1
|
Di Lorenzo D. Tau Protein and Tauopathies: Exploring Tau Protein-Protein and Microtubule Interactions, Cross-Interactions and Therapeutic Strategies. ChemMedChem 2024; 19:e202400180. [PMID: 39031682 DOI: 10.1002/cmdc.202400180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/22/2024]
Abstract
Tau, a microtubule-associated protein (MAP), is essential to maintaining neuronal stability and function in the healthy brain. However, aberrant modifications and pathological aggregations of Tau are implicated in various neurodegenerative disorders, collectively known as tauopathies. The most common Tauopathy is Alzheimer's Disease (AD) counting nowadays more than 60 million patients worldwide. This comprehensive review delves into the multifaceted realm of Tau protein, puzzling out its intricate involvement in both physiological and pathological roles. Emphasis is put on Tau Protein-Protein Interactions (PPIs), depicting its interaction with tubulin, microtubules and its cross-interaction with other proteins such as Aβ1-42, α-synuclein, and the chaperone machinery. In the realm of therapeutic strategies, an overview of diverse possibilities is presented with their relative clinical progresses. The focus is mostly addressed to Tau protein aggregation inhibitors including recent small molecules, short peptides and peptidomimetics with specific focus on compounds that showed a double anti aggregative activity on both Tau protein and Aβ amyloid peptide. This review amalgamates current knowledge on Tau protein and evolving therapeutic strategies, providing a comprehensive resource for researchers seeking to deepen their understanding of the Tau protein and for scientists involved in the development of new peptide-based anti-aggregative Tau compounds.
Collapse
Affiliation(s)
- Davide Di Lorenzo
- Department of Chemistry, Organic and Bioorganic Chemistry, Bielefeld University, Universitätsstraße 25, D-33615, Bielefeld, Germany
| |
Collapse
|
2
|
Mohamed IE, Osman EE, Saeed A, Ming LC, Goh KW, Razi P, Abdullah ADI, Dahab M. Plant extracts as emerging modulators of neuroinflammation and immune receptors in Alzheimer's pathogenesis. Heliyon 2024; 10:e35943. [PMID: 39229544 PMCID: PMC11369442 DOI: 10.1016/j.heliyon.2024.e35943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/05/2024] Open
Abstract
Memory loss is becoming an increasingly significant health problem, largely due to Alzheimer's disease (AD), which disrupts the brain in several ways, including causing inflammation and weakening the body's defenses. This study explores the potential of medicinal plants as a source of novel therapeutic agents for AD. First, we tested various plant extracts against acetylcholinesterase (AChE) in vitro, following molecular docking simulations with key AD-related protein targets such as MAO-B, P-gp, GSK-3β, and CD14. Rosemary extract was found to be the most inhibitory towards AChE. The compounds found in rosemary (oleanolic acid), sage (pinocembrin), and cinnamon (italicene) showed promise in potentially binding to MAO-B. These chemicals may interact with a key protein in the brain and alter the production and removal of amyloid-β. Luteolin (from rosemary), myricetin (from sage), chamigrene, and italicene (from cinnamon) exhibited potential for inhibiting tau aggregation. Additionally, ursolic acid found in rosemary, sage, and chamigrene from cinnamon could modulate CD14 activity. For the first time, our findings shed light on the intricate interplay between neuroinflammation, neuroprotective mechanisms, and the immune system's role in AD. Further research is needed to validate the in vivo efficacy and safety of these plant-derived compounds, as well as their interactions with key protein targets, which could lead to the development of novel AD therapeutics.
Collapse
Affiliation(s)
- Intisar E. Mohamed
- Department of Biochemistry, Faculty of Medicine, University of Bahri, P.O. Box 2469, Khartoum, 12223, Sudan
| | - Elbadri E. Osman
- Department of Microbiology, Faculty of Pure and Applied Sciences, International University of Africa, P.O. Box 2469, Khartoum, 12223, Sudan
| | - Ahmed Saeed
- Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Centre for Research, P.O. Box 2404, Khartoum, 12223, Sudan
| | - Long Chiau Ming
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Sunway City, 47500, Malaysia
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia
| | - Pakhrur Razi
- Center of Disaster Monitoring and Earth Observation, Universitas Negeri Padang, Padang, Indonesia
| | - Amar Daud Iskandar Abdullah
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Sunway City, 47500, Malaysia
| | - Mahmoud Dahab
- Department of Microbiology, Faculty of Pure and Applied Sciences, International University of Africa, P.O. Box 2469, Khartoum, 12223, Sudan
| |
Collapse
|
3
|
Fang Q, Li Y, Xiong F, Hu X, Song Y, Shen W, Dong H, Shi X, Wang H. Formulation and Characterization of Ethosomes for Transdermal Delivery of Prinsepia Utilis Rogle Seed Oil with Ameliorative Effects against UVB-Induced Skin Damage. AAPS PharmSciTech 2024; 25:122. [PMID: 38816546 DOI: 10.1208/s12249-024-02822-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/23/2024] [Indexed: 06/01/2024] Open
Abstract
Prinsepia utilis seed oil (PUSO) is a natural medication obtained from Prinsepia utilis Rogle seed, which has been used for the treatment of skin diseases. The study aims to prepare ethosomes with high drug loading as a water-soluble transdermal vehicle to enhance the transdermal delivery of PUSO. PUSO-loaded ethosomes (PEs) were prepared using a cold method, and optimized by an orthogonal experimental design with entrapment efficiency (EE) as the dependent variable. The PEs prepared with the optimized formulation showed good stability, with a spherical shape under transmission electron microscopy (TEM), average particle size of 39.12 ± 0.85 nm, PDI of 0.270 ± 0.01, zeta potential of -11.3 ± 0.24 mV, and EE of 95.93 ± 0.43%. PEs significantly increased the skin deposition of PUSO compared to the PUSO suspension (P < 0.001). Moreover, the optimum formula showed significant ameliorative effects on ultraviolet B (UVB) irradiation-associated macroscopic and histopathological changes in mice skin. Therefore, PEs represent a promising therapeutic approach for the treatment of UVB-induced skin inflammation, with the potential for industrialization.
Collapse
Affiliation(s)
- Qianqian Fang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - You Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Fei Xiong
- State Key Laboratory of Bioelectronics, Jiangsu Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210009, People's Republic of China
| | - Xiaolong Hu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Ying Song
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Wenbing Shen
- Instrumental Analysis Center, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Haijuan Dong
- Instrumental Analysis Center, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Xinhong Shi
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| | - Hao Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
4
|
Khabiri P, Rahimi MR, Rashidi I, Nedaei SE. Impacts of an 8-week regimen of aged garlic extract and aerobic exercise on the levels of Fetuin-A and inflammatory markers in the liver and visceral fat tissue of obese male rats. Clin Nutr ESPEN 2023; 58:79-88. [PMID: 38057040 DOI: 10.1016/j.clnesp.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 08/18/2023] [Accepted: 09/06/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND & AIMS Obesity-induced chronic low-grade systemic inflammation is linked to the development of numerous diseases. Fetuin-A is known to affect inflammation and insulin resistance in obesity conditions. Free fatty acid (FFA)-induced proinflammatory cytokine expression in adipocytes occurs only in the presence of both Fetuin-A and toll-like receptor 4 (TLR4) and removing either of them prevented FFA-induced insulin resistance. Aged garlic extract (AGE) and exercise training have anti-inflammatory effects; however, the impact of AGE on Fetuin-A is unknown. We examined the effects of AGE with or without aerobic training (AT) on Fetuin-A and inflammatory markers. METHODS Forty healthy male Sprague Dawley rats were randomly assigned to normal diet (ND) (n = 8) or high-fat diet (HFD) groups (n = 32) and fed for 9 weeks. After 9 weeks ND group continued normal diet, and the HFD group was randomly assigned to the HFD, HFD + AGE (600 mg/kg, once daily), HFD + AT (5 days/week), and HFD + AGE + AT groups that were continued for 8 weeks (n = 8). The significance of differences among groups was assessed using one-way analysis of variance followed by the post-hoc Tukey test. Statistically significant differences were considered for p < 0.05. RESULTS AGE, AT, and AGE + AT significantly decreased body weight, plasma Fetuin-A, HOMA-IR, mRNA and protein levels of Fetuin-A and NFƙB in the liver and mRNA and Protein levels of Fetuin-A, TLR4 and NFƙB in visceral adipose tissue (VAT) compared to HFD. However, only AGE + AT significantly decreased TLR4 protein levels in the liver. CONCLUSION Although AT and AGE reduce Fetuin-A and inflammatory markers, a combination of the two may be more effective at lowering inflammation.
Collapse
Affiliation(s)
- Parisa Khabiri
- Department of Exercise Physiology, Faculty of Humanities and Social Sciences, University of Kurdistan, Sanandaj, 66177-15175, Iran.
| | - Mohammad Rahman Rahimi
- Department of Exercise Physiology, Faculty of Humanities and Social Sciences, University of Kurdistan, Sanandaj, 66177-15175, Iran.
| | - Iraj Rashidi
- Department of Anatomical Sciences, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, 6715847141, Iran.
| | - Seyed Ershad Nedaei
- Department of Physiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, 6715847141, Iran.
| |
Collapse
|
5
|
Paul BD, Pieper AA. Protective Roles of Hydrogen Sulfide in Alzheimer's Disease and Traumatic Brain Injury. Antioxidants (Basel) 2023; 12:antiox12051095. [PMID: 37237961 DOI: 10.3390/antiox12051095] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
The gaseous signaling molecule hydrogen sulfide (H2S) critically modulates a plethora of physiological processes across evolutionary boundaries. These include responses to stress and other neuromodulatory effects that are typically dysregulated in aging, disease, and injury. H2S has a particularly prominent role in modulating neuronal health and survival under both normal and pathologic conditions. Although toxic and even fatal at very high concentrations, emerging evidence has also revealed a pronounced neuroprotective role for lower doses of endogenously generated or exogenously administered H2S. Unlike traditional neurotransmitters, H2S is a gas and, therefore, is unable to be stored in vesicles for targeted delivery. Instead, it exerts its physiologic effects through the persulfidation/sulfhydration of target proteins on reactive cysteine residues. Here, we review the latest discoveries on the neuroprotective roles of H2S in Alzheimer's disease (AD) and traumatic brain injury, which is one the greatest risk factors for AD.
Collapse
Affiliation(s)
- Bindu D Paul
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Lieber Institute for Brain Development, Baltimore, MD 21205, USA
| | - Andrew A Pieper
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH 44106, USA
- Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
- Department of Neuroscience, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
- Translational Therapeutics Core, Cleveland Alzheimer's Disease Research Center, Cleveland, OH 44106, USA
| |
Collapse
|
6
|
Varesi A, Campagnoli LIM, Carrara A, Pola I, Floris E, Ricevuti G, Chirumbolo S, Pascale A. Non-Enzymatic Antioxidants against Alzheimer's Disease: Prevention, Diagnosis and Therapy. Antioxidants (Basel) 2023; 12:180. [PMID: 36671042 PMCID: PMC9855271 DOI: 10.3390/antiox12010180] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive memory loss and cognitive decline. Although substantial research has been conducted to elucidate the complex pathophysiology of AD, the therapeutic approach still has limited efficacy in clinical practice. Oxidative stress (OS) has been established as an early driver of several age-related diseases, including neurodegeneration. In AD, increased levels of reactive oxygen species mediate neuronal lipid, protein, and nucleic acid peroxidation, mitochondrial dysfunction, synaptic damage, and inflammation. Thus, the identification of novel antioxidant molecules capable of detecting, preventing, and counteracting AD onset and progression is of the utmost importance. However, although several studies have been published, comprehensive and up-to-date overviews of the principal anti-AD agents harboring antioxidant properties remain scarce. In this narrative review, we summarize the role of vitamins, minerals, flavonoids, non-flavonoids, mitochondria-targeting molecules, organosulfur compounds, and carotenoids as non-enzymatic antioxidants with AD diagnostic, preventative, and therapeutic potential, thereby offering insights into the relationship between OS and neurodegeneration.
Collapse
Affiliation(s)
- Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| | | | - Adelaide Carrara
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Ilaria Pola
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Elena Floris
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Giovanni Ricevuti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37129 Verona, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
7
|
Ghazimoradi MM, Ghoushi E, Ghobadi Pour M, Karimi Ahmadabadi H, Rafieian-Kopaei M. A Review on Garlic as a Supplement for Alzheimer’s Disease: A Mechanistic Insight into its Direct and Indirect Effects. Curr Pharm Des 2023; 29:519-526. [PMID: 36809972 DOI: 10.2174/1381612829666230222093016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/19/2022] [Accepted: 12/29/2022] [Indexed: 02/24/2023]
Abstract
Alzheimer’s disease (AD) is one of the most complicated neurodegenerative diseases causing dementia in human beings. Aside from that, the incidence of AD is increasing and its treatment is very complicated. There are several known hypotheses regarding the pathology of Alzheimer’s disease, including the amyloid beta hypothesis, tau hypothesis, inflammation hypothesis, and cholinergic hypothesis, which are investigated in different researches to completely elucidate the pathology of AD. Besides, some new mechanisms, such as immune, endocrine, and vagus pathways, as well as bacteria metabolite secretions, are being explained as other causes to be somehow related to AD pathogenesis. There is still no definite treatment for Alzheimer’s disease that can completely cure and eradicate AD. Garlic (Allium sativum) is a traditional herb used as a spice in different cultures, and due to the organosulfur compounds, like allicin, it possesses highly anti-oxidant properties; the benefits of garlic in cardiovascular diseases, like hypertension and atherosclerosis, have been examined and reviewed, although its beneficiary effects in neurodegenerative diseases, such as AD, are not completely understood. In this review, we discuss the effects of garlic based on its components, such as allicin and S-allyl cysteine, on Alzheimer’s disease and the mechanisms of garlic components that can be beneficiary for AD patients, including its effects on amyloid beta, oxidative stress, tau protein, gene expression, and cholinesterase enzymes. Based on the literature review, garlic has been revealed to have beneficiary effects on Alzheimer’s disease, especially in animal studies; however, more studies should be done on humans to find the exact mechanisms of garlic’s effects on AD patients.
Collapse
Affiliation(s)
- Mohammad Mahdi Ghazimoradi
- Faculty of pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Interdisciplinary Neuro-Brain Research and Education Network (INBREN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Ehsan Ghoushi
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Mozhgan Ghobadi Pour
- Department of Physiology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Mahmoud Rafieian-Kopaei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
8
|
Mani R, Sha Sulthana A, Muthusamy G, Elangovan N. Progress in the development of naturally derived active metabolites-based drugs: Potential therapeutics for Alzheimer's disease. Biotechnol Appl Biochem 2022; 69:2713-2732. [PMID: 35067971 DOI: 10.1002/bab.2317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/03/2022] [Indexed: 12/27/2022]
Abstract
Alzheimer's disease (AD) is an extensive age-associated neurodegenerative disorder. In spite of wide-ranging progress in understanding the AD pathology for the past 50 years, clinical trials based on the hypothesis of amyloid-beta (Aβ) have reserved worsening particularly at late-stage human trials. Consequently, very few old drugs are presently used for AD with inadequate clinical consequences and various side effects. We focus on widespread pharmacological and beneficial principles for existing as well as future drugs. Multitargeting approaches by means of general antioxidant and anti-inflammatory mechanisms allied with particular receptor and/or enzyme-mediated actions in neuroprotection and neurodegeneration. The plant kingdom comprises a vast range of species with an incredible diversity of bioactive metabolites with diverse chemical scaffolds. In recent times, an increasing body of facts recommended the use of phytochemicals to decelerate AD's onset and progression. The definitive goal of AD investigation is to avert the onset of neurodegeneration, thereby allowing successful aging devoid of cognitive decline. At this point, we discussed the neurological protective role of natural products and naturally derived therapeutic agents for AD from various natural polyphenolic compounds and medicinal plants. In conclusion, medicinal plants act as a chief source of different bioactive constituents.
Collapse
Affiliation(s)
- Renuka Mani
- Department of Biotechnology, School of Bioscience, Periyar University, Salem, Tamil Nadu, India
| | - Ahmed Sha Sulthana
- Department of Biotechnology, School of Bioscience, Periyar University, Salem, Tamil Nadu, India
| | - Ganesan Muthusamy
- Department of Biochemistry, School of Bioscience, Periyar University, Salem, Tamil Nadu, India
| | - Namasivayam Elangovan
- Department of Biotechnology, School of Bioscience, Periyar University, Salem, Tamil Nadu, India
| |
Collapse
|
9
|
Tedeschi P, Nigro M, Travagli A, Catani M, Cavazzini A, Merighi S, Gessi S. Therapeutic Potential of Allicin and Aged Garlic Extract in Alzheimer’s Disease. Int J Mol Sci 2022; 23:ijms23136950. [PMID: 35805955 PMCID: PMC9266652 DOI: 10.3390/ijms23136950] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/06/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
Garlic, Allium sativum, has long been utilized for a number of medicinal purposes around the world, and its medical benefits have been well documented. The health benefits of garlic likely arise from a wide variety of components, possibly working synergistically. Garlic and garlic extracts, especially aged garlic extracts (AGEs), are rich in bioactive compounds, with potent anti-inflammatory, antioxidant and neuroprotective activities. In light of these effects, garlic and its components have been examined in experimental models of Alzheimer’s disease (AD), the most common form of dementia without therapy, and a growing health concern in aging societies. With the aim of offering an updated overview, this paper reviews the chemical composition, metabolism and bioavailability of garlic bioactive compounds. In addition, it provides an overview of signaling mechanisms triggered by garlic derivatives, with a focus on allicin and AGE, to improve learning and memory.
Collapse
Affiliation(s)
- Paola Tedeschi
- Department of Chemical, Pharmaceutical and Agricultural Sciences—DOCPAS, University of Ferrara, 44121 Ferrara, Italy; (P.T.); (M.C.); (A.C.)
| | - Manuela Nigro
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.N.); (A.T.); (S.G.)
| | - Alessia Travagli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.N.); (A.T.); (S.G.)
| | - Martina Catani
- Department of Chemical, Pharmaceutical and Agricultural Sciences—DOCPAS, University of Ferrara, 44121 Ferrara, Italy; (P.T.); (M.C.); (A.C.)
| | - Alberto Cavazzini
- Department of Chemical, Pharmaceutical and Agricultural Sciences—DOCPAS, University of Ferrara, 44121 Ferrara, Italy; (P.T.); (M.C.); (A.C.)
| | - Stefania Merighi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.N.); (A.T.); (S.G.)
- Correspondence: ; Tel.: +39-0532-455434
| | - Stefania Gessi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.N.); (A.T.); (S.G.)
| |
Collapse
|
10
|
Patiño-Morales CC, Jaime-Cruz R, Sánchez-Gómez C, Corona JC, Hernández-Cruz EY, Kalinova-Jelezova I, Pedraza-Chaverri J, Maldonado PD, Silva-Islas CA, Salazar-García M. Antitumor Effects of Natural Compounds Derived from Allium sativum on Neuroblastoma: An Overview. Antioxidants (Basel) 2021; 11:antiox11010048. [PMID: 35052552 PMCID: PMC8773006 DOI: 10.3390/antiox11010048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 12/12/2022] Open
Abstract
Garlic (Allium sativum) has been used in alternative medicine to treat several diseases, such as cardiovascular and neurodegenerative diseases, cancer, and hepatic diseases. Several publications have highlighted other features of garlic, including its antibacterial, antioxidative, antihypertensive, and antithrombotic properties. The properties of garlic result from the combination of natural compounds that act synergistically and cause different effects. Some garlic-derived compounds have been studied for the treatment of several types of cancer; however, reports on the effects of garlic on neuroblastoma are scarce. Neuroblastoma is a prevalent childhood tumor for which the search for therapeutic alternatives to improve treatment without affecting the patients’ quality of life continues. Garlic-derived compounds hold potential for the treatment of this type of cancer. A review of articles published to date on some garlic compounds and their effect on neuroblastoma was undertaken to comprehend the possible therapeutic role of these compounds. This review aimed to analyze the impact of some garlic compounds on cells derived from neuroblastoma.
Collapse
Affiliation(s)
- Carlos César Patiño-Morales
- Laboratory of Cell Biology, Universidad Autónoma Metropolitana—Cuajimalpa, Mexico City 05348, Mexico;
- Laboratory of Developmental Biology and Experimental Teratogenesis, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (R.J.-C.); (C.S.-G.)
| | - Ricardo Jaime-Cruz
- Laboratory of Developmental Biology and Experimental Teratogenesis, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (R.J.-C.); (C.S.-G.)
| | - Concepción Sánchez-Gómez
- Laboratory of Developmental Biology and Experimental Teratogenesis, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (R.J.-C.); (C.S.-G.)
| | - Juan Carlos Corona
- Laboratory of Neurosciences, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico;
| | - Estefani Yaquelin Hernández-Cruz
- Department of Biology, Faculty of Chemistry, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (E.Y.H.-C.); (I.K.-J.); (J.P.-C.)
| | - Ivia Kalinova-Jelezova
- Department of Biology, Faculty of Chemistry, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (E.Y.H.-C.); (I.K.-J.); (J.P.-C.)
| | - José Pedraza-Chaverri
- Department of Biology, Faculty of Chemistry, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (E.Y.H.-C.); (I.K.-J.); (J.P.-C.)
| | - Perla D. Maldonado
- Laboratory of Cerebral Vascular Pathology, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico; (P.D.M.); (C.A.S.-I.)
| | - Carlos Alfredo Silva-Islas
- Laboratory of Cerebral Vascular Pathology, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico; (P.D.M.); (C.A.S.-I.)
| | - Marcela Salazar-García
- Laboratory of Developmental Biology and Experimental Teratogenesis, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (R.J.-C.); (C.S.-G.)
- Correspondence:
| |
Collapse
|
11
|
Doroszkiewicz J, Mroczko P, Kulczyńska-Przybik A. Inflammation in the CNS - understanding various aspects of the pathogenesis of Alzheimer's disease. Curr Alzheimer Res 2021; 19:16-31. [PMID: 34856902 PMCID: PMC9127729 DOI: 10.2174/1567205018666211202143935] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/06/2021] [Accepted: 11/03/2021] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease is a progressive and deadly neurodegenerative disorder, and one of the most common causes of dementia in the world. Current, insufficiently sensitive and specific methods of early diagnosis and monitoring of this disease prompt a search for new tools. Numerous literature data indicate that the pathogenesis of Alzheimer's disease (AD) is not limited to the neuronal compartment, but involves various immunological mechanisms. Neuroinflammation has been recognized as a very important process in AD pathology. It seems to play pleiotropic roles, both neuroprotective as well as neurodegenerative, in the development of cognitive impairment depending on the stage of the disease. Mounting evidence demonstrates that inflammatory proteins could be considered biomarkers of disease progression. Therefore, the present review summarizes the role of some inflammatory molecules and their potential utility in the detection and monitoring of dementia severity. The paper also provides a valuable insight into new mechanisms leading to the development of dementia, which might be useful in discovering possible anti-inflammatory treatment.
Collapse
Affiliation(s)
- Julia Doroszkiewicz
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, Bialystok. Poland
| | - Piotr Mroczko
- Department of Criminal Law and Criminology, Faculty of Law, University of Bialystok, Bialystok. Poland
| | | |
Collapse
|
12
|
Luo JF, Dong Y, Chen JY, Lu JH. The effect and underlying mechanisms of garlic extract against cognitive impairment and Alzheimer's disease: A systematic review and meta-analysis of experimental animal studies. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114423. [PMID: 34273446 DOI: 10.1016/j.jep.2021.114423] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/03/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Alzheimer's disease (AD) is the main cause of dementia, and according to traditional Chinese medicine (TCM), it is leaded by the deficiency of essence, qi, and blood. Allii sativi bulbus, acrid and warm, is traditionally used as the important adjuvant and conductant drug to distribute essence-qi throughout the body, fortify the spleen and harmonize the stomach. Garlic (Allium sativum L., Alliaceae) has also been reported to display potential anti-AD effect both in vitro and in vivo studies, while no systematic review of these studies has been conducted. AIM OF THE STUDY This review aims to provide a comprehensive evaluation of the effect and underlying mechanism of garlic extract against cognitive impairment and AD neuropathology through meta-analysis and sensitivity analysis. MATERIALS AND METHODS Eligible studies were searched from PubMed, Web of Science and EMBASE from February to March in 2020, and 13 studies describing the effect of garlic extract in AD animal models (551 mice and 88 rats) were identified. RESULTS Analysis of these studies showed that garlic extract could reduce cerebral Aβ levels [Aβ40: SMD -8.62(-11.75, -5.49), p < 0.00001 and Aβ42: SMD -11.70(-18.01, -5.39), p=0.0003], and increase the number of right crossings in MWM [SMD 2.87(1.48, 4.26), p < 0.0001] in AD animals. However, moderate risk of bias (quality score ranged from 40% to 60%) is revealed by SYRCLE's checklist, mainly because of the lacks of sample size calculation, random allocation and blind assessment. CONCLUSIONS This review shows that garlic extract may be effective in alleviating cognitive impairment and neuropathology in AD animal models. High quality AD animal studies with enough sample size and more comprehensive evaluation of outcomes are needed to further confirm the results.
Collapse
Affiliation(s)
- Jing-Fang Luo
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China.
| | - Yu Dong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China.
| | - Jia-Yue Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China.
| | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China.
| |
Collapse
|
13
|
Biological Functions of Diallyl Disulfide, a Garlic-Derived Natural Organic Sulfur Compound. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5103626. [PMID: 34745287 PMCID: PMC8570849 DOI: 10.1155/2021/5103626] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/15/2021] [Accepted: 10/06/2021] [Indexed: 02/05/2023]
Abstract
Garlic is widely accepted as a functional food and an excellent source of pharmacologically active ingredients. Diallyl disulfide (DADS), a major bioactive component of garlic, has several beneficial biological functions, including anti-inflammatory, antioxidant, antimicrobial, cardiovascular protective, neuroprotective, and anticancer activities. This review systematically evaluated the biological functions of DADS and discussed the underlying molecular mechanisms of these functions. We hope that this review provides guidance and insight into the current literature and enables future research and the development of DADS for intervention and treatment of multiple diseases.
Collapse
|
14
|
Bastaki SMA, Ojha S, Kalasz H, Adeghate E. Chemical constituents and medicinal properties of Allium species. Mol Cell Biochem 2021; 476:4301-4321. [PMID: 34420186 DOI: 10.1007/s11010-021-04213-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 06/21/2021] [Indexed: 11/24/2022]
Abstract
Allium species, belonging to Alliaceae family, are among the oldest cultivated vegetables used as food. Garlic, onions, leeks and chives, which belong to this family, have been reported to have medicinal properties. The Allium species constituents have been shown to have antibacterial and antioxidant activities, and, in addition, other biological properties. These activities are related to their rich organosulfur compounds. These organosulfur compounds are believed to prevent the development of cancer, cardiovascular, neurological, diabetes, liver diseases as well as allergy and arthritis. There have also been reports on toxicities of these compounds. The major active compounds of Allium species includes, diallyl disulfide, diallyl trisulfide, diallyl sulfide, dipropyl disulfide, dipropyl trisulfide, 1-propenylpropyl disulfide, allyl methyl disulfide and dimethyl disulfide. The aim of this review is to focus on a variety of experimental and clinical reports on the effectiveness, toxicities and possible mechanisms of actions of the active compounds of garlic, onions, leek and chives.
Collapse
Affiliation(s)
- Salim M A Bastaki
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain, Abu Dhabi, UAE.
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain, Abu Dhabi, UAE
| | - Huba Kalasz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1445 Budapest, Hungary
| | - E Adeghate
- Department of Anatomy, College of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain, UAE
| |
Collapse
|
15
|
Ahmed T, Wang CK. Black Garlic and Its Bioactive Compounds on Human Health Diseases: A Review. Molecules 2021; 26:5028. [PMID: 34443625 PMCID: PMC8401630 DOI: 10.3390/molecules26165028] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 01/02/2023] Open
Abstract
Black garlic (BG) is a form of aged garlic obtained from raw garlic (Allium sativum) via Millard reaction under high temperature (60-90 °C) and humidity (70-90%) for a period of time. Several studies reported higher contents of water-soluble antioxidants compounds (S-allyl cysteine, S-allyl-mercapto cysteine), 5-hydroxymethylfurfural, organosulfur compounds, polyphenol, volatile compounds, and products of other Millard reactions compared to fresh garlic after the thermal processing. Recent studies have demonstrated that BG and its bioactive compounds possess a wide range of biological activities and pharmacological properties that preserve and show better efficacy in preventing different types of diseases. Most of these benefits can be attributed to its anti-oxidation, anti-inflammation, anti-obesity, hepatoprotection, hypolipidemia, anti-cancer, anti-allergy, immunomodulation, nephroprotection, cardiovascular protection, and neuroprotection. Substantial studies have been conducted on BG and its components against different common human diseases in the last few decades. Still, a lot of research is ongoing to find out the therapeutic effects of BG. Thus, in this review, we summarized the pre-clinical and clinical studies of BG and its bioactive compounds on human health along with diverse bioactivity, a related mode of action, and also future challenges.
Collapse
Affiliation(s)
| | - Chin-Kun Wang
- Department of Nutrition, Chung Shan Medical University, 110, Section 1, Jianguo North Road, Taichung 40201, Taiwan;
| |
Collapse
|
16
|
Esmaeili S, Rostami-Nejad M, Rezaei-Tavirani M, Okhovatian F, Mehdi Zadeh-Esmaeel M, Razzagh Z, Ahmadzadeh A, Vafaee R. Evaluating of Gene Expression Alteration after Garlic Consumption, Analyzing through Bioinformatics Approach. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:72-81. [PMID: 34400942 PMCID: PMC8170752 DOI: 10.22037/ijpr.2020.112409.13744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Molecular study of garlic as a popular food ingredient could better understand its health benefits such as immunological effects. For this aim, effects of garlic on the spleen and possible side effects including oxidative stress increment, the molecular mechanism is investigated through network analysis of differentially expressed genes in the treatment of garlic. Protein-protein interaction (PPI) network analysis of spleen gene expression profile of Mus musculus (8-week old male C57BL/6J mice) in garlic treatments from a microarray study with the code of GSE10344 was analyzed via GEO2R software. Furthermore, Cytoscape V 3.7.1 was applied to construct and analyze a network of up- and down-regulated genes. The differentially expressed genes (DEGs) were analyzed via the CluePedia plugin of Cytoscape to determine expression patterns. After the identification of central nodes, an action map was created. A total of 77 DEGs were achieved which were including 40 up-regulated and 37 Down-regulated. The centrality analysis of the network indicated that Vcan, Lamb1, and Ltbp1 are hubs and Glra1, Wdr17, Nefl, and Becn1 are bottlenecks. Mutual regulatory connections between hubs and Alb and App (as two non-queried hubs) were determined. The findings indicate that garlic effect on the spleen and its mechanism may be involved mostly with App dysregulation.
Collapse
Affiliation(s)
- Somayeh Esmaeili
- Traditional Medicine and Materia Medica Research Center, School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rostami-Nejad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farshad Okhovatian
- Physiotherapy Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Zahra Razzagh
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Ahmadzadeh
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Vafaee
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Peng Y, Tao H, Wang S, Xiao J, Wang Y, Su H. Dietary intervention with edible medicinal plants and derived products for prevention of Alzheimer's disease: A compendium of time-tested strategy. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104463] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
18
|
Iqubal A, Rahman SO, Ahmed M, Bansal P, Haider MR, Iqubal MK, Najmi AK, Pottoo FH, Haque SE. Current Quest in Natural Bioactive Compounds for Alzheimer's Disease: Multi-Targeted-Designed-Ligand Based Approach with Preclinical and Clinical Based Evidence. Curr Drug Targets 2021; 22:685-720. [PMID: 33302832 DOI: 10.2174/1389450121999201209201004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/12/2020] [Accepted: 08/23/2020] [Indexed: 12/06/2022]
Abstract
Alzheimer's disease is a common and most chronic neurological disorder (NDs) associated with cognitive dysfunction. Pathologically, Alzheimer's disease (AD) is characterized by the presence of β-amyloid (Aβ) plaques, hyper-phosphorylated tau proteins, and neurofibrillary tangles, however, persistence oxidative-nitrative stress, endoplasmic reticulum stress, mitochondrial dysfunction, inflammatory cytokines, pro-apoptotic proteins along with altered neurotransmitters level are common etiological attributes in its pathogenesis. Rivastigmine, memantine, galantamine, and donepezil are FDA approved drugs for symptomatic management of AD, whereas tacrine has been withdrawn because of hepatotoxic profile. These approved drugs only exert symptomatic relief and exhibit poor patient compliance. In the current scenario, the number of published evidence shows the neuroprotective potential of naturally occurring bioactive molecules via their antioxidant, anti-inflammatory, antiapoptotic and neurotransmitter modulatory properties. Despite their potent therapeutic implications, concerns have arisen in context to their efficacy and probable clinical outcome. Thus, to overcome these glitches, many heterocyclic and cyclic hydrocarbon compounds inspired by natural sources have been synthesized and showed improved therapeutic activity. Computational studies (molecular docking) have been used to predict the binding affinity of these natural bioactive as well as synthetic compounds derived from natural sources for the acetylcholine esterase, α/β secretase Nuclear Factor kappa- light-chain-enhancer of activated B cells (NF-kB), Nuclear factor erythroid 2-related factor 2(Nrf2) and other neurological targets. Thus, in this review, we have discussed the molecular etiology of AD, focused on the pharmacotherapeutics of natural products, chemical and pharmacological aspects and multi-targeted designed ligands (MTDLs) of synthetic and semisynthetic molecules derived from the natural sources along with some important on-going clinical trials.
Collapse
Affiliation(s)
- Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, JamiaHamdard, New Delhi-110062, India
| | - Syed Obaidur Rahman
- Department of Pharmaceutical Medicine, School of Pharmaceutical Education and Research, JamiaHamdard, New Delhi-110062, India
| | - Musheer Ahmed
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, JamiaHamdard, New Delhi-110062, India
| | - Pratichi Bansal
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, JamiaHamdard, New Delhi-110062, India
| | - Md Rafi Haider
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, JamiaHamdard, New Delhi-110062, India
| | - Mohammad Kashif Iqubal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, JamiaHamdard, New Delhi-110062, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, JamiaHamdard, New Delhi-110062, India
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal, University, P.O.BOX 1982, Damman, 31441, Saudi Arabia
| | - Syed Ehtaishamul Haque
- Department of Pharmacology, School of Pharmaceutical Education and Research, JamiaHamdard, New Delhi-110062, India
| |
Collapse
|
19
|
Varshney H, Siddique YH. Role of natural plant products against Alzheimer's disease. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 20:904-941. [PMID: 33881973 DOI: 10.2174/1871527320666210420135437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/12/2020] [Accepted: 02/09/2021] [Indexed: 01/25/2023]
Abstract
Alzheimer's disease (AD) is one of the major neurodegenerative disorder. Deposition of amyloid fibrils and tau protein are associated with various pathological symptoms. Currently limited medication is available for AD treatment. Most of the drugs are basically cholinesterase inhibitors and associated with various side effects. Natural plant products have shown potential as a therapeutic agent for the treatment of AD symptoms. Variety of secondary metabolites like flavonoids, tannins, terpenoids, alkaloids and phenols are used to reduce the progression of the disease. Plant products have less or no side effect and are easily available. The present review gives a detailed account of the potential of natural plant products against the AD symptoms.
Collapse
Affiliation(s)
- Himanshi Varshney
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Yasir Hasan Siddique
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| |
Collapse
|
20
|
Sohn E, Kim YJ, Kim JH, Jeong SJ. Ficus erecta Thunb. Leaves Ameliorate Cognitive Deficit and Neuronal Damage in a Mouse Model of Amyloid-β-Induced Alzheimer's Disease. Front Pharmacol 2021; 12:607403. [PMID: 33935701 PMCID: PMC8082460 DOI: 10.3389/fphar.2021.607403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 02/22/2021] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) pathogenesis is linked to amyloid plaque accumulation, neuronal loss, and brain inflammation. Ficus erecta Thunb. is a food and medicinal plant used to treat inflammatory diseases. Here, we investigated the neuroprotective effects of F. erecta Thunb. against cognitive deficit and neuronal damage in a mouse model of amyloid-β (Aβ)-induced AD. First, we confirmed the inhibitory effects of ethanol extracts of F. erecta (EEFE) leaves on Aβ aggregation in vivo and in vitro. Next, behavioral tests (passive avoidance task and Morris water maze test) revealed EEFE markedly improved cognitive impairment in Aβ-injected mice. Furthermore, EEFE reduced neuronal loss and the expression of neuronal nuclei (NeuN), a neuronal marker, in brain tissues of Aβ-injected mice. EEFE significantly reversed Aβ-induced suppression of cAMP response element-binding protein (CREB) phosphorylation and brain-derived neurotrophic factor (BDNF) expression, indicating neuroprotection was mediated by the CREB/BDNF signaling. Moreover, EEFE significantly suppressed the inflammatory cytokines interleukin 1beta (IL-1β) and tumor necrosis factor alpha (TNF-α), and expression of ionized calcium-binding adaptor molecule 1 (Iba-1), a marker of microglial activation, in brain tissues of Aβ-injected mice, suggesting anti-neuroinflammatory effects. Taken together, EEFE protects against cognitive deficit and neuronal damage in AD-like mice via activation of the CREB/BDNF signaling and upregulation of the inflammatory cytokines.
Collapse
Affiliation(s)
- Eunjin Sohn
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Yu Jin Kim
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Joo-Hwan Kim
- Department of Life Science, Gachon University, Seongnam, South Korea
| | - Soo-Jin Jeong
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| |
Collapse
|
21
|
He H, Ma Y, Huang H, Huang C, Chen Z, Chen D, Gu Y, Wang X, Chen J. A comprehensive understanding about the pharmacological effect of diallyl disulfide other than its anti-carcinogenic activities. Eur J Pharmacol 2020; 893:173803. [PMID: 33359648 DOI: 10.1016/j.ejphar.2020.173803] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022]
Abstract
Diallyl disulfide (DADS), an oil-soluble sulfur compound that is responsible for the biological effects of garlic, displays numerous biological activities, among which its anti-cancer activities are the most famous ones. In recent years, the pharmacological effects of DADS other than its anti-carcinogenic activities have attracted numerous attentions. For example, it has been reported that DADS can prevent the microglia-mediated neuroinflammatory response and depression-like behaviors in mice. In the cardiovascular system, DADS administration was found to ameliorate the isoproterenol- or streptozotocin-induced cardiac dysfunction via the activation of the nuclear factor E2-related factor 2 (Nrf2) and insulin-like growth factor (IGF)-phosphatidylinositol-3-kinase (PI3K)-protein kinase B (Akt) signaling. DADS administration can also produce neuroprotective effects in animal models of Alzheimer's disease and protect the heart, endothelium, liver, lung, and kidney against cellular or tissue damages induced by various toxic factors, such as the oxidized-low density lipoprotein (ox-LDL), carbon tetrachloride (CCl4), ethanol, acetaminophen, Cis-Diammine Dichloroplatinum (CisPt), and gentamicin. The major mechanisms of action of DADS in disease prevention and/or treatment include inhibition of inflammation, oxidative stress, and cellular apoptosis. Mechanisms, including the activation of Akt, extracellular signal-regulated kinase 1/2 (ERK1/2), protein kinase A (PKA), and cyclic adenosine monophosphate-response element binding protein (CREB) and the inhibition of histone deacetylases (HDACs), can also mediate the cellular protective effects of DADS in different tissues and organs. In this review, we summarize and discuss the pharmacological effects of DADS other than its anti-carcinogenic activities, aiming to reveal more possibilities for DADS in disease prevention and/or treatment.
Collapse
Affiliation(s)
- Haiyan He
- Department of Respiratory Medicine, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, 6 North Road Hai'er Xiang, Nantong, 226001, Jiangsu, China
| | - Yaoying Ma
- Department of Pharmacology, School of Pharmacy, Nantong University, 19# Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Huaxing Huang
- Department of Nephrology, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, 6 North Road Hai'er Xiang, Nantong, 226001, Jiangsu, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, 19# Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Zhuo Chen
- Invasive Technology Department, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, 6 North Road Hai'er Xiang, Nantong, 226001, Jiangsu, China
| | - Dongjian Chen
- Invasive Technology Department, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, 6 North Road Hai'er Xiang, Nantong, 226001, Jiangsu, China
| | - Yiming Gu
- Department of Pharmacology, School of Pharmacy, Nantong University, 19# Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Xiaohua Wang
- Department of Endocrinology, The Second Affiliated Hospital of Nantong University, 6 North Road Hai'er Xiang, Nantong, 226001, Jiangsu, China
| | - Jinliang Chen
- Department of Respiratory Medicine, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, 6 North Road Hai'er Xiang, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
22
|
Qu Z, Sun J, Zhang W, Yu J, Zhuang C. Transcription factor NRF2 as a promising therapeutic target for Alzheimer's disease. Free Radic Biol Med 2020; 159:87-102. [PMID: 32730855 DOI: 10.1016/j.freeradbiomed.2020.06.028] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 12/12/2022]
Abstract
Oxidative stress is considered as one of the pathogenesis of Alzheimer's disease (AD) and plays an important role in the occurrence and development of AD. Nuclear factor erythroid 2 related factor 2 (NRF2) is a key regulatory of oxidative stress defence. There is growing evidence indicating the relationship between NRF2 and AD. NRF2 activation mitigates multiple pathogenic processes involved in AD by upregulating antioxidative defense, inhibiting neuroinflammation, improving mitochondrial function, maintaining proteostasis, and inhibiting ferroptosis. In addition, several NRF2 activators are currently being evaluated as AD therapeutic agents in clinical trials. Thus, targeting NRF2 has been the focus of a new strategy for prevention and treatment of AD. In this review, the role of NRF2 in AD and the NRF2 activators advanced into clinical and preclinical studies will be summarized.
Collapse
Affiliation(s)
- Zhuo Qu
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China
| | - Jiachen Sun
- School of Biotechnology and Food Science, Tianjin University of Commerce, 409 Guangrong Road, Tianjin, 300134, China
| | - Wannian Zhang
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China; School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Jianqiang Yu
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| | - Chunlin Zhuang
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China; School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China.
| |
Collapse
|
23
|
Venditti A, Bianco A. Sulfur-containing Secondary Metabolites as Neuroprotective Agents. Curr Med Chem 2020; 27:4421-4436. [PMID: 30207214 DOI: 10.2174/0929867325666180912105036] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 08/03/2018] [Accepted: 08/03/2018] [Indexed: 12/15/2022]
Abstract
Sulfur-containing secondary metabolites are a relatively small group of substances of plant origin. The present review is focused on their neuroprotective properties. The results obtained in a series of in vitro and in vivo studies are reported. Among glucosinolates, the wide class of compounds in the sulfur-containing metabolites, glucoraphanin, sulforaphane and isothiocyanates proved to be the more studied in this context and showed interesting properties as modulators of several systems involved in the pathogenesis of neurologic diseases such as oxidative stress, inflammation and apoptosis. Allium sativum L. (garlic) is widely known for its sulfur-containing components endowed with health-promoting activities and its medicinal properties are known from ancient times. In recent studies, garlic components proved active in neuroprotection due to the direct and indirect antioxidant properties, modulation of apoptosis mediators and inhibiting the formation of amyloid protein. Dihydroasparagusic acid, the first dimercaptanic compound isolated from a natural source, effectively inhibited inflammatory and oxidative processes that are important factors for the etiopathogenesis of neurodegenerative diseases, not only for its antioxidant and radical scavenging properties but also because it may down-regulate the expression of several microglial-derived inflammatory mediators. Serofendic acid represents a rare case of sulfur-containing animal-derived secondary metabolite isolated from fetal calf serum extract. It proved effective in the suppression of ROS generation and in the expression of several inflammatory and apoptosis mediators and showed a cytotrophic property in astrocytes, promoting the stellation process. Lastly, the properties of hydrogen sulfide were also reported since in recent times it has been recognized as a signaling molecule and as a mediator in regulating neuron death or survival. It may be produced endogenously from cysteine but may also be released by sulfur-containing secondary metabolites, mainly from those present in garlic.
Collapse
Affiliation(s)
- Alessandro Venditti
- Dipartimento di Chimica, Universita di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Armandodoriano Bianco
- Dipartimento di Chimica, Universita di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185, Rome, Italy
| |
Collapse
|
24
|
Ruiz-Sánchez E, Pedraza-Chaverri J, Medina-Campos ON, Maldonado PD, Rojas P. S-allyl Cysteine, a Garlic Compound, Produces an Antidepressant-Like Effect and Exhibits Antioxidant Properties in Mice. Brain Sci 2020; 10:brainsci10090592. [PMID: 32859119 PMCID: PMC7564461 DOI: 10.3390/brainsci10090592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022] Open
Abstract
Depression is a psychiatric disorder, and oxidative stress is a significant mechanism of damage in this mood disorder. It is characterized by an enhancement of oxidative stress markers and low concentrations of endogenous antioxidants, or antioxidants enzymes. This suggests that antioxidants could have an antidepressant effect. S-allyl cysteine (SAC) is a compound with antioxidant action or free radical scavenger capacity. The purpose of the current research was to evaluate the antidepressant-like effect as well as the antioxidant role of SAC on a preclinical test, using the Porsolt forced swim test (FST). SAC (30, 70, 120, or 250 mg/kg, ip) was administered to male BALB/c mice daily for 17 days, followed by the FST at day 18. Oxidative stress markers (reactive oxygen species, superoxide production, lipid peroxidation, and antioxidant enzymes activities) were analyzed in the midbrain, prefrontal cortex, and hippocampus. SAC (120 mg/kg) attenuated the immobility scores (44%) in the FST, and protection was unrelated to changes in locomotor activity. This antidepressant-like effect was related to decreased oxidative stress, as indicated by lipid peroxidation and manganese-superoxide dismutase (Mn-SOD) activity in the hippocampus. SAC exerts an antidepressant-like effect that correlated, in part, with preventing oxidative damage in hippocampus.
Collapse
Affiliation(s)
- Elizabeth Ruiz-Sánchez
- Laboratory of Neurotoxicology, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, SS, Av. Insurgentes Sur No. 3877, Mexico City 14269, Mexico;
| | - José Pedraza-Chaverri
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, CDMX 04510, Mexico; (J.P.-C.); (O.N.M.-C.)
| | - Omar N. Medina-Campos
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, CDMX 04510, Mexico; (J.P.-C.); (O.N.M.-C.)
| | - Perla D. Maldonado
- Laboratory of Cerebral Vascular Pathology, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, SS, Av. Insurgentes Sur No. 3877, Mexico City 14269, Mexico;
| | - Patricia Rojas
- Laboratory of Neurotoxicology, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, SS, Av. Insurgentes Sur No. 3877, Mexico City 14269, Mexico;
- Correspondence: ; Tel.: +52-55-5424-0808
| |
Collapse
|
25
|
Pannangrong W, Welbat JU, Chaichun A, Sripanidkulchai B. Effect of combined extracts of aged garlic, ginger, and chili peppers on cognitive performance and brain antioxidant markers in Aβ-induced rats. Exp Anim 2020; 69:269-278. [PMID: 32051390 PMCID: PMC7445057 DOI: 10.1538/expanim.19-0123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 01/13/2020] [Indexed: 11/16/2022] Open
Abstract
A combination of aged garlic, ginger, and chili peppers extracts (AGC) was studied by high-performance liquid chromatography, 2,2-diphenyl-1-picrylhydrazyl, and ferric-reducing antioxidant assays, and oxidative stress markers were analyzed in Aβ1-42-induced rats. The AGC was orally administered to Wistar rats at doses of 125, 250, and 500 mg/kg body weight (AGC125, AGC250, AGC500, respectively) for 64 days. At day 56, Aβ1-42 was injected via both sides of the lateral ventricles. The effects of the AGC on spatial and recognition memory were examined using a Morris water maze and novel object recognition tasks. Rats induced with Aβ1-42 exhibited obvious cognitive deficits, as demonstrated by their increased escape latency time (ET) and decreased retention time (RT) and percentage of discriminative index (DI). When compared with the control group, all AGC-treated rats showed significantly shorter ETs and higher DIs during the 5-min delay testing phase. Rats treated with AGC250 also had significantly longer RTs. Administration of Aβ1-42 significantly increased malondialdehyde (MDA) levels and decreased superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) levels in the rat brain homogenate. Pretreatment with the AGC caused significant increases in SOD, GPx, and CAT activities, as well as a significant decrease in MDA in the rat brain homogenates after Aβ-induced neurotoxicity. Our results suggested that an AGC may ameliorate cognitive dysfunction in Aβ-treated rats due to its role in the upregulation of SOD, GPx, and CAT.
Collapse
Affiliation(s)
- Wanassanun Pannangrong
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, 123 Moo 16 Mittraphap Road, Nai-Muang, Muang District, Khon Kaen 40002, Thailand
- Center for Research and Development of Herbal Health Products, Faculty of Pharmaceutical Sciences, Khon Kaen University, 123 Moo 16 Mittraphap Road, Nai-Muang, Muang District, Khon Kaen 40002, Thailand
| | - Jariya Umka Welbat
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, 123 Moo 16 Mittraphap Road, Nai-Muang, Muang District, Khon Kaen 40002, Thailand
- Center for Research and Development of Herbal Health Products, Faculty of Pharmaceutical Sciences, Khon Kaen University, 123 Moo 16 Mittraphap Road, Nai-Muang, Muang District, Khon Kaen 40002, Thailand
- Neuroscience Research and Development Group, Khon Kaen University, 123 Moo 16 Mittraphap Road, Nai-Muang, Muang District, Khon Kaen 40002, Thailand
| | - Amnard Chaichun
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, 123 Moo 16 Mittraphap Road, Nai-Muang, Muang District, Khon Kaen 40002, Thailand
| | - Bungorn Sripanidkulchai
- Center for Research and Development of Herbal Health Products, Faculty of Pharmaceutical Sciences, Khon Kaen University, 123 Moo 16 Mittraphap Road, Nai-Muang, Muang District, Khon Kaen 40002, Thailand
| |
Collapse
|
26
|
Improvement of Learning and Memory in Senescence-Accelerated Mice by S-Allylcysteine in Mature Garlic Extract. Nutrients 2020; 12:nu12061834. [PMID: 32575593 PMCID: PMC7353456 DOI: 10.3390/nu12061834] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/13/2020] [Accepted: 06/17/2020] [Indexed: 11/16/2022] Open
Abstract
S-allylcysteine (SAC), a major thioallyl compound contained in mature garlic extract (MGE), is known to be a neuroactive compound. This study was designed to investigate the effects of SAC on primary cultured hippocampal neurons and cognitively impaired senescence-accelerated mice prone 10 (SAMP10). Treatment of these neurons with MGE or SAC significantly increased the total neurite length and number of dendrites. SAMP10 mice fed MGE or SAC showed a significant improvement in memory dysfunction in pharmacological behavioral analyses. The decrease of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor, N-methyl-d-aspartate (NMDA) receptor, and phosphorylated α-calcium/calmodulin-dependent protein kinase II (CaMKII) in the hippocampal tissue of SAMP10 mice fed MGE or SAC was significantly suppressed, especially in the MGE-fed group. These findings suggest that SAC positively contributes to learning and memory formation, having a beneficial effect on brain function. In addition, multiple components (aside from SAC) contained in MGE could be useful for improving cognitive function by acting as neurotrophic factors.
Collapse
|
27
|
Bin C, Al-Dhabi NA, Esmail GA, Arokiyaraj S, Arasu MV. Potential effect of Allium sativum bulb for the treatment of biofilm forming clinical pathogens recovered from periodontal and dental caries. Saudi J Biol Sci 2020; 27:1428-1434. [PMID: 32489278 PMCID: PMC7254026 DOI: 10.1016/j.sjbs.2020.03.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/21/2020] [Accepted: 03/26/2020] [Indexed: 11/14/2022] Open
Abstract
Biofilm producing clinical bacterial isolates were isolated from periodontal and dental caries samples and identified as, Lactobacillus acidophilus, Streptococcus sanguis, S. salivarius, S. mutansand Staphylococcus aureus. Among the identified bacterial species, S. aureus and S. mutansshowed strong biofilm producing capacity. The other isolated bacteria, Streptococcus sanguis, S. salivarius showed moderate biofilm formation. These pathogens were subjected for the production of extracellular polysaccharides (EPS) in nutrient broth medium and the strain S. aureus synthesized more amounts of EPS (610 ± 11.2 µg/ml) than S. sanguis (480 ± 5.8 µg/ml).EPS production was found to be less in S. salivarius (52 ± 3.8 µg/ml).The solvent extract of A. sativum bulb showed the phytochemicals such as, carbohydrate, total protein, alkaloids, saponins, flavonoids, tannins and sterioids. The solvent extract of A. sativum bulb showed wide ranges of activity against the selected dental pathogens. The difference in antibacterial activity of the solvent extract revealed differences in solubility of phytochemicals in organic solvents. Ethanol extract was highly active againstS. aureus (25 ± 2 mm). The Minimum Inhibitory Concentration (MIC) of crude garlic bulb varied widely and this clearly showed that bacteria exhibits different level of susceptibility to secondary metabolites. MIC value ranged between 20 ± 2 mg/ml and 120 ± 6 mg/ml and Minimum Bactericidal Concentration (MBC) value ranged from 60 ± 5 mg/l to 215 ± 7 mg/ml. To conclude, A. sativum bulb can be effectively used to treat periodontal and dental caries infections.
Collapse
Affiliation(s)
- Chen Bin
- Department of Stomatology, The Ninth People’S Hospital Of ChongQing, Beibei District, Chongqing 400700, China
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Galal Ali Esmail
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Selvaraj Arokiyaraj
- Department of Food Science and Technology, Sejong University, Republic of Korea
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
28
|
Kosuge Y. Neuroprotective mechanisms of S-allyl-L-cysteine in neurological disease. Exp Ther Med 2019; 19:1565-1569. [PMID: 32010340 PMCID: PMC6966174 DOI: 10.3892/etm.2019.8391] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 08/26/2019] [Indexed: 01/06/2023] Open
Abstract
S-allyl-L-cysteine (SAC) is a sulfur-containing amino acid present in garlic and exhibits a wide range of biological activities such as antioxidant, anti-inflammatory, and anticancer agent. An earlier study demonstrated that SAC ameliorates oxidative damage in a model of experimental stroke. However, the antioxidant property of SAC does not suffice to explain its beneficial effects in terms of the underlying mechanisms. Endoplasmic reticulum (ER) stress and ER stress-induced cell death have been shown to be involved in various neurological diseases such as brain ischemia, Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and Huntington's disease. We have previously demonstrated that SAC exerts significant protective effects against ER stress-induced neurotoxicity in cultured rat hippocampal neurons and organotypic hippocampal slice cultures. Recently, we demonstrated that these results are due to the direct suppression of calpain activity via the binding of SAC to this enzyme's Ca2+-binding domain. We also found that the protective effects of the side-chain-modified SAC derivatives, S-ethyl-L-cysteine (SEC) and S-propyl-L-cysteine (SPC), against ER stress-induced neurotoxicity were more potent than those of SAC in cultured rat hippocampal neurons. In addition, SAC, SEC and SPC have been shown to decrease the production of amyloid-β peptide in the brains of mice with D-galactose-induced aging. These three hydrophilic cysteine-containing compounds have also been shown to exert neuroprotective effects against dopaminergic neuron injury in a murine model of Parkinson's disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). In this review, we aim to provide a current overview of the protective actions of SAC and the SAC-related compounds, SEC and SPC, in neurodegenerative disease and discuss the promise of SAC as a prototype for developing novel therapeutic drugs for neurological diseases.
Collapse
Affiliation(s)
- Yasuhiro Kosuge
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, Funabashi-shi, Chiba 274-8555, Japan
| |
Collapse
|
29
|
Song H, Cui J, Mossine VV, Greenlief CM, Fritsche K, Sun GY, Gu Z. Bioactive components from garlic on brain resiliency against neuroinflammation and neurodegeneration. Exp Ther Med 2019; 19:1554-1559. [PMID: 32010338 PMCID: PMC6966118 DOI: 10.3892/etm.2019.8389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/05/2019] [Indexed: 01/05/2023] Open
Abstract
Garlic (Allium sativum) has been widely used for culinary and medicinal purposes. Aged garlic extract (AGE) and sulfur-containing compounds, including S-allylcysteine (SAC) are well documented botanical active components of garlic. AGE is prepared by the prolonged extraction of fresh garlic with aqueous ethanol and is considered a nutritional supplement with potential to promote human health. SAC is a water-soluble organosulfur compound and the most abundant component of AGE. Studies have demonstrated that both AGE and SAC can exert neuroprotective effects against neuroinflammation and neurodegeneration. Another bioactive component in AGE is N-α-(1-deoxy-D-fructos-1-yl)-L-arginine (FruArg) although less is known about the metabolic activity of this compound. The main aim of this review was to provide an undated overview of the neuroprotective perspectives of these active garlic components (AGE, SAC and FruArg). Of interest, our studies and those of others indicate that both AGE and FruArg are involved in the regulation of gene transcription and protein expression. AGE has been shown to reverse 67% of the transcriptome alteration induced by endotoxins-lipopolysaccharide (LPS), and FruArg has been shown to account for the protective effects by reversing 55% of genes altered in a cell-based neuroinflammation paradigm stimulated by LPS in murine BV-2 microglial cells. AGE and FruArg can alleviate neuroinflammatory responses through a variety of signaling pathways, such as Toll-like receptor and interleukin (IL)-6 signaling, as well as by upregulating the nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated oxidative stress pathways known to promote microglial resiliency against neuroinflammation and neurodegeneration. The capability of FruArg to pass through the blood-brain barrier further supports its potential as a therapeutic compound. In summary, these experimental results provide new insight into the understanding of the neuroprotective effects of garlic components in promoting brain resiliency for health benefits.
Collapse
Affiliation(s)
- Hailong Song
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Jiankun Cui
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA.,Truman VA Hospital Research Service, Columbia, MO 65201, USA
| | - Valeri V Mossine
- Department of Biochemistry, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | | | - Kevin Fritsche
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Grace Y Sun
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA.,Department of Biochemistry, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Zezong Gu
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA.,Truman VA Hospital Research Service, Columbia, MO 65201, USA
| |
Collapse
|
30
|
Li F, Kim MR. Effect of Aged Garlic Ethyl Acetate Extract on Oxidative Stress and Cholinergic Function of Scopolamine-Induced Cognitive Impairment in Mice. Prev Nutr Food Sci 2019; 24:165-170. [PMID: 31328121 PMCID: PMC6615362 DOI: 10.3746/pnf.2019.24.2.165] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/02/2019] [Indexed: 12/19/2022] Open
Abstract
This study was performed to investigate the effect of aged black garlic ethyl acetate extract on scopolamine-induced cognitive impairment in mice. Aged garlic ethyl acetate extract (BG) was administrated at a dose of 25 or 50 mg/ kg in scopolamine-induced mice. Cognitive ability was evaluated using a Morris water maze test and a passive avoidance test. BGs (50 mg/kg) shortened the latency time that was increased by scopolamine and increased the platform crossing numbers that was significantly shortened by scopolamine after 5 days training in the Morris water maze test (P<0.05). BG (50 mg/kg) also significantly prolonged the latency time in the passive avoidance test (P<0.05). Result from biochemical analysis showed that BG increased levels of glutathione, glutathione peroxidase activity, and glutathione reductase activity, whereas BG significantly inhibited lipid peroxidation (P<0.05). BG also attenuated cholinergic degradation through inhibiting acetylcholinesterase activity and increasing choline acetyltransferase activity (P<0.05). In conclusion, BG protected against scopolamine-induced cognitive impairment through decreasing oxidative damage and regulating cholinergic function in the brains of mice. BG may therefore be a beneficial food for protecting against neurodegeneration such as Alzheimer’s disease.
Collapse
Affiliation(s)
- Fuyi Li
- Department of Food and Nutrition, Chungnam National University, Daejeon 34134, Korea
| | - Mee Ree Kim
- Department of Food and Nutrition, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
31
|
Lin X, Xu B, Zhang Z, Yang Y, Liu G, Zhu F, Ren X, Liu J, Li S, Huang X, Yang X. Proteomic analysis reveals the potential neuroprotective effects of tetramethylpyrazine dimer in neuro2a/APPswe cells. RSC Adv 2019; 9:18776-18784. [PMID: 35516848 PMCID: PMC9064821 DOI: 10.1039/c9ra03054a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 05/07/2019] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease characterized by pathological processes, including abnormal amyloid deposits and filament tangles, oxidative stress, neuroinflammation, and neurotrophic insufficiency, leading to chronic and prolonged neuronal loss and cognitive deficits. Tetramethylpyrazine (TMP) is one of the main active components of Ligusticum wallichii, a traditional Chinese medicine widely used for brain related disease. Here, we synthesized the TMP derivative tetramethylpyrazine dimer (DTMP), and evaluated the potential mechanisms underlying its potential neuroprotective effects using the murine neuron-like cells (N2a) transfected with the human "Swedish" mutant amyloid precursor protein (N2aAPP). ELISA results indicated that DTMP reduced the levels of Aβ1-40 and Aβ1-42 in N2aAPP. Then through proteomic analysis we identified a total of 208 differentially expressed proteins in N2aAPP cells compared to the wild-type N2a cells (N2aWT), including 144 increased and 64 decreased proteins. 449 differentially expressed proteins were revealed in N2aAPP cells on DTMP treatment with 69 increased and 380 decreased proteins. Bioinformatic analysis suggested that these proteins are enriched in mitochondrial function, the electronic transmission chain, ATP binding, oxidative phosphorylation, GTPase function, the transcriptional translation process, amino acid metabolism, nucleotide binding and others. Given the vital role of mitochondria in the pathogenesis of AD, we selected the electron transport chain pathway-related molecules to further validate these findings. Western-blot analysis demonstrated that DTMP significantly increased the levels of complex I (NDUAA), complex II (SDHB), complex III (UCRI), complex IV (COX5A) and complex V (ATP5A) in N2aAPP cells. The modulation of dysregulated proteins implicated in AD pathogenesis implies the pharmacological mechanisms of DTMP and its potential as a novel therapeutic choice in AD.
Collapse
Affiliation(s)
- Xiaoyi Lin
- College of Pharmaceutical Engineering and Life Sciences, Changzhou University No. 21, Gehu Middle Road, Wujin District Changzhou China 213000 +86 13914325607 +86 13914325607
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention No. 8, Longyuan Road, Nanshan District Shenzhen China 518055 +86 75525508584 +86 75525601914
| | - Benhong Xu
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention No. 8, Longyuan Road, Nanshan District Shenzhen China 518055 +86 75525508584 +86 75525601914
| | - Zaijun Zhang
- Institute of New Drug Research and Guangzhou, Key Laboratory of Innovative Chemical Drug Research in Cardio-Cerebrovascular Diseases, Jinan University College of Pharmacy Guangzhou 510632 China
| | - Ying Yang
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430030 China
| | - Gongping Liu
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430030 China
| | - Feiqi Zhu
- Cognitive Impairment Ward of Neurology Department, The 3rd Affiliated Hospital of Shenzhen University China
| | - Xiaohu Ren
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention No. 8, Longyuan Road, Nanshan District Shenzhen China 518055 +86 75525508584 +86 75525601914
| | - Jianjun Liu
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention No. 8, Longyuan Road, Nanshan District Shenzhen China 518055 +86 75525508584 +86 75525601914
| | - Shupeng Li
- State Key Laboratory of Oncogenomic, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China +86 75526032325 +86 75526032325
| | - Xianfeng Huang
- College of Pharmaceutical Engineering and Life Sciences, Changzhou University No. 21, Gehu Middle Road, Wujin District Changzhou China 213000 +86 13914325607 +86 13914325607
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention No. 8, Longyuan Road, Nanshan District Shenzhen China 518055 +86 75525508584 +86 75525601914
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention No. 8, Longyuan Road, Nanshan District Shenzhen China 518055 +86 75525508584 +86 75525601914
| |
Collapse
|
32
|
Andrade S, Ramalho MJ, Loureiro JA, Pereira MDC. Natural Compounds for Alzheimer's Disease Therapy: A Systematic Review of Preclinical and Clinical Studies. Int J Mol Sci 2019; 20:E2313. [PMID: 31083327 PMCID: PMC6539304 DOI: 10.3390/ijms20092313] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/04/2019] [Accepted: 05/07/2019] [Indexed: 12/31/2022] Open
Abstract
Alzheimer's Disease (AD) is a neurodegenerative disorder related with the increase of age and it is the main cause of dementia in the world. AD affects cognitive functions, such as memory, with an intensity that leads to several functional losses. The continuous increase of AD incidence demands for an urgent development of effective therapeutic strategies. Despite the extensive research on this disease, only a few drugs able to delay the progression of the disease are currently available. In the last years, several compounds with pharmacological activities isolated from plants, animals and microorganisms, revealed to have beneficial effects for the treatment of AD, targeting different pathological mechanisms. Thus, a wide range of natural compounds may play a relevant role in the prevention of AD and have proven to be efficient in different preclinical and clinical studies. This work aims to review the natural compounds that until this date were described as having significant benefits for this neurological disease, focusing on studies that present clinical trials.
Collapse
Affiliation(s)
- Stephanie Andrade
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, 4200-465 Porto, Portugal.
| | - Maria João Ramalho
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, 4200-465 Porto, Portugal.
| | - Joana Angélica Loureiro
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, 4200-465 Porto, Portugal.
| | - Maria do Carmo Pereira
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, 4200-465 Porto, Portugal.
| |
Collapse
|
33
|
Basavan D, Chalichem NSS, Kumar MKS. Phytoconstituents and their Possible Mechanistic Profile for Alzheimer's Disease - A Literature Review. Curr Drug Targets 2018; 20:263-291. [PMID: 30101703 DOI: 10.2174/1389450119666180813095637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 07/24/2018] [Accepted: 08/08/2018] [Indexed: 11/22/2022]
Abstract
Memory is an associated part of life without which livelihood of a human being becomes miserable. As the global aged population is increasing tremendously, time has come to concentrate on tail end life stage diseases. Alzheimer's disease (AD) is one of such diseases whose origin is enigmatic, having an impact on later stage of life drastically due to irreparable damage of cognition, characterised by the presence of neurotoxic amyloid-beta (Aβ) plaques and hyper phosphorylated Tau protein as fibrillary tangles. Existing therapeutic regimen mainly focuses on symptomatic relief by targeting neurotransmitters that are secondary to AD pathology. Plant derived licensed drugs, Galantamine and Huperzine-A were studied extensively due to their AChE inhibitory action for mild to moderate cases of AD. Although many studies have proved the efficacy of AChEIs as a preferable symptom reliever, they cannot offer long term protection. The future generation drugs of AD is expected to alter various factors that underlie the disease course with a symptomatic benefit promise. As AD involves complex pathology, it is essential to consider several molecular divergent factors apart from the events that result in the production of toxic plaques and neurofibrillary tangles. Even though several herbals have shown neuroprotective actions, we have mentioned about the phytoconstituents that have been tested experimentally against different Alzheimer's pathology models. These phytoconstituents need to be considered by the researchers for further drug development process to make them viable clinically, which is currently a lacuna.
Collapse
Affiliation(s)
- Duraiswamy Basavan
- Department of Pharmacognosy and Phytopharmacy, JSS College of pharmacy (Constituent College of JSS Academy of Higher Education and Research, Mysuru), Ooty-643001, India
| | - Nehru S S Chalichem
- Department of Pharmacognosy and Phytopharmacy, JSS College of pharmacy (Constituent College of JSS Academy of Higher Education and Research, Mysuru), Ooty-643001, India
| | - Mohan K S Kumar
- TIFAC CORE Herbal drugs, Department of Pharmacognosy and Phytopharmacy, JSS College of Pharmacy (Constituent College of JSS Academy of Higher Education and Research, Mysuru), ooty-643001, India
| |
Collapse
|
34
|
The Drug Developments of Hydrogen Sulfide on Cardiovascular Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4010395. [PMID: 30151069 PMCID: PMC6087600 DOI: 10.1155/2018/4010395] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/27/2018] [Indexed: 02/07/2023]
Abstract
The recognition of hydrogen sulfide (H2S) has been evolved from a toxic gas to a physiological mediator, exhibiting properties similar to NO and CO. On the one hand, H2S is produced from L-cysteine by enzymes of cystathionine γ-lyase (CSE) and cystathionine β-synthase (CBS), 3-mercaptopyruvate sulfurtransferase (3MST) in combination with aspartate aminotransferase (AAT) (also called as cysteine aminotransferase, CAT); on the other hand, H2S is produced from D-cysteine by enzymes of D-amino acid oxidase (DAO). Besides sulfide salt, several sulfide-releasing compounds have been synthesized, including organosulfur compounds, Lawesson's reagent and analogs, and plant-derived natural products. Based on garlic extractions, we synthesized S-propargyl-L-cysteine (SPRC) and its analogs to contribute our endeavors on drug development of sulfide-containing compounds. A multitude of evidences has presented H2S is widely involved in the roles of physiological and pathological process, including hypertension, atherosclerosis, angiogenesis, and myocardial infarcts. This review summarizes current sulfide compounds, available H2S measurements, and potential molecular mechanisms involved in cardioprotections to help researchers develop further applications and therapeutically drugs.
Collapse
|
35
|
Salehi I, Komaki A, Karimi SA, Sarihi A, Zarei M. Effect of garlic powder on hippocampal long-term potentiation in rats fed high fat diet: an in vivo study. Metab Brain Dis 2018; 33:725-731. [PMID: 29294234 DOI: 10.1007/s11011-017-0174-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 12/19/2017] [Indexed: 01/23/2023]
Abstract
The objective of this study was to determine the relation between the chronic consumption of garlic powder in combination with high-fat diet (HFD) on long term potentiation (LTP) in the dentate gyrus (DG) of rat hippocampus. Male rats were divided to 4 groups, control with the standard diet, control with a standard diet plus garlic, high-fat diet (HFD) group and high-fat diet with garlic. Following 6 months of controlled dietary in each experimental group, the rats were anesthetized with i.p. injection of ketamine and xylazin (100 and 2.5 mg/kg, respectively), and placed into a stereotaxic apparatus for surgery, electrode implantation and field potential recording. The population spike (PS) amplitude and slope of excitatory post synaptic potentials (EPSP) were measured in the DG area of adult rats in response to stimulation applied to the perforant path (PP) (by 400 Hz tetanization). The results showed that garlic increased EPSP slope and PS amplitude respect to HFD group. It was suggested that the garlic powder administration could attenuate the deteriorating effect of HFD on in vivo hippocampal LTP in the granular cells of the DG.
Collapse
Affiliation(s)
- Iraj Salehi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Asaad Karimi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
- Department of Physiology and Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abdolrahman Sarihi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Zarei
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
36
|
Momtaz S, Hassani S, Khan F, Ziaee M, Abdollahi M. Cinnamon, a promising prospect towards Alzheimer's disease. Pharmacol Res 2017; 130:241-258. [PMID: 29258915 DOI: 10.1016/j.phrs.2017.12.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/10/2017] [Accepted: 12/10/2017] [Indexed: 12/25/2022]
Abstract
Over the last decades, an exponential increase of efforts concerning the treatment of Alzheimer's disease (AD) has been practiced. Phytochemicals preparations have a millenary background to combat various pathological conditions. Various cinnamon species and their biologically active ingredients have renewed the interest towards the treatment of patients with mild-to-moderate AD through the inhibition of tau protein aggregation and prevention of the formation and accumulation of amyloid-β peptides into the neurotoxic oligomeric inclusions, both of which are considered to be the AD trademarks. In this review, we presented comprehensive data on the interactions of a number of cinnamon polyphenols (PPs) with oxidative stress and pro-inflammatory signaling pathways in the brain. In addition, we discussed the potential association between AD and diabetes mellitus (DM), vis-à-vis the effluence of cinnamon PPs. Further, an upcoming prospect of AD epigenetic pathophysiological conditions and cinnamon has been sighted. Data was retrieved from the scientific databases such as PubMed database of the National Library of Medicine, Scopus and Google Scholar without any time limitation. The extract of cinnamon efficiently inhibits tau accumulations, Aβ aggregation and toxicity in vivo and in vitro models. Indeed, cinnamon possesses neuroprotective effects interfering multiple oxidative stress and pro-inflammatory pathways. Besides, cinnamon modulates endothelial functions and attenuates the vascular cell adhesion molecules. Cinnamon PPs may induce AD epigenetic modifications. Cinnamon and in particular, cinnamaldehyde seem to be effective and safe approaches for treatment and prevention of AD onset and/or progression. However, further molecular and translational research studies as well as prolonged clinical trials are required to establish the therapeutic safety and efficacy in different cinnamon spp.
Collapse
Affiliation(s)
- Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran; Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shokoufeh Hassani
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fazlullah Khan
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran Iran
| | - Mojtaba Ziaee
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran; Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran Iran.
| |
Collapse
|
37
|
Advances toward multifunctional cholinesterase and β-amyloid aggregation inhibitors. Future Med Chem 2017; 9:1835-1854. [PMID: 28925729 DOI: 10.4155/fmc-2017-0094] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The emergence of a multitarget design approach in the development of new potential anti-Alzheimer's disease agents has resulted in the discovery of many multifunctional compounds focusing on various targets. Among them the largest group comprises inhibitors of both cholinesterases, with additional anti-β-amyloid aggregation activity. This review describes recent advances in this research area and presents the most interesting compounds reported over a 2-year span (2015-2016). The majority of hybrids possess heterodimeric structures obtained by linking structurally active fragments interacting with different targets. Multipotent cholinesterase inhibitors with β-amyloid antiaggregating activity may additionally possess antioxidative, neuroprotective or metal-chelating properties or less common features such as anti-β-secretase or τ-antiaggregation activity.
Collapse
|
38
|
Omar SH, Scott CJ, Hamlin AS, Obied HK. The protective role of plant biophenols in mechanisms of Alzheimer's disease. J Nutr Biochem 2017; 47:1-20. [PMID: 28301805 DOI: 10.1016/j.jnutbio.2017.02.016] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 01/03/2017] [Accepted: 02/16/2017] [Indexed: 12/31/2022]
Abstract
Self-assembly of amyloid beta peptide (Aβ) into the neurotoxic oligomers followed by fibrillar aggregates is a defining characteristic of Alzheimer's disease (AD). Several lines of proposed hypotheses have suggested the mechanism of AD pathology, though the exact pathophysiological mechanism is not yet elucidated. The poor understanding of AD and multitude of adverse responses reported from the current synthetic drugs are the leading cause of failure in the drug development to treat or halt the progression of AD and mandate the search for safer and more efficient alternatives. A number of natural compounds have shown the ability to prevent the formation of the toxic oligomers and disrupt the aggregates, thus attracted much attention. Referable to the abundancy and multitude of pharmacological activities of the plant active constituents, biophenols that distinguish them from the other phytochemicals as a natural weapon against the neurodegenerative disorders. This review provides a critical assessment of the current literature on in vitro and in vivo mechanistic activities of biophenols associated with the prevention and treatment of AD. We have contended the need for more comprehensive approaches to evaluate the anti-AD activity of biophenols at various pathologic levels and to assess the current evidences. Consequently, we highlighted the various problems and challenges confronting the AD research, and offer recommendations for future research.
Collapse
Affiliation(s)
- Syed H Omar
- School of Biomedical Sciences, Faculty of Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2678, Australia.
| | - Christopher J Scott
- School of Biomedical Sciences, Faculty of Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Adam S Hamlin
- School of Science & Technology, University of New England, Armidale, NSW 2351, Australia
| | - Hassan K Obied
- School of Biomedical Sciences, Faculty of Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| |
Collapse
|
39
|
Neuroprotective Effects of Aged Garlic Extract on Cognitive Dysfunction and Neuroinflammation Induced by β-Amyloid in Rats. Nutrients 2017; 9:nu9010024. [PMID: 28054940 PMCID: PMC5295068 DOI: 10.3390/nu9010024] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 12/05/2016] [Accepted: 12/26/2016] [Indexed: 01/08/2023] Open
Abstract
Neuroinflammation is pathological evidence of Alzheimer's disease (AD) that likely starts as a host defense response to the damaging effects of the β-amyloid (Aβ) deposits in the brain. The activation of microglia may promote the neurodegenerative process through the release of proinflammatory cytokines, such as interleukin-1β (IL-1β) and tumor necrosis factor-α (TNFα), which may lead to neuronal damage and eventual death. Aged garlic extract (AGE) has been reported to have multiple biological activities, including anti-inflammatory effects. Therefore, the objective of this study was to investigate the effect of AGE on Aβ (1-42)-induced cognitive dysfunction and neuroinflammation. Adult male Wistar rats were given AGE (125, 250, and 500 mg/kg BW, body weight), orally administered, daily for 56 days. They were then injected with 1 μL of aggregated Aβ (1-42) into the lateral ventricles; bilaterally. Seven days later, their recognition memory was evaluated using a novel object recognition (NOR) test. Then the rats were sacrificed to investigate the alteration of microglia cells, IL-1β and TNFα in the cerebral cortex and hippocampus. The results indicated that AGE at doses of 250 and 500 mg/kg BW significantly improved short-term recognition memory in cognitively impaired rats. In addition, AGE significantly minimized the inflammatory response by reducing the activation of microglia and IL-1β to the levels found in the control, which is similar to the results found in Celebrex-treated rats. In conclusion, AGE may be useful for improving the short-term recognition memory and relieve the neuroinflammation in Aβ-induced rats.
Collapse
|
40
|
Natural products against Alzheimer's disease: Pharmaco-therapeutics and biotechnological interventions. Biotechnol Adv 2016; 35:178-216. [PMID: 28043897 DOI: 10.1016/j.biotechadv.2016.12.005] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 12/19/2016] [Accepted: 12/23/2016] [Indexed: 12/30/2022]
Abstract
Alzheimer's disease (AD) is a severe, chronic and progressive neurodegenerative disease associated with memory and cognition impairment ultimately leading to death. It is the commonest reason of dementia in elderly populations mostly affecting beyond the age of 65. The pathogenesis is indicated by accumulation of the amyloid-beta (Aβ) plaques and neurofibrillary tangles (NFT) in brain tissues and hyperphosphorylation of tau protein in neurons. The main cause is considered to be the formation of reactive oxygen species (ROS) due to oxidative stress. The current treatment provides only symptomatic relief by offering temporary palliative therapy which declines the rate of cognitive impairment associated with AD. Inhibition of the enzyme acetylcholinesterase (AChE) is considered as one of the major therapeutic strategies offering only symptomatic relief and moderate disease-modifying effect. Other non-cholinergic therapeutic approaches include antioxidant and vitamin therapy, stem cell therapy, hormonal therapy, use of antihypertensive or lipid-lowering medications and selective phosphodiesterase (PDE) inhibitors, inhibition of β-secretase and γ-secretase and Aβ aggregation, inhibition of tau hyperphosphorylation and intracellular NFT, use of nonsteroidal anti-inflammatory drugs (NSAIDs), transition metal chelators, insulin resistance drugs, etanercept, brain-derived neurotrophic factor (BDNF) etc. Medicinal plants have been reported for possible anti-AD activity in a number of preclinical and clinical trials. Ethnobotany, being popular in China and in the Far East and possibly less emphasized in Europe, plays a substantial role in the discovery of anti-AD agents from botanicals. Chinese Material Medica (CMM) involving Chinese medicinal plants has been used traditionally in China in the treatment of AD. Ayurveda has already provided numerous lead compounds in drug discovery and many of these are also undergoing clinical investigations. A number of medicinal plants either in their crude forms or as isolated compounds have exhibited to reduce the pathological features associated with AD. In this present review, an attempt has been made to elucidate the molecular mode of action of various plant extracts, phytochemicals and traditional herbal formulations investigated against AD as reported in various preclinical and clinical tests. Herbal synergism often found in polyherbal formulations were found effective to combat disease heterogeneity as found in complex pathogenesis of AD. Finally a note has been added to describe biotechnological improvement, genetic and genomic resources and mathematical and statistical techniques for empirical model building associated with anti-AD plant secondary metabolites and their source botanicals.
Collapse
|
41
|
Lam V, Hackett M, Takechi R. Antioxidants and Dementia Risk: Consideration through a Cerebrovascular Perspective. Nutrients 2016; 8:nu8120828. [PMID: 27999412 PMCID: PMC5188481 DOI: 10.3390/nu8120828] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/16/2016] [Accepted: 12/16/2016] [Indexed: 12/16/2022] Open
Abstract
A number of natural and chemical compounds that exert anti-oxidative properties are demonstrated to be beneficial for brain and cognitive function, and some are reported to reduce the risk of dementia. However, the detailed mechanisms by which those anti-oxidative compounds show positive effects on cognition and dementia are still unclear. An emerging body of evidence suggests that the integrity of the cerebrovascular blood-brain barrier (BBB) is centrally involved in the onset and progression of cognitive impairment and dementia. While recent studies revealed that some anti-oxidative agents appear to be protective against the disruption of BBB integrity and structure, few studies considered the neuroprotective effects of antioxidants in the context of cerebrovascular integrity. Therefore, in this review, we examine the mechanistic insights of antioxidants as a pleiotropic agent for cognitive impairment and dementia through a cerebrovascular axis by primarily focusing on the current available data from physiological studies. Conclusively, there is a compelling body of evidence that suggest antioxidants may prevent cognitive decline and dementia by protecting the integrity and function of BBB and, indeed, further studies are needed to directly examine these effects in addition to underlying molecular mechanisms.
Collapse
Affiliation(s)
- Virginie Lam
- Curtin Health Innovation Research Institute, Curtin University, Perth WA 6845, Australia.
- School of Public Health, Faculty of Health Sciences, Curtin University, Perth WA 6845, Australia.
| | - Mark Hackett
- Curtin Health Innovation Research Institute, Curtin University, Perth WA 6845, Australia.
- Department of Chemistry, Faculty of Science and Engineering, Curtin University, Perth WA 6845, Australia.
| | - Ryusuke Takechi
- Curtin Health Innovation Research Institute, Curtin University, Perth WA 6845, Australia.
- School of Public Health, Faculty of Health Sciences, Curtin University, Perth WA 6845, Australia.
| |
Collapse
|
42
|
Qu Z, Mossine VV, Cui J, Sun GY, Gu Z. Protective Effects of AGE and Its Components on Neuroinflammation and Neurodegeneration. Neuromolecular Med 2016; 18:474-82. [PMID: 27263111 DOI: 10.1007/s12017-016-8410-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/17/2016] [Indexed: 01/01/2023]
Abstract
Garlic (Allium sativum) is used for culinary and medicinal purposes in diverse cultures worldwide. When fresh garlic is soaked in aqueous ethanol under ambient environment over 4 months or longer, the majority of irritating taste and odor is eliminated and the antioxidant profile in the resulting aged garlic extract (AGE) changes significantly. Recently, AGE and its components have been demonstrated to exert neuroprotective effects in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and cerebral ischemia. Because of its health supporting potential, there is increasing interest in understanding the antioxidant and anti-inflammatory properties and the underlying mechanisms for its protective effects in heath and disease. There is evidence for AGE to exert its action on distinct signaling pathways associated with oxidative stress and neuroinflammation, although the primary molecular mechanisms remain unclear. By utilizing quantitative proteomic approaches, we demonstrated that AGE and two of its major ingredients, S-allyl-L-cysteine and N (α)-(1-deoxy-D-fructos-1-yl)-L-arginine, can attenuate neuroinflammatory responses in microglial cells through modulation of Nrf2-mediated signaling as well as other oxidative stress-related pathways. These experimental data provide information for the molecular targets of AGE and its components to mitigate neurodegeneration and neuroinflammation and show a promising potential of these compounds as dietary supplements for health maintenance.
Collapse
Affiliation(s)
- Zhe Qu
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, M263 Medical Science Building, One Hospital Drive, Columbia, MO, 65212, USA.,Center for Translational Neuroscience, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Valeri V Mossine
- Department of Biochemistry, University of Missouri School of Medicine, Columbia, MO, 65211, USA
| | - Jiankun Cui
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, M263 Medical Science Building, One Hospital Drive, Columbia, MO, 65212, USA.,Center for Translational Neuroscience, University of Missouri School of Medicine, Columbia, MO, 65212, USA.,Harry S. Truman Veterans Hospital, Columbia, MO, 65212, USA
| | - Grace Y Sun
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, M263 Medical Science Building, One Hospital Drive, Columbia, MO, 65212, USA.,Center for Translational Neuroscience, University of Missouri School of Medicine, Columbia, MO, 65212, USA.,Department of Biochemistry, University of Missouri School of Medicine, Columbia, MO, 65211, USA
| | - Zezong Gu
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, M263 Medical Science Building, One Hospital Drive, Columbia, MO, 65212, USA. .,Center for Translational Neuroscience, University of Missouri School of Medicine, Columbia, MO, 65212, USA. .,Harry S. Truman Veterans Hospital, Columbia, MO, 65212, USA.
| |
Collapse
|
43
|
AP39, a Mitochondria-Targeted Hydrogen Sulfide Donor, Supports Cellular Bioenergetics and Protects against Alzheimer's Disease by Preserving Mitochondrial Function in APP/PS1 Mice and Neurons. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:8360738. [PMID: 27057285 PMCID: PMC4753001 DOI: 10.1155/2016/8360738] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/11/2015] [Accepted: 12/15/2015] [Indexed: 01/11/2023]
Abstract
Increasing evidence suggests that mitochondrial functions are altered in AD and play an important role in AD pathogenesis. It has been established that H2S homeostasis is balanced in AD. The emerging mitochondrial roles of H2S include antioxidation, antiapoptosis, and the modulation of cellular bioenergetics. Here, using primary neurons from the well-characterized APP/PS1 transgenic mouse model, we studied the effects of AP39 (a newly synthesized mitochondrially targeted H2S donor) on mitochondrial function. AP39 increased intracellular H2S levels, mainly in mitochondrial regions. AP39 exerted dose-dependent effects on mitochondrial activity in APP/PS1 neurons, including increased cellular bioenergy metabolism and cell viability at low concentrations (25–100 nM) and decreased energy production and cell viability at a high concentration (250 nM). Furthermore, AP39 (100 nM) increased ATP levels, protected mitochondrial DNA, and decreased ROS generation. AP39 regulated mitochondrial dynamics, shifting from fission toward fusion. After 6 weeks, AP39 administration to APP/PS1 mice significantly ameliorated their spatial memory deficits in the Morris water maze and NORT and reduced Aβ deposition in their brains. Additionally, AP39 inhibited brain atrophy in APP/PS1 mice. Based on these results, AP39 was proposed as a promising drug candidate for AD treatment, and its anti-AD mechanism may involve protection against mitochondrial damage.
Collapse
|
44
|
Moneim AEA. Oxidant/Antioxidant imbalance and the risk of Alzheimer's disease. Curr Alzheimer Res 2016; 12:335-49. [PMID: 25817254 PMCID: PMC5384363 DOI: 10.2174/1567205012666150325182702] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 03/15/2015] [Accepted: 03/17/2015] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia characterized by progressive loss of memory and other cognitive functions among older people. Senile plaques and neurofibrillary tangles are the most hallmarks lesions in the brain of AD in addition to neurons loss. Accumulating evidence has shown that oxidative stress-induced damage may play an important role in the initiation and progression of AD pathogenesis. Redox impairment occurs when there is an imbalance between the production and quenching of free radicals from oxygen species. These reactive oxygen species augment the formation and aggregation of amyloid-β and tau protein hyperphosphorylation and vice versa. Currently, there is no available treatments can modify the disease. However, wide varieties of antioxidants show promise to delay or prevent the symptoms of AD and may help in treating the disease. In this review, the role of oxidative stress in AD pathogenesis and the common used antioxidant therapies for AD will summarize.
Collapse
Affiliation(s)
- Ahmed E Abdel Moneim
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, Avda. del Conocimiento s/n, 18100 Armilla, Granada, Spain.
| |
Collapse
|
45
|
Manral A, Saini V, Meena P, Tiwari M. Multifunctional novel Diallyl disulfide (DADS) derivatives with β-amyloid-reducing, cholinergic, antioxidant and metal chelating properties for the treatment of Alzheimer’s disease. Bioorg Med Chem 2015; 23:6389-403. [DOI: 10.1016/j.bmc.2015.08.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/20/2015] [Accepted: 08/22/2015] [Indexed: 10/23/2022]
|
46
|
Anticancer Activity of Saponins from Allium chinense against the B16 Melanoma and 4T1 Breast Carcinoma Cell. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:725023. [PMID: 26146506 PMCID: PMC4469801 DOI: 10.1155/2015/725023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/20/2015] [Indexed: 01/05/2023]
Abstract
The cytotoxic substance of A. chinense saponins (ACSs) was isolated using ethanol extraction and purified with the D101 macroporous adsorption resin approach. We investigated the anticancer activity of ACSs in the B16 melanoma and 4T1 breast carcinoma cell lines. Methylthioninium chloride and hematoxylin-eosin staining with Giemsa dyestuff were used when the cells were treated with ACSs. The results showed that the cells morphologies changed significantly; ACSs induced cell death in B16 and 4T1 cells based on acridine orange/ethidium bromide double fluorescence staining, with the number and degree of apoptotic tumor cells increasing as ACS concentration increased. ACSs inhibited the proliferation of B16 and 4T1 cells in a dose-dependent manner. They also inhibited cell migration and colony formation and exhibited a concentration-dependent effect. In addition, ACSs apparently inhibited the growth of melanoma in vivo. The preliminary antitumor in vivo assay revealed that early medication positively affected tumor inhibition action and effectively protected the liver and spleen of C57 BL/6 mice from injury. This study provides evidence for the cytotoxicity of ACSs and a strong foundation for further research to establish the theoretical basis for cell death and help in the design and development of new anticancer drugs.
Collapse
|
47
|
Rosario-Alomar MF, Quiñones-Ruiz T, Kurouski D, Sereda V, Ferreira EB, Jesús-Kim LD, Hernández-Rivera S, Zagorevski DV, López-Garriga J, Lednev IK. Hydrogen sulfide inhibits amyloid formation. J Phys Chem B 2015; 119:1265-74. [PMID: 25545790 PMCID: PMC4315425 DOI: 10.1021/jp508471v] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
Amyloid
fibrils are large aggregates of misfolded proteins, which
are often associated with various neurodegenerative diseases such
as Alzheimer’s, Parkinson’s, Huntington’s, and
vascular dementia. The amount of hydrogen sulfide (H2S)
is known to be significantly reduced in the brain tissue of people
diagnosed with Alzheimer’s disease relative to that of healthy
individuals. These findings prompted us to investigate the effects
of H2S on the formation of amyloids in vitro using a model fibrillogenic protein hen egg white lysozyme (HEWL).
HEWL forms typical β-sheet rich fibrils during the course of
70 min at low pH and high temperatures. The addition of H2S completely inhibits the formation of β-sheet and amyloid
fibrils, as revealed by deep UV resonance Raman (DUVRR) spectroscopy
and ThT fluorescence. Nonresonance Raman spectroscopy shows that disulfide
bonds undergo significant rearrangements in the presence of H2S. Raman bands corresponding to disulfide (RSSR) vibrational
modes in the 550–500 cm–1 spectral range
decrease in intensity and are accompanied by the appearance of a new
490 cm–1 band assigned to the trisulfide group (RSSSR)
based on the comparison with model compounds. The formation of RSSSR
was proven further using a reaction with TCEP reduction agent and
LC-MS analysis of the products. Intrinsic tryptophan fluorescence
study shows a strong denaturation of HEWL containing trisulfide bonds.
The presented evidence indicates that H2S causes the formation
of trisulfide bridges, which destabilizes HEWL structure, preventing
protein fibrillation. As a result, small spherical aggregates of unordered
protein form, which exhibit no cytotoxicity by contrast with HEWL
fibrils.
Collapse
Affiliation(s)
- Manuel F Rosario-Alomar
- Department of Chemistry and ‡Department of Biology, University of Puerto Rico at Mayagüez , Mayagüez, Puerto Rico 00693
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Wen YD, Zhu YZ. The Pharmacological Effects of S-Propargyl-Cysteine, a Novel Endogenous H2S-Producing Compound. Handb Exp Pharmacol 2015; 230:325-336. [PMID: 26162842 DOI: 10.1007/978-3-319-18144-8_16] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
S-propargyl-cysteine (SPRC), also named as ZYZ-802, is a structural analog of S-allylcysteine (SAC), the most abundant constituent of aged garlic extract. SPRC becomes a derivative of the amino acid cysteine, which contains sulfur atom, by changing allyl group in SAC to propargyl group in SPRC. Another analog of SPRC and SAC is S-propyl cysteine (SPC), which has propyl group instead in its cysteine structure. Drug formulation of SPRC has been investigated in the mixture of extenders, such as lactose, microcrystalline cellulose, and cross-linked povidone, showing good fluidity and scale-up production possibility. Controlled release formulation of SPRC (CR-SPRC) and leonurine-SPRC were invented and shown the decent pharmacological effects in heart failure and hypoxia injury, respectively. The pharmacological effects of SPRC have been shown that cardioprotection and proangiogenesis in several ischemic heart models, neuroprotection in Alzheimer's disease, proapoptosis in gastric cancer and anti-inflammation in acute pancreatitis. Moreover, CR-SPRC reduced infarct size and recovered partial cardiac function in heart failure rat model. Leonurine-SPRC protected hypoxic neonatal rat ventricular myocytes in much lower dose. Interestingly, since the propagyl group in SPRC has the stronger chemical bond in the cysteine structure than allyl group in SAC and propyl group in SPC, SPRC showed more extensive cardioprotection in ischemic rat hearts model compared to SAC and SPC. The mechanisms of pharmacological effects of SPRC have been unveiled that SPRC reduced Ca2+ accumulation, activated antioxidants, inhibited STAT3, decreased inflammatory cytokines, and elevated p53 and Bax. More pharmacological effects and mechanisms of SPRC will be discovered in atherosclerosis, hypertension, and other diseases.
Collapse
Affiliation(s)
- Ya-Dan Wen
- Department of Pharmacology, Clinical Research Centre School of Medicine, National University of Singapore, Bldg MD11, Level 5, # 05-09, 10 Medical Drive, Singapore, 117597, Singapore,
| | | |
Collapse
|
49
|
Evaluating the anti-neuroinflammatory capacity of raw and steamed garlic as well as five organosulfur compounds. Molecules 2014; 19:17697-714. [PMID: 25365295 PMCID: PMC6271092 DOI: 10.3390/molecules191117697] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 10/17/2014] [Accepted: 10/20/2014] [Indexed: 12/16/2022] Open
Abstract
The anti-neuroinflammatory capacities of raw and steamed garlic extracts as well as five organosulfur compounds (OSCs) were examined in lipopolysaccharide (LPS)-stimulated BV2 microglia. According to those results, steaming pretreatment blocked the formation of alliinase-catalyzed OSCs such as allicin and diallyl trisulfide (DATS) in crushed garlic. Raw garlic, but not steamed garlic, dose-dependently attenuated the production of LPS-induced nitric oxide (NO), interleukin-1β (IL-1β), tumor necrosis factor (TNF)-α, and monocyte chemoattractant protein-1 (MCP-1). DATS and diallyl disulfide at 200 and 400 μM, respectively, displayed significant anti-neuroinflammatory activity. Meanwhile, even at 1 mM, diallyl sulfide, S-allyl cysteine and alliin did not display such activity. Inhibition of nuclear factor-κB activation was the mechanism underlying this protective effect of raw garlic and DATS. Analysis results indicated that the anti-neuroinflammatory capacity of raw garlic is due to the alliin-derived OSCs. Importantly, DATS is a highly promising therapeutic candidate for treating inflammation-related neurodegenerative diseases.
Collapse
|
50
|
Mehla J, Chauhan BC, Chauhan NB. Experimental induction of type 2 diabetes in aging-accelerated mice triggered Alzheimer-like pathology and memory deficits. J Alzheimers Dis 2014; 39:145-62. [PMID: 24121970 DOI: 10.3233/jad-131238] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Alzheimer's disease (AD) is an age-dependent neurodegenerative disease constituting ~95% of late-onset non-familial/sporadic AD, and only ~5% accounting for early-onset familial AD. Availability of a pertinent model representing sporadic AD is essential for testing candidate therapies. Emerging evidence indicates a causal link between diabetes and AD. People with diabetes are >1.5-fold more likely to develop AD. Senescence-accelerated mouse model (SAMP8) of accelerated aging displays many features occurring early in AD. Given the role played by diabetes in the pre-disposition of AD, and the utility of SAMP8 non-transgenic mouse model of accelerated aging, we examined if high fat diet-induced experimental type 2 diabetes in SAMP8 mice will trigger pathological aging of the brain. Results showed that compared to non-diabetic SAMP8 mice, diabetic SAMP8 mice exhibited increased cerebral amyloid-β, dysregulated tau-phosphorylating glycogen synthase kinase 3β, reduced synaptophysin immunoreactivity, and displayed memory deficits, indicating Alzheimer-like changes. High fat diet-induced type 2 diabetic SAMP8 mice may represent the metabolic model of AD.
Collapse
Affiliation(s)
- Jogender Mehla
- Neuroscience Research, Jesse Brown VA Medical Center, Chicago, IL, USA Department of Pediatrics, University of Illinois Hospital & Health Science System-Children's Hospital, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Neelima B Chauhan
- Neuroscience Research, Jesse Brown VA Medical Center, Chicago, IL, USA Department of Pediatrics, University of Illinois Hospital & Health Science System-Children's Hospital, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|