1
|
Moussa AY, Luo J, Xu B. Insights into Chemical Diversity and Potential Health-Promoting Effects of Ferns. PLANTS (BASEL, SWITZERLAND) 2024; 13:2668. [PMID: 39339643 PMCID: PMC11434777 DOI: 10.3390/plants13182668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
The scientific community is focusing on how to enhance human health and immunity through functional foods, and dietary supplements are proven to have a positive as well as a protective effect against infectious and chronic diseases. Ferns act as a taxonomical linkage between higher and lower plants and are endowed with a wide chemical diversity not subjected to sufficient scrutinization before. Even though a wealth of traditional medicinal fern uses were recorded in Chinese medicine, robust phytochemical and biological investigations of these plants are lacking. Herein, an extensive search was conducted using the keywords ferns and compounds, ferns and NMR, ferns and toxicity, and the terms ferns and chemistry, lignans, Polypodiaceae, NMR, isolation, bioactive compounds, terpenes, phenolics, phloroglucinols, monoterpenes, alkaloids, phenolics, and fatty acids were utilized with the Boolean operators AND, OR, and NOT. Databases such as PubMed, Web of Science, Science Direct, Scopus, Google Scholar, and Reaxys were utilized to reveal a wealth of information regarding fern chemistry and their health-promoting effects. Terpenes followed by phenolics represented the largest number of isolated active compounds. Regarding the neuroprotective effects, Psilotium, Polypodium, and Dryopteris species possessed as their major phenolics component unique chemical moieties including catechins, procyanidins, and bioflavonoids. In this updated chemical review, the pharmacological and chemical aspects of ferns are compiled manifesting their chemical diversity in the last seven years (2017-2024) together with a special focus on their nutritive and potential health-promoting effects.
Collapse
Affiliation(s)
- Ashaimaa Y Moussa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Jinhai Luo
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, 2000 Jintong Road, Tangjiawan, Zhuhai 519087, China
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, 2000 Jintong Road, Tangjiawan, Zhuhai 519087, China
| |
Collapse
|
2
|
Dvorakova M, Soudek P, Pavicic A, Langhansova L. The traditional utilization, biological activity and chemical composition of edible fern species. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117818. [PMID: 38296173 DOI: 10.1016/j.jep.2024.117818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ferns form an important part of the human diet. Young fern fiddleheads are mostly consumed as vegetables, while the rhizomes are often extracted for starch. These edible ferns are also often employed in traditional medicine, where all parts of the plant are used, mostly to prepare extracts. These extracts are applied either externally as lotions and baths or internally as potions, decoctions and teas. Ailments traditionally treated with ferns include coughs, colds, fevers, pain, burns and wounds, asthma, rheumatism, diarrhoea, or skin diseases (eczema, rashes, itching, leprosy). AIM OF THE REVIEW This review aims to compile the worldwide knowledge on the traditional medicinal uses of edible fern species correlating to reported biological activities and isolated bioactive compounds. MATERIALS AND METHODS The articles and books published on edible fern species were searched through the online databases Web of Science, Pubmed and Google Scholar, with critical evaluation of the hits. The time period up to the end of 2022 was included. RESULTS First, the edible fern species were identified based on the literature data. A total of 90 fern species were identified that are eaten around the world and are also used in traditional medicine. Ailments treated are often associated with inflammation or bacterial infection. However, only the most common and well-known fern species, were investigated for their biological activity. The most studied species are Blechnum orientale L., Cibotium barometz (L.) J. Sm., Diplazium esculentum (Retz.) Sw., Marsilea minuta L., Osmunda japonica Thunb., Polypodium vulgare L., and Stenochlaena palustris (Burm.) Bedd. Most of the fern extracts have been studied for their antioxidant, anti-inflammatory and antimicrobial activities. Not surprisingly, antioxidant capacity has been the most studied, with results reported for 28 edible fern species. Ferns have been found to be very rich sources of flavonoids, polyphenols, polyunsaturated fatty acids, carotenoids, terpenoids and steroids and most of these compounds are remarkable free radical scavengers responsible for the outstanding antioxidant capacity of fern extracts. As far as clinical trials are concerned, extracts from only three edible fern species have been evaluated. CONCLUSIONS The extracts of edible fern species exert antioxidant anti-inflammatory and related biological activities, which is consistent with their traditional medicinal use in the treatment of wounds, burns, colds, coughs, skin diseases and intestinal diseases. However, studies to prove pharmacological activities are scarce, and require chemical-biological standardization. Furthermore, correct botanical classification needs to be included in publications to simplify data acquisition. Finally, more in-depth phytochemical studies, allowing the linking of traditional use to pharmacological relevance are needed to be done in a standardized way.
Collapse
Affiliation(s)
- Marcela Dvorakova
- Czech Academy of Sciences, Institute of Experimental Botany, Rozvojova 263, CZ-16200, Prague 6, Czech Republic.
| | - Petr Soudek
- Czech Academy of Sciences, Institute of Experimental Botany, Rozvojova 263, CZ-16200, Prague 6, Czech Republic.
| | - Antonio Pavicic
- Czech Academy of Sciences, Institute of Experimental Botany, Rozvojova 263, CZ-16200, Prague 6, Czech Republic; Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, CZ-50005, Hradec Králové, Czech Republic.
| | - Lenka Langhansova
- Czech Academy of Sciences, Institute of Experimental Botany, Rozvojova 263, CZ-16200, Prague 6, Czech Republic.
| |
Collapse
|
3
|
Rajiv C, Sanjita Devi H, Devi AK, Tamreihao K, Kshetri P, Tania C, Singh TS, Sonia C, Singh MN, Sen A, Sharma SK, Roy SS. Pharmacological potential of Jussiaea repens L. against CuSO 4 and bacterial lipopolysaccharide O55:B5 induced inflammation using in-vivo zebrafish models. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116932. [PMID: 37473823 DOI: 10.1016/j.jep.2023.116932] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Northeastern state of India is known for its remarkable biodiversity and untapped medicinal resources. Jussiaea repens L., commonly known as water primrose, is a plant found in this region that has been traditionally used by indigenous communities for various purposes. It has been employed to treat skin ulcerations, bone fractures, rheumatism, stomach pain, and intestinal worms. Despite its long-standing ethnopharmacological usage, there is limited scientific research on the bioactivity of Jussiaea repens L. However, preliminary studies have shown its potential antioxidant properties and cytotoxicity against cancer cells. Further exploration of its medicinal properties, particularly its potential as an anti-inflammatory agent, is warranted. AIM OF THE STUDY This study aimed to investigate the anti-inflammatory properties of Jussiaea repens L., a plant species found in the biodiverse Northeastern region of India. The plant has been traditionally used by indigenous communities for various ailments. By utilizing zebrafish as an animal model and evaluating its effects in different inflammation models, the study aimed to uncover the plant's potential as an anti-inflammatory agent. The research contributes to the scientific understanding of this traditional remedy and its potential therapeutic applications. METHODS Jussiaea repens L. extract was obtained from the stem and leaves using methanol as the solvent. Zebrafish embryos were used for in vivo assays. The anti-inflammatory study included two models: CuSO4-induced inflammation and tail wounding followed by bacterial lipopolysaccharide-induced inflammation. The activities of catalase (CAT) and superoxide dismutase (SOD) were measured in CuSO4-induced inflammation. Leukocyte migration at the injury site was observed in the tail wounding model. The extract's inhibition of the 15-LOX enzyme was assessed. All procedures followed established protocols and ethical guidelines. RESULTS AND CONCLUSION Jussiaea repens L. extract exhibited anti-inflammatory activity in two in vivo zebrafish models: CuSO4-induced inflammation and tail wounding combined with bacterial lipopolysaccharide-induced inflammation. The extract reduced mortality rates and showed antioxidant effects by increasing catalase (CAT) and superoxide dismutase (SOD) activities in the CuSO4 model. In the tail wounding model, the extract reduced leukocyte migration in a concentration-dependent manner. Additionally, the extract demonstrated dose-dependent inhibition of the 15-LOX enzyme in the in vitro assay. These results suggest that Jussiaea repens L. extract possesses anti-inflammatory properties and inhibits the 15-LOX enzyme.
Collapse
Affiliation(s)
- Chongtham Rajiv
- ICAR Research Complex for NEH Region, Manipur Centre, Imphal, 795004, India
| | | | - Asem Kajal Devi
- ICAR Research Complex for NEH Region, Manipur Centre, Imphal, 795004, India
| | - K Tamreihao
- ICAR Research Complex for NEH Region, Manipur Centre, Imphal, 795004, India; St. Joseph College, Ukhrul, 795142, Manipur, India
| | - Pintubala Kshetri
- ICAR Research Complex for NEH Region, Manipur Centre, Imphal, 795004, India; Yairipok Universal College, Yairipok, 795138, Manipur, India
| | - Chongtham Tania
- ICAR Research Complex for NEH Region, Manipur Centre, Imphal, 795004, India
| | - Thangjam Surchandra Singh
- ICAR Research Complex for NEH Region, Manipur Centre, Imphal, 795004, India; TS Paul Women's College, Mongsangei, 795003, Manipur, India
| | - Chongtham Sonia
- ICAR Research Complex for NEH Region, Manipur Centre, Imphal, 795004, India
| | | | - Arnab Sen
- ICAR Research Complex for NEH Region, Manipur Centre, Imphal, 795004, India
| | - Susheel Kumar Sharma
- ICAR Research Complex for NEH Region, Manipur Centre, Imphal, 795004, India; ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Subhra Saikat Roy
- ICAR Research Complex for NEH Region, Manipur Centre, Imphal, 795004, India; ICAR-Central Citrus Research Institute, Nagpur, 440033, Maharashtra, India.
| |
Collapse
|
4
|
Luo Z, Xu Y, Qiu L, Lv S, Zeng C, Tan A, Ou D, Song X, Yang J. Optimization of ultrasound-assisted extraction based on response surface methodology using HPLC-DAD for the analysis of red clover ( Trifolium pretense L.) isoflavones and its anti-inflammatory activities on LPS-induced 3D4/2 cell. Front Vet Sci 2023; 10:1279178. [PMID: 37854095 PMCID: PMC10580807 DOI: 10.3389/fvets.2023.1279178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/04/2023] [Indexed: 10/20/2023] Open
Abstract
Introduction Trifolium pratense L. has anti-inflammatory, antioxidant, cardiovascular disease prevention, and estrogen-like effects. The existing method for the assay of effective components is commonly based on a spectrophotometer, which could not meet the requirement of quality control. Furthermore, although there have been many studies on the anti-inflammation effect of red clover, a few have been reported on the regulatory effect of red clover isoflavones (RCI) on lipopolysaccharide (LPS)-induced inflammatory response in porcine alveolar macrophages (3D4/2 cells), and its mechanism of action is still unclear. Methods The main components of RCI including daidzein, genistein, and biochanin A were accurately quantified by high-performance liquid chromatography coupled with diode array detection (HPLC-DAD) after optimizing the extraction process through response surface methodology. The anti-inflammatory potential of RCI was carried out by detecting the level of inflammatory cytokines and mRNA expression of related genes. Furthermore, its anti-inflammatory mechanism was explored by investigating two signaling pathways (NF-κB and MAPK). Results The optimal extraction conditions of RCI were as follows: the concentration of ethanol is 86% and the solid-liquid ratio is 1:29, with the herb particle size of 40 mesh sieve. Under the optimal conditions, the total extraction of target components of RCI was 2,641.469 μg/g. The RCI could significantly suppress the production and expression of many pro-inflammatory cytokines. The results of the Western blot revealed that RCI dramatically reduced the expression of p65, p-p65, IκB-α, p38, and p-p38. These results are associated with the suppression of the signal pathway of p38 MAPK, and on the contrary, activating the NF-κB pathway. Collectively, our data demonstrated that RCI reversed the transcription of inflammatory factors and inhibited the expression of p65, p-p65, IκB-α, and p38, indicating that RCI had excellent anti-inflammatory properties through disturbing the activation of p38 MAPK and NF-κB pathways. Conclusion The extraction conditions of RCI were optimized by HPLC-DAD combined with response surface methodology, which will contribute to the quality control of RCI. RCI had anti-inflammatory effects on the LPS-induced 3D4/2 cells. Its mechanism is to control the activation of NF-κB and p38 MAPK pathways, thereby reducing the expression of inflammatory-related genes and suppressing the release of cytokines.
Collapse
Affiliation(s)
- Zhengqin Luo
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou, China
| | - Yidan Xu
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou, China
| | - Longxin Qiu
- Key Laboratory of Preventive Veterinary Medicine and Biotechnology in Fujian Province, Longyan University, Longyan, Fujian, China
| | - Shiming Lv
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou, China
- College of Animal Science, Guizhou University, Guiyang, Guizhou, China
| | - Cheng Zeng
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou, China
- College of Animal Science, Guizhou University, Guiyang, Guizhou, China
| | - Aijuan Tan
- College of Life Science, Guizhou University, Guiyang, Guizhou, China
| | - Deyuan Ou
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou, China
- College of Animal Science, Guizhou University, Guiyang, Guizhou, China
| | - Xuqin Song
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou, China
- College of Animal Science, Guizhou University, Guiyang, Guizhou, China
| | - Jian Yang
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou, China
- College of Animal Science, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
5
|
Yang J, Li Y, He Y, He H, Chen X, Liu T, Zhu B. Wild vs. Cultivated Zingiber striolatum Diels: Nutritional and Biological Activity Differences. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112180. [PMID: 37299159 DOI: 10.3390/plants12112180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]
Abstract
Compositional, functional, and nutritional properties are important for the use-value assessments of wild and cultivated edible plants. The aim of this study was to compare the nutritional composition, bioactive compounds, volatile compounds, and potential biological activities of cultivated and wild Zingiber striolatum. Various substances, such as soluble sugars, mineral elements, vitamins, total phenolics, total flavonoids, and volatiles, were measured and analyzed using UV spectrophotometry, ICP-OES, HPLC, and GC-MS methods. The antioxidant capacity of a methanol extract of Z. striolatum, as well as the hypoglycemic abilities of its ethanol and water extracts, were tested. The results showed that the contents of soluble sugar, soluble protein, and total saponin in the cultivated samples were higher, while the wild samples contained higher amounts of K, Na, Se, vitamin C, and total amino acids. The cultivated Z. striolatum also showed a higher antioxidant potential, while the wild Z. striolatum exhibited a better hypoglycemic activity. Thirty-three volatile compounds were identified using GC-MS in two plants, with esters and hydrocarbons being the main volatile compounds. This study demonstrated that both cultivated and wild Z. striolatum have a good nutritional value and biological activity, and can be used as a source of nutritional supplementation or even in medication.
Collapse
Affiliation(s)
- Jing Yang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Yaochen Li
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Yuxin He
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Hongying He
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Xiaoqi Chen
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
- School of Information and Electrical Engineering, Hangzhou City University, Hangzhou 310015, China
| | - Tingfu Liu
- Lishui Academy of Agricultural Sciences, Lishui 323000, China
| | - Biao Zhu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
6
|
Chen Y, Liu Y, Li H, Huna R, Tan X, Li N, Zhang Y, Jiao X, Liu M. C5aR antagonist inhibits LPS-induced inflammation in human gingival fibroblasts via NF-κB and MAPK signaling pathways. J Appl Oral Sci 2023; 31:e20220404. [PMID: 36753088 DOI: 10.1590/1678-7757-2022-0404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/21/2022] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVE Abnormal complement activation is associated with periodontitis. W54011 is a novel non-peptide C5aR antagonist (C5aRA) that exhibits favorable anti-inflammatory effects in various inflammatory models. However, whether W54011 inhibits periodontitis has not yet been fully elucidated. To address this, we have investigated the probable anti-inflammatory mechanism of W54011 in LPS-treated inflammation in human gingival fibroblasts (HGFs). METHODOLOGY HGFs were isolated from healthy gingival tissue samples using the tissue block method and were identified with immunofluorescence staining. The CCK8 assay and reverse transcription-PCR (RT-PCR) were used to select the optimal induction conditions for Lipopolysaccharide (LPS) and C5aRA (according to supplementary data S1, S2 and S3). The levels of inflammatory cytokines, C5aR, and the activation of NF-κB/MAPK signaling pathways were determined by RT-quantitative PCR (RT-qPCR) and Western blotting. RESULTS Immunofluorescence results showed that vimentin and FSP-1 were positive in HGFs and Keratin was negative in HGFs. Immunofluorescence staining demonstrated that C5aRA inhibited LPS-stimulated nuclear translocation of p-p65. RT-qPCR and Western blotting showed that C5aRA reduced the expression of IL-1β, IL-6, TNF-α, C5aR, p-p65, p-IκBα, p-JNK, p-c-JUN, and TLR4 in LPS-induced HGFs. CONCLUSION These findings suggested that C5aRA attenuated the release of inflammatory cytokines in LPS-induced HGFs by blocking the activation of the NF-κB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Yan Chen
- The First Affiliated Hospital of Harbin Medical University, Department of Oral Maxillofacial Surgery, Harbin, Heilongjiang, China.,The Fourth Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Department of Stomatology, Harbin, Heilongjiang, China
| | - Yang Liu
- Heilongjiang Provincial Hospital, Department of Stomatology, Harbin, Heilongjiang, China
| | - Hao Li
- The Fourth Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Department of Stomatology, Harbin, Heilongjiang, China
| | - Risu Huna
- The Second Affiliated Hospital of Harbin Medical University, Oral Implant Center, Harbin, Heilongjiang, China
| | - Xiaohan Tan
- The Second Affiliated Hospital of Harbin Medical University, Department of Prosthodontics, Harbin, Heilongjiang, China
| | - Ning Li
- The Second Affiliated Hospital of Harbin Medical University, Department of Cardiology, Harbin, Heilongjiang, China
| | - Yiying Zhang
- The Second Affiliated Hospital of Harbin Medical University, Oral Implant Center, Harbin, Heilongjiang, China
| | - Xiaohui Jiao
- The First Affiliated Hospital of Harbin Medical University, Department of Oral Maxillofacial Surgery, Harbin, Heilongjiang, China
| | - Mingyue Liu
- The Second Affiliated Hospital of Harbin Medical University, Department of Prosthodontics, Harbin, Heilongjiang, China
| |
Collapse
|
7
|
Bai X, Ma Q, Li Q, Yin M, Xin Y, Zhen D, Wei C. Protective mechanisms of Leontopodium leontopodioides extracts on lipopolysaccharide-induced acute kidney injury viathe NF-κB/NLRP3 pathway. Chin J Nat Med 2023; 21:47-57. [PMID: 36641232 DOI: 10.1016/s1875-5364(23)60384-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Indexed: 01/15/2023]
Abstract
Sepsis-induced uncontrolled systemic inflammatory response syndrome (SIRS) is a critical cause of multiple organ failure. Acute kidney injury (AKI) is one of the most serious complications associated with an extremely high mortality rate in SIRS, and it lacked simple, safe, and effective treatment strategies. Leontopodium leontopodioides (Willd.) Beauv (LLB) is commonly used in traditional Chinese medicine for the treatment of acute and chronic nephritis. However, it remains unclear whether lipopolysaccharide (LPS) affects LPS-induced AKI. To identify the molecular mechanisms of LLB in LPS-induced HK-2 cells and mice, LLB was prepared by extraction with 70% methanol, while a lipopolysaccharide (LPS)-induced HK-2 cell model and an AKI model were established in this study. Renal histopathology staining was performed to observe the morphology changes. The cell supernatant and kidney tissues were collected for determining the levels of inflammatory factors and protein expression by ELISA, immunofluorescence, and Western blot. The results indicated that LLB significantly reduced the expression of IL-6 and TNF-α in LPS-induced HK-2 cells, as well as the secretion of IL-6, TNF-α, and IL-1β in the supernatant. The same results were observed in LPS-induced AKI serum. Further studies revealed that LLB remarkably improved oxidative stress and apoptosis based on the content of MDA, SOD, and CAT in serum and TUNEL staining results. Notably, LLB significantly reduced the mortality due to LPS infection. Renal histopathology staining results supported these results. Furthermore, immunofluorescence and Western blot results confirmed that LLB significantly reduced the expression of the protein related to the NF-κB signaling pathway and NLRP3, ASC, and Caspase-1 which were significantly increased through LPS stimulation. These findings clearly demonstrated the potential use of LLB in the treatment of AKI and the crucial role of the NF-κB/NLRP3 pathway in the process through which LLB attenuates AKI induced by LPS.
Collapse
Affiliation(s)
- Xue Bai
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia Minzu University, Tongliao 028000, China; College of Preventive Medicine, Medical College, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Qianqian Ma
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia Minzu University, Tongliao 028000, China; Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Qi Li
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia Minzu University, Tongliao 028000, China; Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Meizhen Yin
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia Minzu University, Tongliao 028000, China; Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Ying Xin
- College of Traditional Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Dong Zhen
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia Minzu University, Tongliao 028000, China; Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Chengxi Wei
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia Minzu University, Tongliao 028000, China; Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao 028000, China.
| |
Collapse
|
8
|
Hou JY, Wu JR, Chen YB, Xu D, Liu S, Shang DD, Fan GW, Cui YL. Systematic identification of the interventional mechanism of Qingfei Xiaoyan Wan (QFXYW) in treatment of the cytokine storm in acute lung injury using transcriptomics-based system pharmacological analyses. PHARMACEUTICAL BIOLOGY 2022; 60:743-754. [PMID: 35357989 PMCID: PMC8979529 DOI: 10.1080/13880209.2022.2055090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
CONTEXT Acute lung injury (ALI) is a complex, severe inflammation disease with high mortality, and there is no specific and effective treatment for ALI. Qingfei Xiaoyan Wan (QFXYW) has been widely used to treat lung-related diseases for centuries. OBJECTIVE This study evaluates the potential effects and elucidates the therapeutic mechanism of QFXYW against LPS induced ALI in mice. MATERIALS AND METHODS BALB/c Mice in each group were first orally administered medicines (0.9% saline solution for the control group, 0.5 mg/kg Dexamethasone, or 1.3, 2.6, 5.2 g/kg QFXYW), after 4 h, the groups were injected LPS (1.0 mg/kg) to induce ALI, then the same medicines were administered repeatedly. The transcriptomics-based system pharmacological analyses were applied to screen the hub genes, RT-PCR, ELISA, and protein array assay was applied to verify the predicted hub genes and key pathways. RESULTS QFXYW significantly decreased the number of leukocytes from (6.34 ± 0.51) × 105/mL to (4.01 ± 0.11) × 105/mL, accompanied by the neutrophil from (1.41 ± 0.19) × 105/mL to (0.77 ± 0.10) × 105/mL in bronchoalveolar lavage fluid (BALF). Based on Degree of node connection (Degree) and BottleNeck (BN), important parameters of network topology, the protein-protein interaction (PPI) network screened hub genes, including IL-6, TNF-α, CCL2, TLR2, CXCL1, and MMP-9. The results of RT-PCR, ELISA, and protein chip assay revealed that QFXYW could effectively inhibit ALI via multiple key targets and the cytokine-cytokine signalling pathway. CONCLUSIONS This study showed that QFXYW decreased the number of leukocytes and neutrophils by attenuating inflammatory response, which provides an important basis for the use of QFXYW in the treatment of ALI.
Collapse
Affiliation(s)
- Jing-Yi Hou
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - Jia-Rong Wu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - Yi-Bing Chen
- Tianjin Key Laboratory of Transformation of Traditional Chinese Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Dong Xu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - Shu Liu
- Tianjin Zhongxin Pharmaceutical Group Corporation Limited Darentang Pharmaceutical Factory, Tianjin, China
| | - Dan-dan Shang
- Tianjin Zhongxin Pharmaceutical Group Corporation Limited Darentang Pharmaceutical Factory, Tianjin, China
| | - Guan-Wei Fan
- Tianjin Key Laboratory of Transformation of Traditional Chinese Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Guan-Wei Fan Tianjin Key Laboratory of Transformation of Traditional Chinese Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuan-Lu Cui
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- CONTACT Yuan-Lu Cui State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| |
Collapse
|
9
|
Paeoniflorin Inhibits LPS-Induced Activation of Splenic CD4+ T Lymphocytes and Relieves Pathological Symptoms in MRL/lpr Mice by Suppressing IRAK1 Signaling. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5161890. [DOI: 10.1155/2022/5161890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/22/2022] [Indexed: 11/27/2022]
Abstract
Interleukin-1receptor-associated kinase 1 (IRAK1) plays a critical role in systemic lupus erythematosus (SLE). It was reported that SLE was associated with an inflammatory response mediated by defective immune tolerance, including overproduction of autoantibodies, chronic inflammation, and organ damage. Previous reports stated paeoniflorin (PF) had an immunosuppressive effect. The purpose of this study was to determine the anti-inflammatory effect of PF in SLE and its underlying mechanisms. Followed by induced with lipopolysaccharide (LPS), the splenocytes and the isolated CD4+ T lymphocytes of MRL/lpr mice were divided into three groups: control group, LPS group, and LPS + PF group, respectively. MRL/MP mice were used as the control group (treated with distilled water). The MRL/lpr mice were randomly divided into three groups: the model group (treated with distilled water), the prednisone group, and the PF group. The MRL/lpr mice were treated with prednisone acetate (5 mg/kg) and PF (25, 50, and 75 mg/kg) for eight weeks. Subsequently, ELISA, qRT-PCR, western blotting, HE, and Masson staining were performed to detect various indicators. The results of Cell Counting Kit-8 (CCK-8) showed that 10 μg/mL of LPS had the optimum effect on cell viability, and 50 μmol/L of PF had no obvious cytotoxicity to LPS-treated cells. PF reduced the expression level of IRAK1-nuclearfactor-κB (NF-κB) and its downstream inflammatory cytokines in the splenocytes and CD4+ T lymphocytes of MRL/lpr mice stimulated by LPS, especially in the latter. The serum antibody contents in the PF group mice were reduced, and the kidney damage was also alleviated accordingly. Moreover, the IRAK1/inhibitor of the nuclear factor-κB kinase (IKK)/NF-κB inhibitor (IκB)/NF-κB pathways was found to be involved in the anti-inflammation effect of PF in the kidney and spleen. In conclusion, it is thought that PF may have the potential to be used as a therapeutic agent to reduce the inflammatory activity of SLE. Inhibition of the IRAK1-NF-κB pathway may help formulate novel therapeutic tactics for SLE.
Collapse
|
10
|
Bian CF, Wang Y, Yu A, Fu L, Zhang D, Zhu W, Lv W. Gut microbiota changes and biological mechanism in hepatocellular carcinoma after transarterial chemoembolization treatment. Front Oncol 2022; 12:1002589. [PMID: 36267958 PMCID: PMC9577458 DOI: 10.3389/fonc.2022.1002589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/15/2022] [Indexed: 12/01/2022] Open
Abstract
Background and aims Intestinal flora is closely associated with the occurrence and development of hepatocellular carcinoma (HCC). However, gut microbial changes and biological mechanisms in HCC after transarterial chemoembolization (TACE) treatment are rarely reported. Methods We evaluated changes in intestinal flora after TACE in rabbit HCC models and assessed the impact of these changes on the disease. Twenty-four rabbit VX2 HCC models were established and intestinal flora structures, intestinal barrier function, changes in blood lipopolysaccharide (LPS) levels, Toll-like receptor 4 (TLR4), Cyclooxygenase-2 (COX-2), and p-signal transducer and activator of transcription 3(p-STAT3) protein expression levels were studied after TACE treatment. Results Compared with healthy rabbits, the intestinal flora in HCC models exhibited structural changes; intestinal barrier function was decreased, and increased LPS levels entered the circulation. A short-term follow-up after TACE showed the procedure partially reversed the intestinal microflora disorder caused by the tumor: intestinal barrier and liver functions were improved, intestinal LPS levels in the blood were reduced, and liver metabolism toward LPS was enhanced. Correlation analyses of the first 75 significantly changed bacteria with clinical factors showed that harmful bacteria had decreased and beneficial bacteria increased. Blood LPS levels and downstream signaling molecule TLR4, COX-2, and p-STAT3 protein expression levels were reduced, which correlated with tumor drug resistance and invasion capabilities. Conclusions We first characterized gut microbiota changes and biological mechanisms in HCC after TACE treatment. Our data provide a theoretical research basis for TACE combined with an intestinal flora intervention and systemic chemotherapy.
Collapse
Affiliation(s)
- Chao-Fan Bian
- Department of Radiology, Affiliated Provincial Hospital of Anhui Medical University, Hefei, China
| | - Ying Wang
- Department of Interventional Therapy, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Ao Yu
- Department of Radiology, Affiliated Provincial Hospital of Anhui Medical University, Hefei, China
| | - Lulan Fu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ding Zhang
- Department of Medical, 3D Medicines Inc., Shanghai, China
| | - Wenzhi Zhu
- Department of Radiology, Affiliated Provincial Hospital of Anhui Medical University, Hefei, China
| | - Weifu Lv
- Department of Radiology, Affiliated Provincial Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
11
|
Liu C, Zhen D, Du H, Gong G, Wu Y, Ma Q, Quan ZS. Synergistic anti-inflammatory effects of peimine, peiminine, and forsythoside a combination on LPS-induced acute lung injury by inhibition of the IL-17-NF-κB/MAPK pathway activation. JOURNAL OF ETHNOPHARMACOLOGY 2022; 295:115343. [PMID: 35533916 DOI: 10.1016/j.jep.2022.115343] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/16/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Forsythia suspensa (Thunb.) Vahl and Fritillaria thunbergii Miq are traditional Chinese medicines that exhibit the ability to clear heat and toxic material effects. In China, the combination of these two medicines is widely used to treat mucopurulent sputum and bloody phlegm, arising due to phlegm-heat obstruction in respiratory diseases. However, very limited information is available regarding the combined anti-inflammatory effect of important effective components of Forsythia suspensa (Thunb.) Vahl and Fritillaria thunbergii Miq, namely peimine, peiminine, and forsythoside A. AIM OF THIS STUDY To investigate synergistic anti-inflammatory effects of combined administration of peimine, peiminine, and forsythoside A on LPS-induced acute lung injury compared to combined administration of two compounds or individual administration, and unravel the underlying mechanism. MATERIAL AND METHODS In the present study, male BALB/c mice received an oral dosage of sodium carboxymethylcellulose (CMC-Na) (0.5%, 1 mL/100 g), peimine, peiminine, forsythoside A, peimine + forsythoside A, peiminine + forsythoside A, and peimine + peiminine + forsythoside A (suspended in CMC-Na; 0.5%), once daily for 7 days. Subsequently, intratracheal instillation of LPS was applied to establish acute lung injury model. After 6 h of administration, the mice were sacrificed, and bronchoalveolar lavage fluid (BALF) and lung tissues were collected. These samples were further used to determine lung W/D (wet/dry) weight ratio, total protein (TP) levels, inflammatory cytokines (IL-6, TNF-α, IL-1β, and IL-17), and expression of proteins involved in TLR4/MAPK/NF-κB pathway and IL-17 pathway. Further, tissue sections were subjected to H&E staining to assess the pathological alterations induced by LPS. The expression of IL-6 and TNF-α proteins in lung tissues was also analyzed using immunohistochemical staining. RESULTS A synergistic anti-inflammatory effect of peimine, peiminine, and forsythoside A was observed when administered in combination to LPS-induced acute lung injury. The combined administration of peimine, peiminine, and forsythoside A had a strongly inhibitory effects on the W/D weight ratio, total protein (TP) level and the inflammatory cytokines (TNF-α, IL-6, IL-1β, and IL-17) level in acute lung injury mice, compared to combined administration of two compounds or individual administration. The infiltration of inflammatory cells and thickened bronchoalveolar walls induced by LPS were also ameliorated through the combined administration of peimine, peiminine, and forsythoside A. More importantly, the upregulation of protein related to TLR4/MAPK/NF-κB signaling pathway and the activation of IL-17 were significantly suppressed by pretreatment with each of the three compounds alone, while the effects of individual compounds were synergistically augmented by the combined pretreatment of these three compounds. CONCLUSION The combined administration of peimine, peiminine, and forsythoside A ameliorated inflammatory response in acute lung injury mice induced by LPS in a synergistic manner, the mechanism may be related to the dampening of the TLR4/MAPK/NF-κB signaling pathway and IL-17 activation.
Collapse
Affiliation(s)
- Chunyan Liu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China; Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Inner Mongolia Autonomous Region, Tongliao, 028000, China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia, PR China.
| | - Dong Zhen
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Inner Mongolia Autonomous Region, Tongliao, 028000, China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia, PR China.
| | - Huanhuan Du
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Inner Mongolia Autonomous Region, Tongliao, 028000, China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia, PR China.
| | - Guohua Gong
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Inner Mongolia Autonomous Region, Tongliao, 028000, China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia, PR China; Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Yun Wu
- Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Qianqian Ma
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Inner Mongolia Autonomous Region, Tongliao, 028000, China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia, PR China.
| | - Zhe-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China.
| |
Collapse
|
12
|
Inhibitory Effects of Inonotus obliquus Polysaccharide on Inflammatory Response in Toxoplasma gondii-Infected RAW264.7 Macrophages. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2021:2245496. [PMID: 35003292 PMCID: PMC8731277 DOI: 10.1155/2021/2245496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/15/2021] [Indexed: 01/17/2023]
Abstract
Our previous reports have shown that Inonotus obliquus polysaccharide (IOP) has protective effects against Toxoplasma gondii (T. gondii) infection in vivo. The aim of the present research is to explore the in vitro anti-inflammatory effects of IOP and its mechanism in RAW264.7 macrophages infected by T. gondii. In this study, it is indicated that IOP decreased the excessive secretion of inflammatory cytokines tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), interleukin-1β (IL-1β), IL-4, and IL-6 in T. gondii-infected RAW264.7 macrophages. IOP effectively suppressed the mRNA expression of these cytokines and chemokines monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-1α (MIP-1α). Moreover, IOP inhibited the phosphorylation of inhibitor kappa B kinase α/β (IKKα/β), inhibitor κBα (IκBα), p65 in nuclear factor-kappa B (NF-κB) signaling pathway and p38, c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase 1/2 (ERK1/2) in mitogen-activated protein kinases (MAPKs) signaling pathway. Meantime, IOP prevented NF-κB p65 and c-Jun translocation from the cytoplasm to the nucleus. Further, IOP downregulated the protein expression of toll-like receptor 2 (TLR2) and TLR4 in T. gondii-infected RAW264.7 macrophages. The above results suggest that IOP can inhibit the inflammatory response infected with T. gondii via regulating TLR2/TLR4-NF-κB/MAPKs pathways and exerting its anti-T. gondii role in vitro.
Collapse
|
13
|
Zhong Y, Zhang ZH, Wang JY, Xing Y, Ri MH, Jin HL, Zuo HX, Li MY, Ma J, Jin X. Zinc finger protein 91 mediates necroptosis by initiating RIPK1-RIPK3-MLKL signal transduction in response to TNF receptor 1 ligation. Toxicol Lett 2021; 356:75-88. [PMID: 34942311 DOI: 10.1016/j.toxlet.2021.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/03/2021] [Accepted: 12/17/2021] [Indexed: 11/17/2022]
Abstract
Necroptosis is a form of regulated programmed cell death that is mediated by receptor-interacting protein kinase 1 (RIPK1), receptor-interacting serine/threonine protein kinase-3 (RIPK3), and mixed lineage kinase domain-like protein (MLKL); however, it is not known whether zinc finger protein 91 (ZFP91) is involved in this process. Here, we investigated ZFP91 as a potential mediator of necroptosis. Our mechanistic study demonstrates that ZFP91 promotes RIPK1-RIPK3 interaction, thereby stabilizing the RIPK1 and RIPK3 proteins and facilitating necroptosis. ZFP91 stabilized RIPK1 to promote cell death by inducing RIPK1 de-ubiquitination. ZFP91 also significantly increased production of mitochondrial reactive oxygen species (ROS). Accumulation of ROS promoted RIPK3-independent necroptosis triggered by tumor necrosis factor (TNF). in vivo, ZFP91 knockdown alleviated TNFα-induced systemic inflammatory response syndrome (SIRS). These results provide direct evidence that ZFP91 plays an important role in the initiation of RIPK1/RIPK3-dependent necroptosis in vitro and in vivo. We discussed the potential of ZFP91 as a novel therapeutic target for necroptosis-associated diseases.
Collapse
Affiliation(s)
- Yi Zhong
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Zhi Hong Zhang
- Department of Pharmacology, College of Pharmacy, Beihua University, No. 3999 Binjiang East Road, Jilin, Jilin Province, 132013, China
| | - Jing Ying Wang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Yue Xing
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Myong Hak Ri
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Hong Lan Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Hong Xiang Zuo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Ming Yue Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Juan Ma
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Xuejun Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| |
Collapse
|
14
|
Liu T, Xing S, Du J, Wang M, Han J, Li Z. Synthesis and evaluation of the anti-inflammatory activity of novel 8-quinolinesulfonamide derivatives as TLR4/MD-2 inhibitors with efficacy in adjuvant-induced arthritis. Bioorg Chem 2021; 114:105037. [PMID: 34120022 DOI: 10.1016/j.bioorg.2021.105037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 12/19/2022]
Abstract
In this study, a series of 8-quinolinesulfonamidederivatives was synthesized, and their anti-inflammatory activity was evaluated. Among them, compound 3l was found to be the best anti-inflammatory agent, with IC50 values of 2.61 ± 0.39, 9.74 ± 0.85, and 12.71 ± 1.34 μM against NO, TNF-α and IL-1β production respectively. And 3l could significantly prevent lipopolysaccharide (LPS)-induced expression of inflammatory mediators (iNOS and COX-2). Molecule docking results showed that 3l could bind to the LPS binding site of toll-like receptor 4 (TLR4)/MD-2, and 3l was then identified as TLR4/MD-2 inhibitor by co-immunoprecipitation (co-IP) and cellular thermal shift assay (CTESA). Preliminary mechanism studies indicated that 3l could prevent TLR4 from being activated by disrupting TLR4/MD-2 heterodimerization and TLR4 homodimerization, thereby blocking the activation of the NF-κB/MAPK signaling pathway. Furthermore, observation of rat foot swelling, joint pathology and serum inflammatory cytokine levels proved that compound 3l had a significant therapeutic effect on adjuvant-induced arthritis (AIA) in rats in vivo. These results indicated that compound 3l is a potential anti-inflammatory agent, from which more effective anti-inflammatory drugs could be developed.
Collapse
Affiliation(s)
- Tongtong Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Siqi Xing
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Jiyu Du
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Min Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Jianfei Han
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Zeng Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
15
|
Liu ZC, Yu WW, Zhou HC, Lan ZC, Wu T, Xiong SM, Yan L, Liu HB. Lycium barbarum polysaccharides ameliorate LPS-induced inflammation of RAW264.7 cells and modify the behavioral score of peritonitis mice. J Food Biochem 2021; 45:e13889. [PMID: 34426988 DOI: 10.1111/jfbc.13889] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/26/2021] [Accepted: 07/19/2021] [Indexed: 01/17/2023]
Abstract
In the present study, the anti-inflammatory effect of Lycium barbarum polysaccharide (LBP) and the possible molecular mechanism thereof were examined, so as to perceive the pharmacological action of LBP. With acute peritonitis in mice as the inflammatory model, the protective effect of LBP on peritonitis mice was evaluated by recording the effect of behavioral scores, studying the pathological damage of intestine and liver, and detecting the levels of inflammatory cytokines. Additionally, by establishing an lipopolysaccharide (LPS)-induced RAW264.7 macrophage model, the effect of LBP on RAW264.7 cell phenotype and culture supernatant inflammatory markers was observed. Finally, the activation of inflammation-related target genes, such as iNOS, Toll-like receptor 4 (TLR4), nuclear factor-κB (NF-κB) p65, and IκBα, were further detected. The results reveal that pretreatment with LBP could decrease the behavioral score of inflammatory mice, inhibit the secretion of pro-inflammatory factors, and reduce liver and intestine injury. LBP can regulate the effect of lipopolysaccharide on the polarization of RAW264.7 cells, and reduce the production of NO and cytokines (TNF-α, IL-1β, IL-6). Further, LBP pretreatment was found to be able to significantly reduce the expression of iNOS, TLR4, NF-κB p65, and IκBα in macrophages. The present research provides evidence that LBP exerts potential anti-inflammatory activity in LPS-induced RAW264.7 macrophages via inhibiting TLR4 and NF-κB inflammatory sites and improving the behavior score of peritonitis mice. PRACTICAL APPLICATIONS: In recent years, the number of deaths worldwide has continued to rise as a result of inflammation. Despite said rise in deaths, many synthetic drugs with anti-inflammatory properties are significantly expensive and also have a host of side effects. Thus, the development of new anti-inflammatory drugs derived from medicinal plants has broad application potential. As such, in the present study, lipopolysaccharide (LPS)-induced macrophages were used to establish inflammatory cell models to verify the anti-inflammatory effect of Lycium barbarum polysaccharides (LBP). Findings were made that LBP could reduce the expression levels of inflammatory cytokines and NO by regulating macrophage polarization and NF-κB translocation, and thus, could exert anti-inflammatory activity. In addition, by intraperitoneal injection of LPS to establish peritonitis mice models, LBP pretreatment was found to have significantly modified the behavioral score of mice, while decreasing the secretion of inflammatory factors and the damage to several organs. The present study provides a basis for further understanding the effects of LBP in acute inflammation.
Collapse
Affiliation(s)
- Zhi-Chang Liu
- Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China.,Gansu Provincial Key Laboratory of Stem Cells and Gene Drugs, Lanzhou, P.R. China
| | - Wen-Wen Yu
- Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China
| | - Hai-Cun Zhou
- Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China.,Department of General Surgery, Gansu Maternal and Child Health Care Hospital, Lanzhou, P.R. China
| | - Zheng-Cang Lan
- Department of General Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, P.R. China
| | - Tong Wu
- Department of General Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, P.R. China
| | - Shi-Meng Xiong
- Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China.,Gansu Provincial Key Laboratory of Stem Cells and Gene Drugs, Lanzhou, P.R. China
| | - Long Yan
- Department of General Surgery, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, P.R. China.,Clinical Medical College, Northwest Minzu University, Lanzhou, P.R. China
| | - Hong-Bin Liu
- Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China.,Clinical Medical College, Northwest Minzu University, Lanzhou, P.R. China
| |
Collapse
|
16
|
Ren AQ, Wang HJ, Zhu HY, Ye G, Li K, Chen DF, Zeng T, Li H. Glycoproteins From Rabdosia japonica var. glaucocalyx Regulate Macrophage Polarization and Alleviate Lipopolysaccharide-Induced Acute Lung Injury in Mice via TLR4/NF-κB Pathway. Front Pharmacol 2021; 12:693298. [PMID: 34366849 PMCID: PMC8333617 DOI: 10.3389/fphar.2021.693298] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 06/24/2021] [Indexed: 01/04/2023] Open
Abstract
Background and Aims:Rabdosia japonica var. glaucocalyx is a traditional Chinese medicine (TCM) for various inflammatory diseases. This present work aimed to investigate the protective effects of R. japonica var. glaucocalyx glycoproteins on lipopolysaccharide (LPS)-induced acute lung injury (ALI) and the potential mechanism. Methods: Glycoproteins (XPS) were isolated from R. japonica var. glaucocalyx, and homogeneous glycoprotein (XPS5-1) was purified from XPS. ANA-1 cells were used to observe the effect of glycoproteins on the secretion of inflammatory mediators by enzyme-linked immunosorbent assay (ELISA). Flow cytometry assay, immunofluorescence assay, and Western blot analysis were performed to detect macrophage polarization in vitro. The ALI model was induced by LPS via intratracheal instillation, and XPS (20, 40, and 80 mg/kg) was administered intragastrically 2 h later. The mechanisms of XPS against ALI were investigated by Western blot, ELISA, and immunohistochemistry. Results:In vitro, XPS and XPS5-1 downregulated LPS-induced proinflammatory mediators production including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, and nitric oxide (NO) and upregulated LPS-induced IL-10 secretion. The LPS-stimulated macrophage polarization was also modulated from M1 to M2. In vivo, XPS maintained pulmonary histology with significantly reducing protein concentration and numbers of mononuclear cells in bronchoalveolar lavage fluid (BALF). The level of IL-10 in BALF was upregulated by XPS treatment. The level of cytokines including TNF-α, IL-1β, and IL-6 was downregulated. XPS also decreased infiltration of macrophages and polymorphonuclear leukocytes (PMNs) in lung. XPS suppressed the expression of key proteins in the TLR4/NF-κB signal pathway. Conclusion: XPS was demonstrated to be a potential agent for treating ALI. Our findings might provide evidence supporting the traditional application of R. japonica var. glaucocalyx in inflammation-linked diseases.
Collapse
Affiliation(s)
- An-Qi Ren
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Hui-Jun Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hai-Yan Zhu
- Department of Biological Medicines and Shanghai Engineering Research Center of Immuno Therapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Guan Ye
- Central Research Institute, Shanghai Pharmaceuticals Holding Co., Ltd., Shanghai, China
| | - Kun Li
- Central Research Institute, Shanghai Pharmaceuticals Holding Co., Ltd., Shanghai, China
| | - Dao-Feng Chen
- Department of Pharmacognosy, School of Pharmacy, Fudan University, Shanghai, China
| | - Tao Zeng
- Clinical Trial Institution, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Hong Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
17
|
Akseh S, Nemati M, Zamani-Gharehchamani E, Rezaie Nezhad Zamani A, Jodati A, Pezeshkian M, Nouri M, Gholizadeh D, Safaie N, Faridvand Y. Amnion membrane proteins attenuate LPS-induced inflammation and apoptosis by inhibiting TLR4/NF-κB pathway and repressing MicroRNA-155 in rat H9c2 cells. Immunopharmacol Immunotoxicol 2021; 43:487-494. [PMID: 34227443 DOI: 10.1080/08923973.2021.1945086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Amnion membrane (AM) has been popular for the treatment of inflammatory disorders due to its cell repairing properties. This current study aims to find the underlying mechanisms of amnion membrane proteins (AMPs) against the pro-inflammatory miRNA, miR-155, miR-146, and anti-apoptotic microRNA, miR-21, in LPS-treated H9c2 cells. METHODS Cell viability and apoptosis were determined by MTT assay and annexin V/PI staining. The production of the cytokines, TNF-α and IL-6 were evaluated by using qPCR and Enzyme-linked immunosorbent assay (ELISA), respectively. In addition, the expression of miRNAs was quantified by qPCR, and also the protein level of TLR4 and NF-kβ was determined with western blotting. RESULTS We found that AMPs ameliorated LPS-induced reduction of cell viability and augment apoptosis in H9c2 cells. AMPs efficiently inhibited cytokine expression (IL-6 and TNF-α) and activity of TLR4/NF-κB pathway in LPS-treated H9c2 cells. Correspondingly, in parallel with the suppression of pro-inflammatory cytokines and apoptosis, AMPs mitigated pro-inflammatory miRNA, miR-155 expression, while, the expression of miR-155 was found to be increased in LPS-treated H9c2 cells. Also, AMPs activated miR-146 expression in H9c2 cells under LPS treatment. Additionally, the elevated expression of miR-21 provoked by LPS was further enhanced by AMPs. CONCLUSIONS In conclusion, AMPs could alleviate LPS-induced cardiomyocytes cells injury via up-regulation of miR-21, miR-146, and suppression of TLR4/NF-κB pathway, which plays a key role in the down-regulation of LPS-mediated miR-155 and inflammatory cytokine expression.
Collapse
Affiliation(s)
- Saeideh Akseh
- Stem Cells Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Molecular Genetics, Islamic Azad University, Ahar, Iran
| | - Maryam Nemati
- Department of Genetic, Islamic Azad University, Tabriz, Iran
| | | | | | - Ahmadreza Jodati
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Pezeshkian
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Stem Cells Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davoud Gholizadeh
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasser Safaie
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Faridvand
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
18
|
Yang A, Li MY, Zhang ZH, Wang JY, Xing Y, Ri M, Jin CH, Xu GH, Piao LX, Jin HL, Zuo HX, Ma J, Jin X. Erianin regulates programmed cell death ligand 1 expression and enhances cytotoxic T lymphocyte activity. JOURNAL OF ETHNOPHARMACOLOGY 2021; 273:113598. [PMID: 33220359 DOI: 10.1016/j.jep.2020.113598] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/24/2020] [Accepted: 11/14/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dendrobium chrysotoxum Lindl is a cultivation of Dendrobium which belongs to the family of Orchidaceae. D. chrysotoxum Lindl is a traditional Chinese medicine with a wide range of clinical applications including tonic, astringent, analgesic and anti-inflammatory properties as early as the 28th century B.C. Erianin is a representative index component for the quality control of the D. chrysotoxum Lindl, which is included in the Pharmacopoeia of the People's Republic of China (2020 version). AIM OF THE STUDY To clarify the anti-tumour mechanisms of erianin in vitro and in vivo. MATERIALS AND METHODS We detected the anti-tumour activity of erianin using in vitro HeLa cell models and in vivo cervical cancer xenograft models. We performed MTT, western blot, RT-PCR, homology modeling, flow cytometry, and immunoprecipitation assays to study the proteins, genes, and pathways related to erianin's anti-tumour activity. LysoTracker Red staining was performed to detect lysosome function. Transwell, wound healing, tube formation, colony formation and EdU labelling assays were performed to determine cell proliferation, migration and invasion abilities, respectively. Cytotoxic T lymphocytes ability was confirmed using HeLa/T-cell co-culture model. RESULTS Experimental data demonstrated that erianin inhibited PD-L1 expression and induced the lysosomal degradation of PD-L1. Erianin suppressed HIF-1α synthesis through mTOR/p70S6K/4EBP1 pathway, and inhibited RAS/Raf/MEK/MAPK-ERK pathway. Immunoprecipitation experiments demonstrated that erianin reduced the interaction between RAS and HIF-1α. Experiments using a co-cultivation system of T cells and HeLa cells confirmed that erianin restored cytotoxic T lymphocytes ability to kill tumour cells. Erianin inhibited PD-L1-mediated angiogenesis, proliferation, invasion and migration. The anti-proliferative effects of erianin were supported using in vivo xenotransplantation experiments. CONCLUSIONS Collectively, these results revealed previously unknown properties of erianin and provided a new basis for improving the efficacy of immunotherapy against cervical cancer and other malignant tumours through PD-L1.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- B7-H1 Antigen/genetics
- B7-H1 Antigen/metabolism
- Bibenzyls/pharmacology
- Bibenzyls/therapeutic use
- Cell Cycle Proteins/metabolism
- Cell Line, Tumor
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Epithelial-Mesenchymal Transition/drug effects
- Gene Expression Regulation/drug effects
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Immune Checkpoint Inhibitors/pharmacology
- Immune Checkpoint Inhibitors/therapeutic use
- Lysosomes/metabolism
- MAP Kinase Signaling System/drug effects
- Mice, Inbred BALB C
- Mice, Nude
- Molecular Docking Simulation
- Neovascularization, Pathologic/metabolism
- Phenol/pharmacology
- Phenol/therapeutic use
- Ribosomal Protein S6 Kinases, 70-kDa/metabolism
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- TOR Serine-Threonine Kinases/metabolism
- Vascular Endothelial Growth Factor A/metabolism
- Xenograft Model Antitumor Assays
- raf Kinases/metabolism
- ras Proteins/metabolism
- Mice
Collapse
Affiliation(s)
- Ao Yang
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Ming Yue Li
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Zhi Hong Zhang
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Jing Ying Wang
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Yue Xing
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - MyongHak Ri
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Cheng Hua Jin
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Guang Hua Xu
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Lian Xun Piao
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Hong Lan Jin
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Hong Xiang Zuo
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Juan Ma
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Xuejun Jin
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| |
Collapse
|
19
|
Fan MZ, Wu XH, Li XF, Piao XC, Jiang J, Lian ML. Co-cultured adventitious roots of Echinacea pallida and Echinacea purpurea inhibit lipopolysaccharide-induced inflammation via MAPK pathway in mouse peritoneal macrophages. CHINESE HERBAL MEDICINES 2021; 13:228-234. [PMID: 36117511 PMCID: PMC9476757 DOI: 10.1016/j.chmed.2021.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/03/2020] [Accepted: 10/05/2020] [Indexed: 11/30/2022] Open
Abstract
Objective In order to elucidate the biological activity of the co-cultured adventitious roots (ARs) of Echinacea pallida and Echinacea purpurea and provide theoretical basis for its application, and the anti-inflammatory activities and potential mechanisms of co-cultured ARs were studied. Methods The experimental materials were obtained by bioreactor co-culture technology and used in the activity research. In this study, mouse macrophages induced by lipopolysaccharide (LPS) were used as in vitro model. Different concentrations of AR extract (50–400 g/mL) were used to treat cells. The expression of pro-inflammatory cytokines was determined using enzyme linked immunosorbent assay. The inducible nitric oxide synthase and cyclooxygenase-2 expression, mitogen-activated protein kinase (MAPK) phosphorylation, and the inhibitor of nuclear factor-kappa B-α levels were determined by the Western blot analysis. Results In the co-cultured ARs, total flavonoids and total caffeic acid were determined, and the contents of both bioactive compounds were significantly higher than those ARs from the single-species culture. Compared with the control group, the large amount of pro-inflammatory mediators was released after LPS stimulation. However, in the extract groups with different concentrations (25, 50, and 100 g/mL), the production of these pro-inflammatory mediators was inhibited in a dose-dependent manner. Furthermore, the levels of phosphorylation of MAPK proteins, including p-p38, p-c-Jun N-terminal kinase, and p-extracellular regulated protein kinases were significantly (P < 0.05) decreased in the extract groups, revealing that the AR extract probably involved in regulating the MAPK signaling pathway. Conclusion Collectively, our findings suggested that the co-cultured ARs of E. pallida and E. purpurea can inhibit production of pro-inflammatory mediators in mouse peritoneal macrophages and possess the anti-inflammatory effect by regulating MAPK signaling pathways.
Collapse
|
20
|
Venigalla M, Roberts TL, Raju R, Mrad M, Bodkin F, Kopp K, Doyle K, Münch G. Identification of tetragocarbone C and sideroxylin as the most potent anti-inflammatory components of Syncarpia glomulifera. Fitoterapia 2021; 150:104843. [PMID: 33539940 DOI: 10.1016/j.fitote.2021.104843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 11/25/2022]
Abstract
In contrast to ancient Western and Asian cultures, medicinal plants of the Aboriginal and Torres Strait Islanders in Australia have not been as intensively studied for their molecular composition and molecular bioactivity. Syncarpia glomulifera subsp. glomulifera is a species in the plant family Myrtaceae. The resin of the plant has been traditionally used by the D'harawal people of Western Sydney to heal inflamed sores and ulcers. Hence, the anti-inflammatory activity of its leaf extract was investigated in RAW 264.7 macrophage and N11 microglia cell lines to isolate and identify the most active compounds. One new compound, tetragocarbone C, and three known compounds, tetragocarbone B, sideroxylin, and lumaflavanone A showed potent anti-inflammatory activity by downregulating nitric oxide and TNF-α production in LPS and IFN-γ stimulated cells. Except for the less potent tetragocarbone B, all compounds had an IC50 value (for nitric oxide downregulation) of <10 μg/mL and moderate cytotoxicity in both cell lines. The molecular targets along pro-inflammatory signaling pathways were further investigated in RAW 264.7 cells. All four compounds suppressed phosphorylation of ERK, c-Jun, and limited the phosphorylation of STAT-1 and STAT-3 in response to LPS and IFN-γ activation. The four compounds also suppressed NF-κB activation by preventing the translocation of the p65 subunit into the nucleus. Collectively, these findings suggest that the compounds isolated from Syncarpia glomulifera, especially tetragocarbone C and sideroxylin are promising anti-inflammatory agents, and could be further investigated for the treatment of diseases characterized by chronic inflammation.
Collapse
Affiliation(s)
- Madhuri Venigalla
- Pharmacology Unit, School of Medicine, Western Sydney University, Building 30, Campbelltown, NSW, Australia
| | - Tara Laurine Roberts
- School of Medicine, Ingham Institute for Applied Medical Research, Western Sydney University, Liverpool, NSW, Australia
| | - Ritesh Raju
- Pharmacology Unit, School of Medicine, Western Sydney University, Building 30, Campbelltown, NSW, Australia
| | - Melissa Mrad
- Pharmacology Unit, School of Medicine, Western Sydney University, Building 30, Campbelltown, NSW, Australia
| | - Frances Bodkin
- NICM Health Research Institute, Western Sydney University, Sydney, NSW, Australia
| | - Katja Kopp
- Pharmacology Unit, School of Medicine, Western Sydney University, Building 30, Campbelltown, NSW, Australia
| | - Kerrie Doyle
- Indigenous Health Unit, School of Medicine, Western Sydney University, Building 30, Campbelltown, NSW, Australia
| | - Gerald Münch
- Pharmacology Unit, School of Medicine, Western Sydney University, Building 30, Campbelltown, NSW, Australia; NICM Health Research Institute, Western Sydney University, Sydney, NSW, Australia.
| |
Collapse
|
21
|
Nemati M, Akseh S, Amiri M, Reza Nejabati H, Jodati A, Fathi Maroufi N, Faridvand Y, Nouri M. Lactoferrin suppresses LPS-induced expression of HMGB1, microRNA 155, 146, and TLR4/MyD88/NF-кB pathway in RAW264.7 cells. Immunopharmacol Immunotoxicol 2021; 43:153-159. [PMID: 33435756 DOI: 10.1080/08923973.2021.1872616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVE This current study evaluated the underlying mechanisms of LF against the inflammatory microRNAs (miRNAs), HMGB1 expression, and TLR4-MyD88-NF-кB pathway in LPS-activated murine RAW264.7 cells. METHODS MTT assay was used to assess cell metabolism and the cell culture levels of the cytokines (TNF-α, IL-6) were evaluated by Enzyme-linked immunosorbent assay (ELISA). The expression of miRNAs was quantified by using qPCR and the expression of HMGB1, TLR4, MyD88, and phosphorylated NF-κB (P-p65) were determined with Western blot and qPCR, respectively. RESULTS The results indicated that LF downregulates IL-6 and TNF-α expression. LF exhibited the degradation of P-p65 and reduced the production of HMGB1, TLR4, and MyD88 in LPS-induced inflammatory response. Importantly, in parallel with the suppression of cytokines and HMGB1-TLR4-MyD88-NF-кB pathway, LF could induce a decrease in inflammatory selected miRNAs, mmu-mir-155, and mmu-mir-146a expression. CONCLUSIONS Altogether, these findings provide LF as a prominent anti-inflammatory agent that could modulate HMGB1, mmu-mir-155, mmu-mir-146a, and TLR4/MyD88/NF-кB pathway.
Collapse
Affiliation(s)
- Maryam Nemati
- Department of Genetic, Islamic Azad University - Tabriz Branch, Tabriz, Iran.,Stem Cells Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeideh Akseh
- Stem Cells Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Amiri
- Faculty of Paramedical Sciences, Department of Medical Laboratory, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Hamid Reza Nejabati
- Faculty of Medicine, Department of Biochemistry and Clinical Laboratories, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmadreza Jodati
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Fathi Maroufi
- Faculty of Medicine, Department of Biochemistry and Clinical Laboratories, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Faridvand
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Stem Cells Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Faculty of Medicine, Department of Biochemistry and Clinical Laboratories, Tabriz University of Medical Sciences, Tabriz, Iran.,Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
22
|
Li X, Huang R, Liu K, Li M, Luo H, Cui L, Huang L, Luo L. Fucoxanthin attenuates LPS-induced acute lung injury via inhibition of the TLR4/MyD88 signaling axis. Aging (Albany NY) 2020; 13:2655-2667. [PMID: 33323555 PMCID: PMC7880391 DOI: 10.18632/aging.202309] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 10/01/2020] [Indexed: 01/08/2023]
Abstract
Acute lung injury (ALI) is a critical clinical condition with a high mortality rate. It is believed that the inflammatory storm is a critical contributor to the occurrence of ALI. Fucoxanthin is a natural extract from marine seaweed with remarkable biological properties, including antioxidant, anti-tumor, and anti-obesity. However, the anti-inflammatory activity of Fucoxanthin has not been extensively studied. The current study aimed to elucidate the effects and the molecular mechanism of Fucoxanthin on lipopolysaccharide-induced acute lung injury. In this study, Fucoxanthin efficiently reduced the mRNA expression of pro-inflammatory factors, including IL-10, IL-6, iNOS, and Cox-2, and down-regulated the NF-κB signaling pathway in Raw264.7 macrophages. Furthermore, based on the network pharmacological analysis, our results showed that anti-inflammation signaling pathways were screened as fundamental action mechanisms of Fucoxanthin on ALI. Fucoxanthin also significantly ameliorated the inflammatory responses in LPS-induced ALI mice. Interestingly, our results revealed that Fucoxanthin prevented the expression of TLR4/MyD88 in Raw264.7 macrophages. We further validated Fucoxanthin binds to the TLR4 pocket using molecular docking simulations. Altogether, these results suggest that Fucoxanthin suppresses the TLR4/MyD88 signaling axis by targeting TLR4, which inhibits LPS-induced ALI, and fucoxanthin inhibition may provide a novel strategy for controlling the initiation and progression of ALI.
Collapse
Affiliation(s)
- Xiaoling Li
- Experimental Animal Center, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Kaifeng Liu
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Mingyue Li
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19126, USA
| | - Hui Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, Guangdong, China.,Marine Medical Research Institute of Zhanjiang, Zhanjiang 524023, Guangdong, China
| | - Liao Cui
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Lei Huang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, Guangdong, China.,Marine Medical Research Institute of Zhanjiang, Zhanjiang 524023, Guangdong, China
| |
Collapse
|
23
|
Zong L, Zhang J, Dai L, Liu J, Yang Y, Xie J, Luo X. The Anti-Inflammatory Properties of Rhododendron molle Leaf Extract in LPS-Induced RAW264.7. Chem Biodivers 2020; 17:e2000477. [PMID: 32845053 DOI: 10.1002/cbdv.202000477] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/24/2020] [Indexed: 01/20/2023]
Abstract
Rhododendron molle G.Don is a well-known traditional medicine which has been used to treat rheumatic inflammation. In this study, an inflammatory model of lipopolysaccharide (LPS)-stimulated RAW264.7 cells was established to analyze the anti-inflammatory effect and potential mechanism of the methanol extract of R. molle leaves (RLE). The production of NO and the expression of tumor necrosis factor by LPS were detected by Griess reaction and enzyme linked immunosorbent assay (ELISA). The mRNA expression of TNF-α, IL-1β, IL-6, COX-2 and iNOS was measured by qRT-PCR assay. Griess and qRT-PCR showed that the RLE could significantly concentration-dependently inhibit NO production and the expression of many pro-inflammatory cytokines and inflammatory-related enzymes. Scanning electron microscope (SEM) analysis indicated that RLE could inhibit LPS-stimulated RAW264.7 macrophages activation. The protein level of TNF-α and IL-1β were decreased over 50 % at 100 μg/ml of RLE, as detected by ELISA. These results indicated that RLE had strong anti-inflammatory and immunomodulatory activity.
Collapse
Affiliation(s)
- Luye Zong
- College of Life Science, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Jin Zhang
- College of Life Science, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Liangfang Dai
- College of Life Science, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Jian Liu
- College of Life Science, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Yan Yang
- College of Life Science, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Jiankun Xie
- College of Life Science, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Xiangdong Luo
- College of Life Science, Jiangxi Normal University, Nanchang, 330022, P. R. China
| |
Collapse
|
24
|
Ji L, Fan X, Hou X, Fu D, Bao J, Zhuang A, Chen S, Fan Y, Li R. Jieduquyuziyin Prescription Suppresses Inflammatory Activity of MRL/lpr Mice and Their Bone Marrow-Derived Macrophages via Inhibiting Expression of IRAK1-NF-κB Signaling Pathway. Front Pharmacol 2020; 11:1049. [PMID: 32760274 PMCID: PMC7372094 DOI: 10.3389/fphar.2020.01049] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/26/2020] [Indexed: 12/14/2022] Open
Abstract
Jieduquyuziyin prescription (JP) has been used to treat systemic lupus erythematosus (SLE). Although the effectiveness of JP in the treatment of SLE has been clinically proven, the underlying mechanisms have yet to be completely understood. We observed the therapeutic actions of JP in MRL/lpr mice and their bone marrow-derived macrophages (BMDMs) and the potential mechanism of their inhibition of inflammatory activity. To estimate the effect of JP on suppressing inflammatory activity, BMDMs of MRL/lpr and MRL/MP mice were treated with JP-treated serum, and MRL/lpr mice were treated by JP for 8 weeks. Among them, JP and its treated serum were subjected to quality control, and BMDMs were separated and identified. The results showed that in the JP group of BMDMs stimulated by Lipopolysaccharide (LPS) in MRL/lpr mice, the secretion of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) reduced, and the expressions of Interleukin-1 receptor-associated kinase 1 (IRAK1) and its downstream nuclear factor κB (NF-κB) pathway decreased. Meanwhile, the alleviation of renal pathological damage, the decrease of urinary protein and serum anti-dsDNA contents, the inhibition of TNF-α level, and then the suppression of the IRAK1-NF-κB inflammatory signaling in the spleen and kidney, confirmed that the therapeutic effect of JP. These results demonstrated that JP could inhibit the inflammatory activity of MRL/lpr mice and their BMDMs by suppressing the activation of IRAK1-NF-κB signaling and was supposed to be a good choice for the treatment of SLE.
Collapse
Affiliation(s)
- Lina Ji
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xuemin Fan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaoli Hou
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Danqing Fu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jie Bao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Aiwen Zhuang
- Institute of TCM Literature and Information, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Sixiang Chen
- The Second College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yongsheng Fan
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Rongqun Li
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
25
|
Wang Y, Gao S, He X, Li Y, Zhang Y, Chen W. Response of total phenols, flavonoids, minerals, and amino acids of four edible fern species to four shading treatments. PeerJ 2020; 8:e8354. [PMID: 31976179 PMCID: PMC6964689 DOI: 10.7717/peerj.8354] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 12/04/2019] [Indexed: 01/05/2023] Open
Abstract
Total phenols, flavonoids, minerals and amino acids content were investigated in leaves of four fern species grown under four shading treatments with different sunlight transmittance in 35% full sunlight (FS), 13% FS, 8% FS and 4% FS. The leaves of four fern species contain high levels of total phenols and flavonoids, abundant minerals and amino acids, and these all were strongly affected by transmittance. Total phenols and flavonoids content were significantly positively correlated with transmittance, while minerals and total amino acids content were significantly negatively correlated with transmittance, a finding that supports research into how higher light intensity can stimulate the synthesis of phenols and flavonoids, and proper shading can stimulate the accumulation of minerals and amino acids. Matteuccia struthiopteris (L.) Todaro (MS) had the highest total phenols content, Athyrium multidentatum (Doll.) Ching (AM) showed the highest total amino acids, total essential amino acids content, Osmunda cinnamomea (L) var. asiatica Fernald (OCA) exhibited the highest total non-essential amino acids and flavonoids content. Pteridium aquilinum (L.) Kuhn var. latiusculum (Desy.) Underw. ex Heller (PAL) exhibited the highest minerals content. This research can provide a scientific basis for the cultivation and management of those four fern species.
Collapse
Affiliation(s)
- Yanlin Wang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China
| | - Shanshan Gao
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China
| | - Xingyuan He
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China.,University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Forest Ecology and Management, Chinese Academy of Sciences, Shenyang, China.,Shenyang Arboretum, Chinese Academy of Sciences, Shenyang, China
| | - Yan Li
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China.,Shenyang Arboretum, Chinese Academy of Sciences, Shenyang, China
| | - Yue Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China.,Shenyang Arboretum, Chinese Academy of Sciences, Shenyang, China
| | - Wei Chen
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China.,University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Forest Ecology and Management, Chinese Academy of Sciences, Shenyang, China.,Shenyang Arboretum, Chinese Academy of Sciences, Shenyang, China
| |
Collapse
|
26
|
Jieduquyuziyin Prescription-Treated Rat Serum Suppresses Activation of Peritoneal Macrophages in MRL/Lpr Lupus Mice by Inhibiting IRAK1 Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:2357217. [PMID: 31781262 PMCID: PMC6875022 DOI: 10.1155/2019/2357217] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/11/2019] [Accepted: 09/27/2019] [Indexed: 12/16/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease, and Jieduquyuziyin prescription (JP) is a traditional Chinese medicine (TCM) formula that has been testified to be effective for SLE treatment as an approved hospital prescription for many years in China. However, its mechanism of action in the treatment of this disease is largely unknown. The purpose of this study was to determine whether JP-treated rat serum can inhibit the activation of peritoneal macrophages in MRL/lpr mice by downregulating the IRAK1 signaling pathway, thereby achieving the effect of improving SLE. The JP-treated rat serum was prepared, and the peritoneal macrophages of MRL/lpr lupus mice were isolated in vitro, and the effect of JP on cell viability was detected by the CCK8 method. After LPS induction and shRNA lentiviral transfection, the effect of JP on the expression of IRAK1 in cells was detected by immunofluorescence staining. The content of TNF-α and IL-6 in the cell supernatant was determined by ELISA. The expression of IRAK1, NF-κB, TNF-α, and IL-6 mRNA was detected by RT-PCR, and the expression levels of IRAK1, p-IRAK1, TRAF6, IKBα, p-IKBα, IKK + IKK, NF-κB, and p-NF-κB proteins was detected by western blot method. We investigated the role of JP in peritoneal macrophages of the MRL/lpr mouse and identified the possible mechanisms of action. The results showed that JP could reduce the phosphorylation of IRAK1 and its downstream proteins induced by LPS and inhibit the expression of inflammatory cytokines, including TNF-α and IL-6. In addition, after the transfection of cells with shRNA lentiviral, the results of JP tended to be consistent. In conclusion, JP may inhibit the activation of peritoneal macrophages in MRL/lpr mice by downregulating the IRAK1-NF-κB signaling pathway, and IRAK1 may be a potential target for JP treatment of SLE.
Collapse
|
27
|
Zengin G, Locatelli M, Ferrante C, Menghini L, Orlando G, Brunetti L, Recinella L, Chiavaroli A, Leone S, Leporini L, Aumeeruddy MZ, Mahomoodally MF. New pharmacological targets of three Asphodeline species using in vitro and ex vivo models of inflammation and oxidative stress. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2019; 29:520-530. [PMID: 30514101 DOI: 10.1080/09603123.2018.1552930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 11/23/2018] [Indexed: 06/09/2023]
Abstract
This study explored the efficacy of the methanolic extract of three Asphodeline species (A. damascena subsp. rugosa, A. tenuior subsp. tenuiflora var. tenuiflora, and A. cilicica) to protect against hydrogen peroxide (H2O2)-induced lactate dehydrogenase (LDH) activity in HCT116 cells, and also any protective effects against lipopolysaccharides (LPS)-induced nitrite levels, prostaglandin E2 (PGE2) and 8-iso-prostaglandin F2α (8-iso-PGF2α) levels, 5HIAA/5-HT ratio, tumor necrosis factor (TNF)-α and interleukin (IL)-6 gene expression in rat colon specimens. Interestingly, A. tenuior extract was most effective in improving the tested biomarkers, by reducing LDH activity and nitrite level. On the other hand, A. damascena was the only species able to blunt LPS-induced TNF-α gene expression in rat colon specimens. The present findings highlighted the protective effects of Asphodeline extracts via in vitro and ex vivo models of inflammation and oxidative stress, adding new insights to the pharmacological actions of these medicinal plant species. Abbreviations: IBD: inflammatory bowel disease; LPS: lipopolysaccharide; LDH: lactate dehydrogenase; 5HIAA: 5-hydroxyindoleacetic acid; 5-HT: 5-hydroxytryptamine.
Collapse
Affiliation(s)
- Gokhan Zengin
- a Department of Biology, Faculty of Science, Selcuk University , Konya , Turkey
| | - Marcello Locatelli
- b Department of Pharmacy, G. d'Annunzio University Chieti-Pescara , Chieti , Italy
| | - Claudio Ferrante
- b Department of Pharmacy, G. d'Annunzio University Chieti-Pescara , Chieti , Italy
| | - Luigi Menghini
- b Department of Pharmacy, G. d'Annunzio University Chieti-Pescara , Chieti , Italy
| | - Giustino Orlando
- b Department of Pharmacy, G. d'Annunzio University Chieti-Pescara , Chieti , Italy
| | - Luigi Brunetti
- b Department of Pharmacy, G. d'Annunzio University Chieti-Pescara , Chieti , Italy
| | - Lucia Recinella
- b Department of Pharmacy, G. d'Annunzio University Chieti-Pescara , Chieti , Italy
| | - Annalisa Chiavaroli
- b Department of Pharmacy, G. d'Annunzio University Chieti-Pescara , Chieti , Italy
| | - Sheila Leone
- b Department of Pharmacy, G. d'Annunzio University Chieti-Pescara , Chieti , Italy
| | - Lidia Leporini
- b Department of Pharmacy, G. d'Annunzio University Chieti-Pescara , Chieti , Italy
| | | | | |
Collapse
|
28
|
Adventitious root cultures of Oplopanax elatus inhibit LPS-induced inflammation via suppressing MAPK and NF-κB signaling pathways. In Vitro Cell Dev Biol Anim 2019; 55:766-775. [PMID: 31529418 DOI: 10.1007/s11626-019-00396-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 08/02/2019] [Indexed: 10/26/2022]
Abstract
Bioreactor-cultured adventitious roots (ARs) of the endangered medicinal plant Oplopanax elatus Nakai is a novel alternative plant material. To utilize ARs in the product production, the present study investigated the anti-inflammatory effect of O. elatus ARs. In the in vivo experiment, lipopolysaccharide (LPS)-induced acute lung injury disease model was established and several inflammatory indexes were determined. For the LPS-stimulated mice, after pretreatment of AR crude extract (200 mg/kg), cell infiltration in lungs was decreased, the production of proinflammatory mediators, including nitric oxide (NO), tumor necrosis factor (TNF)-α, and interleukin (IL)-6, and 1β in the bronchoalveolar lavage fluid was evidently reduced, which indicated that O. elatus ARs had an anti-inflammatory effect. In the in vitro experiment, ethyl acetate (EtOAc) fractions (12.5, 25, and 50 μg/mL) were used to treat LPS-induced peritoneal macrophages (PMs) of mice. The production of NO, prostaglandin E2, TNF-α, IL-6, and IL-1β in LPS-stimulated PMs was obviously inhibited (p < 0.05) after pretreatment with EtOAc fractions, and the expression of the inducible nitric oxide synthase and cyclooxygenase were also suppressed. To clarify the anti-inflammatory mechanism, effects of EtOAc fraction on changes of proteins related to the pathways of mitogen-activated protein kinases (MAPKs) and nuclear factor-kappa B (NF-κB) were investigated. The phosphorylation of extracellular regulated protein kinases, c-jun n-terminal kinase, and p38 MAPK in LPS-induced PMs was inhibited after pretreatment of EtOAc fractions. In addition, EtOAc fractions enhanced inhibitor of nuclear factor-kappa B-α expression and decreased nuclear translocation of p65 NF-κB. Thus, EtOAc from O. elatus ARs is involved in regulating MAKP and NF-κB signaling pathways to inhibit LPS-induced inflammation.
Collapse
|
29
|
Jin L, Yuan F, Chen C, Wu J, Gong R, Yuan G, Zeng H, Pei J, Chen T. Degradation Products of Polydopamine Restrained Inflammatory Response of LPS-Stimulated Macrophages Through Mediation TLR-4-MYD88 Dependent Signaling Pathways by Antioxidant. Inflammation 2019; 42:658-671. [PMID: 30484006 DOI: 10.1007/s10753-018-0923-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Polydopamine (PDA) has a promising application as coating of biomaterials due to its favorable degradability and bioadaptability. However, its bioactivity, such as anti-inflammatory capacity, was still little known. Herein, we investigated whether degradable products of PDA could affect inflammatory response in lipopolysaccharide (LPS)-stimulated human THP-1-derived macrophages. The supernatants containing degradation products of PDA, annotated as PDA extracts, were collected after PDA being immersed in cell culture medium for 3 days. Wherein, the composition of the degradation products was analyzed by HPLC assay. Collected PDA extracts were diluted into 100%, 50%, and 25% of original concentration, respectively, to evaluate their anti-inflammatory ability on LPS-induced macrophages from the expression levels of pro-inflammatory cytokines to associated molecular mechanism. Our results showed that the PDA extracts were mainly composed of dopamine, quinine, and PDA segments. Furthermore, macrophages showed no cytotoxicity after PDA extract treatment with or without LPS, while the release levels of TNF-α and IL-6 by LPS-induced macrophages were decreased in dose-dependent by PDA extract treatment. Additionally, TLR-4 and MYD88 expression in protein and RNA level were downregulated by PDA extracts in LPS-induced macrophages. Similarly, PDA extracts effectively inhibited LPS-induced NF-κB trans-locating into nuclear by inactivation of the phosphorylation of IKK-α/β and IKβ-α. Of note, the production of LPS-induced ROS was reduced by PDA extracts in macrophages, while HO-1 expression, a critical protein of antioxidant signaling pathway, was increased. Based on these results, we proposed a potential mechanism by which degradation products of PDA suppressed inflammation of macrophages via downregulation TLR-4-MYD88-NFκB pathway and simultaneous activation HO-1 pathway, which might be a possible therapeutic target.
Collapse
Affiliation(s)
- Liang Jin
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai, 200240, China.,Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China.,Division of Immunology, Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Feng Yuan
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chenxin Chen
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jing Wu
- Division of Immunology, Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Ruolan Gong
- Division of Immunology, Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.,Department of Allergy and Immunology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Guangyin Yuan
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai, 200240, China.,Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Hui Zeng
- Department of Orthopaedics, Peking University Shenzhen Hospital, Shenzhen, 518036, People's Republic of China.
| | - Jia Pei
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Tongxin Chen
- Division of Immunology, Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China. .,Department of Allergy and Immunology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
30
|
Chen Q, Zhang KX, Li TY, Piao XM, Lian ML, An RB, Jiang J. Cardamine komarovii flower extract reduces lipopolysaccharide-induced acute lung injury by inhibiting MyD88/TRIF signaling pathways. Chin J Nat Med 2019; 17:461-468. [PMID: 31262458 DOI: 10.1016/s1875-5364(19)30053-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Indexed: 12/29/2022]
Abstract
In the present study, we investigated anti-inflammatory effect of Cardamine komarovii flower (CKF) on lipopolysaccharide (LPS)-induced acute lung injury (ALI). We determined the effect of CKF methanolic extracts on LPS-induced pro-inflammatory mediators NO and prostaglandin E2 (PGE2), production of pro-inflammatory cytokines (IL-1β, TNF-α, and IL-6), and related protein expression levels of MyD88/TRIF signaling pathways in peritoneal macrophages (PMs). Nuclear translocation of NF-κB-p65 was analyzed by immunofluorescence. For the in vivo experiments, an ALI model was established to detect the number of inflammatory cells and inflammatory factors (IL-1β, TNF-α, and IL-6) in bronchoalveolar lavage fluid (BALF) of mice. The pathological damage in lung tissues was evaluated through H&E staining. Our results showed that CKF can decrease the production of inflammatory mediators, such as NO and PGE2, by inhibiting their synthesis-related enzymes iNOS and COX-2 in LPS-induced PMs. In addition, CKF can downregulate the mRNA levels of IL-1β, TNF-α, and IL-6 to inhibit the production of inflammatory factors. Mechanism studies indicated that CKF possesses a fine anti-inflammatory effect by regulating MyD88/TRIF dependent signaling pathways. Immunocytochemistry staining showed that the CKF extract attenuates the LPS-induced translocation of NF-kB p65 subunit in the nucleus from the cytoplasm. In vivo experiments revealed that the number of inflammatory cells and IL-1β in BALF of mice decrease after CKF treatment. Histopathological observation of lung tissues showed that CKF can remarkably improve alveolar clearance and infiltration of interstitial and alveolar cells after LPS stimulation. In conclusion, our results suggest that CKF inhibits LPS-induced inflammatory response by inhibiting the MyD88/TRIF signaling pathways, thereby protecting mice from LPS-induced ALI.
Collapse
Affiliation(s)
- Qi Chen
- Key Laboratory of Natural Resource of Changbai Mountain and Functional Molecules (Ministry of Education), Yanbian University, Yanji 133002, China
| | - Ke-Xin Zhang
- Key Laboratory of Natural Resource of Changbai Mountain and Functional Molecules (Ministry of Education), Yanbian University, Yanji 133002, China
| | - Tai-Yuan Li
- Agricultural College, Yanbian University, Yanji 133002, China
| | - Xuan-Mei Piao
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Mei-Lan Lian
- Key Laboratory of Natural Resource of Changbai Mountain and Functional Molecules (Ministry of Education), Yanbian University, Yanji 133002, China; Agricultural College, Yanbian University, Yanji 133002, China
| | - Ren-Bo An
- Key Laboratory of Natural Resource of Changbai Mountain and Functional Molecules (Ministry of Education), Yanbian University, Yanji 133002, China.
| | - Jun Jiang
- Key Laboratory of Natural Resource of Changbai Mountain and Functional Molecules (Ministry of Education), Yanbian University, Yanji 133002, China; Agricultural College, Yanbian University, Yanji 133002, China.
| |
Collapse
|
31
|
Growth, Secondary Metabolites and Enzyme Activity Responses of Two Edible Fern Species to Drought Stress and Rehydration in Northeast China. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9030137] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The drought resistance mechanism of Matteuccia struthiopteris (L.) Todar. and Athyrium multidentatum (Doll.) Ching were measured under natural drought exposure. The results showed that the two edible fern species showed stronger resistance in the early stages of drought, mainly expressed as the decrease of relative leaf water content (RLWC), increase of osmotic substances, secondary metabolites such as flavonoids (FC), total phenols (TPC), proantho cyanidins (PCC) content and enzyme activity (superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX)). The higher RLWC, FC, TPC, PCC and abscisic acid (ABA) content and lower H2O2 content indicates the stronger non-enzymatic antioxidant system and drought resistance of A. multidentatum. However, the proline (Pro) content changed slowly, and the synthesis of soluble protein (SP), total phenols, proantho cyanidins and ABA, SOD activity of two fern species were inhibited in the late stages of drought stress. This study can provide a scientific basis for the cultivation and utilization of edible fern species under forest in Northeast China.
Collapse
|
32
|
Zhang Y, Huang X, Chen H, Zhou D, Yang Z, Wang K, Liu W, Deng S, Yang R, Li J, He R. Discovery of anti-inflammatory terpenoids from Mallotus conspurcatus croizat. JOURNAL OF ETHNOPHARMACOLOGY 2019; 231:170-178. [PMID: 30445108 DOI: 10.1016/j.jep.2018.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 10/16/2018] [Accepted: 11/01/2018] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mallotus conspurcatus croizat (Euphorbiaceae), a plant native to Jinxiu in Guangxi, is popularly used in folk medicine to treat pelvic inflammatory disease. The anti-inflammatory activities of the compounds obtained from M. conspurcatus root were evaluated in this study. AIM OF THE STUDY This study explored the major anti-inflammatory components of this plant. MATERIALS AND METHODS The ethyl acetate fraction of the ethanol extract from M. conspurcatus was separated using chromatographic techniques. The structures of the isolates were elucidated from NMR, MS and X-ray data as well as from ECD. The anti-inflammatory activities of the isolates from M. conspurcatus were evaluated using LPS-stimulated RAW 264.7 cell models. The production of NO, TNF-α and PGE-2 was determined by ELISA and Griess tests. The expression levels of COX-2, NF-κB/p65 and iNOS were measured by western blotting. RESULTS Two new diterpenoids, malloconspur A (1) and malloconspur B (2), and sixteen known terpenoids (3-18) were identified by comprehensive spectroscopic analyses and comparison with literature data. Malloconspur B (2) and 17-hydroxycleistantha-12,15-dien-3-one (3) substantially inhibited the release of NO with IC50 values of 10.47 μM and 9.32 μM, respectively. Compounds 1, 2 and 3 markedly decreased the secretion of PGE2 and TNF-α (P < 0.01) by LPS-induced RAW264.7 cells. Compounds 2 and 3 markedly decreased iNOS, NF-κB/p65 and COX-2 protein expression. CONCLUSIONS Our identification of these diterpenoids provides strong evidence for the use of M. conspurcatus among the Yao people as a medicinal plant for the treatment of inflammation. The dramatic differences in the chemical structures of the active diterpenoids of this plant from those on the market suggest these compounds have potential as anti-inflammatory lead compounds for follow-up research.
Collapse
Affiliation(s)
- Yanjun Zhang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemical & Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; School of Petroleum and Chemical Engineering, Qinzhou University, Qinzhou 535000, China
| | - Xishan Huang
- School of Chemistry, SunYat-sen University, Guangzhou 510275, China
| | - Huangcan Chen
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemical & Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Dexiong Zhou
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemical & Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Zhengmin Yang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemical & Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Ke Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemical & Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Wei Liu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemical & Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Shengping Deng
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemical & Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Ruiyun Yang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemical & Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Jun Li
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemical & Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Ruijie He
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemical & Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; Guangxi Key Laboratory of Functional Phytochemicals Research and Utilization, Guangxi Institute of Botany, Guilin 541006, China.
| |
Collapse
|
33
|
Ji L, Hou X, Liu W, Deng X, Jiang Z, Huang K, Li R. Paeoniflorin inhibits activation of the IRAK1-NF-κB signaling pathway in peritoneal macrophages from lupus-prone MRL/lpr mice. Microb Pathog 2018; 124:223-229. [DOI: 10.1016/j.micpath.2018.08.051] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/20/2018] [Accepted: 08/23/2018] [Indexed: 12/17/2022]
|
34
|
Athyrium plants - Review on phytopharmacy properties. J Tradit Complement Med 2018; 9:201-205. [PMID: 31193938 PMCID: PMC6544609 DOI: 10.1016/j.jtcme.2018.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/07/2018] [Accepted: 09/11/2018] [Indexed: 01/17/2023] Open
Abstract
Athyrium plants consist of more than 230 species that are largely distributed in the Sino-Himalayan region and the Western Pacific islands. Athyrium species are being used in traditional medicine worldwide to treat various ailments such as cough, rheumatic pain, scorpion stings, sores, burns and scalds, intestinal fever, pain, specifically breast pain during child birth, to increase milk flow, as an antiparasitic, anthelmintic, and carminative. A deep look in the literature has revealed that Athyrium species have been poorly investigated for their food preservative applications and in vivo and in vitro biological and phytochemical studies. However, some Athyrium species have demonstrated antimicrobial, anti-inflammatory, antioxidant, antiproliferative and anti-HIV potential. Athyrium multidentatum (Doll.) Ching is the most investigated species and the biological activities of their extracts, such as they antioxidant properties, seem to be related to the sulfate contents of their polysaccharides. This review provides an update on the ethnopharmacology, phytochemistry and biological properties of Athyrium plants that might be useful for further research. Of course, well-designed clinical trials will be required for some species to be used as therapy.
Collapse
|