoi under seedling and mature stages were analyzed from perspectives of growth inhibition, oxidative damage, nutrition content and soil enzyme activities. Results showed that inhibiting effects of naturally aged PE (PEa) on the growth of pakchoi were stronger than virgin PE (PEv), whereas co-contamination of PEa and Cd was less toxic than that of PEv and Cd. The co-contamination of PE and Cd could inhibit pakchoi dry biomass by over 85 %. Both single and combined contamination of PE and Cd promoted soil fluorescein diacetate hydrolase (FDA) activities, which were 1.11 to 2.04 times of that in control group. Soluble sugar contents under co-contamination of PEa and Cd were 14 % to 22 % higher than those in control group. PEa and PEv showed different effects on oxidative damage of pakchoi. Compared with PEv, catalase (CAT) activities were more sensitive with PEa, whereas PEa had lower effect on superoxide dismutase (SOD) activities. The response of pakchoi to PE and Cd changed with growth stage. Chlorophyll contents in pakchoi under seedling stage were generally higher than those under mature stage. For Cd contaminated soils, PE benefited pakchoi growth under seedling stage, i.e. antagonistic effect between Cd and PE but hindered their growth under mature stage, i.e. synergistic effect. The results unraveled here emphasized PE, especially PEa, could trigger negative effects on agro-systems, whereas PE could be beneficial for heavy metal contaminated agro-systems under specific situations.
Collapse
Affiliation(s)
- Cong Men
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China; State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhenwen Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Chengdu Drainage Co., Ltd, Chengdu 610011, China
| | - Kaihe Li
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Xin Xing
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Zifu Li
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Jiane Zuo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
20
|
Mohan H, Muthukumar Sathya P, Acharya S, Jeong HJ, Lee GM, Park JH, Seralathan KK, Oh BT. Harnessing landfill-derived Bacillus subtilis (LLS-04) for bio-electrodegradation of di-butyl phthalate: Comprehensive toxicity assessment across multiple biological models. JOURNAL OF HAZARDOUS MATERIALS 2024; 481:136480. [PMID: 39556914 DOI: 10.1016/j.jhazmat.2024.136480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/16/2024] [Accepted: 11/09/2024] [Indexed: 11/20/2024]
Abstract
Di-butyl phthalate (DBP), a pervasive environmental contaminant, poses significant ecological and health risks due to its persistence and toxicity. This study investigates the potential of a landfill-derived Bacillus subtilis strain (LLS-04) in bio-electrodegradation of DBP, alongside a comprehensive toxicity assessment across multiple biological models. Bio-electrodegradation efficiency was compared to biodegradation and electrodegradation, revealing that bio-electrodegradation achieved a remarkable 98.57 % reduction in DBP concentration significantly outperforming the other methods. This enhanced degradation was attributed to improved microbial activity and enzyme production, as indicated by higher protein content and increased esterase and dehydrogenase activities in the bio-electrodegradation system. The optimized conditions facilitated efficient degradation, with HPLC-MS/MS analysis confirming the breakdown of DBP into non-toxic end products via a proposed metabolic pathway. A comprehensive toxicity assessment, including in-silico analysis, in-vitro cytotoxicity and brine shrimp lethality assays, demonstrated a significant reduction in toxicity of BES treated effluent compared to DBP untreated effluent. Furthermore, in-vivo toxicity studies using animal model supported these findings, demonstrating reduced toxicity in the BES treated effluent compared to the DBP untreated effluent. Overall, these findings highlight the potential application of bio-electrodegradation in bioremediation strategies for phthalate pollution, offering an effective solution for reducing both DBP concentration and its environmental toxicity.
Collapse
Affiliation(s)
- Harshavardhan Mohan
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk State, 54596 Republic of Korea
| | - Pavithra Muthukumar Sathya
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk State, 54596 Republic of Korea
| | - Satabdi Acharya
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Jeonbuk State, 54896 Republic of Korea
| | - Hyeon-Jin Jeong
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk State, 54596 Republic of Korea
| | - Gwang-Min Lee
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk State, 54596 Republic of Korea
| | - Jung-Hee Park
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk State, 54596 Republic of Korea
| | - Kamala-Kannan Seralathan
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk State, 54596 Republic of Korea
| | - Byung-Taek Oh
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk State, 54596 Republic of Korea.
| |
Collapse
|
21
|
Özen EY, Canbulat Özdemir M, Hatinoğlu MD, Apul OG, İmamoğlu İ. Mechanistic inferences from empirical and LSER modeling approaches concerning sorption of organic compounds by pristine and aged PE microplastics. CHEMOSPHERE 2024; 368:143695. [PMID: 39510265 DOI: 10.1016/j.chemosphere.2024.143695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/25/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
This study investigates the effect of aging of polyethylene (PE) microplastics (MP) on its interaction with organic compounds (OCs). Initially, pristine PE MPs were subjected to UV-aging, followed by characterization of their chemical structure and thermal properties. UV-aging resulted in formation of new functional groups such as carbonyl (CO), -OH, and unsaturation, along with changes in crystallinity and melting temperature. Complimentary sorption experiments were conducted with a suite of environmentally significant and structurally related OCs i.e., phenol, 2,3,6-trichlorophenol, triclosan, 1,1,2,2-tetrachloroethane, tetrachloroethylene and hexachloroethane, using pristine and UV-aged PE MPs. In addition to the distribution coefficients (i.e., KPEW) obtained experimentally, relevant data from the literature was also gathered for the purpose of developing a poly-parametric linear free energy relationship (pp-LFER) model. Two models were developed for predicting sorption onto: (i) only UV-aged PE, yielding an R2 = 0.96, RMSE = 0.19 (n = 16), (ii) PE that has undergone various types of aging, yielding an R2 = 0.83, RMSE = 0.68 (n = 36). Lastly, a direct comparison was performed between two pp-LFERs developed for the interaction of the same OCs with pristine vs. aged PE (n = 7). In addition to the predictive strength, the system coefficients enabled mechanistic inferences to be made; such that while molecular volume or non-specific hydrophobic interactions govern OC-pristine PE interactions, polar interactions and H-bonding also play important roles for OC-aged PE interactions. Overall, findings suggested that changes of MP surfaces under environmentally relevant aging conditions indicated an impact on their interactions with OCs in the environment.
Collapse
Affiliation(s)
- Elif Yaren Özen
- Department of Environmental Engineering, Middle East Technical University, 06800, Ankara, Turkey.
| | - Melek Canbulat Özdemir
- Department of Environmental Engineering, Middle East Technical University, 06800, Ankara, Turkey.
| | | | - Onur Güven Apul
- Department of Civil and Environmental Engineering, University of Maine, Orono, ME, 04469, USA.
| | - İpek İmamoğlu
- Department of Environmental Engineering, Middle East Technical University, 06800, Ankara, Turkey.
| |
Collapse
|
22
|
Zhao X, Wan C, Pan Y, Fan Y, Liu X. Pyrolysis behavior of sewage sludge coexisted with microplastics: Kinetics, mechanism, and product characteristics. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:123030. [PMID: 39447367 DOI: 10.1016/j.jenvman.2024.123030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/20/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
Microplastics can accumulate in the excess sludge from wastewater treatment plants through domestic wastewater. This study investigated the co-pyrolysis behavior of sewage sludge coexisting with two types of microplastics (polyethylene (PE) and polylactic acid (PLA)) and found a superior comprehensive pyrolysis performance. By calculating the difference between theoretical and experimental weight loss during the pyrolysis process, it was found that the incorporation of microplastics PE and PLA created a synergistic effect at 270°C-450 °C, which was confirmed through the Malek method analysis from a pyrolysis mechanism perspective that it could increase the random nuclei on each particle, that is, enhance the heterogeneous diffusion of volatiles. The average activation energy was reduced by 84.99 kJ/mol, as determined using three isoconversional methods: Flynn-Wall-Ozawa (FWO), Kissinger-Akahira-Sunose (KAS), and Starink. Regarding the products, the aforementioned synergistic effect led to a reduction in char retention and larger specific surface area of the biochar, while the quantities of gaseous products and bio-oil escalated. Through a thermogravimetric analyzer and Fourier transform infrared spectroscopy (TG-FTIR), an increase in aromatic hydrocarbons, alkanes, aldehydes, ethers, and esters in the gaseous products were detected. Pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) revealed an increase in hydrocarbons, esters, and alcohols in the bio-oil, and acids and aldehydes decreased, overall enhancing the quality of the bio-oil. This study elucidated that pyrolysis completely transformed microplastics in sludge, thus eliminating environmental risks and provided a theoretical reference for understanding the pyrolysis behavior of sludge containing microplastics.
Collapse
Affiliation(s)
- Xiaomeng Zhao
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China
| | - Chunli Wan
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China.
| | - Yating Pan
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China
| | - Yu Fan
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China
| | - Xiang Liu
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
23
|
Monràs-Riera P, Avila C, Ballesté E. Plastisphere in an Antarctic environment: A microcosm approach. MARINE POLLUTION BULLETIN 2024; 208:116961. [PMID: 39293370 DOI: 10.1016/j.marpolbul.2024.116961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/20/2024]
Abstract
Microplastics are present even in remote regions like the Southern Ocean. Once in the water, they are rapidly colonised by marine microorganisms, forming the plastisphere. To address this issue in Antarctic waters, we conducted a microcosm experiment by incubating polypropylene, polyethylene, polystyrene microplastic pellets, and quartz for 33 days on Livingston Island, South Shetland Islands, Antarctica. We analysed plastic colonisation and plastisphere dynamics using scanning electron microscopy, flow cytometry, bacterial cultivation, qPCR, and 16S rRNA gene metabarcoding. Our results show rapid and consistent colonisation, although biomass formation was slightly slower than in other oceans, indicating unique environmental constraints. Time was the main factor influencing biofilm communities, while plastic polymer types had little effect. We observed a transition in microbial communities from early- to late-biofilm stages between days 12 and 19. Additionally, we described the bacterial plastisphere composition in this Antarctic environment, including the presence of hydrocarbon-degrading bacteria.
Collapse
Affiliation(s)
- Pere Monràs-Riera
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Catalonia, Spain.
| | - Conxita Avila
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Catalonia, Spain.
| | - Elisenda Ballesté
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain.
| |
Collapse
|
24
|
Kumar M, Chaudhary V, Chaudhary V, Srivastav AL, Madhav S. Impacts of microplastics on ecosystem services and their microbial degradation: a systematic review of the recent state of the art and future prospects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:63524-63575. [PMID: 39508948 DOI: 10.1007/s11356-024-35472-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/26/2024] [Indexed: 11/15/2024]
Abstract
Microplastics are tiny plastic particles with a usual diameter ranging from ~ 1 μ to 5 µm. Recently, microplastic pollution has raised the attention of the worldwide environmental and human concerns. In human beings, digestive system illness, respiratory system disorders, sleep disturbances, obesity, diabetes, and even cancer have been reported after microplastic exposure either through food, air, or skin. Similarly, microplastics are also having negative impacts on the plant health, soil microorganisms, aquatic lives, and other animals. Policies and initiatives have already been in the pipeline to address this problem to deal with microplastic pollution. However, many obstacles are also being observed such as lack of knowledge, lack of research, and also absence of regulatory frameworks. This article has covered the distribution of microplastics in water, soil, food and air. Application of multimodel strategies including fewer plastic item consumption, developing low-cost novel technologies using microorganisms, biofilm, and genetic modified microorganisms has been used to reduce microplastics from the environment. Researchers, academician, policy-makers, and environmentalists should work jointly to cope up with microplastic contamination and their effect on the ecosystem as a whole which can be reduced in the coming years and also to make earth clean.
Collapse
Affiliation(s)
- Mukesh Kumar
- College of Horticulture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh, India
| | - Veena Chaudhary
- Department of Chemistry, Meerut College Meerut, Meerut, Uttar Pradesh, India
| | - Vidisha Chaudhary
- Institute of Business Studies, CCS University, Meerut, India, Uttar Pradesh
| | - Arun Lal Srivastav
- Chitkara University School of Engineering and Technology, Chitkara University, Solan, Himachal Pradesh, India.
- Center of Excellence for Sustainability, Chitkara University, Solan, Himachal Pradesh, India.
| | - Sughosh Madhav
- Department of Civil Engineering, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
25
|
Wang X, Li J, Wang D, Sun C, Zhang X, Zhao J, Teng J, Wang Q. Unveiling microplastic's role in nitrogen cycling: Metagenomic insights from estuarine sediment microcosms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124591. [PMID: 39043311 DOI: 10.1016/j.envpol.2024.124591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/30/2024] [Accepted: 07/20/2024] [Indexed: 07/25/2024]
Abstract
Marine microplastics (MPs) pollution, with rivers as a major source, leads to MPs accumulation in estuarine sediments, which are also nitrogen cycling hotspots. However, the impact of MPs on nitrogen cycling in estuarine sediments has rarely been documented. In this study, we conducted microcosm experiment to investigate the effects of commonly encountered polyethylene (PE) and polystyrene (PS) MPs, with two MPs concentrations (0.3% and 3% wet sediment weight) based on environmental concentration considerations and dose-response effects, on sediment dissolved oxygen (DO) diffusion capacity and microbial communities using microelectrode system and metagenomic analysis respectively. The results indicated that high concentrations of PE-MPs inhibited DO diffusion during the mid-phase of the experiment, an effect that dissipated in the later stages. Metagenomic analysis revealed that MP treatments reduced the relative abundance of dominant microbial colonies in the sediments. The PCoA results demonstrated that MPs altered the microbial community structure, particularly evident under high concentration PE-MPs treatments. Functional analysis related to the nitrogen cycle suggested that PS-MPs promoted the nitrification, denitrification, and DNRA processes, but inhibited the ANRA process, while PE-MPs had an inhibitory effect on the nitrate reduction process and the ANRA process. Additionally, the high concentration of PE-MPs treatment significantly stimulated the abundance of genus (Bacillus) by 34.1% and genes (lip, pnbA) by 100-187.5% associated with plastic degradation, respectively. Overall, in terms of microbial community structure and the abundance of nitrogen cycling functional genes, PE- and PS- MPs exhibit both similarities and differences in their impact on nitrogen cycling. Our findings highlight the complexity of MP effects on nitrogen cycling in estuarine sediments and high concentrations of PE-MP stimulated plastic-degrading genus and genes.
Collapse
Affiliation(s)
- Xiaodan Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Jiasen Li
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Dongyu Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Chaofan Sun
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Xiaoli Zhang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China
| | - Jianmin Zhao
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Jia Teng
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Qing Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China.
| |
Collapse
|
26
|
Li Y, Chen L, Zhou N, Chen Y, Ling Z, Xiang P. Microplastics in the human body: A comprehensive review of exposure, distribution, migration mechanisms, and toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174215. [PMID: 38914339 DOI: 10.1016/j.scitotenv.2024.174215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Microplastics (MPs) are pervasive across ecosystems, presenting substantial risks to human health. Developing a comprehensive review of MPs is crucial due to the growing evidence of their widespread presence and potential harmful effects. Despite the growth in research, considerable uncertainties persist regarding their transport dynamics, prevalence, toxicological impacts, and the potential long-term health effects they may cause. This review thoroughly evaluates recent advancements in research on MPs and their implications for human health, including estimations of human exposure through ingestion, inhalation, and skin contact. It also quantifies the distribution and accumulation of MPs in various organs and tissues. The review discusses the mechanisms enabling MPs to cross biological barriers and the role of particle size in their translocation. To ensure methodological rigor, this review adheres to the PRISMA guidelines, explicitly detailing the literature search strategy, inclusion criteria, and the quality assessment of selected studies. The review concludes that MPs pose significant toxicological risks, identifies critical gaps in current knowledge, and recommends future research directions to elucidate the prolonged effects of MPs on human health. This work aims to offer a scientific framework for mitigating MP-related hazards and establishes a foundation for ongoing investigation.
Collapse
Affiliation(s)
- Yue Li
- Institute of College of Art and Design, Rural Vitalization Research Center in the Wuling Mountain Area, Huaihua University, Huaihua 418000, China.
| | - Liping Chen
- Institute of College of Art and Design, Rural Vitalization Research Center in the Wuling Mountain Area, Huaihua University, Huaihua 418000, China
| | - Nonglin Zhou
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua 418000, China
| | - Yuyuan Chen
- Institute of College of Art and Design, Rural Vitalization Research Center in the Wuling Mountain Area, Huaihua University, Huaihua 418000, China
| | - Zhichen Ling
- Institute of College of Art and Design, Rural Vitalization Research Center in the Wuling Mountain Area, Huaihua University, Huaihua 418000, China
| | - Ping Xiang
- Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China.
| |
Collapse
|
27
|
Al-Zawaidah H, Kooi M, Hoitink T, Vermeulen B, Waldschläger K. Mapping Microplastic Movement: A Phase Diagram to Predict Nonbuoyant Microplastic Modes of Transport at the Particle Scale. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17979-17989. [PMID: 39340446 PMCID: PMC11465633 DOI: 10.1021/acs.est.4c08128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
Microplastics pose numerous threats to aquatic environments, yet understanding their transport mechanisms remains limited. Drawing from natural sediment research provides valuable insights to address this knowledge gap. One key dimensionless number used to describe sediment transport is the transport stage, referring to the ratio between the flow shear velocity and the particle settling velocity. However, variations in physical properties, such as shape and density, raise concerns about the applicability of existing sediment transport theories to microplastics. To address this challenge, we employed a physical modeling approach, examining 24 different nonbuoyant microplastic particles in a turbulent open channel flow. Utilizing 3D particle tracking, a total of 720 trajectories were recorded and analyzed. Microplastic particles exhibited transport modes akin to natural sediments, including rolling/sliding, saltation, and suspension. The transport stage strongly correlated with these modes, as well as with the mean forward velocity and mean position in the water column. Notably, particle shape emerged as a critical factor influencing transport dynamics. Due to their lower settling velocity, fibers tended to stay closer to the water surface with lower forward velocities compared to spheres. Based on the laboratory results, a new phase diagram for microplastics is introduced analogous to an existing diagram for sediments.
Collapse
Affiliation(s)
- Hadeel Al-Zawaidah
- Hydrology
and Environmental Hydraulics Group, Wageningen
University and Research, 6700 AA Wageningen, The Netherlands
| | - Merel Kooi
- Aquatic
Ecology and Water Quality Management Group, Wageningen University and Research, 6700 AA Wageningen, The Netherlands
| | - Ton Hoitink
- Hydrology
and Environmental Hydraulics Group, Wageningen
University and Research, 6700 AA Wageningen, The Netherlands
| | - Bart Vermeulen
- Hydrology
and Environmental Hydraulics Group, Wageningen
University and Research, 6700 AA Wageningen, The Netherlands
| | - Kryss Waldschläger
- Hydrology
and Environmental Hydraulics Group, Wageningen
University and Research, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
28
|
Sezer M, Topkaya E, Aksan S, Veli S, Arslan A. Optimizing microplastic treatment in the effluent of biological nutrient removal processes using electrocoagulation: Taguchi experimental design. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122413. [PMID: 39236617 DOI: 10.1016/j.jenvman.2024.122413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/15/2024] [Accepted: 08/31/2024] [Indexed: 09/07/2024]
Abstract
Microplastics (MPs) have become one of the most critical environmental pollution problems in recent years. Due to the growing abundance of MPs in aquatic environments, extensive research has been conducted and continues to be ongoing to develop effective treatment methods. In this study, the removal of MPs in the effluent of biological wastewater treatment plant (WWTP) was investigated by electrocoagulation (EC) process with aluminum electrodes. Using Taguchi design, the importance of process variables such as pH, current density, and reaction time were evaluated by Analysis of Variance (ANOVA). Statistically, according to F and p values, the most effective parameter for microplastic (MP) removal was current density, followed by pH and reaction time. The R2 value of the created model was found to be above 98%. According to Taguchi results, the optimum process conditions were determined as pH 9, current density 1.905 mA/cm2, and reaction time 15 min and 99% MP removal efficiency was obtained. Under these optimum conditions, the process cost was calculated as 0.049 $/m3 wastewater, considering energy and electrode consumption. As a result of visual analyses, fiber, film, pellet, amorphous, and undefined forms were dominant in WWTP effluent, while only fiber structures were observed after treatment with EC. In this study, it was concluded that the EC process is an alternative treatment method that can be integrated into wastewater treatment plant effluent to achieve MP removal at very low cost and high efficiency. In addition, as a result of this study, it was observed that the EC process can also be used in MP removal by applying it to real wastewater.
Collapse
Affiliation(s)
- Mesut Sezer
- Department of Environmental Engineering, Kocaeli University, 41000, Kocaeli, Turkey.
| | - Eylem Topkaya
- Department of Environmental Engineering, Kocaeli University, 41000, Kocaeli, Turkey
| | - Serdar Aksan
- Department of Biology, Kocaeli University, 41000, Kocaeli, Turkey
| | - Sevil Veli
- Department of Environmental Engineering, Kocaeli University, 41000, Kocaeli, Turkey
| | - Ayla Arslan
- Department of Environmental Engineering, Kocaeli University, 41000, Kocaeli, Turkey
| |
Collapse
|
29
|
Pillai ARS, Bhosale YK, Roy S. Extraction of Bioactive Compounds From Centella asiatica and Enlightenment of Its Utilization Into Food Packaging: A Review. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2024; 2024:1249553. [PMID: 39363888 PMCID: PMC11449555 DOI: 10.1155/2024/1249553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/04/2024] [Indexed: 10/05/2024]
Abstract
Centella asiatica is a medicinal herb, well known for its phytochemical activities because of the presence of terpenoids and polyphenols, which contribute to the bioactivity of herb extract that can be effectively utilized in the packaging industry. Biopolymers infused with C. asiatica extract could be a promising solution in the food sector. The antibacterial and antioxidant qualities of C. asiatica can help preserve the quality and lengthen the freshness of food products, thereby preventing food loss. Selection of a suitable extraction method is essential to retain the yield and properties of the bioactive compounds of C. asiatica extract. Many research has been conducted on the separation of C. asiatica by using conventional and novel extraction techniques and its execution in packaging as a functional component. This review provides an overview of the extraction of phytochemicals from C. asiatica and its utilization in biopolymer film as an active component to modify the packaging film characteristics.
Collapse
Affiliation(s)
- Athira R. S. Pillai
- Department of Food Technology and NutritionSchool of AgricultureLovely Professional University 144411, Phagwara, Punjab, India
| | - Yuvraj Khasherao Bhosale
- Agricultural and Food Engineering DepartmentIndian Institute of Technology Kharagpur 721302, Kharagpur, West Bengal, India
| | - Swarup Roy
- Department of Food Technology and NutritionSchool of AgricultureLovely Professional University 144411, Phagwara, Punjab, India
| |
Collapse
|
30
|
Zhang M, Jin Y, Fan C, Xu Y, Li J, Pan W, Lou Z, Chen H, Jin B. Exploring the trophic transfer and effects of microplastics in freshwater ecosystems: A focus on Bellamya aeruginosa to Mylopharyngodon piceus. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124426. [PMID: 38917945 DOI: 10.1016/j.envpol.2024.124426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/01/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024]
Abstract
Microplastics (MPs) can enter aquatic food webs through direct ingestion from the environment or indirectly via trophic transfer, but their fate and biological effects within local freshwater food chains remain largely unexplored. In this study, we conducted the first investigation on the trophic transfer and impacts of fluorescently labeled polystyrene microplastics (PS-MPs) (100-nm and 10-μm) in a model freshwater food chain consisting of the snail Bellamya aeruginosa and the commercially important fish Mylopharyngodon piceus, both prevalent in Chinese freshwater ecosystems. Quantitative analysis revealed substantial accumulation of MPs in B. aeruginosa, reaching an equilibrium state within 12 h of exposure. While steady-state was not observed, a pronounced time-dependent bioaccumulation of MPs was evident in M. piceus over a five-week period following dietary exposure through the consumption of contaminated B. aeruginosa. Notably, MPs of both sizes underwent translocation from the gastrointestinal tract to the muscle tissue in M. piceus. High-throughput sequencing of the gut microbiota revealed that exposure to 100-nm MPs significantly altered the microbial community composition in M. piceus, and both particle sizes led to increased relative abundance of potentially pathogenic bacterial genera. Our findings provide novel insights into the trophic transfer, tissue accumulation, and biological impacts of MPs in a model freshwater food chain, highlighting the need for further research to assess the ecological and food safety risks associated with microplastic pollution in freshwater environments.
Collapse
Affiliation(s)
- Ming Zhang
- School of Life and Environmental Science, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, Zhejiang 311121, China
| | - Yijie Jin
- School of Life and Environmental Science, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, Zhejiang 311121, China
| | - Cenyi Fan
- School of Life and Environmental Science, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, Zhejiang 311121, China
| | - Yiwen Xu
- School of Life and Environmental Science, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, Zhejiang 311121, China
| | - Jiateng Li
- School of Life and Environmental Science, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, Zhejiang 311121, China
| | - Wenjing Pan
- School of Life and Environmental Science, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, Zhejiang 311121, China
| | - Ziyang Lou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, Shanghai 200240, China
| | - Huili Chen
- School of Life and Environmental Science, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, Zhejiang 311121, China
| | - Binsong Jin
- School of Life and Environmental Science, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
31
|
Duan Q, Zhai B, Zhao C, Liu K, Yang X, Zhang H, Yan P, Huang L, Lee J, Wu W, Zhou C, Quan X, Kang W. Nationwide meta-analysis of microplastic distribution and risk assessment in China's aquatic ecosystems, soils, and sediments. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135331. [PMID: 39067288 DOI: 10.1016/j.jhazmat.2024.135331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/13/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Microplastic (MP) accumulation has recently become a pressing global environmental challenge. As a major producer and consumer of plastic products, China's MP pollution has garnered significant attention from researchers. However, accurate and comprehensive investigations of national-level MP pollution are still lacking. In this study, we systematically collated a national MP pollution dataset consisting of 7766 water, soil, and sediment sampling sites from 544 publicly published studies, revealing the spatiotemporal distribution and potential risks of MP pollution in China. The results indicate that MP distribution is influenced by various regional factors, including economic development level, population distribution, and geographical environment, exhibiting considerable range and complexity. MP concentrations are generally higher in economically prosperous areas, but the degree of pollution varies significantly across different environmental media. Given the uncertainty and lack of standardized data in traditional microplastic risk assessment methods, this article highlights the urgency of developing a comprehensive big data and artificial intelligence (AI)-based regulatory framework. This work provides a substantial amount of accurate MP pollution data and offers a fresh perspective on leveraging AI for microplastic pollution regulation.
Collapse
Affiliation(s)
- Qiannan Duan
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, PR China
| | - Baoxin Zhai
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, PR China
| | - Chen Zhao
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, PR China
| | - Kangping Liu
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, PR China
| | - Xiangyi Yang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, PR China
| | - Hailong Zhang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, PR China
| | - Pengwei Yan
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, PR China
| | - Lei Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China.
| | - Jianchao Lee
- Department of Environment Science, Shaanxi Normal University, Xi'an 710119, PR China.
| | - Weidong Wu
- Shaanxi Key Laboratory of Environmental Monitoring and Forewarning of Trace Pollutants, Xi'an 710005, PR China
| | - Chi Zhou
- Shaanxi Key Laboratory of Environmental Monitoring and Forewarning of Trace Pollutants, Xi'an 710005, PR China
| | - Xudong Quan
- Shaanxi Key Laboratory of Environmental Monitoring and Forewarning of Trace Pollutants, Xi'an 710005, PR China
| | - Wei Kang
- Shaanxi Key Laboratory of Environmental Monitoring and Forewarning of Trace Pollutants, Xi'an 710005, PR China
| |
Collapse
|
32
|
Dreyer S, Marcu D, Keyser S, Bennett M, Maree L, Koeppel K, Abernethy D, Petrik L. Factors in the decline of the African penguin: Are contaminants of emerging concern (CECs) a potential new age stressor? MARINE POLLUTION BULLETIN 2024; 206:116688. [PMID: 39029148 DOI: 10.1016/j.marpolbul.2024.116688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/21/2024]
Abstract
The African penguin is currently experiencing a significant decline, with just over 10,000 breeding pairs left. A substantial body of research reflects the impacts of contaminants of emerging concern (CECs) on the marine environment, with wastewater treatment plants reported as one of the main sources of CEC release. In South Africa, CECs were identified contaminating the marine environment and bioaccumulating in several marine species. Approximately 70 % of all African penguin colonies breed in close proximity to cities and/or harbors in South Africa. Currently, the impact of CECs as a stressor upon the viability of African penguin populations is unknown. Based on the search results there was a clear lack of information on CECs' bioaccumulation and impact on the African penguin. This narrative review will thus focus on the prevalent sources and types of CECs and examine the reported consequences of constant exposure in seabirds, particularly African penguins.
Collapse
Affiliation(s)
- Stephanie Dreyer
- Animal Production Studies, Faculty of Veterinary Sciences, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa.
| | - Daniel Marcu
- School of Biological Sciences, University of East Anglia, NR4 7TJ, United Kingdom
| | - Shannen Keyser
- Comparative Spermatology Laboratory, Department of Medical Bioscience, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Monique Bennett
- Comparative Spermatology Laboratory, Department of Medical Bioscience, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Liana Maree
- Comparative Spermatology Laboratory, Department of Medical Bioscience, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Katja Koeppel
- Animal Production Studies, Faculty of Veterinary Sciences, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa
| | - Darrell Abernethy
- Aberystwyth School of Veterinary Science, Aberystwyth University, Ceredigion SY23 3FL, United Kingdom
| | - Leslie Petrik
- Environmental and Nano Sciences Group, Department of Chemistry, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| |
Collapse
|
33
|
Riaz S, Sahar R, Qader I, Burhan ZUN, Alvi SK, Rasool SG, Siddiqui PJA, Shafique S. Preliminary assessment of microplastic in rhizosphere and non-rhizosphere region of mangrove at four locations along Karachi coast, Pakistan. MARINE POLLUTION BULLETIN 2024; 205:116608. [PMID: 38917495 DOI: 10.1016/j.marpolbul.2024.116608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 06/27/2024]
Abstract
Mangrove ecosystem faces significant threats from the various pollutants including microplastic (MPs). The aim of this study was to assess variations in MP distribution in mangrove sediments of rhizosphere (R) and non-rhizosphere (NR) regions. A total of 14,960 MP particles were identified from Sandspit backwater (SS-1 & SS-2) and Creek areas (PQ & KC). Notably, the NR showed higher MP counts (7848) compared to the R region (7112). Analysis revealed variations in MP types, with beads being predominant in both R and NR, followed by film, fiber, and fragments. KC exhibited highest MP contamination, followed by PQ, SS-2, and SS-1. Fourier-transform infrared (FTIR) analysis confirmed the presence of polyethylene terephthalate and polyethylene in sediments samples. This first detailed report on MP in mangrove sediments and other limited studies from Pakistan establishes the widespread distribution of MPs in the coastal area and provide a baseline for further elaboration in future.
Collapse
Affiliation(s)
- Shagufta Riaz
- Department of Zoology, University of Karachi, Pakistan
| | - Rafia Sahar
- Centre of Excellence in Marine Biology, University of Karachi, Karachi 75270, Pakistan
| | - Irfana Qader
- Centre of Excellence in Marine Biology, University of Karachi, Karachi 75270, Pakistan
| | - Zaib-Un-Nisa Burhan
- Centre of Excellence in Marine Biology, University of Karachi, Karachi 75270, Pakistan
| | - Sofia Khalique Alvi
- PCSIR Laboratories Complex, Applied Chemistry Research Centre, Karachi, Pakistan
| | | | - Pirzada J A Siddiqui
- Centre of Excellence in Marine Biology, University of Karachi, Karachi 75270, Pakistan
| | - Seema Shafique
- Centre of Excellence in Marine Biology, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
34
|
Sakali A, Egea-Corbacho A, Coello D, Albendín G, Arellano J, Rodríguez-Barroso R. Analysis of microplastics in the reuse of compost in three agricultural sites (Cádiz, Spain) as a circular economy strategy: detection of micropollutants and incidence of plastic ingestion levels by annelids. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:51747-51759. [PMID: 39126584 PMCID: PMC11374815 DOI: 10.1007/s11356-024-34615-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
The system of fertilizing agricultural soils with sludge or compost from wastewater treatment processes, as one of the principles of the circular economy, can lead to microplastic (MP) contamination. The existing technical standards for fertilization are very recent and do not consider this problem, although there is scientific evidence of their existence. Therefore, this study, on the one hand, evaluates the presence of MPs in agricultural soils, previously treated with sludge or compost from wastewater treatment plants for fertilization, and on the second hand, it studies the effect of these MPs on earthworms in three different locations in the south of Spain. For the study, selected composts deriving from the different stages of the composting process and three fertilized soils with increasing MP doses were followed. Samples were taken from different sections in depth (0-5, 5-10, and 10-20 cm) to study the shape, size, type, and abundance of MPs using infrared spectroscopy (FTIR). The results showed that the most abundant shape was fiber, followed by fragment and finally bulk, for both composts and soils. Regarding size distribution, 100 µm was the predominant size in composts (64.3% ± 9.8), while in the case of soils, the predominant range was from 100 to 500 µm. The prevalent polymers in both, composts and soils, were PTFE, TPE, PP, and PET, with four times higher amounts in composts than in soils. Ingestion of common MPs were also verified in two earthworm species, which ingested concentrations higher than 2.1% w/w. PP was the most ingested MP and Eisenia fetida was more voracious compared with Lumbricus terrestris. Therefore, it can be considered a suitable bioindicator for monitoring microplastic contamination in agricultural soil.
Collapse
Affiliation(s)
- Ayda Sakali
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences, INMAR-Marine Research Institute, CEIMAR International Campus of Excellence of the Sea, University of Cadiz, Campus Universitario de Puerto Real, 11510, Cadiz, Spain
| | - Agata Egea-Corbacho
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences, INMAR-Marine Research Institute, CEIMAR International Campus of Excellence of the Sea, University of Cadiz, Campus Universitario de Puerto Real, 11510, Cadiz, Spain
| | - Dolores Coello
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences, INMAR-Marine Research Institute, CEIMAR International Campus of Excellence of the Sea, University of Cadiz, Campus Universitario de Puerto Real, 11510, Cadiz, Spain
| | - Gemma Albendín
- Toxicology Department, International Campus of Excellence of the Sea (CEIMAR), Faculty of Marine and Environmental Sciences, University Institute of Marine Research (INMAR), University of Cádiz, 11510, Puerto Real, Spain.
| | - Juana Arellano
- Toxicology Department, International Campus of Excellence of the Sea (CEIMAR), Faculty of Marine and Environmental Sciences, University Institute of Marine Research (INMAR), University of Cádiz, 11510, Puerto Real, Spain
| | - Rocío Rodríguez-Barroso
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences, INMAR-Marine Research Institute, CEIMAR International Campus of Excellence of the Sea, University of Cadiz, Campus Universitario de Puerto Real, 11510, Cadiz, Spain
| |
Collapse
|
35
|
Caner S, Günay D, Arı H, Erdoğan Ş. Microplastic pollution and ecological risk assessment of a pond ecosystem. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:712. [PMID: 38976167 DOI: 10.1007/s10661-024-12881-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/28/2024] [Indexed: 07/09/2024]
Abstract
Microplastic (MP) pollution has been observed in various ecosystems as a result of the rapid increase in plastic production over the past half-century. Nevertheless, the extent of MP pollution in different ecosystems, particularly in freshwater ecosystems, has not been well-studied, and there are limited investigations on this particular topic, specifically in Türkiye. Here, we quantify the occurrence and distribution of MPs in surface water samples collected from Topçu Pond (Türkiye) for the first time. Water samples were collected at five stations and filtered (30 L for each station) through stacked stainless steel sieves (5 mm, 328 µm, and 61 µm mesh size) with a diameter of 30 cm. The abundance, size, color, shape, and type of collected debris samples were analyzed after the wet peroxide oxidation process. MP particles were observed in all samples at an average abundance of 2.4 MPs/L. The most abundant MP size class and type were 0-999 µm and fiber respectively. On the other hand, prevalent colors were black and colorless in general. According to the Raman analysis results, the identified MP derivatives were polypropylene (40%), polyamide (30%), ethylene acrylic acid (20%), and polyvinylchloride (10%). Moreover, the pollution load index (PLI) index was used to determine the pollution status. PLI values were determined as 1.91 at station S1, 1.73 at station S2, 1.31 at station S3, 1 at station S4 and 1.24 at station S5. The PLI value determined for the overall pond was 1.4. The results of this research show that MP pollution is present in Topçu Pond and contributes to the expanding literature on MP pollution in pond ecosystems.
Collapse
Affiliation(s)
- Serkan Caner
- Department of Biology, Faculty of Science and Art, Yozgat Bozok University, 66900, Yozgat, Turkey
| | - Dilara Günay
- Department of Biology, Faculty of Science and Art, Yozgat Bozok University, 66900, Yozgat, Turkey
| | - Hatice Arı
- Department of Chemistry, Faculty of Science and Art, Yozgat Bozok University, 66900, Yozgat, Turkey
| | - Şeyda Erdoğan
- Department of Biology, Faculty of Science and Art, Yozgat Bozok University, 66900, Yozgat, Turkey.
| |
Collapse
|
36
|
Xu H, Hu Z, Sun Y, Xu J, Huang L, Yao W, Yu Z, Xie Y. Microplastics supply contaminants in food chain: non-negligible threat to health safety. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:276. [PMID: 38958774 DOI: 10.1007/s10653-024-02076-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/12/2024] [Indexed: 07/04/2024]
Abstract
The occurrence of microplastics (MPs) and organic pollutants (OPs) residues is commonly observed in diverse environmental settings, where their interactions can potentially alter the behavior, availability, and toxicity of OPs, thereby posing risks to ecosystems. Herein, we particularly emphasize the potential for bioaccumulation and the biomagnification effect of MPs in the presence of OPs within the food chain. Despite the ongoing influx of novel information, there exists a dearth of data concerning the destiny and consequences of MPs in the context of food pollution. Further endeavors are imperative to unravel the destiny and repercussions of MPs/OPs within food ecosystems and processing procedures, aiming to gain a deeper understanding of the joint effect on human health and food quality. Nevertheless, the adsorption and desorption behavior of coexisting pollutants can be significantly influenced by MPs forming biofilms within real-world environments, including temperature, pH, and food constituents. A considerable portion of MPs tend to accumulate in the epidermis of vegetables and fruits, thus necessitating further research to comprehend the potential ramifications of MPs on the infiltration behavior of OPs on agricultural product surfaces.
Collapse
Affiliation(s)
- Hongwen Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Zhenyang Hu
- State Key Laboratory of Food Science and Resources, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Yingying Sun
- Research Institute, Centre Testing International Group Co., Ltd., Shenzhen, 518000, China
| | - Jiang Xu
- Research Institute, Centre Testing International Group Co., Ltd., Shenzhen, 518000, China
| | - Lijun Huang
- Wuxi Food Safety Inspection and Test Center, 35-210 Changjiang South Road, Wuxi, 214142, Jiangsu Province, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Resources, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Zhilong Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China.
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China.
| | - Yunfei Xie
- State Key Laboratory of Food Science and Resources, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China.
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China.
| |
Collapse
|
37
|
Ahmed Dar A, Chen Z, Sardar MF, An C. Navigating the nexus: climate dynamics and microplastics pollution in coastal ecosystems. ENVIRONMENTAL RESEARCH 2024; 252:118971. [PMID: 38642636 DOI: 10.1016/j.envres.2024.118971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/31/2024] [Accepted: 04/18/2024] [Indexed: 04/22/2024]
Abstract
Microplastics (MPs) pollution is an emerging environmental health concern, impacting soil, plants, animals, and humans through their entry into the food chain via bioaccumulation. Human activities such as improper solid waste dumping are significant sources that ultimately transport MPs into the water bodies of the coastal areas. Moreover, there is a complex interplay between the coastal climate dynamics, environmental factors, the burgeoning issue of MPs pollution and the complex web of coastal pollution. We embark on a comprehensive journey, synthesizing the latest research across multiple disciplines to provide a holistic understanding of how these inter-connected factors shape and reshape the coastal ecosystems. The comprehensive review also explores the impact of the current climatic patterns on coastal regions, the intricate pathways through which MPs can infiltrate marine environments, and the cascading effects of coastal pollution on ecosystems and human societies in terms of health and socio-economic impacts in coastal regions. The novelty of this review concludes the changes in climate patterns have crucial effects on coastal regions, proceeding MPs as more prevalent, deteriorating coastal ecosystems, and hastening the transfer of MPs. The continuous rising sea levels, ocean acidification, and strong storms result in habitat loss, decline in biodiversity, and economic repercussion. Feedback mechanisms intensify pollution effects, underlying the urgent demand for environmental conservation contribution. In addition, the complex interaction between human, industry, and biodiversity demanding cutting edge strategies, innovative approaches such as remote sensing with artificial intelligence for monitoring, biobased remediation techniques, global cooperation in governance, policies to lessen the negative socioeconomic and environmental effects of coastal pollution.
Collapse
Affiliation(s)
- Afzal Ahmed Dar
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Quebec, H3G 1M8, Canada
| | - Zhi Chen
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Quebec, H3G 1M8, Canada.
| | | | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Quebec, H3G 1M8, Canada
| |
Collapse
|
38
|
De Felice B, Gazzotti S, Ortenzi MA, Parolini M. Multi-level toxicity assessment of polylactic acid (PLA) microplastics on the cladoceran Daphnia magna. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 272:106966. [PMID: 38815345 DOI: 10.1016/j.aquatox.2024.106966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/12/2024] [Accepted: 05/19/2024] [Indexed: 06/01/2024]
Abstract
The accumulation of plastics waste in the environment has raised a worrisome concern, moving the society to seek out for sustainable solutions, such as the transition from the use of fossil-based, conventional plastics to bioplastics (BPs). However, once in the environment bioplastics have the same probability to accumulate and experience weathering processes than conventional plastics, leading to the formation of microplastics (MPs). However, to date the information on the potential toxicity of MPs originated from the weathering of bioplastics is limited. Thus, this study aimed at investigating the adverse effects induced by the exposure to MPs made of a bioplastic polymer, the polylactic acid (PLA), towards the freshwater cladoceran Daphnia magna. Organisms were exposed for 21 days to three concentrations (0.125 µg/mL, 1.25 µg/mL and 12.5 µg/mL) of PLA microplastics (hereafter PLA-MPs). A multi-level approach was performed to investigate the potential effects through the biological hierarchy, starting from the sub-individual up to the individual level. At the sub-individual level, changes in the oxidative status (i.e., the amount of reactive oxygen species and the activity of antioxidant and detoxifying enzymes) and oxidative damage (i.e., lipid peroxidation) were explored. Moreover, the total caloric content as well as the content of protein, carbohydrate and lipid content assess were used to investigate the effects on energy reserves. At individual level the changes in swimming activity (i.e., distance moved and swimming speed) were assessed. Our results showed that the exposure to PLA-MPs induced a slight modulation in the oxidative status and energy reserves, leading to an increase in swimming behavior of treated individuals compared to control conspecifics. These results suggest that the exposure to MPs made of a bioplastic polymer can induce adverse effects similar to those caused by conventional polymers.
Collapse
Affiliation(s)
- Beatrice De Felice
- University of Milan, Department of Environmental Science and Policy, via Celoria 26, I-20133 Milan, Italy.
| | - Stefano Gazzotti
- University of Milan, Laboratory of Materials and Polymers (LaMPo), Department of Chemistry, via Golgi 19, I-20133 Milan, Italy
| | - Marco Aldo Ortenzi
- University of Milan, Laboratory of Materials and Polymers (LaMPo), Department of Chemistry, via Golgi 19, I-20133 Milan, Italy
| | - Marco Parolini
- University of Milan, Department of Environmental Science and Policy, via Celoria 26, I-20133 Milan, Italy
| |
Collapse
|
39
|
Cordeiro RDM, Cardoso VV, Carneiro RN, Almeida CMM. Validation of an FT-IR microscopy method for the monitorization of microplastics in water for human consumption in Portugal: Lisbon case study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33966-8. [PMID: 38922468 DOI: 10.1007/s11356-024-33966-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024]
Abstract
The growing anthropogenic contamination of natural water by microplastics (MPs) confirms the urgent need to preserve this precious resource. MPs are part of the group of contaminants of emerging concern, and the occurrence studies in surface water and water for human consumption (WHC) are mandatory for environmental and human health risk assessment. This study aims to optimize and validate a Fourier transform infrared spectroscopy method coupled with optical microscopy (micro-FTIR) in transmission mode to monitor MPs in WHC. Water sample (250 mL; without sample pre-treatment) was filtered through 5 µm silicon filters. The infrared spectra identification was performed by OMNIC mathematical correlation, using various spectra libraries for polymers (including the in-house IR spectra library), a background reading on a clean silicon filter, and an aperture of 100 µm × 100 µm. The validated method showed good accuracy, with an average recovery for representative polymers of 91%, a relative standard deviation of 13%, and a reporting limit (RL) of 44 MPs/L. Sixty WHC samples from the Lisbon water supply system showed MPs ranging from 0 (< RL) to 934 MPs/L, with an average value of 309 MPs/L. The most representative polymers were polyethylene (PE, 76.8%), polyethylene terephthalate (PET, 6.9%), polypropylene (PP, 6%), polystyrene (PS, 4%), and polyamide (PA,4%). In terms of size, the microplastic particles had an average length and width of 76 µm and 39 µm, respectively.
Collapse
Affiliation(s)
| | - Vítor V Cardoso
- Empresa Portuguesa das Águas Livres, S.A. - EPAL, Direção de Laboratórios, Lisbon, Portugal
| | - Rui N Carneiro
- Empresa Portuguesa das Águas Livres, S.A. - EPAL, Direção de Laboratórios, Lisbon, Portugal
| | - Cristina M M Almeida
- iMed.UL, Faculdade de Farmácia da Universidade de Lisboa, Lisbon, Portugal.
- Laboratório de Bromatologia e Qualidade da Água, Faculdade de Farmácia da Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
40
|
Jahan I, Chowdhury G, Baquero AO, Couetard N, Hossain MA, Mian S, Iqbal MM. Microplastics pollution in the Surma River, Bangladesh: A rising hazard to upstream water quality and aquatic life. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121117. [PMID: 38733848 DOI: 10.1016/j.jenvman.2024.121117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/11/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
The ecological health of freshwater rivers is deteriorating globally due to careless human activities, for instance, the emission of plastic garbage into the river. The current research was the first assessment of microplastics (MPs) pollution in water, sediment, and representative organisms (fish, crustacean, and bivalve) from the Surma River. Water, sediment, and organisms were sampled from six river sites (Site 1: Charkhai; Site 2: Golapganj; Site 3: Alampur; Site 4: Kazir Bazar; Site 5: Kanishail and Site 6: Lamakazi), and major water quality parameters were recorded during sampling. Thereafter, MPs in water, sediment, and organism samples were extracted, and then microscopically examined to categorize selected MPs types. The abundance of MPs, as well as size, and color distribution, were estimated. Polymer types were analyzed by ATR-FTIR, the color loss of MPs was recorded, the Pollution Load Index (PLI) was calculated, and the relationship between MPs and water quality parameters was analyzed. Sites 4 and 5 had comparatively poorer water quality than other sites. Microplastic fibers, fragments, and microbeads were consistently observed in water, sediment, and organisms. A substantial range of MPs in water, sediment, and organisms (37.33-686.67 items/L, 0.89-15.12 items/g, and 0.66-48.93 items/g, respectively) was recorded. There was a diverse color range, and MPs of <200 μm were prevalent in sampling areas. Six polymer types were identified by ATR-FTIR, namely Polyethylene (PE), Polyamide (PA), Polypropylene (PP), Cellulose acetate (CA), Polyethylene terephthalate (PET), and Polystyrene (PS), where PE (41%) was recognized as highly abundant. The highest PLI was documented in Site 4 followed by Site 5 both in water and sediment. Likewise, Sites 4 and 5 were substantially different from other study areas according to PCA. Overall, the pervasiveness of MPs was evident in the Surma River, which requires further attention and prompt actions.
Collapse
Affiliation(s)
- Israt Jahan
- Laboratory of Aquatic Biodiversity and Ecophysiology, Department of Fish Biology and Genetics, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| | - Gourab Chowdhury
- Laboratory of Aquatic Biodiversity and Ecophysiology, Department of Fish Biology and Genetics, Sylhet Agricultural University, Sylhet-3100, Bangladesh; School of Science, Technology and Engineering, University of the Sunshine Coast, QLD 4556, Australia; Centre for Bioinnovation, University of the Sunshine Coast, Sunshine Coast, QLD 4556, Australia
| | - Andrea Osorio Baquero
- College of Life and Environmental Sciences: Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom
| | - Nicolas Couetard
- Plastic@Sea, Observatoire Océanologique de Banyuls, 66650 Banyuls-sur-mer, France
| | - Mohammad Amzad Hossain
- Laboratory of Aquatic Biodiversity and Ecophysiology, Department of Fish Biology and Genetics, Sylhet Agricultural University, Sylhet-3100, Bangladesh; Coastal Marine Ecosystems Research Centre (CMERC), Central Queensland University, QLD 4680, Australia; School of Health, Medical and Applied Sciences, Central Queensland University, North Rockhampton QLD 4701, Australia.
| | - Sohel Mian
- Laboratory of Aquatic Biodiversity and Ecophysiology, Department of Fish Biology and Genetics, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| | - Mohammed Mahbub Iqbal
- Laboratory of Aquatic Biodiversity and Ecophysiology, Department of Fish Biology and Genetics, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| |
Collapse
|
41
|
Sacco VA, Zuanazzi NR, Selinger A, Alliprandini da Costa JH, Spanhol Lemunie É, Comelli CL, Abilhoa V, Sousa FCD, Fávaro LF, Rios Mendoza LM, de Castilhos Ghisi N, Delariva RL. What are the global patterns of microplastic ingestion by fish? A scientometric review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:123972. [PMID: 38642794 DOI: 10.1016/j.envpol.2024.123972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/12/2024] [Accepted: 04/11/2024] [Indexed: 04/22/2024]
Abstract
The billions of tons of plastic released into the environment mostly fragment into smaller particles that reach rivers and oceans, posing toxicity risks to aquatic organisms. As fish serve as excellent environmental indicator organisms, this study aims to comprehensively review and quantify published data regarding the abundance of microplastics (MPs) ingested by fish through scientometric analysis. Systematic analysis reveals that global aquatic ecosystems are contaminated by MPs, with the characteristics of these contaminants stemming from inadequate disposal management practices. The abundance of MPs was recorded in several fish species, notably Cyprinus carpio in natural environments and Danio rerio in controlled environments. According to the surveyed studies, laboratory experiments do not accurately represent the conditions found in natural environments. The results suggest that, in natural environments, the predominant colors of MPs are blue, black, and red. Fibers emerged as the most prevalent type, with polyethylene (PE) and polypropylene (PP) being the most frequently identified chemical compositions. On the other hand, laboratory studies showed that the spheres and fragments ingested were predominantly polystyrene (PS) green, followed by the colors blue and red. This discrepancy complicates drawing accurate conclusions regarding the actual effects of plastic particles on aquatic biota. Given the enduring presence of plastic in the environment, it is imperative to consider and implement environmental monitoring for effective, long-term management.
Collapse
Affiliation(s)
- Vania Aparecida Sacco
- Graduate Program in Comparative Biology, State University of Maringá (UEM), Maringá, Brazil.
| | - Natana Raquel Zuanazzi
- Graduate Program in Comparative Biology, State University of Maringá (UEM), Maringá, Brazil.
| | - Amanda Selinger
- Laboratory of Biology of Marine and Coastal Organisms, Santa Cecília University (UNISANTA), Santos, São Paulo State, Brazil.
| | - João Henrique Alliprandini da Costa
- Laboratory of Ecophysiology and Aquatic Toxicology, São Paulo State University "Júlio de Mesquita Filho" - (UNESP), Campus do Litoral Paulista, 11330-900, São Vicente, SP, Brazil.
| | - Érika Spanhol Lemunie
- Graduate Program in Conservation and Management of Natural Resources, State University of West Paraná (Unioeste), Cascavel, Brazil.
| | - Camila Luiza Comelli
- Graduate Program in Biotechnology - PPGBIOTEC - Universidade Tecnológica Federal do Paraná (UTFPR) Dois Vizinhos, Brazil.
| | - Vinícius Abilhoa
- Laboratório de Ictiologia, Museu de História Natural Capão da Imbuia. Prefeitura Municipal de Curitiba, Secretaria Municipal do Meio Ambiente, Rua Prof. Benedito Conceição, 407 - Capão da Imbuia, CEP 82810080, Curitiba, PR, Brazil.
| | - Fernando Carlos de Sousa
- Laboratório de Anatomia Humana, Universidade Tecnológica Federal do Paraná (UTFPR) Dois Vizinhos, Brazil.
| | - Luis Fernando Fávaro
- Departamento de Biologia Celular, Universidade Federal do Paraná (UFPR), Curitiba, Brazil.
| | - Lorena M Rios Mendoza
- Program of Chemistry and Physics, Department of Natural Sciences, University of Wisconsin-Superior, Belknap and Catlin, P.O. Box 2000, Superior, WI, 54880, USA.
| | - Nédia de Castilhos Ghisi
- Graduate Program in Biotechnology - PPGBIOTEC - Universidade Tecnológica Federal do Paraná (UTFPR) Dois Vizinhos, Brazil.
| | - Rosilene Luciana Delariva
- Graduate Program in Comparative Biology, State University of Maringá (UEM), Maringá, Brazil; Laboratory of Ichthyology, Ecology and Biomonitoring, State University of West Paraná (Unioeste), Rua Universitária, University Garden, 1619, Cascavel, PR, Brazil.
| |
Collapse
|
42
|
Yao J, Li J, Qi J, Wan M, Tang L, Han H, Tian K, Liu S. Distribution patterns and environmental risk assessments of microplastics in the lake waters and sediments from eight typical wetland parks in Changsha city, China. Front Public Health 2024; 12:1365906. [PMID: 38784569 PMCID: PMC11112001 DOI: 10.3389/fpubh.2024.1365906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
The quality of water in urban parks is closely related to people's daily lives, but the pollution caused by microplastics in park water and sediments has not been comprehensively studied. Therefore, eight typical parks in the urban area of Changsha, China, were selected, and Raman spectroscopy was used to explore the spatial distributions and compositions of the microplastics in the water and sediments, analyze their influencing factors, and evaluate their environmental risks. The results showed that the abundances of surface water microplastics in all parks ranged from 150 to 525 n L-1, and the abundances of sediment microplastics ranged from 120 to 585 n kg-1. The microplastics in the surface water included polyethylene terephthalate (PET), chlorinated polyethylene (CPE), and fluororubber (FLU), while those in the sediments included polyvinyl chloride (PVC), wp-acrylate copolymer (ACR), and CPE. Regression analyses revealed significant positive correlations between human activities and the abundances of microplastics in the parks. Among them, the correlations of population, industrial discharge and domestic wastewater discharge with the abundance of microplastics in park water were the strongest. However, the correlations of car flow and tourists with the abundance of microplastics in park water were the weakest. Based on the potential ecological risk indices (PERI) classification assessment method, the levels of microplastics in the waters and sediments of the eight parks were all within the II-level risk zone (53-8,549), among which the risk indices for Meixi Lake and Yudai Lake were within the IV risk zone (1,365-8,549), which may have been caused by the high population density near the park. This study provides new insights into the characteristics of microplastics in urban park water and sediment.
Collapse
Affiliation(s)
- Junyi Yao
- The Department of Environmental Design, School of Architecture and Art, Central South University, Changsha, China
| | - Jiang Li
- The Department of Environmental Design, School of Architecture and Art, Central South University, Changsha, China
| | - Jialing Qi
- The Department of Environmental Design, School of Architecture and Art, Central South University, Changsha, China
| | - Mengrui Wan
- The Department of Environmental Design, School of Architecture and Art, Central South University, Changsha, China
| | - Liling Tang
- The Department of Environmental Design, School of Architecture and Art, Central South University, Changsha, China
| | - Hui Han
- Henan Field Observation and Research Station of Headwork Wetland Ecosystem of the Central Route of South-to-North Water Diversion Project, School of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, Henan, China
| | - Kai Tian
- Henan Field Observation and Research Station of Headwork Wetland Ecosystem of the Central Route of South-to-North Water Diversion Project, School of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, Henan, China
| | - Shaobo Liu
- The Department of Environmental Design, School of Architecture and Art, Central South University, Changsha, China
| |
Collapse
|
43
|
Özşeker K, Coşkun T, Erüz C. Exploring seasonal, spatial and pathways of marine litter pollution along the Southeastern Black Sea Cost of Türkiye. MARINE POLLUTION BULLETIN 2024; 202:116348. [PMID: 38636341 DOI: 10.1016/j.marpolbul.2024.116348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/20/2024]
Abstract
Spatial and temporal variations in marine litter density and composition along the Southeastern Black Sea Coast were investigated. A total of 156,371 litter items weighing 327,258.3 kg were collected. The highest frequency of litter material by number was 15,869 ± 103.88 items/m2 16 and 74.466 ± 7.23 by weight. The highest litter concentrations (77,768 items; 81,737.1 kg) were observed in autumn, mainly comprising single-use items, with plastic being the most abundant (54.05 %), followed by metal (15.69 %), and paper (10.45 %). The subcategories of plastic litter items bags, caps/lids, cigarette lighters, cosmetic packages, gloves, and plastics pieces were found to be the most abundant litter in number. According to Principal Component Analysis (PCA) and Kruskal-Wallis statistical tests (p < 0.005), significant differences in marine litter were identified among the stations and seasons. These findings offer insights for modeling studies, advocating restrictions on single-use products, and enacting legal regulations for local governance.
Collapse
Affiliation(s)
- Koray Özşeker
- Karadeniz Technical University, Institute of Marine Sciences and Technology, Trabzon, Turkiye.
| | - Tolga Coşkun
- Middle East Technical University, Biological Sciences, Limnology Laboratory, Ankara, Turkiye
| | - Coşkun Erüz
- Karadeniz Technical University, Faculty of Marine Sciences, Trabzon, Turkiye
| |
Collapse
|
44
|
Bhat MA, Janaszek A. Evaluation of potentially toxic elements and microplastics in the water treatment facility. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:475. [PMID: 38662271 PMCID: PMC11045652 DOI: 10.1007/s10661-024-12651-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
The potentially harmful effects of consuming potentially toxic elements (PTEs) and microplastics (MPs) regularly via drinking water are a significant cause for worry. This study investigated PTEs (Cd, Cu, Cr, Ni, Pd, Zn, Co), MPs, turbidity, pH, conductivity, and health risk assessment in the water treatment plant in Kielce, Poland. Zn had the highest concentrations throughout the water treatment facility, whereas Cd, Pb, and Co had lower concentrations (< 0.1 µg/L). The order of the concentrations among the specified PTEs was like Zn˃Cu˃Ni˃Cr˃Cd˃Pb and Co. The minimum turbidity was 0.34, and the maximum was 1.9 NTU. The range of pH in water samples was 6.51-7.47. The conductivity was 1,203-1,445 ms in water samples. These identified MPs were categorized into fiber and fragments. The color of these identified MPs was blue, red, black, green, and transparent. The minimum and maximum size of the MPs was 196 and 4,018 µm, while the average size was 2,751 ± 1,905 µm. The average concentration of MPs per liter of the water treatment plant was 108.88 ± 55.61. The elements listed are C, O, Na, Mg, Al, Si, K, Ca, and Ti. Fe and Zn were the predominant elements seen using EDX. HQ values of the PTEs were less than one for adults and children. The human health risk associated with all detected PTEs revealed that the HQ values exhibit a satisfactory degree of non-carcinogenic adverse health risk. HI values for adults and children age groups were less than one. In most water treatment samples, the carcinogenic value exceeds the threshold value of 10-6. The PTEs and MP concentrations in drinking water should be periodically monitored to minimize consumers' environmental pollution and health risks.
Collapse
Affiliation(s)
- Mansoor Ahmad Bhat
- Government Higher Secondary School Salamabad Uri 193123, Baramulla Kashmir, India.
- Faculty of Environmental Engineering, Geomatics and Renewable Energy, Kielce University of Technology, 25314, Kielce, Poland.
| | - Agata Janaszek
- Faculty of Environmental Engineering, Geomatics and Renewable Energy, Kielce University of Technology, 25314, Kielce, Poland
| |
Collapse
|
45
|
Sharma P, Sharma P. Micro(nano)plastics: invisible compounds with a visible impact. F1000Res 2024; 13:69. [PMID: 38659492 PMCID: PMC11040229 DOI: 10.12688/f1000research.142212.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 04/26/2024] Open
Abstract
The plastic related research has been an epicentre in recent times. The presence and spread of micro (nano) plastics (MNPs) are well-known in the terrestrial and aquatic environment. However, the focus on the fate and remediation of MNP in soil and groundwater is limited. The fate and bioaccumulation of ingested MNPs remain unknown within the digestive tract of animals. There is also a significant knowledge gap in understanding the ubiquitous organic environmental pollutants with MNPs in biological systems. Reducing plastic consumption, improving waste management practices, and developing environmentally friendly alternatives are some of the key steps needed to address MNP pollution. For better handling and to protect the environment from these invisible substances, policymakers and researchers urgently need to monitor and map MNP contamination in soil and groundwater.
Collapse
Affiliation(s)
- Prabhakar Sharma
- Department of Agricultural Engineering and Technology, School of Engineering, Nagaland University, Dimapur, Nagaland, 797112, India
| | - Prateek Sharma
- Environmental Science, Central University of Jharkhand, Ranchi, Jharkhand, 835222, India
| |
Collapse
|
46
|
Khedre AM, Ramadan SA, Ashry A, Alaraby M. Abundance and risk assessment of microplastics in water, sediment, and aquatic insects of the Nile River. CHEMOSPHERE 2024; 353:141557. [PMID: 38417495 DOI: 10.1016/j.chemosphere.2024.141557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 02/01/2024] [Accepted: 02/24/2024] [Indexed: 03/01/2024]
Abstract
Microplastics (MPs) are a serious threat in freshwater environments. The ecological risk and abundance level of MPs in abiotic and biotic compartments of the Nile River haven't been systematically reported. Thus, these issues were highlighted in the present study during different seasons of the sampling year. The results showed that MP concentrations in the river ranged from 2.24 ± 0.6 to 3.76 ± 1.1 particles/L, 298 ± 63 to 520 ± 80 particles/kg dry weight, and 0.081 ± 0.051 to 4.95 ± 2.6 particles/individual in surface water, sediment, and different species of aquatic insects, respectively. All the extracted MPs are colored blue, red, and black. Fiber-shaped polyesters (<500-1500 μm) were the most common MPs in all the river compartments. MPs' dominance was observed during the summer in comparison with that in the other seasons. Environmental risk indicators indicate the high ecological risk of MPs, which are widely distributed in the Nile River. In conclusion, MP consumption by aquatic insects may not only be related to levels of environmental contamination, since other variables, such as taxon size, weight, and particular feeding behavior, may also be significant. Additionally, the presence of MPs in insects (at lower trophic levels) creates the potential for predation-based inter-trophic level transmission. Thus, higher trophic-level investigations of various feeding groups should be carried out to identify any possible harm that MPs cause to various aquatic organisms.
Collapse
Affiliation(s)
- Azza M Khedre
- Group of Entomology and Environmental Toxicology, Department of Zoology, Faculty of Science, Sohag University, 82524, Sohag, Egypt
| | - Somaia A Ramadan
- Group of Entomology and Environmental Toxicology, Department of Zoology, Faculty of Science, Sohag University, 82524, Sohag, Egypt
| | - Ali Ashry
- Group of Entomology and Environmental Toxicology, Department of Zoology, Faculty of Science, Sohag University, 82524, Sohag, Egypt.
| | - Mohamed Alaraby
- Group of Entomology and Environmental Toxicology, Department of Zoology, Faculty of Science, Sohag University, 82524, Sohag, Egypt
| |
Collapse
|
47
|
Abd Rahman NN, Mazlan N, Shukhairi SS, Nazahuddin MNA, Shawel AS, Harun H, Baktir A. Evaluation of the microplastics in bivalves and water column at Pantai Teluk Likas, North Borneo, Malaysia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:23178-23192. [PMID: 38418781 DOI: 10.1007/s11356-024-32628-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
Microplastics (MPs) are a pervasive pollutant in the marine environment. Pantai Teluk Likas in Sabah, Malaysia is one of the most visited beaches where tourism, recreational, and fisheries activities are high in this area. Hence, the area suffers from severe pollution, particularly from plastics. This study aims to quantify the microplastic composition in terms of color, shapes, and polymer types in marine bivalves (Anadara granosa, Glauconome virens, and Meretrix lyrata) and water column samples from Pantai Teluk Likas. All samples were digested using sodium hydroxide (NaOH) and incubated in the oven for at least 48 h. Serial filtration was done for each sample before they were observed under the dissecting microscope. The microplastics were identified and counted based on their physical attributes which were colors and shapes. The functional group of the polymers was determined using FTIR spectroscopy. Microplastics were found present in all samples collected. G. virens had the highest abundance of microplastics at 113.6 ± 6.5 particles/g followed by M. lyrata at 78.4 ± 3.7 particles/g. On the contrary, A. granosa had the least microplastics with an abundance of 24.4 ± 0.6 particles/g. Meanwhile, 110.0 ± 36.2 particles/L of microplastics were found in water column samples from Pantai Teluk Likas. Based on the analysis, fibers were the most common shape in bivalves, while fibers and films were common in the water column. In terms of colors, black, blue, and red were a few of the most abundant colors observed in both samples. The most common polymer detected in all bivalve species and water column samples is polycarbonate (PC), followed by polymethyl methacrylate (PMMA). Future study that focuses on the correlation between microplastic abundance in the marine biota and the water column is recommended to better understand microplastic availability and exposure.
Collapse
Affiliation(s)
- Nur Nashrah Abd Rahman
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Nurzafirah Mazlan
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia.
| | - Sarah Syazwani Shukhairi
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | | | - Amir Syazwan Shawel
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Haniza Harun
- Faculty of Health and Life Sciences, Management and Science University, Seksyen 13, 44100, Shah Alam, Malaysia
| | - Afaf Baktir
- Faculty of Science and Technology, Campus Merr C, Universitas Airlangga, Jl. Dr. Ir. H. Soekarno Mulyorejo, Surabaya, 60115, Indonesia
| |
Collapse
|
48
|
Bhat MA, Gaga EO, Gedik K. How can contamination be prevented during laboratory analysis of atmospheric samples for microplastics? ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:159. [PMID: 38231440 DOI: 10.1007/s10661-024-12345-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/09/2024] [Indexed: 01/18/2024]
Abstract
Microplastics (MPs) in the air and indoor environments are of growing concern and have led to increased testing for MPs. This study draws attention to the quality and quantitative measures of MP studies by conducting laboratory experiments (on solutions, filters, and blank samples) that were rarely or were not adopted in the airborne and indoor MP literature. Experiments have been conducted to identify contaminations that may come from experimental procedures while determining MPs in the air samples. MPs in different matrices during experiments were counted and categorized by their shapes. Chemical characterization was performed by Raman Spectroscopy. Results showed that laminar flow is the best option over a fume hood or standard laboratory environment for detecting air MPs to reduce blank levels. Blue-green and Black-Grey were the dominant colors; fiber was the predominant type of MPs seen, and most of them fall under the size range from (1-1000 µm) in different indoor environments and blanks. Common MPs seen were PP, PVA, PTFE, PVC, and HDPE. Thermal treatment of fresh unused filters at 450 °C for 4 h was effective as it reduced the MP count by 50%. Working solutions are mainly contaminated, and their pre-filtration is essential. The average deposition of MPs in blank samples during seven days was around 55 MPs. There is an urgent need for studies on developing quality control and quality assurance of airborne and indoor MPs. Hence, a standard protocol needs to be accepted; by harmonizing procedures, comparable results can be found, uncovering the correct levels of MP contamination, as required for risk assessment.
Collapse
Affiliation(s)
- Mansoor Ahmad Bhat
- Department of Environmental Engineering, Faculty of Engineering, Eskişehir Technical University, 26555, Eskişehir, Türkiye.
| | - Eftade O Gaga
- Department of Environmental Engineering, Faculty of Engineering, Eskişehir Technical University, 26555, Eskişehir, Türkiye
| | - Kadir Gedik
- Department of Environmental Engineering, Faculty of Engineering, Eskişehir Technical University, 26555, Eskişehir, Türkiye
- Environmental Research Center (ÇEVMER), Eskişehir Technical University, 26555, Eskişehir, Türkiye
| |
Collapse
|
49
|
Bhat MA. Indoor microplastics: a comprehensive review and bibliometric analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:121269-121291. [PMID: 37980322 DOI: 10.1007/s11356-023-30902-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/01/2023] [Indexed: 11/20/2023]
Abstract
Indoor microplastic (MP) pollution is becoming a worldwide issue because people spend more time inside. Through dust and air, indoor MP pollution may harm human health. This review summarizes recent advancements in indoor MP research, covering pretreatments, quality control, filter membranes, and identification methods. Additionally, it conducts bibliometric analysis to examine the usage of keywords, publication records, and authors' contributions to the field. Comparatively, dust and deposition samples exhibit higher MP concentrations than indoor air samples. Fiber-shaped MPs are commonly detected indoors. The color and types of MPs display variability, with polypropylene, polyethylene, polyethylene terephthalate, and polystyrene identified as the dominant MPs. Indoor environments generally demonstrate higher concentrations of MPs than outdoor environments, and MPs in the lower size range (1-100 µm) are typically more abundant. Among the reviewed articles, 45.24% conducted pretreatment on their samples, while 16.67% did not undergo any pretreatment. The predominant filter utilized in most studies was the Whatman Glass microfiber filter (41.67%), and MPs were predominantly characterized using µ-FTIR (19.23%). In the literature, 17 papers used blank samples, and eight did not. Blank findings were not included in most research (23 articles). A significant increase in published articles has been observed since 2020, with an annual growth rate exceeding 10%. The keyword microplastics had the highest frequency, followed by fibers. This indoor MP study emphasizes the need for collaborative research, policymaking, and stakeholder involvement to reduce indoor MP pollution. As indoor MP research grows, so are opportunities to identify and minimize environmental and health impacts.
Collapse
Affiliation(s)
- Mansoor Ahmad Bhat
- Faculty of Engineering, Department of Environmental Engineering 26555, Eskişehir Technical University, Eskişehir, Türkiye.
| |
Collapse
|