1
|
Feng X, Yan Z, Ren X, Jia Y, Sun J, Guo J, Gao Z, Li H, Long F. Sea Buckthorn Flavonoid Extracted with High Hydrostatic Pressure Alleviated Shrimp Allergy in Mice through the Microbiota and Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39495351 DOI: 10.1021/acs.jafc.4c06928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Sea buckthorn (Hippophaë rhamnoides L.) known as the deciduous shrub has been reported to have effects of antioxidant, anti-inflammatory, and immunomodulatory activities. Tropomyosin (TM) induced a regulatory immune response associated with food allergy. In this study, a mouse model of food allergy sensitized to tropomyosin (TM) was established to assess the antiallergic properties of sea buckthorn flavonoid extract (SBF). SBF alleviated mice's allergic symptoms and exhibited a significant reduction in the levels of IgE and histamine. Meanwhile, SBF repaired the allergic Th2 cell overpolarization generated by TM, via downregulating the IL-4 production and upregulating IFN-γ production to restore the balance of Th1/Th2 cells. Furthermore, the 16S RNA analysis showed that SBF primarily restored the gut microbiota via increasing the abundance in Chitinophilidae and decreasing in Burkholderiaceae, Pneumatobacteriaceae, and Sphingomonadaceae. Gut metabolomes determined by liquid chromatography-mass spectrometry (LC-MS) suggested that TM upregulated PE (14:0/22:1(13Z)) and SBF decreased formimino-l-glutamic acid and urocanic acid levels. According to the KEGG pathway analysis, SBF treatment has been shown to modulate glycerophospholipid and histidine metabolism to improve allergic reactions. SBF holds great promise as a novel potential agent for the treatment of food allergies.
Collapse
Affiliation(s)
- Xiaoping Feng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhuomin Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaojing Ren
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yining Jia
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jiao Sun
- Department of Breast Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Jing Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhenpeng Gao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Huzhong Li
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Fangyu Long
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
2
|
Xu X, Li X, Chen S, Liang Y, Zhang C, Huang Y. Simultaneous Qualitative and Quantitative Analyses of 41 Constituents in Uvaria macrophylla Leaves Screen Antioxidant Quality-Markers Using Database-Affinity Ultra-High-Performance Liquid Chromatography with Quadrupole Orbitrap Tandem Mass Spectrometry. Molecules 2024; 29:4886. [PMID: 39459254 PMCID: PMC11510267 DOI: 10.3390/molecules29204886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
To date, no study has focused on Uvaria macrophylla leaves with various traditional efficiencies. This paper therefore applied a database affinity ultra-high-performance liquid chromatography with quadrupole Orbitrap tandem mass spectrometry (UHPLC-Q-Orbitrap-MS/MS) strategy to analyze the lyophilized aqueous extract of U. macrophylla leaves. Through database comparison and MS fragment elucidation, this study has putatively identified 41 constituents belonging to flavonoid, phenolic acid, steroid, and saccharide natural product classifications. Significantly, four groups of isomers (liquiritigenin vs. isoliquiritigenin vs. pinocembrin; oroxylin A vs. wogonin vs. galangin 3-methyl ether; isoquercitrin vs. hyperoside; protocatechuic acid vs. 2,5-dihydroxybenzoic acid) have been successfully distinguished from each other. All of 41 constituents were then subjected to a quantitative analysis based on linear regression equation established by the above UHPLC-Q-Orbitrap-MS/MS strategy and an ABTS+•-scavenging antioxidant assay. Finally, the chemical content was multiplied by the corresponding ABTS+•-scavenging percentage to calculate the antioxidant contribution. It was shown that the chemical contents of 41 constituents varied from 0.003 ± 0.000 to 14.418 ± 1.041 mg/g, and gallic acid showed the highest antioxidant contribution. Gallic acid is considered as a suitable antioxidant quality-marker (Q-marker) of U. macrophylla leaves. These findings have scientific implications for the resource development and quality control of U. macrophylla leaves.
Collapse
Affiliation(s)
- Xiaoqiong Xu
- College of Pharmacy, Gansu Medical University, Pingliang 744000, China
| | - Xican Li
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (S.C.); (Y.L.); (Y.H.)
| | - Shaoman Chen
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (S.C.); (Y.L.); (Y.H.)
| | - Yongbai Liang
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (S.C.); (Y.L.); (Y.H.)
| | - Chuanyang Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China;
| | - Yuhan Huang
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (S.C.); (Y.L.); (Y.H.)
| |
Collapse
|
3
|
Hu M, Jin F, Zhang C, Shao J, Wang C, Wang T, Wu D. Sodium houttuyfonate induces bacterial lipopolysaccharide shedding to promote macrophage M1 polarization against acute bacterial lung infection. Biomed Pharmacother 2024; 179:117358. [PMID: 39278188 DOI: 10.1016/j.biopha.2024.117358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 09/18/2024] Open
Abstract
Sodium houttuyfonate (SH), derived from the widely utilized natural herb Houttuynia cordata, exhibits an effective therapeutic effect on various diseases, including bacterial and fungal infections, especially the respiratory tract infection. Therefore, the anti-microbial mechanisms of SH may be different from the single-target action mechanism of conventional antibiotics, and further research is needed to clarify this. Firstly, we discovered that SH can effectively intervene in mouse lung infections by reducing bacterial load and acute inflammation response related to pneumonia caused by Pseudomonas aeruginosa. Interestingly, our results confirmed that SH has surface activity and can directly induce changes in the cell wall the shedding of surface lipopolysaccharide (LPS). Additionally, we found that SH-induced shedding of LPS can induce M1 polarization of macrophages in the early stage, leading to the production of corresponding polarization effector molecules. Subsequently, we discovered that SH-induced M1 polarization cells can effectively phagocytose and kill bacterial cells. The protein expression results indicated that SH can enhance the expression of M1 polarization pathway of TLR4/MyD88/NF-κB during the initial phase of macrophage and pathogen interaction. In summary, our results imply that SH could directly induce the shedding of P. aeruginosa LPS in a surfactant-like manner. Afterwards, the SH induced abscisic LPS can initiate the TLR4/MyD88/NF-κB immune pathway to trigger the M1 polarization of macrophages, which might intervene the P. aeruginosa-caused acute lung infection at early stage. Based on these findings, we attempted to coin the term "immune feedback eradication mechanism against pathogen of natural product" to describe this potent antimicrobial mechanism of SH.
Collapse
Affiliation(s)
- Mengxue Hu
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, China
| | - Feng Jin
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, China
| | - Cangcang Zhang
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, China
| | - Jing Shao
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, 350 Longzihu Road, Hefei 230012, China
| | - Changzhong Wang
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, 350 Longzihu Road, Hefei 230012, China
| | - Tianming Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, 350 Longzihu Road, Hefei 230012, China.
| | - Daqiang Wu
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, 350 Longzihu Road, Hefei 230012, China.
| |
Collapse
|
4
|
Wang N, Ma Q, Zhang J, Wang J, Li X, Liang Y, Wu X. Transcriptomics-based anti-tuberculous mechanism of traditional Chinese polyherbal preparation NiuBeiXiaoHe intermediates. Front Pharmacol 2024; 15:1415951. [PMID: 39364045 PMCID: PMC11446850 DOI: 10.3389/fphar.2024.1415951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/29/2024] [Indexed: 10/05/2024] Open
Abstract
Background Integrated traditional Chinese medicine and biomedicine is an effective method to treat tuberculosis (TB). In our previous research, traditional Chinese medicine preparation NiuBeiXiaoHe (NBXH) achieved obvious anti-TB effects in animal experiments and clinical practice. However, the action mechanism of NBXH has not been elucidated. Method Peripheral blood mononuclear cells (PBMCs) were collected to extract mRNA and differentially expressed (DE) genes were obtained using gene microarray technology. Finally, GEO databases and RT-qPCR were used to verify the results of expression profile. Result After MTB infection, most upregulated DE genes in mice were immune-related genes, including cxcl9, camp, cfb, c4b, serpina3g, and ngp. Downregulated DE genes included lrrc74b, sult1d1, cxxc4, and grip2. After treatment with NBXH, especially high-dose NBXH, the abnormal gene expression was significantly corrected. Some DE genes have been confirmed in multiple GEO datasets or in pulmonary TB patients through RT-qPCR. Conclusion MTB infection led to extensive changes in host gene expression and mainly caused the host's anti-TB immune responses. The treatment using high-dose NBXH partially repaired the abnormal gene expression, further enhanced the anti-TB immunity included autophagy and NK cell-mediated cytotoxicity, and had a certain inhibitory effect on overactivated immune responses.
Collapse
Affiliation(s)
- Nan Wang
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, PLA General Hospital, Beijing, China
| | - Qianqian Ma
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, PLA General Hospital, Beijing, China
- Graduate School, Hebei North University, Zhangjiakou, Hebei, China
| | - Junxian Zhang
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, PLA General Hospital, Beijing, China
| | - Jie Wang
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, PLA General Hospital, Beijing, China
| | - Xiaojun Li
- Graduate School, Hebei North University, Zhangjiakou, Hebei, China
| | - Yan Liang
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, PLA General Hospital, Beijing, China
| | - Xueqiong Wu
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, PLA General Hospital, Beijing, China
| |
Collapse
|
5
|
Khan IU, Jamil Y, Shams F, Farsi S, Humayun M, Hussain A, Ahmad A, Iqbal A, Alrefaei AF, Ali S. Unlocking the in vitro and in vivo antioxidant and anti-inflammatory activities of polysaccharide fractions from Lepidium sativum seed-coat mucilage. Heliyon 2024; 10:e36797. [PMID: 39319123 PMCID: PMC11419874 DOI: 10.1016/j.heliyon.2024.e36797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/18/2024] [Accepted: 08/22/2024] [Indexed: 09/26/2024] Open
Abstract
Inflammation coupled with oxidative stress contribute to the pathogenicity of various clinical disorders. Oxidative stress arises from an imbalance between production of reactive oxygen species (ROS) and antioxidant defense system, leading to cellular damages. The study investigated the antioxidant and anti-inflammatory effects of polysaccharides isolated from Lepidium sativum seed-coat mucilage. The water-soluble polysaccharides were extracted from mucilage and fractionated using gel permeation chromatography. The radical scavenging potential of various fractions was determined using DPPH, H2O2, and lipid peroxidation assays. The most effective EC50 was recorded for F53 (57.41 ± 1.34 μg/mL), followed by F20 (69.19 ± 0.61 μg/mL) and F52 (75.06 ± 0.45 μg/mL). In vitro anti-inflammatory effect was determined through human membrane stabilization assay while the in vivo effect was evaluated using a carrageenan-induced paw edema in mouse model where F53 demonstrated significant (P = 0.05) anti-inflammatory potential (92.60 % compared to diclofenac sodium 91.46 %). GC-MS analysis revealed the presence of galacturonic acid and glucuronic acid as main acidic monosaccharides along with varying quantities of rhamnose, arabinose, and maltose as prominent neutral monosaccharides. The study concludes that cress seed mucilage contains potent antioxidant and anti-inflammatory polysaccharides. Further studies on the mode of action of these polysaccharides could provide deeper insights into their potential use as antioxidant and anti-inflammatory agents.
Collapse
Affiliation(s)
- Imdad Ullah Khan
- Department of Biotechnology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Yusra Jamil
- Department of Biotechnology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Fareeha Shams
- Department of Biotechnology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Salman Farsi
- Department of Biotechnology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Humayun
- Department of Botany, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Anwar Hussain
- Department of Botany, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Ayaz Ahmad
- Department of Biotechnology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Amjad Iqbal
- Department of Food Science and Technology, Abdul Wali Khan University Mardan Khyber Pakhtunkhwa, Pakistan
| | | | - Sajid Ali
- Department of Horticulture and Life Science, Yeungnam University, Republic of Korea
| |
Collapse
|
6
|
Li Y, Yin Y, Xiong J, Zhang Z, Li L, Zhang B, Zhang F, Mao D. Combining Network Pharmacology and Transcriptomics to Investigate the Mechanisms of Yujiang Paidu Decoction in the Treatment of Chronic Rhinosinusitis with Nasal Polyps. Drug Des Devel Ther 2024; 18:3791-3809. [PMID: 39219695 PMCID: PMC11365509 DOI: 10.2147/dddt.s461769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Background Yujiang Paidu Decoction (YJPD) has demonstrated clinical efficacy in the treatment of chronic rhinosinusitis. However, the effects and mechanisms of the YJPD on chronic rhinosinusitis with nasal polyps (CRSwNP) remain unclear. Purpose This study aimed to elucidate the potential mechanism of action of YJPD in the treatment of CRSwNP based on network pharmacology, transcriptomics and experiments. Methods A CRSwNP mouse model was established using ovalbumin (OVA) and staphylococcus aureus enterotoxin B (SEB) for 12 weeks and the human nasal epithelial cell (HNEpC) model was induced with IL-13 in vitro. Behavioral tests, scanning electron microscopy (SEM), micro-CT and pathological change of nasal tissues were observed to investigate the therapeutic effects of YJPD. Network pharmacology and transcriptomics were launched to explore the pharmacological mechanisms of YJPD in CRSwNP treatment. Finally, an ELISA, immunofluorescence, RT-qPCR, Western blotting and Tunel were performed for validation. Results Different doses of YJPD intervention effectively alleviated rubbing and sneezing symptoms in CRSwNP mice. Additionally, YJPD significantly reduced abnormal serological markers, structural damage of the nasal mucosa, inflammatory cell infiltration, goblet cell increases, and inhibited OVA-specific IgE levels and the secretion of Th2 cytokines such as IL-4, IL-5, and IL-13. Moreover, transcriptomics and network pharmacology analyses indicated that YJPD may exert anti-inflammatory and anti-apoptotic effects by inhibiting the MAPK/AP-1 signaling pathway. The experimental findings supported this conclusion, which was further corroborated by similar results observed in IL13-induced HNEpCs in vitro. Conclusion YJPD could alleviate inflammatory status and epithelial apoptosis by inhibiting aberrant activation of MAPK/AP-1 signaling pathway. This finding provides a strong basis for using YJPD as a potential treatment in CRSwNP.
Collapse
Affiliation(s)
- Yujie Li
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yadong Yin
- Xijing Hospital, Air Force Medical University, Xi’an, People’s Republic of China
| | - Juan Xiong
- Department of Otorhinolaryngology, Yongchuan Chinese Medicine Hospital Affiliated to Chongqing Medical University, Chongqing, People’s Republic of China
| | - Zhipeng Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, People’s Republic of China
| | - Linglong Li
- Department of Otorhinolaryngology, Yongchuan Chinese Medicine Hospital Affiliated to Chongqing Medical University, Chongqing, People’s Republic of China
| | - Baoshun Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, People’s Republic of China
| | - Feng Zhang
- Department of Otorhinolaryngology, Yongchuan Chinese Medicine Hospital Affiliated to Chongqing Medical University, Chongqing, People’s Republic of China
| | - Dehong Mao
- Department of Otorhinolaryngology, Yongchuan Chinese Medicine Hospital Affiliated to Chongqing Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
7
|
Meng X, Xia C, Wu H, Gu Q, Li P. Metabolism of quercitrin in the colon and its beneficial regulatory effects on gut microbiota. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39043159 DOI: 10.1002/jsfa.13747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/11/2024] [Accepted: 06/30/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND Quercitrin is a dietary flavonoid widely found in plants with various physiological activities. However, whether quercitrin alters gut microbiota in vivo is not well understood. The aim of this study was to investigate metabolism of quercitrin in the colon and its regulation on gut microbiota in mice. RESULTS Herein, 22 flavonoids related to quercitrin metabolism were identified based on ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS). Gas chromatography and 16S rDNA gene sequencing were used to investigate short-chain fatty acid (SCFA) content and diversity of composition of gut microbiota, respectively. The results showed that quercitrin significantly alters the beta-diversity of the gut microbiota, probiotics such as Akkermansia and Lactococcus were significantly increased, and the production of propanoate, isovalerate and hexanoate of the quercitrin group were enhanced significantly. The Spearman's association analysis provided evidence that Gardnerella and Akkermansia have obvious correlations with most of quercitrin metabolites and SCFAs. CONCLUSION Quercitrin and its metabolites in the colon altered the structure of the mice gut microbiota and increased the content of SCFAs. Our experiments provide valuable insights into quercitrin research and application. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xia Meng
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Chenlan Xia
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Hongchen Wu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
8
|
Xu C, Yang L, Cheng T, Wang Z, Liu C, Shao J. Sodium Houttuyfonate Ameliorates DSS-induced Colitis Aggravated by Candida albicans through Dectin-1/NF-κB/miR-32-5p/NFKBIZ Axis Based on Intestinal microRNA Profiling. Inflammation 2024:10.1007/s10753-024-02091-6. [PMID: 38963571 DOI: 10.1007/s10753-024-02091-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
Our previous research indicated that Sodium houttuyfonate (SH) can effectively ameliorate dextran sulfate sodium (DSS)-induced colitis exacerbated by Candida albicans. However, the underlying protective mechanism of SH remains unclear. Therefore, in this study, a mice colitis model was infected with C. albicans, and the total colonic miRNAs were assessed. Furthermore, the differentially expressed miRNAs were enriched, clustered, and analyzed. Moreover, based on the dual luciferase analysis of NFKBIZ modulation by miR-32-5p, the in vitro and in vivo therapeutic effects of SH on inflammatory response, fungal burden, oxidative stress, and apoptosis were assessed at transcriptional and translational levels in the presence of agonist and antagonist. A total of 1157 miRNAs were identified, 84 of which were differentially expressed. Furthermore, qRT-PCR validated that SH treatment improved 17 differentially expressed miRNAs with > fourfold upregulation or > sixfold downregulation. Similar to most differentially altered miRNA, C. albicans significantly increased Dectin-1, NF-κB, TNF-α, IL-1β, IL-17A, and decreased miR-32-5p which negatively targeted NFKBIZ. In addition, SH treatment reduced inflammatory response and fungal burden in a colitis model with C. albicans infection. Further analyses indicated that in C. albicans infected Caco2 cells, SH inhibited fungal growth, oxidative stress, and apoptosis by increasing Dectin-1, NF-κB, NFKBIZ, TNF-α, IL-1β, IL-17A, and decreasing miR-32-5p. Therefore, SH can ameliorate the severity of colitis aggravated by C. albicans via the Dectin-1/NF-κB/miR-32-5p/NFKBIZ axis.
Collapse
Affiliation(s)
- Chen Xu
- Laboratory of Anti-Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 433 Room, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, P. R. China
| | - Liu Yang
- Laboratory of Anti-Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 433 Room, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, P. R. China
| | - Ting Cheng
- Laboratory of Anti-Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 433 Room, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, P. R. China
| | - Zixu Wang
- Laboratory of Anti-Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 433 Room, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, P. R. China
| | - Chengcheng Liu
- Laboratory of Anti-Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 433 Room, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, P. R. China
| | - Jing Shao
- Laboratory of Anti-Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 433 Room, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, P. R. China.
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, P. R. China.
| |
Collapse
|
9
|
Zhao D, Yang C, Xiao C, Zhou T, Wu D, Wang S, Kang C, Guo L, Yang Y, Lyu C. Quality evaluation and identification of Houttuynia cordata bleached with sodium metabisulfite based on whole spectrum metabolomics. Food Chem X 2024; 22:101463. [PMID: 38798794 PMCID: PMC11127148 DOI: 10.1016/j.fochx.2024.101463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024] Open
Abstract
Houttuynia Cordata (HC) is a widely distributed plant in Asia and is used extensively for both food and medicinal purposes. A preliminary investigation found that HC is often bleached with sodium metabisulfite solution during its field processing, leading to health risks. In this study, the effects of sodium metabisulfite on the quality of HC were comprehensively evaluated using volatile and non-volatile targeted metabolomic methods. The results revealed a positive correlation between the extent of chemical composition changes and the bleaching time. These notable changes mainly occurred at the initial stage of bleaching. Subsequently, an untargeted UPLC/Q-TOF MS method was used to explore the potential chemical bleaching markers in bleached HC. The marker 1-hydroxy-3-oxodecane-1-sulfonic acid was subsequently prepared, isolated, and identified. Market sample verification further validated the accuracy and effectiveness of this marker.
Collapse
Affiliation(s)
- Dan Zhao
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - ChangGui Yang
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - ChengHong Xiao
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Tao Zhou
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - DeHua Wu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR. China
| | - Sheng Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR. China
| | - ChuanZhi Kang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR. China
| | - LanPing Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR. China
| | - Ye Yang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - ChaoGeng Lyu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR. China
- Key Laboratory of Biology and Cultivation of Herb Medicine (Beijing), Ministry of Agriculture and Rural Affairs, Beijing, 100700, China
| |
Collapse
|
10
|
He Y, Wang Z, Li S, Chen P, Liu K, Li M, Wang Y, Shaukat A, Abdullah M, Li S, Huang S, Jian F. Effects of three kinds of Chinese herbs on growth performance, oocysts output and gut microbiota in growing lambs with coccidiosis. Folia Parasitol (Praha) 2024; 71:2024.009. [PMID: 38813809 DOI: 10.14411/fp.2024.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 02/05/2024] [Indexed: 05/31/2024]
Abstract
Coccidiosis is a protozoan intestinal disease that reduces the production of the sheep industry and causes large economic losses for sheep. Although chemically synthesised drugs are routinely employed to treat coccidiosis in sheep, the anticoccidial drug resistance and drug residues in edible meat have prompted an urgent search for alternatives. Herein, the anticoccidial properties of diclazuril, a conventional anticoccidial drug, and Allium sativum, Houttuynia cordata and Portulaca oleracea were assessed. Forty 45-day-old lambs naturally infected with Eimeria spp. were selected and randomly divided into five groups. The results showed that the sheep treated for coccidiosis had considerably decreased average daily gain (ADG) during both administration and withdrawal of the drug compared to the control group. Furthermore, at days 14, 21, 28 and 35, respectively, the three herbs and diclazuril had similar anticoccidial effects, with lower oocysts per gram (OPG) than the control group. On day 78, OPG in the three herbal groups was significantly lower than in the diclazuril group. In addition, the abundance and composition of the gut microbiota were changed in sheep treated with the three herbs and diclazuril compared to the untreated sheep. Moreover, some intestinal microorganisms have a correlation with OPG and ADG when using Spearman correlation analysis. In summary, our results suggest that all three herbs produce anticoccidial effects similar to diclazuril and modulate the balance of gut microbiota in growing lambs.
Collapse
Affiliation(s)
- Yanfeng He
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Zhanming Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Shijie Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Pan Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Kaili Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Manman Li
- Henan Zhongyang Animal Husbandry Co. Ltd., China
| | - Yingmin Wang
- Henan Zhongyang Animal Husbandry Co. Ltd., China
| | - Aftab Shaukat
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan, China
| | - Muhammad Abdullah
- Cholistan Institute of Desert Studies, The Islamia University of Bahawalpur, Pakistan. # These authors contributed equally. *Corresponding author: Shucheng Huang, E-mail: , ORCID: 0000-0003-3163-8616; Fuchun Jian, E-mail: , ORCID: 0000-0001-9481-2277. Address for correspondence: College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Senyang Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Shucheng Huang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Fuchun Jian
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
11
|
Cui R, Zhang C, Pan ZH, Hu TG, Wu H. Probiotic-fermented edible herbs as functional foods: A review of current status, challenges, and strategies. Compr Rev Food Sci Food Saf 2024; 23:e13305. [PMID: 38379388 DOI: 10.1111/1541-4337.13305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/22/2024]
Abstract
Recently, consumers have become increasingly interested in natural, health-promoting, and chronic disease-preventing medicine and food homology (MFH). There has been accumulating evidence that many herbal medicines, including MFH, are biologically active due to their biotransformation through the intestinal microbiota. The emphasis of scientific investigation has moved from the functionally active role of MFH to the more subtle role of biotransformation of the active ingredients in probiotic-fermented MFH and their health benefits. This review provides an overview of the current status of research on probiotic-fermented MFH. Probiotics degrade toxins and anti-nutritional factors in MFH, improve the flavor of MFH, and increase its bioactive components through their transformative effects. Moreover, MFH can provide a material base for the growth of probiotics and promote the production of their metabolites. In addition, the health benefits of probiotic-fermented MFH in recent years, including antimicrobial, antioxidant, anti-inflammatory, anti-neurodegenerative, skin-protective, and gut microbiome-modulating effects, are summarized, and the health risks associated with them are also described. Finally, the future development of probiotic-fermented MFH is prospected in combination with modern development technologies, such as high-throughput screening technology, synthetic biology technology, and database construction technology. Overall, probiotic-fermented MFH has the potential to be used in functional food for preventing and improving people's health. In the future, personalized functional foods can be expected based on synthetic biology technology and a database on the functional role of probiotic-fermented MFH.
Collapse
Affiliation(s)
- Rui Cui
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Cong Zhang
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Zhen-Hui Pan
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Teng-Gen Hu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Hong Wu
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| |
Collapse
|
12
|
Yan Z, Feng X, Li X, Gao Z, Wang Z, Ren G, Long F. Sea Buckthorn Flavonoid Extracted by High Hydrostatic Pressure Inhibited IgE-Stimulated Mast Cell Activation through the Mitogen-Activated Protein Kinase Signaling Pathway. Foods 2024; 13:560. [PMID: 38397537 PMCID: PMC10887968 DOI: 10.3390/foods13040560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 01/25/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Sea buckthorn (Hippophaë rhamnoides L.), as one of the Elaeagnaceae family, has the significant function of anti-tumor, anti-inflammation, anti-oxidation, and other physiological activities. High hydrostatic pressure (HHP) extraction has the advantages of being easy and efficient, while maintaining biological activity. In this study, sea buckthorn flavonoid (SBF) was extracted with HHP and purified sea buckthorn flavonoid (PSBF) was isolated by AB-8 macroporous resin column. HPLC analysis was used to quantified them. In addition, the effect of anti-allergy in RBL-2H3 cells by SBF, PSBF, and their flavonoid compounds was evaluated. The results demonstrate the conditions for obtaining the maximum flavonoid amount of SBF: 415 MPa for 10 min, 72% ethanol concentration, and a liquid to solid ratio of 40 mL/g, which increased the purity from 1.46% to 13.26%. Both SBF and PSBF included rutin, quercitrin, quercetin, isorhamnetin, and kaempferol. In addition, quercitrin, kaempferol, and SBF could regulate Th1/Th2 cytokine balance. Moreover, extracellular Ca2+ influx was reduced by quercitrin and PSBF. Furthermore, rutin, quercetin, iso-rhamnetin, and SBF could also inhibit P-p38 and P-JNK expression, thereby suppressing the phosphorylation of the MAPK signaling pathways. Overall, SBF is effective for relieving food allergy and might be a promising anti-allergic therapeutic agent.
Collapse
Affiliation(s)
- Zhuomin Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (Z.Y.); (X.F.); (X.L.); (Z.G.); (Z.W.)
| | - Xiaoping Feng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (Z.Y.); (X.F.); (X.L.); (Z.G.); (Z.W.)
| | - Xinian Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (Z.Y.); (X.F.); (X.L.); (Z.G.); (Z.W.)
| | - Zhenpeng Gao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (Z.Y.); (X.F.); (X.L.); (Z.G.); (Z.W.)
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (Z.Y.); (X.F.); (X.L.); (Z.G.); (Z.W.)
| | - Guangxu Ren
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Beijing 100081, China;
| | - Fangyu Long
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (Z.Y.); (X.F.); (X.L.); (Z.G.); (Z.W.)
| |
Collapse
|
13
|
Wang K, Yang Z, Luo S, Quan W. Endophytic Pseudomonas fluorescens promotes changes in the phenotype and secondary metabolite profile of Houttuynia cordata Thunb. Sci Rep 2024; 14:1710. [PMID: 38243055 PMCID: PMC10798976 DOI: 10.1038/s41598-024-52070-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 01/12/2024] [Indexed: 01/21/2024] Open
Abstract
The interactions between microbes and plants are governed by complex chemical signals, which can forcefully affect plant growth and development. Here, to understand how microbes influence Houttuynia cordata Thunb. plant growth and its secondary metabolite through chemical signals, we established the interaction between single bacteria and a plant. We inoculated H. cordata seedlings with bacteria isolated from their roots. The results showed that the total fresh weight, the total dry weight, and the number of lateral roots per seedling in the P. fluorescens-inoculated seedlings were 174%, 172% and 227% higher than in the control seedlings. Pseudomonas fluorescens had a significant promotional effect of the volatile contents compared to control, with β-myrcene increasing by 192%, 2-undecanone by 203%, decanol by 304%, β-caryophyllene by 197%, α-pinene by 281%, bornyl acetate by 157%, γ-terpinene by 239% and 3-tetradecane by 328% in P. fluorescens-inoculated H. cordata seedlings. the contents of chlorogenic acid, rutin, quercitin, and afzelin were 284%, 154%, 137%, and 213% higher than in control seedlings, respectively. Our study provided basic data to assess the linkages between endophytic bacteria, plant phenotype and metabolites of H. cordata to provide an insight into P. fluorescens use as biological fertilizer, promoting the synthesis of medicinal plant compounds.
Collapse
Affiliation(s)
- Kaifeng Wang
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang, Guizhou, China
| | - Zhannan Yang
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang, Guizhou, China.
| | - Shiqiong Luo
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang, Guizhou, China.
- School of Life Science, Guizhou Normal University, Guiyang, Guizhou, China.
| | - Wenxuan Quan
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang, Guizhou, China
| |
Collapse
|
14
|
Xu XX, Shao H, Wang QX, Wang ZY. Network Pharmacology and Experimental Validation Explore the Pharmacological Mechanisms of Herb Pair for Treating Rheumatoid Arthritis. Comb Chem High Throughput Screen 2024; 27:1808-1822. [PMID: 38213142 DOI: 10.2174/0113862073263839231129163200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/20/2023] [Accepted: 11/01/2023] [Indexed: 01/13/2024]
Abstract
OBJECTIVE This study aimed to elucidate the multitarget mechanism of the Mori Ramulus - Taxilli Herba (MT) herb pair in treating rheumatoid arthritis (RA). METHODS The targets of the herb pair and RA were predicted from databases and screened through cross-analysis. The core targets were obtained using protein-protein interaction (PPI) network analysis. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed. Finally, animal experiments were conducted to validate the anti-RA effect and mechanism of this herb pair. RESULTS This approach successfully identified 9 active compounds of MT that interacted with 6 core targets (AKT1, TNF, IL6, TP53, VEGFA, and IL1β). Pathway and functional enrichment analyses revealed that MT had significant effects on the TNF and IL-17 signaling pathways. The consistency of interactions between active components and targets in these pathways was confirmed through molecular docking. Moreover, the potential therapeutic effect of MT was verified in vivo, demonstrating its ability to effectively relieve inflammation by regulating these targeted genes and pathways. CONCLUSION The present work suggests that the therapeutic effect of MT herb pair on RA may be attributed to its ability to regulate the TNF signaling pathway and IL-17 signaling pathway.
Collapse
Affiliation(s)
- Xi-Xi Xu
- Department of Pharmacy, Zhongda Hospital, Southeast University, Nanjing, 210009, P. R. China
| | - Hua Shao
- Department of Pharmacy, Zhongda Hospital, Southeast University, Nanjing, 210009, P. R. China
| | - Qiao-Xue Wang
- Department of Pharmacy, Zhongda Hospital, Southeast University, Nanjing, 210009, P. R. China
| | - Zi-Yuan Wang
- Public Experimental Platform, China Pharmaceutical University, Nanjing, 211100, P. R. China
| |
Collapse
|
15
|
Wei P, Luo Q, Hou Y, Zhao F, Li F, Meng Q. Houttuynia Cordata Thunb.: A comprehensive review of traditional applications, phytochemistry, pharmacology and safety. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155195. [PMID: 37956635 DOI: 10.1016/j.phymed.2023.155195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/15/2023] [Accepted: 11/06/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Houttuynia Cordata Thunb. (H. cordata; Saururaceae) is a medicine food homology plant that is grown in many Asian countries. Its main phytochemical constituents are volatile oils, flavonoids, polysaccharides and alkaloids. It has considerable clinical applications and health benefits. PURPOSE This paper reviews the existing literatures and patents, summarizes the phytochemistry, pharmacological activity, safety and economic botanical applications of H. cordata, and provides a reference for systematic study of the pharmacological effects of H. cordata, improvement of quality standards and further development of its medicinal resources. METHODS A comprehensive search of literature and patents on H. cordata and its active ingredients published before June 2023 was conducted using PubMed, Google Scholar, Web of Science, and China Knowledge Network. RESULTS H. cordata is not only edible and medicinal but also used in various aspects of daily life such as fermented beverages, nutraceuticals, feed and cosmetics. The main phytochemical constituents of H. cordata are volatile oils, flavonoids, organic acids and alkaloids. Several in vitro and in vivo studies and clinical trials have found that H. cordata extracts possess antioxidant, anti-inflammatory, antitumor, antibacterial, hepatoprotective and renal, immunomodulatory and potent antiviral effects. The mechanisms of expression of these pharmacological effects are related to the blood-brain barrier, lipophilicity, cAMP signaling and skin permeability, including blocking the MAPK signaling pathway, inhibiting the secretion of inflammatory factors such as TNF-α and IL-1β, and activating the AMPK pathway. CONCLUSION This paper provides a comprehensive review of the progress of research on the traditional applications, botany, chemical composition, pharmacological effects and safety of H. cordata and discusses for the first time the economic botanical aspects, which were not explored in the previous reviews. H. cordata has a wide range of bioactive substances whose therapeutic potential has not been fully exploited, and it could provide a new non-toxic approach to many diseases. This traditional medicinal food plant should receive more attention and in-depth research in the future.
Collapse
Affiliation(s)
- Panpan Wei
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Qin Luo
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Yun Hou
- Department of Histology and Embryology, Basic Medical College, Binzhou Medical University, Yantai 264003, China
| | - Fenglan Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Feng Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| | - Qingguo Meng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| |
Collapse
|
16
|
Wang S, Li L, Chen Y, Liu Q, Zhou S, Li N, Wu Y, Yuan J. Houttuynia cordata thunb. alleviates inflammatory bowel disease by modulating intestinal microenvironment: a research review. Front Immunol 2023; 14:1306375. [PMID: 38077358 PMCID: PMC10702737 DOI: 10.3389/fimmu.2023.1306375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a complex group of chronic intestinal diseases, the cause of which has not yet been clarified, but it is widely believed that the disorder of the intestinal microenvironment and its related functional changes are key factors in the development of the disease. Houttuynia cordata thunb. is a traditional plant with abundant resources and long history of utilization in China, which has attracted widespread attention in recent years due to its potential in the treatment of IBD. However, its development and utilization are limited owing to the aristolochic acid alkaloids contained in it. Therefore, based on the relationship between the intestinal microenvironment and IBD, this article summarizes the potential mechanisms by which the main active ingredients of Houttuynia cordata thunb., such as volatile oils, polysaccharides, and flavonoids, and related traditional Chinese medicine preparations, such as Xiezhuo Jiedu Formula, alleviate IBD by regulating the intestinal microenvironment. At the same time, combined with current reports, the medicinal and edible safety of Houttuynia cordata thunb. is explained for providing ideas for further research and development of Houttuynia chordate thunb. in IBD disease, more treatment options for IBD patients, and more insights into the therapeutic potential of plants with homology of medicine and food in intestinal diseases, and even more diseases.
Collapse
Affiliation(s)
- Si Wang
- First Clinical School of Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Lei Li
- College of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yuhan Chen
- College of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Qian Liu
- College of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Shengyu Zhou
- College of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Ning Li
- First Clinical School of Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yueying Wu
- College of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Jiali Yuan
- College of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| |
Collapse
|
17
|
Pandey S, Kim ES, Cho JH, Song M, Doo H, Kim S, Keum GB, Kwak J, Ryu S, Choi Y, Kang J, Choe J, Kim HB. Cutting-edge knowledge on the roles of phytobiotics and their proposed modes of action in swine. Front Vet Sci 2023; 10:1265689. [PMID: 37808106 PMCID: PMC10552858 DOI: 10.3389/fvets.2023.1265689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
With the ban on antibiotics in the swine industry, the exploration of alternative options has highlighted phytobiotics as a promising substitute for antibiotic growth promoters, aiming to foster a more sustainable swine industry. Phytobiotics are non-nutritive natural bioactive components derived from plants that offer numerous health benefits. They exhibit antioxidative, antimicrobial, and anti-inflammatory effects. Phytobiotics can be utilized in various forms, including solid, dried, ground, or as extracts, either in crude or concentrated form. They are characterized by low residual levels, a lack of resistance development, and minimal adverse effects. These qualities make phytobiotics an attractive choice for enhancing health and productivity in swine, presenting them as a viable alternative to antibiotics. While there is a general understanding of the effects of phytobiotics, there is still a need for detailed information regarding their effectiveness and mechanisms of action in practical settings. Therefore, the purpose of this mini review was to summarize the current knowledge supporting the roles of phytobiotics and their proposed modes of action, with a specific focus on swine.
Collapse
Affiliation(s)
- Sriniwas Pandey
- Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea
| | - Eun Sol Kim
- Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea
| | - Jin Ho Cho
- Division of Food and Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Minho Song
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Republic of Korea
| | - Hyunok Doo
- Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea
| | - Sheena Kim
- Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea
| | - Gi Beom Keum
- Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea
| | - Jinok Kwak
- Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea
| | - Sumin Ryu
- Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea
| | - Yejin Choi
- Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea
| | - Juyoun Kang
- Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea
| | - Jeehwan Choe
- Major of Beef Science, Department of Livestock, Korea National University of Agriculture and Fisheries, Jeonju, Republic of Korea
| | - Hyeun Bum Kim
- Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
18
|
Nguyen MH, Ha DL, Do BM, Chau NTN, Tran TH, Le NTH, Le MT. RP-HPLC-Based Flavonoid Profiling Accompanied with Multivariate Analysis: An Efficient Approach for Quality Assessment of Houttuynia cordata Thunb Leaves and Their Commercial Products. Molecules 2023; 28:6378. [PMID: 37687204 PMCID: PMC10489801 DOI: 10.3390/molecules28176378] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/20/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Chemical profiling for quality monitoring and evaluation of medicinal plants is gaining attention. This study aims to develop an HPLC method followed by multivariate analysis to obtain HPLC profiles of five specific flavonoids, including rutin (1), hyperin (2), isoquercitrin (3), quercitrin (4), and quercetin (5) from Houttuynia cordata leaves and powder products and assess the quality of H. cordata samples. Eventually, we successfully established HPLC-based flavonoid profiles and quantified the contents of 32 H. cordata fresh leave samples and four powder products. The study also quantified the contents of those five essential flavonoids using an optimized RP-HPLC method. Peak areas of samples were then investigated with principal component analysis (PCA) and hierarchical cluster analysis (HCA) to evaluate the similarity and variance. Principal components in PCA strongly influenced by hyperin and quercetin showed that the samples were clustered into subgroups, demonstrating H. cordata samples' quality. The results of HCA showed the similarity and divided the samples into seven subgroups. In conclusion, we have successfully developed a practical methodology that combined the HPLC-based flavonoid profiling and multivariate analysis for the quantification and quality control of H. cordata samples from fresh leaves and powder products. For further studies, we will consider various environmental factors, including climate and soil factors, to investigate their effects on the flavonoid contents of H. cordata.
Collapse
Affiliation(s)
- Minh Hien Nguyen
- School of Medicine, Vietnam National University Ho Chi Minh City, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam; (D.L.H.); (B.M.D.); (N.T.N.C.); (T.H.T.); (N.T.H.L.)
- Vietnam National University Ho Chi Minh City, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Dieu Ly Ha
- School of Medicine, Vietnam National University Ho Chi Minh City, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam; (D.L.H.); (B.M.D.); (N.T.N.C.); (T.H.T.); (N.T.H.L.)
- Vietnam National University Ho Chi Minh City, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Binh Minh Do
- School of Medicine, Vietnam National University Ho Chi Minh City, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam; (D.L.H.); (B.M.D.); (N.T.N.C.); (T.H.T.); (N.T.H.L.)
- Vietnam National University Ho Chi Minh City, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Ngoc Trong Nghia Chau
- School of Medicine, Vietnam National University Ho Chi Minh City, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam; (D.L.H.); (B.M.D.); (N.T.N.C.); (T.H.T.); (N.T.H.L.)
- Vietnam National University Ho Chi Minh City, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Thi Huong Tran
- School of Medicine, Vietnam National University Ho Chi Minh City, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam; (D.L.H.); (B.M.D.); (N.T.N.C.); (T.H.T.); (N.T.H.L.)
- Vietnam National University Ho Chi Minh City, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Nguyen Thien Han Le
- School of Medicine, Vietnam National University Ho Chi Minh City, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam; (D.L.H.); (B.M.D.); (N.T.N.C.); (T.H.T.); (N.T.H.L.)
- Vietnam National University Ho Chi Minh City, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Minh Tri Le
- School of Medicine, Vietnam National University Ho Chi Minh City, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam; (D.L.H.); (B.M.D.); (N.T.N.C.); (T.H.T.); (N.T.H.L.)
- Vietnam National University Ho Chi Minh City, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam
- Faculty of Pharmacy, University of Medicine and Pharmacy of Ho Chi Minh City, Dinh Tien Hoang Street, Ben Nghe Ward, 1 District, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
19
|
Huang AS, Tong BCK, Hung HCH, Wu AJ, Ho OKY, Kong AHY, Leung MMK, Bai J, Fu X, Yu Z, Li M, Leung TF, Mak JCW, Leung GPH, Cheung KH. Targeting calcium signaling by inositol trisphosphate receptors: A novel mechanism for the anti-asthmatic effects of Houttuynia cordata. Biomed Pharmacother 2023; 164:114935. [PMID: 37245337 DOI: 10.1016/j.biopha.2023.114935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/09/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023] Open
Abstract
Asthma is a chronic inflammatory disease characterized by airway hypersensitivity and remodeling. The current treatments provide only short-term benefits and may have undesirable side effects; thus, alternative or supplementary therapy is needed. Because intracellular calcium (Ca2+) signaling plays an essential role in regulating the contractility and remodeling of airway smooth muscle cells, the targeting of Ca2+ signaling is a potential therapeutic strategy for asthma. Houttuynia cordata is a traditional Chinese herb that is used to treat asthma due to its anti-allergic and anti-inflammatory properties. We hypothesized that H. cordata might modulate intracellular Ca2+ signaling and could help relieve asthmatic airway remodeling. We found that the mRNA and protein levels of inositol trisphosphate receptors (IP3Rs) were elevated in interleukin-stimulated primary human bronchial smooth muscle cells and a house dust mite-sensitized model of asthma. The upregulation of IP3R expression enhanced intracellular Ca2+ release upon stimulation and contributed to airway remodeling in asthma. Intriguingly, pretreatment with H. cordata essential oil rectified the disruption of Ca2+ signaling, mitigated asthma development, and prevented airway narrowing. Furthermore, our analysis suggested that houttuynin/2-undecanone could be the bioactive component in H. cordata essential oil because we found similar IP3R suppression in response to the commercially available derivative sodium houttuyfonate. An in silico analysis showed that houttuynin, which downregulates IP3R expression, binds to the IP3 binding domain of IP3R and may mediate a direct inhibitory effect. In summary, our findings suggest that H. cordata is a potential alternative treatment choice that may reduce asthma severity by targeting the dysregulation of Ca2+ signaling.
Collapse
Affiliation(s)
- Alexis Shiying Huang
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region of China
| | - Benjamin Chun-Kit Tong
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region of China
| | - Harry Chun-Hin Hung
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region of China
| | - Aston Jiaxi Wu
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region of China
| | - Olivia Ka-Yi Ho
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region of China
| | - Anna Hau-Yee Kong
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region of China
| | - Maggie Ming-Ki Leung
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region of China
| | - Jingxuan Bai
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region of China
| | - Xiuqiong Fu
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region of China
| | - Zhiling Yu
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region of China
| | - Min Li
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region of China
| | - Ting Fan Leung
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Judith Choi-Wo Mak
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - King-Ho Cheung
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region of China.
| |
Collapse
|
20
|
Ho TY, Lo HY, Lu GL, Liao PY, Hsiang CY. Analysis of target organs of Houttuynia cordata: A study on the anti-inflammatory effect of upper respiratory system. JOURNAL OF ETHNOPHARMACOLOGY 2023:116687. [PMID: 37244408 DOI: 10.1016/j.jep.2023.116687] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Houttuynia cordata Thunb. (HC) is a traditional anti-pyretic herb that is classified as the lung meridian in traditional Chinese medicine. However, no articles have explored the main organs responsible for the anti-inflammatory activities of HC. AIM OF THE STUDY The aim of the study was to investigate the meridian tropism theory of HC in lipopolysaccharide (LPS)-induced pyretic mice, as well as to identify the underlying mechanisms. MATERIALS AND METHODS Transgenic mice carrying the luciferase gene driven by nuclear factor-κB (NF-κB) were intraperitoneally injected with LPS and orally administered standardized concentrated HC aqueous extract. The phytochemicals present in the HC extract were analyzed using high-performance liquid chromatography. In vivo and ex vivo luminescent imaging from transgenic mice was used to investigate the meridian tropism theory and anti-inflammatory effects of HC. Microarray analysis of gene expression patterns was used to elucidate the therapeutic mechanisms of HC. RESULTS HC extract was found to contain phenolic acids, such as protocatechuic acid (4.52%) and chlorogenic acid (8.12%), as well as flavonoids like rutin (2.05%) and quercitrin (7.73%). The bioluminescent intensities induced by LPS in the heart, liver, respiratory system, and kidney were significantly suppressed by HC, while the maximal decrease (about 90% reduction) of induced luminescent intensity was observed in the upper respiratory tract. These data suggested that upper respiratory system might be the target for HC anti-inflammatory abilities. HC affected the processes involved in innate immunity, such as chemokine-mediated signaling pathway, inflammatory response, chemotaxis, neutrophil chemotaxis, and cellular response to interleukin-1 (IL-1). Moreover, HC significantly reduced the proportions of p65-stained cells and the amount of IL-1β in trachea tissues. CONCLUSION Bioluminescent imaging coupled with gene expression profile was used to demonstrate the organ selectivity, anti-inflammatory effects, and therapeutic mechanisms of HC. Our data demonstrated for the first time that HC displayed lung meridian-guiding effects and exhibited great anti-inflammatory potential in the upper respiratory tract. The NF-κB and IL-1β pathways were associated with the anti-inflammatory mechanism of HC against LPS-provoked airway inflammation. Moreover, chlorogenic acid and quercitrin might be involved in the anti-inflammatory properties of HC.
Collapse
Affiliation(s)
- Tin-Yun Ho
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, 404333, Taiwan; Department of Health and Nutrition Biotechnology Asia University, Taichung, 413305, Taiwan
| | - Hsin-Yi Lo
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, 404333, Taiwan
| | - Guan-Ling Lu
- Department of Microbiology and Immunology, China Medical University, Taichung, 404333, Taiwan
| | - Pei-Yung Liao
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, 404333, Taiwan; Division of Endocrinology and Metabolism, Department of Internal Medicine, Changhua Christian Hospital, Changhua, 500209, Taiwan
| | - Chien-Yun Hsiang
- Department of Microbiology and Immunology, China Medical University, Taichung, 404333, Taiwan.
| |
Collapse
|
21
|
Lin JG, Huang GJ, Su YC. Efficacy analysis and research progress of complementary and alternative medicines in the adjuvant treatment of COVID-19. J Biomed Sci 2023; 30:30. [PMID: 37138292 PMCID: PMC10155165 DOI: 10.1186/s12929-023-00923-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/18/2023] [Indexed: 05/05/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has impacted human lifestyles around the world, causing huge distress in terms of public health systems, emergency response capacity and economic development. The causative agent of COVID-19, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is associated with respiratory involvement, cardiovascular-related diseases, and ultimately causes multiple organ failure and death in severely affected individuals. Thus, effective prevention or early treatment of COVID-19 is critical. An effective vaccine offers a way out of the pandemic for governments, the scientific community and people worldwide, but we still lack effective drug therapies, including treatments for the prevention and treatment of COVID-19. This had led to a high global demand for many complementary and alternative medicines (CAMs). Moreover, many healthcare providers are now requesting information about CAMs that prevent, relieve, or treat the symptoms of COVID-19 and even alleviate vaccine-related side effects. Experts and scholars must therefore become familiar with the use of CAMs in COVID-19, current research directions and effectiveness of CAMs for COVID-19. This narrative review updates the current status and research worldwide on the use of CAMs for COVID-19. The review provides reliable evidence on theoretical viewpoints and therapeutic efficacies of CAM combinations, and evidence in support of the therapeutic strategy of Taiwan Chingguan Erhau (NRICM102) against moderate-to-severe novel coronavirus infectious disease in Taiwan.
Collapse
Affiliation(s)
- Jaung-Geng Lin
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, No.91, Hsueh-Shih Road, Taichung, 40402, Taiwan
- Chinese Medicine Research Center, China Medical University, No.91, Hsueh-Shih Road, Taichung, 40402, Taiwan
| | - Guan-Jhong Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, No.91, Hsueh-Shih Road, Taichung, 40402, Taiwan.
- Department of Food Nutrition and Healthy Biotechnology, Asia University, No. 500, Lioufeng Road, Taichung, 41354, Taiwan.
| | - Yi-Chang Su
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, No.155-1, Section 2, Linong Street, Beitou District, Taipei, 11221, Taiwan
| |
Collapse
|
22
|
Cheng R, Mao X, Yu J, Liu F, Guo L, Luo D, Wan Y. A dispersive solid-phase extraction method for the determination of Aristolochic acids in Houttuynia cordata based on MIL-101(Fe): An analytes-oriented adsorbent selection design. Food Chem 2023; 407:135074. [PMID: 36493489 DOI: 10.1016/j.foodchem.2022.135074] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
In view of the molecular structure of Aristolochic acid I (AA-I) and Aristolochic acid II (AA-II), MIL-101(Fe) was selected as the sorbent to develop a dispersive solid-phase extraction (d-SPE) method for capturing the two analytes from Houttuynia cordata. The interactions between the sorbent and analytes were investigated by FT-IR, XPS and UV-Vis DRS spectra. The optimized method demonstrated good linearity with R2 > 0.9999. The limit of detections (LODs) were 0.007 mg/L and 0.014 mg/L for AA-I and AA-II, respectively, lower than the limit stipulated by Chinese Pharmacopoeia (0.001 %, w/w). The recoveries for AA-I and AA-II were within the range of 73.3-106.4 %. The precisions of intra-day and inter-day were 0.9-5.8 % and 2.1-5.8 %, respectively. Thus, the established method demonstrated to be efficient and reliable to determine AA-I and AA-II in Houttuynia cordata.
Collapse
Affiliation(s)
- Rui Cheng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Xuejin Mao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Jiaying Yu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Fan Liu
- Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang 330031, China
| | - Lan Guo
- Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang 330031, China
| | - Dongmei Luo
- School of Chemistry and Life Sciences, Chifeng University, Chifeng 024000, China
| | - Yiqun Wan
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China; State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
23
|
Lyu C, Yuan B, Meng Y, Cong S, Che H, Ji X, Wang H, Chen C, Li X, Jiang H, Zhang J. Puerarin Alleviates H 2O 2-Induced Oxidative Stress and Blood-Milk Barrier Impairment in Dairy Cows. Int J Mol Sci 2023; 24:ijms24097742. [PMID: 37175449 PMCID: PMC10178507 DOI: 10.3390/ijms24097742] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
During the perinatal period, the bovine mammary epithelial cells of dairy cows exhibit vigorous metabolism and produce large amounts of reactive oxygen species (ROS). The resulting redox balance disruption leads to oxidative stress, one of the main causes of mastitis. Puerarin (PUE) is a natural flavonoid in the root of PUE that has attracted extensive attention as a potential antioxidant. This study first investigated whether PUE could reduce oxidative damage and mastitis induced by hydrogen peroxide (H2O2) in bovine mammary epithelial cells in vitro and elucidated the molecular mechanism. In vitro, BMECs (Bovine mammary epithelial cells) were divided into four treatment groups: Control group (no treatment), H2O2 group (H2O2 stimulation), PUE + H2O2 group (H2O2 stimulation before PUE rescue) and PUE group (positive control). The growth of BMECs in each group was observed, and oxidative stress-related indices were detected. Fluorescence quantitative PCR (qRT-PCR) was used to detect the expression of tightly linked genes, antioxidant genes, and inflammatory factors. The expression of p65 protein was detected by Western blot. In vivo, twenty cows with an average age of 5 years having given birth three times were divided into the normal dairy cow group, normal dairy cow group fed PUE, mastitis dairy cow group fed PUE, and mastitis dairy cow group fed PUE (n = 5). The contents of TNF-α, IL-6, and IL-1β in milk and serum were detected. In BMECs, the results showed that the PUE treatment increased the activities of glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), and total antioxidant capacity (T-AOC); ROS and malondialdehyde (MDA) levels were reduced. Thus, PUE alleviated H2O2-induced oxidative stress in vitro. In addition, the PUE treatment eliminated the inhibition of H2O2 on the expression of oxidation genes and tight junction genes, and the enrichment degree of NRF-2, HO-1, xCT, and tight junctions (claudin4, occludin, ZO-1 and symplekin) increased. The PUE treatment also inhibited the expression of NF-κB-associated inflammatory factors (IL-6 and IL-8) and the chemokine CCL5 in H2O2-induced BMECs. In vivo experiments also confirmed that feeding PUE can reduce the expression of inflammatory factors in the milk and serum of lactating dairy cows. In conclusion, PUE can effectively reduce the oxidative stress of bovine mammary epithelial cells, enhance the tight junctions between cells, and play an anti-inflammatory role. This study provides a theoretical basis for PUE prevention and treatment of mastitis and oxidative stress. The use of PUE should be considered as a feed additive in future dairy farming.
Collapse
Affiliation(s)
- Chenchen Lyu
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
| | - Bao Yuan
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
| | - Yu Meng
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
| | - Shuai Cong
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
| | - Haoyu Che
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
| | - Xingyu Ji
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
| | - Haoqi Wang
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
| | - Chengzhen Chen
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
| | - Xinwei Li
- Key Laboratory of Zoonoses Research, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Hao Jiang
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
| | - Jiabao Zhang
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
| |
Collapse
|
24
|
Lin CK, Chen BY, Ting JU, Rogio KGG, Tsai PW, Liu YC. Deciphering Houttuynia cordata extract as electron shuttles with anti-COVID-19 activity and its performance in microbial fuel cells. J Taiwan Inst Chem Eng 2023; 145:104838. [PMID: 37051508 PMCID: PMC10068517 DOI: 10.1016/j.jtice.2023.104838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/14/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023]
Abstract
Background Traditional herbal medicines usually contain electron shuttle (ES)-like structures compounds which are potential candidates for antiviral compounds selection. Houttuynia cordata is applied as a biomaterial to decipher its potential applications in bioenergy extraction in microbial fuel cells (MFCs) and anti-COVID-19 via molecular docking evaluation. Methods H. cordata leaves extracts by water and 60% ethanol solvent were analyzed for total polyphenols, antioxidant activity, cyclic voltammetry (CV), and MFCs. The bioactive compounds of H. cordata leaves extracts were assayed via LC/MS analysis. Identification of the marker substances for potential antiviral activity using a molecular docking model was provided. Significant findings 60% ethanol extract exhibits the highest total polyphenols and antioxidant activity compared with water extracts. Bioenergy extraction in MFCs showed that 60% ethanol extracts could give 1.76-fold more power generation compared to the blank. Flavonoids and their sugar-to-glycan ratios increased after CV scanning and they are expected to be effective ES substances. Quercitrin, from the H. cordata extract that shares an ES-like structure, was found to exhibit strong binding affinities towards ACE2 and RdRp. This indicated the potential of H. cordata leaves as a promising antiviral herb.
Collapse
Affiliation(s)
- Chia-Kai Lin
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Bor-Yann Chen
- Department of Chemical and Materials Engineering, National I-Lan University, I-Lan 260, Taiwan
| | - Jasmine U Ting
- Department of Chemistry, College of Science, De La Salle University, Metro Manila 1004, Philippines
| | - Kristian Gil G Rogio
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Metro Manila 1002, Philippines
| | - Po-Wei Tsai
- Department of Medical Science Industries, College of Health Sciences, Chang Jung Christian University, Tainan 711, Taiwan
| | - Yung-Chuan Liu
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
25
|
Zhang S, Zhang H, Chen S, Yang L, Chen X, Jiang H. Widely targeted metabolomic deciphers the vertical spatial distribution of flavor substances in Houttuynia cordata Thunb. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2022.105102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
26
|
Li J, Chen W, Liu H, Liu H, Xiang S, You F, Jiang Y, Lin J, Zhang D, Zheng C. Pharmacologic effects approach of essential oils and their components on respiratory diseases. JOURNAL OF ETHNOPHARMACOLOGY 2023; 304:115962. [PMID: 36529244 DOI: 10.1016/j.jep.2022.115962] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/12/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Essential oils (EOs) are concentrated hydrophobic liquids with volatility and a unique aroma. Formed by aromatic plants as secondary metabolites, EOs have been used as traditional medicines to treat various health problems worldwide. Historical records show that herbs rich in EOs have been widely used to treat respiratory diseases in China, Europe, and many other regions. AIM OF THE REVIEW This review summarizes the traditional applications and modern pharmacological mechanisms of EOs derived from aromatic herbs and their active ingredients in respiratory diseases in preclinical and clinical trials through multitarget synergy. MATERIALS AND METHODS Information about EOs and respiratory diseases was collected from electronic databases, such as ScienceDirect, Web of Science, PubMed, Google Scholar, Baidu Scholar, and the China National Knowledge Infrastructure (CNKI). RESULTS This review presents the preventive and therapeutic effects of EOs on respiratory diseases, including chronic obstructive pulmonary disease, bronchial asthma, acute lung injury, pulmonary infection, and pulmonary fibrosis. The molecular mechanisms of EOs in treating different lung diseases are summarized, including anti-inflammation, anti-oxidation, mucolytic, and immune regulatory mechanisms. CONCLUSIONS EOs show potential as supplements or substitutes for treating lung diseases.
Collapse
Affiliation(s)
- Jia Li
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China.
| | - Wu Chen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China.
| | - Huimin Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, No. 1066 Avenue Liutai, Chengdu, 611137, China.
| | - Hong Liu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China.
| | - Sirui Xiang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China.
| | - Fengming You
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China.
| | - Yifang Jiang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China.
| | - Junzhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China.
| | - Dingkun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, No. 1066 Avenue Liutai, Chengdu, 611137, China.
| | - Chuan Zheng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China.
| |
Collapse
|
27
|
Bao MY, Li M, Bu QR, Yang Y, Song H, Wang CZ, Wang TM, Li N. The effect of herbal medicine in innate immunity to Candida albicans. Front Immunol 2023; 14:1096383. [PMID: 37483621 PMCID: PMC10359817 DOI: 10.3389/fimmu.2023.1096383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 03/06/2023] [Indexed: 07/25/2023] Open
Abstract
Candida albicans (C. albicans) is an opportunistic pathogenic fungus that often causes mucosal and systemic infections. Several pattern recognition receptors (PRRs), such as Toll-like receptors (TLRs) and C-type lectin receptors (CLRs), have been implicated in the host recognition of C. albicans. These PRRs recognize the pathogen-associated molecular patterns (PAMPs) of C. albicans to activate innate immune cells, thereby rapidly inducing various inflammatory responses by activating intracellular signaling cascades. Herbal medicine and its active components deserve priority development due to their low toxicity and high antibacterial, antiviral and antifungal activities. This review discussed the activities of herbal compounds against C. albicans and their related mechanisms, especially their regulatory role on innate immune cells such as neutrophils, macrophages, and dendritic cells (DCs) implicated in C. albicans infections. Our work aims to find new therapeutic drugs and targets to prevent and treat diseases caused by C. albicans infection with the mechanisms by which this fungus interacts with the innate immune response.
Collapse
Affiliation(s)
- Meng-Yuan Bao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Ming Li
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Qing-Ru Bu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yue Yang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Hang Song
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Chang-Zhong Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Tian-Ming Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Ning Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, China
| |
Collapse
|
28
|
Houttuynia cordata Polysaccharide Ameliorates Chronic Inflammation-Induced Intestinal Impairment by Zonula Occludens-1 in Rats. J Food Biochem 2023. [DOI: 10.1155/2023/6828520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
This study aimed to investigate the protective effects of Houttuynia cordata polysaccharide (HCP) against chronic intestinal inflammation in rats that were subjected to low-dose lipopolysaccharide once weekly for 6 weeks. Here, administration of HCP significantly restored morphological changes in the intestine along with enhancement of antioxidant enzymes including superoxide dismutase, catalase, and glutathione peroxidase activities, and reduction of malondialdehyde contents. HCP treatment was also found to attenuate the inflammatory mediators nitric oxide, inducible nitric oxide synthase, total nitric oxide synthase, and interleukin-1beta (IL-lβ) and enhanced the production of short-chain fatty acids. Correspondingly, a significant elevation of zonula occludens-1 (ZO-1) was displayed in the intestine of HCP-treated rats, indicating that the intestinal mechanical barrier could be repaired by HCP treatment. Therefore, these findings suggested that HCP performed protective effects against chronic inflammation-induced intestinal impairment through alleviating inflammation, modifying the redox system, and recovering the intestinal mechanical barrier, mediated by the control of ZO-1 in rats.
Collapse
|
29
|
Ling L, Ren A, Lu Y, Zhang Y, Zhu H, Tu P, Li H, Chen D. The synergistic effect and mechanisms of flavonoids and polysaccharides from Houttuynia cordata on H1N1-induced pneumonia in mice. JOURNAL OF ETHNOPHARMACOLOGY 2023; 302:115761. [PMID: 36309113 DOI: 10.1016/j.jep.2022.115761] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/23/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Houttuynia cordata Thunb. (HC, Saururaceae family) is a classical Traditional Chinese Medicine used to treat pneumonia clinically. The total flavonoids (HCF) and polysaccharides (HCP) are key medicinal components of H. cordata involved in its beneficial effect on viral pneumonia. AIM OF THE STUDY The purpose of the study is to investigate the synergistic or complementary effects of combination of HCF and HCP on viral pneumonia as well as the mechanisms underlying. MATERIALS AND METHODS HCF or HCP were administrated separately or combined in different proportions on influenza virus H1N1 - infected mice. The survival and lung weight of mice were recorded. The synergistic effect on HCF and HCP combination was calculated by Chou-Talalay method. H&E staining was performed to detect lung histomorphology. Western blot, immunohistochemistry and enzyme linked immunosorbent assay were done to analyze the representative protein expression in lung and intestine tissues. AB - PAS staining on intestine tissue sections was performed to evaluate the histopathology of intestines. Bacterial genomic DNA was extracted and sequenced for gut microbiota analysis. RESULTS In H1N1 lethally infected mice, the combined administration of HCF and HCP significantly increased the survival rate and prolonged the life span of mice, compared with mono-drug therapy. The viral pneumonia was remarkably improved by HCF and HCP combination reflected by lower lung index, more intact lung morphology, and less inflammatory cells and mediators. Furthermore, the combination of HCF and HCP regulated intestinal microbiota, significantly reduced the proportion of pathogenic Proteobacteria and the secretion of proinflammatory cytokine in gut. The combined HCF and HCP showed synergistic effect on reducing lung and intestine injury. The complementary interaction was also found in HCF and HCP combined therapy, as HCF provided the significant antiviral activity and HCP markedly improved intestinal physical barrier and increased the protein expression involving removal of edema. CONCLUSIONS Our findings indicated that combination of HCF and HCP from H. cordata synergistically alleviated H1N1-induced viral pneumonia in mice via multimodal regulation of both pulmonary and intestinal homeostasis, which might imply novel therapeutic strategy for treating viral pneumonia.
Collapse
Affiliation(s)
- Lijun Ling
- Department of Pharmacognosy, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Anqi Ren
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yan Lu
- Department of Pharmacognosy, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yunyi Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Haiyan Zhu
- Department of Microbiological and Biochemical Pharmacy, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Peng Tu
- Department of Pharmacognosy, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Hong Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China.
| | - Daofeng Chen
- Department of Pharmacognosy, School of Pharmacy, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
30
|
Cheng T, Xu C, Wu D, Yan G, Wang C, Wang T, Shao J. Sodium houttuyfonate derived from Houttuynia cordata Thunb improves intestinal malfunction via maintaining gut microflora stability in Candida albicans overgrowth aggravated ulcerative colitis. Food Funct 2023; 14:1072-1086. [PMID: 36594429 DOI: 10.1039/d2fo02369e] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Candida albicans is a common opportunistic pathogen and normally resides in the human gut. Increasing number of reports link the overgrowth of C. albicans to the severity of ulcerative colitis (UC). Sodium houttuyfonate (SH), a derivative of the medicinal herb Houttuynia cordata Thunb, has been demonstrated to exhibit decent antifungal and anti-inflammatory activities. We showed previously that SH could ameliorate colitis mice infected with C. albicans. However, it is unclear whether the therapeutic effect of SH is connected to its modulation of intestinal microflora in UC. In this study, the impact of SH on the gut microbiota was explored in both cohabitation and non-cohabitation patterns. The results showed that in UC mice inflicted by C. albicans, the administration of SH could greatly improve the pathological signs, weaken the oxidative stress and inflammatory response, and enhance the intestinal mucosal integrity. By 16S rRNA gene sequencing, we found that C. albicans interference caused intestinal microbiota dysbiosis accompanied by an increase of some harmful pathogens including Klebsiella and Bacteroides. In contrast, SH could modulate the abundance and diversity of microbiota with an increase of several beneficial bacteria comprising short-chain fatty acid-producing bacteria (Lachnospiraceae_NK4A136_group, Intestinimonas) and probiotics (Lactobacillus and Alloprevotella). Furthermore, the cohabitation strategy could also prove the efficacy of SH, indicating a role of transmissible gut flora in the colitis model. These findings suggest that SH might be an effective compound for the treatment of UC complicated by C. albicans overgrowth through maintaining gut microbiota homeostasis, thereby improving intestinal function.
Collapse
Affiliation(s)
- Ting Cheng
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Shining Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, P. R. China.
| | - Chen Xu
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Shining Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, P. R. China.
| | - Daqiang Wu
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Shining Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, P. R. China. .,Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, P. R. China
| | - Guiming Yan
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Shining Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, P. R. China.
| | - Changzhong Wang
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Shining Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, P. R. China. .,Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, P. R. China
| | - Tianming Wang
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Shining Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, P. R. China.
| | - Jing Shao
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Shining Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, P. R. China. .,Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, P. R. China
| |
Collapse
|
31
|
Zhuang T, Hu M, Wang J, Mei L, Zhu X, Zhang H, Jin F, Shao J, Wang T, Wang C, Niu X, Wu D. Sodium houttuyfonate effectively treats acute pulmonary infection of Pseudomonas aeruginosa by affecting immunity and intestinal flora in mice. Front Cell Infect Microbiol 2022; 12:1022511. [PMID: 36530439 PMCID: PMC9751016 DOI: 10.3389/fcimb.2022.1022511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/14/2022] [Indexed: 12/04/2022] Open
Abstract
Introduction Pseudomonas aeruginosa is a major nosocomial pathogen that frequently causes ventilator-associated pneumonia in specific populations. Sodium houttuyfonate (SH) has shown mild antibacterial activity against P. aeruginosa in vitro, but the mechanism of potent antimicrobial activity of SH against P. aeruginosa infection in vivo remains unclear. Methods Here, using the mouse pneumonia model induced by P. aeruginosa nasal drip to explore the therapeutic effects of SH. Results We found that SH exhibits dose-dependent therapeutic effects of reducing P. aeruginosa burden and systemic inflammation in pneumonia mice. SH ameliorates inflammatory gene expression and production of inflammatory proteins, such as interleukin-6 (IL-6), nuclear factor kappa-B (NF-κB) and toll-like receptor 4 (TLR4), associated with the TLR4/NF-κB pathway in mice with P. aeruginosa pneumonia. Furthermore, we analyzed the intestinal flora of mice and found that compared with the model group, the abundance and diversity of beneficial bacterial flora of SH treatment groups increased significantly, suggesting that SH can improve the intestinal flora disorder caused by inflammation. In addition, SH improves alpha and beta diversity index and reduces species abundance differences of intestinal flora in pneumonia mice. Discussion Taken together, our presented results indicate that SH may effectively alleviate the acute pulmonary infection induced by P. aeruginosa by reducing the disturbance of regulating immunity and intestinal flora in mice.
Collapse
Affiliation(s)
- Tian Zhuang
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China,Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China
| | - Mengxue Hu
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China,Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China
| | - Jian Wang
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China,Pathology Department, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Longfei Mei
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China,Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China
| | - Xiaoxiao Zhu
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China,Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China
| | - Haitao Zhang
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China,Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China
| | - Feng Jin
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China,Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China
| | - Jing Shao
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China,Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China,Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Tianming Wang
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Changzhong Wang
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China,Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China,Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Xiaojia Niu
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China,Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China,Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China,*Correspondence: Daqiang Wu, ; Xiaojia Niu,
| | - Daqiang Wu
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China,Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China,*Correspondence: Daqiang Wu, ; Xiaojia Niu,
| |
Collapse
|
32
|
Ghosh A, Ghosh B, Parihar N, Ilaweibaphyrnai M, Panda SR, Alexander A, Chella N, Murty U, Naidu V, Kumar G J, Pemmaraju DB. Nutraceutical prospects of Houttuynia cordata against the infectious viruses. FOOD BIOSCI 2022; 50:101977. [PMID: 36059903 PMCID: PMC9423882 DOI: 10.1016/j.fbio.2022.101977] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 08/04/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022]
Abstract
The novel enveloped β-coronavirus SARS-CoV-2 (COVID-19) has offered a surprising health challenge all over the world. It develops severe pneumonia leading to acute respiratory distress syndrome (ARDS). Like SARS-COV-2, other encapsulated viruses like HIV, HSV, and influenza have also offered a similar challenge in the past. In this regard, many antiviral drugs are being explored with varying degrees of success to combat the associated pathological conditions. Therefore, upon scientific validation & development, these antiviral phytochemicals can attain a futuristic nutraceutical prospect in managing different encapsulated viruses. Houttuynia cordata (HC) is widely reported for activities such as antioxidant, anti-inflammatory, and antiviral properties. The major antiviral bioactive components of HC include essential oils (methyl n-nonyl ketone, lauryl aldehyde, capryl aldehyde), flavonoids (quercetin, rutin, hyperin, quercitrin, isoquercitrin), and alkaloids (norcepharadione B) & polysaccharides. HC can further be explored as a potential nutraceutical agent in the therapy of encapsulated viruses like HIV, HSV, and influenza. The review listed various conventional and green technologies that are being employed to extract potent phytochemicals with diverse activities from the HC. It was indicated that HC also inhibited molecular targets like 3C-like protease (3CLPRO) and RNA-dependent RNA polymerase (RdRp) of COVID-19 by blocking viral RNA synthesis and replication. Antioxidant and hepatoprotective effects of HC have been evident in impeding complications from marketed drugs during antiviral therapies. The use of HC as a nutraceutical is localized within some parts of Southeast Asia. Further technological advances can establish it as a nutraceutical-based functional food against pathogenic enveloped viruses like COVID 19.
Collapse
Affiliation(s)
- Aparajita Ghosh
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Assam, 781101, India
| | - Bijoyani Ghosh
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Assam, 781101, India
| | - Nidhi Parihar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Assam, 781101, India
| | - Myrthong Ilaweibaphyrnai
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Assam, 781101, India
| | - Samir R Panda
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Assam, 781101, India
| | - Amit Alexander
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Guwahati, Assam, 781101, India
| | - Naveen Chella
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Guwahati, Assam, 781101, India
| | - Usn Murty
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Assam, 781101, India
| | - Vgm Naidu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Assam, 781101, India
| | - Jagadeesh Kumar G
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Assam, 781101, India
| | - Deepak B Pemmaraju
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Assam, 781101, India
| |
Collapse
|
33
|
Xu X, Liu S, Zhao Y, Wang M, Hu L, Li W, Xu H. Combination of Houttuynia cordata polysaccharide and Lactiplantibacillus plantarum P101 alleviates acute liver injury by regulating gut microbiota in mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6848-6857. [PMID: 35639719 DOI: 10.1002/jsfa.12046] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/16/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Polysaccharides and probiotics can play an outstanding role in the treatment of liver disease by regulating gut microbiota. Recently, the combined therapeutic effect of probiotics and polysaccharides has attracted the attention of researchers. Houttuynia cordata polysaccharide (HCP) combined with Lactiplantibacillus plantarum P101 was used to prevent carbon tetrachloride (CCl4 )-induced acute liver injury (ALI) in mice, and its effect on gut microbiota regulation was explored. RESULTS Results showed that, in mice, HCP combined with L. plantarum P101 significantly alleviated oxidative stress and inflammatory injury in the liver by activating Nrf2 signals and inhibiting NF-κB signals. The analysis of gut microbiota revealed that the combination of HCP and L. plantarum P101 increased the abundance of beneficial bacteria such as Alloprevotella, Roseburia, and Akkermansia, but reduced that of the pro-inflammatory bacteria Alistipes, Enterorhabdus, Anaerotruncus, and Escherichia-Shigella. Correlation analysis also indicated that the expression of Nrf2 and TLR4/NF-κB was connected to the changes in gut microbiota composition. Houttuynia cordata polysaccharide combined with L. plantarum P101 can regulate the gut microbiota and then mediate the gut-liver axis to activate the antioxidant pathway and inhibit inflammatory responses, thereby alleviating CCl4 -induced ALI. CONCLUSION Our study provided a new perspective on the use of polysaccharides combined with probiotics in the treatment of liver disease. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaowei Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Shanji Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Yu Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Mengqi Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Liehai Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Wenjuan Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
34
|
Liu X, Tian J, Pan Y, Li Z, Zhou Z, Pan Z, Tai H, Xing Y. Structural Characterization and Biological Activity of Polysaccharides from Stems of Houttuynia cordata. Foods 2022; 11:3622. [PMID: 36429215 PMCID: PMC9689641 DOI: 10.3390/foods11223622] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/27/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, water-soluble natural polysaccharides were extracted from the stems of Houttuynia cordata Thunb (HCPS). The optimization of the hot water extraction process using response surface methodology (RSM), and the extraction factors, were analyzed by multiple stepwise regression analysis and Pearson analysis. Then, the structural characterization and biological activity of the HCPS were investigated. The results indicated that the maximum extraction yield (2.43%) of the HCPS was obtained at the optimal condition (extraction temperature for 90 °C, extraction time for 5 h, solid-liquid ratio for 1:30 g/mL). The extraction temperature was determined to be the primary factor influencing the extraction yield. The HCPS molecules had an average molecular weight of 8.854 × 103 kDa and were primarily of mannose (Man), rhamnose (Rha), glucuronic acid (GlcA), galacturonic acid (GalA), glucose (Glc), and xylose (Xyl). In addition, the backbone of the HCPS might consist of →6)-α-d-Glcp-(1→ and →6)-β-d-GalpA-(1→. The HCPS had no triple-helix structure. The scanning electron microscopy (SEM) results showed that the HCPS presented a smooth and uniform appearance, and some sheet and chain structures existed. Moreover, the HCPS exhibited significant anti-oxidant activity and inhibited the activity of α-amylase and α-glucosidase. These findings showed that HCPS might be developed into a potential material for hypoglycemia, and provides a reference for the development of Houttuynia cordata polysaccharide applications in food.
Collapse
Affiliation(s)
- Xiaocui Liu
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Jin Tian
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Yinzhen Pan
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Zhongqiao Li
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Zhiran Zhou
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Zihao Pan
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Huazhang Tai
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Yage Xing
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Key Laboratory of Food Non Thermal Processing, Engineering Technology Research Center of Food Non Thermal Processing, Yibin Xihua University Research Institute, Yibin 644004, China
| |
Collapse
|
35
|
Wong CF, Poon CK, Ng TW, Pan HH, Khaw EC, Tsang KF, Mui YW, Lo YH, Hao MF, Ko CH. Anti-inflammatory, antipyretic efficacy and safety of inhaled Houttuynia cordata thunb. essential oil formulation. JOURNAL OF ETHNOPHARMACOLOGY 2022; 297:115541. [PMID: 35872291 DOI: 10.1016/j.jep.2022.115541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Houttuynia cordata Thunb. (H. cordata) is a well-known folk traditional Chinese medicine that is renowned for its use in the management of inflammatory respiratory diseases and pneumonia. Its essential oils have demonstrated their anti-inflammatory efficacy in vitro, however, their in vivo biological effects via inhalation have not been elucidated. AIM OF THE STUDY This study aims to evaluate the anti-inflammation and toxicology of H. cordata essential oil-containing formulation, H16 aerosol in vivo. MATERIALS AND METHODS A laser diffraction particle size analyser and a Next Generation Impactor were used to measure the mass median aerodynamic diameter (MMAD) of the H16 aerosol. The anti-inflammatory and antipyretic effects of the H16 aerosol were evaluated in the xylene-evoked ear oedema and Brewer's yeast-induced fever models, respectively. The biological safety of the H16 aerosol was evaluated by acute toxicity and local toxicity tests in animal models. RESULTS Our data showed that the MMAD of the bioactive aerosol was 3-5 μm, which implied tracheal and pharyngeal deposits. Significant anti-inflammatory and antipyretic effects were also observed in the animal models treated with H16 aerosol. The maximum tolerable dose of H16 in rats was >2.5 mL/kg. Irritation was not found on respiratory tract mucosa in the local toxicity test. CONCLUSIONS Taken together, the present study suggested that H16 could be delivered in the form of aerosol and possessed its antipyretic and anti-inflammatory effects. This study provides a new perspective for the development of a new herbal aerosol therapy and herbal modernization.
Collapse
Affiliation(s)
- Chun Fai Wong
- Nano and Advanced Materials Institute Limited, Hong Kong, China.
| | - Cheuk Ka Poon
- Nano and Advanced Materials Institute Limited, Hong Kong, China
| | - Tsz Wai Ng
- Nano and Advanced Materials Institute Limited, Hong Kong, China
| | - Hok Him Pan
- Nano and Advanced Materials Institute Limited, Hong Kong, China
| | | | | | | | - Yuk Hong Lo
- Wise Ally Holdings Limited, Hong Kong, China
| | | | - Chun Hay Ko
- Nano and Advanced Materials Institute Limited, Hong Kong, China.
| |
Collapse
|
36
|
Role of Nutrients and Foods in Attenuation of Cardiac Remodeling through Oxidative Stress Pathways. Antioxidants (Basel) 2022; 11:antiox11102064. [PMID: 36290787 PMCID: PMC9598077 DOI: 10.3390/antiox11102064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 12/03/2022] Open
Abstract
Cardiac remodeling is defined as a group of molecular, cellular, and interstitial changes that manifest clinically as changes in the heart’s size, mass, geometry, and function after different injuries. Importantly, remodeling is associated with increased risk of ventricular dysfunction and heart failure. Therefore, strategies to attenuate this process are critical. Reactive oxygen species and oxidative stress play critical roles in remodeling. Importantly, antioxidative dietary compounds potentially have protective properties against remodeling. Therefore, this review evaluates the role of nutrients and food as modulators of cardiac remodeling.
Collapse
|
37
|
Su YC, Huang GJ, Lin JG. Chinese herbal prescriptions for COVID-19 management: Special reference to Taiwan Chingguan Yihau (NRICM101). Front Pharmacol 2022; 13:928106. [PMID: 36278162 PMCID: PMC9581083 DOI: 10.3389/fphar.2022.928106] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a strain of coronavirus that causes COVID-19 (coronavirus disease 2019), the respiratory illness responsible for the ongoing COVID-19 pandemic. As at June 2022, increasing numbers of newly diagnosed COVID-19-associated pneumonia cases worldwide have attracted close attention from the international community. The present review analyzes and summarizes the treatment of COVID-19 with traditional Chinese medicine (TCM). A systematic analysis of the efficacies and benefits of TCM for the treatment of COVID-19 was performed, and the mechanisms underlying such treatment are summarized. This analysis of the literature highlights the potential of TCM to prevent and treat COVID-19 via antiviral, anti-inflammatory and immunomodulatory activities, with evidence showing that many TCM components act upon multiple targets and pathways. Famous TCM formulas include Qing-Fei-Pai-Du-Tang (QFPDT), Lianhuaqingwen Capsule (LHC), Taiwan Chingguan Yihau (NRICM101), and Jing Si herbal drink (JSHD). In particular, the botanical preparation NRICM101 was developed in 2020 for use in viral respiratory tract infections and is recommended for treating non-severe and mild COVID-19 infections. NRICM101 has been adopted for use in Taiwan for the clinical treatment of COVID-19. The common components and active ingredients of 10 TCM preparations have been analyzed for the most promising substances. This review aims to provide reliable evidence demonstrating the therapeutic efficacy of TCM substances in support of their further development against novel coronavirus infectious diseases in Taiwan.
Collapse
Affiliation(s)
- Yi-Chang Su
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan
| | - Guan-Jhong Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Food Nutrition and Healthy Biotechnology, Asia University, Taichung, Taiwan
- *Correspondence: Guan-Jhong Huang, ; Jaung-Geng Lin,
| | - Jaung-Geng Lin
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- *Correspondence: Guan-Jhong Huang, ; Jaung-Geng Lin,
| |
Collapse
|
38
|
Faramarzi H, Chaleshtori S, Zolghadri S, Beheshtroo M, Faramarzi A, Shafiee SM. Ferric oxide nanoparticles administration suppresses isoniazid induced oxidative stress in the rat brain tissue. UKRAINIAN BIOCHEMICAL JOURNAL 2022. [DOI: 10.15407/ubj94.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
39
|
Wang X, Wang Y, Mao Y, Hu A, Xu T, Yang Y, Wang F, Zhou G, Guo X, Cao H, Yang F. The beneficial effects of traditional Chinese medicine on antioxidative status and inflammatory cytokines expression in the liver of piglets. Front Vet Sci 2022; 9:937745. [PMID: 36213414 PMCID: PMC9539681 DOI: 10.3389/fvets.2022.937745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Oxidative stress and inflammation seriously affected the growth and development of piglets. Traditional Chinese medicine (TCM) prescriptions has been used to prevent various diseases of piglets, including anti-inflammatory and antioxidant. Here, we identified the effects of Xiao-Jian-Zhong-Tang (XJZT) and Jingsananli-sepsis (JJS) on the oxidative stress and inflammatory in the liver of piglets. The piglets were fed with the basal diet (Control group), basal diet affixed with 10 g/kg XJZT (TCM I group), and basal diet affixed with 3 g/kg JJS (TCM II group), respectively. The serum was gathered on days 30 and 60 and the liver samples were also collected on day 60. Results showed that the TCM I and TCM II markedly increased the activities of the glutathione peroxidase (GSH-Px) and total antioxidant capacity (T-AOC), and reduced the levels of malonaldehyde (MDA), TNF-α, IL-6, and IL-8 in serum. In addition, compared to the control group, Nrf2, SOD-1, NQO-1, and HO-1 mRNA expression levels and the protein levels of Nrf2 and HO-1 were significantly increased while NF-κB, TNF-α, IL-6, and IL-8 mRNA expression levels and the phosphorylation levels of NF-κB and IκB-α were decreased in TCM I and TCM II groups. Collectively, these findings suggested that TCM I and TCM II could enhance anti-oxidative and anti-inflammatory capabilities in the liver of piglets via the Nrf2/NF-κB pathway, providing a basis for the functional exploration of TCM prescriptions.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yun Wang
- Department of Animal Science and Technology, Jiangxi Biotech Vocational College, Nanchang, China
| | - Yaqin Mao
- China Institute of Veterinary Drug Control, MOA Center for Veterinary Drug Evaluation, Beijing, China
| | - Aiming Hu
- Jian City Livestock and Veterinary Bureau, Ji'an, China
| | - Tianfang Xu
- Jiangxi Agricultural Technology Extension Center, Nanchang, China
| | - Yan Yang
- Jiangxi Agricultural Technology Extension Center, Nanchang, China
| | - Feibing Wang
- Agricultural Technology Extension Center, Jinxi County Agriculture and Rural Bureau, Fuzhou, China
| | - Guangbin Zhou
- Animal Epidemic Prevention and Quarantine Unit, Fengcheng Agricultural and Rural Bureau, Fengcheng, China
| | - Xiaowang Guo
- Yichun Agriculture and Rural Affairs Bureau, Yichun, China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- *Correspondence: Fan Yang
| |
Collapse
|
40
|
Wei WC, Liaw CC, Tsai KC, Chiou CT, Tseng YH, Chiou WF, Lin YC, Tsai CI, Lin CS, Lin CS, Liou KT, Yu IS, Shen YC, Su YC. Targeting spike protein-induced TLR/NET axis by COVID-19 therapeutic NRICM102 ameliorates pulmonary embolism and fibrosis. Pharmacol Res 2022; 184:106424. [PMID: 36064077 PMCID: PMC9443660 DOI: 10.1016/j.phrs.2022.106424] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/21/2022] [Accepted: 08/31/2022] [Indexed: 11/19/2022]
Abstract
The global COVID-19 pandemic remains a critical public health threat, as existing vaccines and drugs appear insufficient to halt the rapid transmission. During an outbreak from May to August 2021 in Taiwan, patients with severe COVID-19 were administered NRICM102, which was a traditional Chinese medicine (TCM) formula developed based on its predecessor NRICM101 approved for treating mild cases. This study aimed to explore the mechanism of NRICM102 in ameliorating severe COVID-19-related embolic and fibrotic pulmonary injury. NRICM102 was found to disrupt spike protein/ACE2 interaction, 3CL protease activity, reduce activation of neutrophils, monocytes and expression of cytokines (TNF-α, IL-1β, IL-6, IL-8), chemokines (MCP-1, MIP-1, RANTES) and proinflammatory receptor (TLR4). NRICM102 also inhibited the spread of virus and progression to embolic and fibrotic pulmonary injury through reducing prothrombotic (vWF, PAI-1, NET) and fibrotic (c-Kit, SCF) factors, and reducing alveolar type I (AT1) and type II (AT2) cell apoptosis. NRICM102 may exhibit its protective capability via regulation of TLRs, JAK/STAT, PI3K/AKT, and NET signaling pathways. The study demonstrates the ability of NRICM102 to ameliorate severe COVID-19-related embolic and fibrotic pulmonary injury in vitro and in vivo and elucidates the underlying mechanisms.
Collapse
Affiliation(s)
- Wen-Chi Wei
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 112026, Taiwan
| | - Chia-Ching Liaw
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 112026, Taiwan; Department of Biochemical Science and Technology, National Chiayi University, Chiayi 600355, Taiwan
| | - Keng-Chang Tsai
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 112026, Taiwan; Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110301, Taiwan
| | - Chun-Tang Chiou
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 112026, Taiwan
| | - Yu-Hwei Tseng
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 112026, Taiwan
| | - Wen-Fei Chiou
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 112026, Taiwan
| | - Yu-Chi Lin
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 112026, Taiwan
| | - Chia-I Tsai
- Department of Traditional Chinese Medicine, Taichung Veterans General Hospital, Taichung 407204, Taiwan
| | - Chen-Shien Lin
- Department of Chinese Medicine, Taipei Hospital, Ministry of Health and Welfare, New Taipei City 424033, Taiwan
| | - Chen-Sung Lin
- Division of Thoracic Surgery, Department of Surgery, Taipei Hospital, Ministry of Health and Welfare, New Taipei City 424033, Taiwan
| | - Kuo-Tong Liou
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 112026, Taiwan
| | - I-Shing Yu
- Laboratory Animal Center, College of Medicine, National Taiwan University, Taipei 100233, Taiwan
| | - Yuh-Chiang Shen
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 112026, Taiwan.
| | - Yi-Chang Su
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 112026, Taiwan.
| |
Collapse
|
41
|
Rafiq S, Hao H, Ijaz M, Raza A. Pharmacological Effects of Houttuynia cordata Thunb (H. cordata): A Comprehensive Review. Pharmaceuticals (Basel) 2022; 15:ph15091079. [PMID: 36145299 PMCID: PMC9501394 DOI: 10.3390/ph15091079] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/20/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Houttuynia cordata Thunb (H. cordata) is a rhizomatous, herbaceous, and perennial plant widely distributed in Asia. It has multiple chemical constituents, such as alkaloids, essential oils, phenolic acids, and flavonoids used against various health problems. The essential oils and flavonoids are the main components of H. cordata that play an essential role in disease treatment and traditional health care. Moreover, the leaves and stems of H. cordata have a long medicinal history in China. In addition, H. cordata is used against several health issues, such as cold, cough, fever, pneumonia, mumps, and tumors, due to its anti-inflammatory, anti-bacterial, anti-viral, anti-oxidant, and anti-tumor effects. It protects organs due to its anti-inflammatory activity. H. cordata regulates immunity by enhancing immune barriers of the oral cavity, vagina, and gastrointestinal tract, and shows broad-spectrum activity against liver, lung, breast, and colon tumors. However, there are some gaps to be filled to understand its pathways and mechanisms. Mechanisms such as its interaction with cells, cell membranes, and various drugs are important. Studies in relation to the blood–brain barrier, lipophilicity, cAMP signaling, and skin permeability, including pharmaceutical effects, will be very useful. This review includes the biological and pharmacological activities of H. cordata based on up-to-date research.
Collapse
Affiliation(s)
- Shahzad Rafiq
- National Reference Laboratory of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
| | - Haihong Hao
- National Reference Laboratory of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
- Correspondence: ; Tel.: +86-158-7181-2208
| | - Muhammad Ijaz
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Ahmed Raza
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| |
Collapse
|
42
|
Houttuynia cordata polysaccharide alleviates chronic vascular inflammation by suppressing calcium-sensing receptor in rats. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
43
|
The therapeutic potential of Houttuynia cordata: A current review. Heliyon 2022; 8:e10386. [PMID: 36061012 PMCID: PMC9433674 DOI: 10.1016/j.heliyon.2022.e10386] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/15/2022] [Accepted: 08/15/2022] [Indexed: 11/22/2022] Open
|
44
|
Liu J, Yuan S, Yao Y, Wang J, Scalabrino G, Jiang S, Sheridan H. Network Pharmacology and Molecular Docking Elucidate the Underlying Pharmacological Mechanisms of the Herb Houttuynia cordata in Treating Pneumonia Caused by SARS-CoV-2. Viruses 2022; 14:v14071588. [PMID: 35891565 PMCID: PMC9324059 DOI: 10.3390/v14071588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 01/27/2023] Open
Abstract
Used in Asian countries, including China, Japan, and Thailand, Houttuynia cordata Thumb (H. cordata; Saururaceae, HC) is a traditional herbal medicine that possesses favorable antiviral properties. As a potent folk therapy used to treat pulmonary infections, further research is required to fully elucidate the mechanisms of its pharmacological activities and explore its therapeutic potential for treating pneumonia caused by SARS-CoV-2. This study explores the pharmacological mechanism of HC on pneumonia using a network pharmacological approach combined with reprocessing expression profiling by high-throughput sequencing to demonstrate the therapeutic mechanisms of HC for treating pneumonia at a systemic level. The integration of these analyses suggested that target factors are involved in four signaling pathways, including PI3K-Akt, Jak-STAT, MAPK, and NF-kB. Molecular docking and molecular dynamics simulation were applied to verify these results, indicating a stable combination between four metabolites (Afzelin, Apigenin, Kaempferol, Quercetin) and six targets (DPP4, ELANE, HSP90AA1, IL6, MAPK1, SERPINE1). These natural metabolites have also been reported to bind with ACE2 and 3CLpro of SARS-CoV-2, respectively. The data suggest that HC exerts collective therapeutic effects against pneumonia caused by SARS-CoV-2 and provides a theoretical basis for further study of the active drug-like ingredients and mechanism of HC in treating pneumonia.
Collapse
Affiliation(s)
- Junying Liu
- NatPro Center, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, D02PN40 Dublin, Ireland; (J.L.); (J.W.); (G.S.)
| | - Shouli Yuan
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100080, China;
| | - Yao Yao
- Biocomputing and Developmental Systems, Lero—The Science Foundation Ireland Research Centre for Software, Department of Computer Science & Information Systems, The University of Limerick, V94T9PX Limerick, Ireland;
| | - Jinfan Wang
- NatPro Center, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, D02PN40 Dublin, Ireland; (J.L.); (J.W.); (G.S.)
| | - Gaia Scalabrino
- NatPro Center, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, D02PN40 Dublin, Ireland; (J.L.); (J.W.); (G.S.)
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
- Correspondence: (S.J.); (H.S.)
| | - Helen Sheridan
- NatPro Center, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, D02PN40 Dublin, Ireland; (J.L.); (J.W.); (G.S.)
- Correspondence: (S.J.); (H.S.)
| |
Collapse
|
45
|
Ruansit W, Charerntantanakul W. Oral Supplementation of Houttuynia cordata Extract Reduces Viremia in PRRSV-1 Modified-Live Virus-Vaccinated Pigs in Response to the HP-PRRSV-2 Challenge. Front Immunol 2022; 13:929338. [PMID: 35924249 PMCID: PMC9339630 DOI: 10.3389/fimmu.2022.929338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
This study evaluated the in vitro antiviral activities and the ex vivo immunomodulatory effects of Houttuynia cordata Thunb. (HC) ethanolic extracts in response to porcine reproductive and respiratory syndrome virus (PRRSV). In addition, this study evaluated the in vivo effects of oral supplementation of HC extract on immune responses to and cross-protective efficacy of PRRSV-1 modified-live virus (MLV) vaccine against the highly pathogenic (HP)-PRRSV-2 challenge. In vitro experiments demonstrated that HC extracted in either 50%, 70%, or 95% ethanol (referred to as HC50, HC70, and HC95, respectively) significantly interfered with PRRSV replication in MARC-145 cells. Ex vivo experiments revealed that all HC extracts significantly enhanced mRNA expressions of type I interferon-regulated genes, type I and II interferon (IFN), and pro- and anti-inflammatory cytokines in HP-PRRSV-2-inoculated monocyte-derived macrophages. An in vivo experiment included four groups of six pigs (4 weeks old; n = 24). Group 1 and group 2 were vaccinated with the PRRSV-1 MLV vaccine at 0 dpv (day post vaccination). Group 2 also received oral administration of HC50 extract at 0–49 dpv. Group 3 received the PRRSV-1 MLV vaccine solvent at 0 dpv, while group 4 served as strict control. Groups 1–3 were challenged intranasally with HP-PRRSV-2 at 28 dpv and immune-related and clinical parameters were monitored weekly until 49 dpv. Compared to group 1, group 2 demonstrated significantly increased IFN regulatory factor 3 mRNA expression of PRRSV-recalled peripheral blood mononuclear cells, and significantly reduced HP-PRRSV-2 viremia. No difference in PRRSV-specific antibody responses, rectal temperature, clinical scores, and average daily weight gain was detected. Our study reports the immunomodulatory and anti-PRRSV potentials of HC extract in PRRSV-1 MLV-vaccinated/HP-PRRSV-2 challenged pigs.
Collapse
|
46
|
Hong L, He M, Li S, Zhao J. Predicting for anti-(mutant) SARS-CoV-2 and anti-inflammation compounds of Lianhua Qingwen Capsules in treating COVID-19. Chin Med 2022; 17:84. [PMID: 35799189 PMCID: PMC9261255 DOI: 10.1186/s13020-022-00637-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/18/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Lianhua Qingwen Capsules (LHQW) is a traditional Chinese medicine prescription commonly used to treat viral influenza in China. There has been sufficient evidence that LHQW could effectively treat COVID-19. Nevertheless, the potential anti-(mutant) SARS-CoV-2 and anti-inflammation compounds in LHQW are still vague. METHODS The compounds of LHQW and targets were collected from TCMSP, TCMID, Shanghai Institute of Organic Chemistry of CAS database, and relevant literature. Autodock Vina was used to carry out molecular docking. The pkCSM platform to predict the relevant parameters of compound absorption in vivo. The protein-protein interaction (PPI) network was constructed by the STRING database. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was carried out by Database for Annotation, Visualization, and Integrated Discovery (DAVID). The anti-(mutant) SARS-CoV-2 and anti-inflammation networks were constructed on the Cytoscape platform. RESULTS 280 compounds, 16 targets related to SARS-CoV-2, and 54 targets related to cytokine storm were obtained by screening. The key pathways Toll-like receptor signaling, NOD-like receptor signal pathway, and Jak-STAT signaling pathway, and the core targets IL6 were obtained by PPI network and KEGG pathway enrichment analysis. The network analysis predicted and discussed the 16 main anti-SARS-CoV-2 active compounds and 12 main anti-inflammation active compounds. Ochnaflavone and Hypericin are potential anti-mutant virus compounds in LHQW. CONCLUSIONS In summary, this study explored the potential anti-(mutant) SARS-CoV-2 and anti-inflammation compounds of LHQW against COVID-19, which can provide new ideas and valuable references for discovering active compounds in the treatment of COVID-19.
Collapse
Affiliation(s)
- Liang Hong
- grid.437123.00000 0004 1794 8068State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China ,grid.437123.00000 0004 1794 8068Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau, China
| | - Min He
- grid.412982.40000 0000 8633 7608Department of Pharmaceutical Engineering, School of Chemical Engineering, Xiangtan University, Xiangtan, China
| | - Shaoping Li
- grid.437123.00000 0004 1794 8068State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China ,grid.437123.00000 0004 1794 8068Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau, China
| | - Jing Zhao
- grid.437123.00000 0004 1794 8068State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China ,grid.437123.00000 0004 1794 8068Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau, China
| |
Collapse
|
47
|
Jiao Y, Wang S, Jiang L, Sun X, Li J, Liu X, Yao X, Zhang C, Wang N, Deng H, Yang G. 2-undecanone protects against fine particles-induced heart inflammation via modulating Nrf2/HO-1 and NF-κB pathways. ENVIRONMENTAL TOXICOLOGY 2022; 37:1642-1652. [PMID: 35285579 DOI: 10.1002/tox.23513] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/26/2022] [Accepted: 03/06/2022] [Indexed: 05/20/2023]
Abstract
Exposure to air pollution has been closely associated with some cardiovascular disease. One of the mechanisms of PM2.5 -mediated heart injury may be to promote inflammation. We aim to investigate whether the main extract of Houttuynia cordata, 2-undecanone, can prevent the inflammation caused by PM2.5 , and to reveal the underlying mechanisms. The results showed that PM2.5 increased the expression of certain inflammatory cytokines, and caused oxidative damage in BALB/c mice and H9C2 cells. Supplementation with 2-undecanone attenuated this PM2.5 -induced inflammatory injury and oxidative damage. Further, we elucidated that the protective effect of 2-undecanone may be associated with NF-κB and Nrf2/HO-1 pathways. The NF-κB pathway was distinctly activated after treated by PM2.5 , which can be blocked by 2-undecanone, accompanied by increasing Nrf2 and HO-1 levels. To figure out the relationship between NF-κB and Nrf2/HO-1 pathways, we knocked down Nrf2 gene. NF-κB pathway proteins and downstream inflammatory cytokines were significantly increased after treatment with PM2.5 , while 2-undecanone could decrease expression of these proteins. In conclusion, it is possible that 2-undecanone can induce the expression of the antioxidant enzyme HO-1 by activating Nrf2, thereby reducing NF-κB pathway and inflammatory damage of mouse myocardium caused by PM2.5 exposure.
Collapse
Affiliation(s)
- Yuhang Jiao
- Department of Food Nutrition and Safety, Dalian Medical University, Dalian, China
| | - Shaopeng Wang
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Liping Jiang
- Liaoning Anti-degenerative Diseases Natural Products Engineering Technology Research Center, Dalian Medical University, Dalian, China
| | - Xiance Sun
- Liaoning Anti-degenerative Diseases Natural Products Engineering Technology Research Center, Dalian Medical University, Dalian, China
| | - Jing Li
- Department of Pathology, Dalian Medical University, Dalian, China
| | - Xiaofang Liu
- Department of Food Nutrition and Safety, Dalian Medical University, Dalian, China
| | - Xiaofeng Yao
- Liaoning Anti-degenerative Diseases Natural Products Engineering Technology Research Center, Dalian Medical University, Dalian, China
| | - Cong Zhang
- Department of Food Nutrition and Safety, Dalian Medical University, Dalian, China
| | - Ningning Wang
- Department of Food Nutrition and Safety, Dalian Medical University, Dalian, China
| | - Haoyuan Deng
- Department of Food Nutrition and Safety, Dalian Medical University, Dalian, China
| | - Guang Yang
- Department of Food Nutrition and Safety, Dalian Medical University, Dalian, China
| |
Collapse
|
48
|
Yuan H, Liu L, Zhou J, Zhang T, Daily JW, Park S. Bioactive Components of Houttuynia cordata Thunb and Their Potential Mechanisms Against COVID-19 Using Network Pharmacology and Molecular Docking Approaches. J Med Food 2022; 25:355-366. [PMID: 35438554 DOI: 10.1089/jmf.2021.k.0144] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
We investigated the molecular mechanism by which Houttuynia cordata Thunb (HCT) may intervene in coronavirus disease 2019 (COVID-19) and COVID-19-induced cytokine storms using network pharmacology and molecular docking approaches. Using the Traditional Chinese medicine Systems Pharmacology Database and Analysis Platform (TCMSP), a "component-target-pathway" topology map of HCT for COVID-19 treatment was constructed using Cytoscape. Core target genes were analyzed using the STRING database, and the signal pathway map and biological mechanism of COVID-19 therapy were obtained using cluster profilers. Active components of HCT were docked with severe respiratory syndrome coronavirus 2 (SARS-CoV-2) 3C-like protease (3CLpro) and RNA-dependent RNA polymerase (RdRp) using AutoDockTools. Data visualization and statistical analysis were conducted using the R program. A molecular dynamic simulation was carried out with the Groningen Machine for Chemical Simulation program. HCT had six active anti-COVID-19 ingredients and 45 molecular targets. Their crucial target proteins for COVID-19 treatment were the RELA (nuclear factor kappa B [NF-κB] p65 subunit), interleukin 6, and mitogen-activated protein kinase 1. In functional enrichment analysis, the potential molecular targets of active components of HCT for COVID-19 treatment belonged to 18 signaling pathways (adjusted P = 2.12E-11). Gene ontology obtained by Kyoto Encyclopedia of Genes and Genome enrichment screening showed that the primary mechanism of COVID-19 treatment was upregulation of protein kinase C followed by downregulations of T cell differentiation and proliferation and NF-κB signaling. Molecular docking showed that the active components of HCT (quercetin and kaempferol) had similar binding affinities for SARS-CoV-2 3CLpro and SARS-CoV-2 RdRp, primary COVID-19 target proteins as did clinically used drugs. These results were confirmed with molecular dynamics simulation. In conclusion, multiple components of HCT, especially quercetin and kaempferol, have the potential to treat COVID-19 infection and COVID-19-induced cytokine storm by targeting multiple proteins.
Collapse
Affiliation(s)
- Heng Yuan
- Department of Bio-Convergence System, Hoseo University, Asan, South Korea
| | - Liping Liu
- College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Junyu Zhou
- Department of Bio-Convergence System, Hoseo University, Asan, South Korea
| | - Ting Zhang
- Department of Bio-Convergence System, Hoseo University, Asan, South Korea
| | - James W Daily
- Daily Manufacturing, Inc., Rockwell, North Carolina, USA
| | - Sunmin Park
- Department of Bio-Convergence System, Hoseo University, Asan, South Korea.,Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, Asan, South Korea
| |
Collapse
|
49
|
Identifying Active Substances and the Pharmacological Mechanism of Houttuynia cordata Thunb. in Treating Radiation-Induced Lung Injury Based on Network Pharmacology and Molecular Docking Verification. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3776340. [PMID: 35360660 PMCID: PMC8964154 DOI: 10.1155/2022/3776340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/19/2022] [Accepted: 02/24/2022] [Indexed: 11/17/2022]
Abstract
Background Houttuynia cordata Thunb. is a traditional Chinese herb widely used mainly because of the pharmacological effects related to heat clearance and detoxification. Emerging clinical evidence indicates that the efficacy of Houttuynia cordata Thunb. on RILI is upstanding. Nevertheless, its underlying therapeutic mechanism remains unclear and warrants further elucidation. Methods The major active components and corresponding targets of Houttuynia cordata Thunb. were retrieved from the traditional Chinese medicine system pharmacology database (TCMSP) and literature review. The related targets of RILI were retrieved from the GeneCards database. Common targets among the active compounds and diseases were identified through Venn diagram analysis. Cytoscape was employed to construct and visualize the network relationship among the drug, active compounds, targets, and disease. The protein interaction network (PPI) was constructed by STRING. The reliability (the binding affinity) of the core targets and active compounds was verified by molecular docking. Results A search of the TCMSP database and related literature revealed 12 active compounds of Houttuynia cordata Thunb. against RILI. The core active compounds included quercetin, kaempferol, hyperoside, and rutin. Hub nodes including TP53, VEGFA, JUN, TNF, and IL-6 were identified in the PPI network. The GO categories were classified into three functional categories: 112 biological processes, 9 molecular functions, and 32 cellular components of the active compounds of Houttuynia cordata Thunb. The KEGG pathway enrichment analysis demonstrated the enrichment of target genes in several key cancer-related signaling pathways, including the cancer pathways, TNF signaling pathway, PI3K-Akt signaling pathway, and HIF-1 signaling pathway. Molecular docking analysis validated the effective binding capacity of the main active compounds with the core targets. Conclusion The main active components of Houttuynia cordata Thunb. have a potential pharmacological effect against RILI via the cancer pathways, TNF signaling pathway, and PI3K-Akt signaling pathway.
Collapse
|
50
|
Hsieh PC, Chao YC, Tsai KW, Li CH, Tzeng IS, Wu YK, Shih CY. Efficacy and Safety of Complementary Therapy With Jing Si Herbal Tea in Patients With Mild-To-Moderate COVID-19: A Prospective Cohort Study. Front Nutr 2022; 9:832321. [PMID: 35369061 PMCID: PMC8967163 DOI: 10.3389/fnut.2022.832321] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/24/2022] [Indexed: 01/02/2023] Open
Abstract
Background Since late 2019, there has been a global COVID-19 pandemic. To preserve medical capacity and decrease adverse health effects, preventing the progression of COVID-19 to severe status is essential. Jing-Si Herbal Tea (JSHT), a novel traditional Chinese medicine formula was developed to treat COVID-19. This study examined the clinical efficacy and safety of JSHT in patients with mild-to-moderate COVID-19. Methods In this prospective cohort study, we enrolled 260 patients with mild-to-moderate COVID-19. The enrolled patients were divided into the JSHT (n = 117) and control (n = 143) groups. Both groups received standard management. The JSHT group was treated with JSHT as a complementary therapy. Results Compared with standard management alone, JSHT combined with standard management more effectively improved the reverse transcription–polymerase chain reaction cycle threshold value, C-reactive protein level, and Brixia score in the adult patients with mild-to-moderate COVID-19, especially in the male and older patients (those aged ≥60 years). The results revealed that the patients treated with JSHT combined with standard management had 51, 70, and 100% lower risks of intubation, Medisave Care Unit admission, and mortality compared with those receiving standard management only. Conclusions JSHT combined with standard management more effectively reduced the SARS-CoV-2 viral load and systemic inflammation and alleviated lung infiltrates in the patients with mild-to-moderate COVID-19, especially in the male and older patients (those aged ≥60 years). JSHT combined with standard management may prevent critical status and mortality in patients with mild-to-moderate COVID-19. JSHT is a promising complementary therapy for patients with mild-to-moderate COVID-19.
Collapse
Affiliation(s)
- Po-Chun Hsieh
- Department of Chinese Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - You-Chen Chao
- Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Kuo-Wang Tsai
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Chung-Hsien Li
- Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - I-Shiang Tzeng
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Yao-Kuang Wu
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- *Correspondence: Yao-Kuang Wu
| | | |
Collapse
|