1
|
Wang HP, Lin ZZ, Yin Q, Du J. Screening of GLP-1r agonists from natural products using affinity ultrafiltration screening coupled with UPLC-ESI-Orbitrap-MS technology: a case study of Panax ginseng. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2025; 27:176-188. [PMID: 39037429 DOI: 10.1080/10286020.2024.2378821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 07/23/2024]
Abstract
In our study, a method based on affinity ultrafiltration screening coupled with UPLC-ESI-Orbitrap-MS technology was established to select Glucagon-like peptide-1 receptor (GLP-1R) agonists from natural products, and as an example, the GLP-1R agonists from Panax ginseng was selected using our established method. As a result, total five GLP-1R agonists were selected from Panax ginseng for the first time. Our results indicated that activating GLP-1R to promote insulin secretion probably was another important hypoglycemia mechanism for ginsenosides in Panax ginseng, which had great influence on the study of the anti-diabetes effect of ginsenosides.
Collapse
Affiliation(s)
- Hong-Ping Wang
- Scientific Research Institute of Beijing Tongrentang Co., Ltd, Beijing 100011, China
| | - Zhao-Zhou Lin
- Beijing Zhongyan Tongrentang Pharmaceutical R & D Co., Ltd., National Engineering Research Center for R&D of TCM Multi-ingredient Drugs, Beijing 100079, China
| | - Qiong Yin
- Scientific Research Institute of Beijing Tongrentang Co., Ltd, Beijing 100011, China
| | - Jing Du
- Beijing Tongrentang Group, Beijing 100000, China
| |
Collapse
|
2
|
Ngau TH, Dieu CPK, Hue CPK, Huynh DTN, Do BH, Huynh LD. Ethnopharmacology, genetic diversity, phytochemistry and pharmacological effects of Panax vietnamensis Ha et Grushv.: A review. J Environ Pathol Toxicol Oncol 2025; 44:73-92. [PMID: 39462451 DOI: 10.1615/jenvironpatholtoxicoloncol.2024052414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024] Open
Abstract
Ginseng is considered as a beneficial herbal remedy and over recent years its efficacy and safety have been verified in clinical therapy. There are two typical species of ginseng including Asian and American ginseng. The varieties of both species have been applied for commercialized materials in different stages of processing from raw to processed products. Panax vietnamensis Ha et Grushv. (P. vietnamensis) belongs to Asian ginseng and has been utilized as effective herbal remedy. P. vietnamensis is believed to improve immune response, longevity and consequent health. There are more than 300 bioactive compounds have been isolated from P. vietnamensis and classified in various groups, such as ginsenosides, flavonoids, phenolics.... These biological activities consist of anti-tumor, anti-inflammatory, neu-roprotective and anti-stress, which are validated by in vitro and in vivo studies. In this review, we systematize the literatures about ethnopharmacology, major bioactive constituents, and toxicology of P. vietnamensis, which were certified by various studies. Furthermore, we also summarize the current method to micro-propagate and lists of extracting sources of bioactive compounds (root, leave, stem.) and the solvents deployed during extraction process. Therefore, this review would provide the firm-evidences and premise for the therapeutic potentials of P. vietnamensis in the future.
Collapse
Affiliation(s)
- Tran Hoang Ngau
- Ho Chi Minh City University of Industry and Trade (HUIT), Tay Thanh Ward, Tan Phu District, Ho Chi Minh City, Vietnam
| | - Chau Phan Kim Dieu
- Center for Information Technology Application, Department of Science and Technology, Quy Nhon City, Viet Nam
| | - Chau Phan Kim Hue
- Center for Information Technology Application, Department of Science and Technology, Quy Nhon City, Viet Nam
| | - Duyen Thi Ngoc Huynh
- Department of Food Science and Biotechnology & Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin 17104, Korea
| | - Bich Hang Do
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | | |
Collapse
|
3
|
Yang J, Wu Y, Jiang Z, Jiao L, Wang Y. Fecal fatty acid profile reveals the therapeutic effect of red ginseng acidic polysaccharide on type 2 diabetes mellitus in rats. J Food Sci 2025; 90:e70015. [PMID: 39832227 DOI: 10.1111/1750-3841.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/13/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
This study aimed to investigate the potential hypoglycemic mechanism of red ginseng acidic polysaccharides (RGAP) from the perspective of fatty acid (FA) regulation. A high-glucose/high-fat diet in conjunction with streptozotocin administration was employed to establish type 2 diabetes mellitus (T2DM) rat models, and their fecal FAs were detected using the liquid chromatography-mass spectrometry (LC-MS) method. RGAP treatment alleviated the polyphagia, polydipsia, weight loss, and hyperglycemia observed in T2DM rats. FA profile was disturbed by T2DM modeling, and 11 marker FAs were selected from statistical analysis, whose intensities were reversely changed by RGAP administration. Among these marker FAs, short-chain FAs were negatively correlated with the fasting blood glucose (FBG) level, while positive correlations were observed between long-chain FA and the FBG level. Combined with the metabolite-enzyme-gene network analysis, we inferred that the mechanistic mechanism RGAP on T2DM may be associated with the regulation of FA metabolism and inflammation-related signaling pathways. This study confirmed the regulatory effect of RGAP on fecal FA, which can provide a scientific basis and new ideas for developing red ginseng as a functional food for supplementary treatment of T2DM.
Collapse
Affiliation(s)
- Jingxuan Yang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Yi Wu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Ziye Jiang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Lili Jiao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Yang Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
4
|
Men X, Han X, La IJ, Lee SJ, Oh G, Im JH, Fu X, Lim JS, Bae KS, Seong GS, Lee DS, Choi SI, Lee OH. Ameliorative Effects of Fermented Red Ginseng Extract on Muscle Atrophy in Dexamethasone-Induced C2C12 Cell And Hind Limb-Immobilized C57BL/6J Mice. J Med Food 2024; 27:951-960. [PMID: 39167545 DOI: 10.1089/jmf.2024.k.0168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024] Open
Abstract
Fermented red ginseng (FRG) enhances the bioactivity and bioavailability of ginsenosides, which possess various immunomodulatory, antiaging, anti-obesity, and antidiabetic properties. However, the effects of FRG extract on muscle atrophy and the underlying molecular mechanisms remain unclear. This study aimed to elucidate the effects of FRG extract on muscle atrophy using both in vitro and in vivo models. In vitro experiments used dexamethasone (DEX)-induced C2C12 myotubes to assess cell viability, myotube diameter, and fusion index. In vivo experiments were conducted on hind limb immobilization (HI)-induced mice to evaluate grip strength, muscle mass, and fiber cross-sectional area (CSA) of the gastrocnemius (GAS), quadriceps (QUA), and soleus (SOL) muscles. Molecular mechanisms were investigated through the analysis of key signaling pathways associated with muscle protein synthesis, energy metabolism, and protein degradation. FRG extract treatment enhanced viability of DEX-induced C2C12 myotubes and restored myotube diameter and fusion index. In HI-induced mice, FRG extract improved grip strength, increased muscle mass and CSA of GAS, QUA, and SOL muscles. Mechanistic studies revealed that FRG extract activated the insulin-like growth factor 1/protein kinase B (Akt)/mammalian target of rapamycin signaling pathway, promoted muscle energy metabolism via the sirtuin 1/peroxisome proliferator-activated receptor gamma-coactivator-1α pathway, and inhibited muscle protein degradation by suppressing the forkhead box O3a, muscle ring-finger 1, and F-box protein (Fbx32) signaling pathways. FRG extract shows promise for ameliorating muscle atrophy by modulating key molecular pathways associated with muscle protein synthesis, energy metabolism, and protein degradation, offering insights for future drug development.
Collapse
Affiliation(s)
- Xiao Men
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, Korea
| | - Xionggao Han
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, Korea
| | | | - Se-Jeong Lee
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, Korea
| | - Geon Oh
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, Korea
| | - Ji-Hyun Im
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, Korea
| | - Xiaolu Fu
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, Korea
| | - June-Seok Lim
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, Korea
| | | | | | | | - Sun-Il Choi
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, Korea
| | - Ok-Hwan Lee
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
5
|
Choi W, Cho JH, Park SH, Kim DS, Lee HP, Kim D, Kim HS, Kim JH, Cho JY. Ginseng root-derived exosome-like nanoparticles protect skin from UV irradiation and oxidative stress by suppressing activator protein-1 signaling and limiting the generation of reactive oxygen species. J Ginseng Res 2024; 48:211-219. [PMID: 38465216 PMCID: PMC10920011 DOI: 10.1016/j.jgr.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 12/05/2023] [Accepted: 01/10/2024] [Indexed: 03/12/2024] Open
Abstract
Background Recently, plant-derived exosome-like nanoparticles (PDENs) have been isolated, and active research was focusing on understanding their properties and functions. In this study, the characteristics and molecular properties of ginseng root-derived exosome-like nanoparticles (GrDENs) were examined in terms of skin protection. Methods HPLC-MS protocols were used to analyze the ginsenoside contents in GrDENs. To investigate the beneficial effect of GrDENs on skin, HaCaT cells were pre-treated with GrDENs (0-2 × 109 particles/mL), and followed by UVB irradiation or H2O2 exposure. In addition, the antioxidant activity of GrDENs was measured using a fluorescence microscope or flow cytometry. Finally, molecular mechanisms were examined with immunoblotting analysis. Results GrDENs contained detectable levels of ginsenosides (Re, Rg1, Rb1, Rf, Rg2 (S), Gyp17, Rd, C-Mc1, C-O, and F2). In UVB-irradiated HaCaT cells, GrDENs protected cells from death and reduced ROS production. GrDENs downregulated the mRNA expression of proapoptotic genes, including BAX, caspase-1, -3, -6, -7, and -8 and the ratio of cleaved caspase-8, -9, and -3 in a dose-dependent manner. In addition, GrDENs reduced the mRNA levels of aging-related genes (MMP2 and 3), proinflammatory genes (COX-2 and IL-6), and cellular senescence biomarker p21, possibly by suppressing activator protein-1 signaling. Conclusions This study demonstrates the protective effects of GrDENs against skin damage caused by UV and oxidative stress, providing new insights into beneficial uses of ginseng. In particular, our results suggest GrDENs as a potential active ingredient in cosmeceuticals to promote skin health.
Collapse
Affiliation(s)
- Wooram Choi
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jeong Hun Cho
- Research and Innovation Center, AMOREPACIFIC, Yongin, Republic of Korea
| | - Sang Hee Park
- Department of Biocosmetics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Dong Seon Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hwa Pyoung Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Donghyun Kim
- Research and Innovation Center, AMOREPACIFIC, Yongin, Republic of Korea
| | - Hyun Soo Kim
- Research and Innovation Center, AMOREPACIFIC, Yongin, Republic of Korea
| | - Ji Hye Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
6
|
Han EJ, Elbegbayar E, Baek Y, Lee JS, Lee HG. Taste masking and stability improvement of Korean red ginseng (Panax ginseng) by nanoencapsulation using chitosan and gelatin. Int J Biol Macromol 2023; 250:126259. [PMID: 37567543 DOI: 10.1016/j.ijbiomac.2023.126259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/28/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
In this study, red ginseng extract (RGE)-loaded nanoparticles (NPs) were prepared by ionic gelation between chitosan (CS) and gelatin (Gel), and the physical characteristics of the RGE-loaded CS-Gel NPs (RGE-CS/Gel NPs), including particle size and polydispersity index (PDI), using different ratios of CS and Gel were examined. The particle size and PDI were 398.1 ± 41.3 nm and 0.433 ± 0.033, respectively for the optimal ratio of CS (0.075 mg/mL) and Gel (0.05 mg/mL). In vitro taste masking test and in vivo sensory evaluation using 10 panelists demonstrated that the CS/Gel NPs significantly reduced the bitter taste of RGE. Additionally, the CS/Gel NPs improved the thermal and acid stabilities, which were almost 6 and 8 times higher than those in the free RGE (p < 0.05), respectively. Likewise, our findings revealed that the RGE-CS/Gel NPs effectively maintain their inhibitory function against platelet aggregation (76.30 %) in an acidic environment. Therefore, the CS/Gel NPs can be used as a potential delivery system to mask the bitterness and improve the stability of RGE, which may enhance its application as a more palatable functional food ingredient with high anti-platelet activity.
Collapse
Affiliation(s)
- Eun Ji Han
- Department of Food and Nutrition, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Republic of Korea
| | - Enkhtsatsral Elbegbayar
- Department of Food and Nutrition, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Republic of Korea
| | - Youjin Baek
- Department of Food and Nutrition, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Republic of Korea
| | - Ji-Soo Lee
- Department of Food and Nutrition, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Republic of Korea; Medicine Park, Co., Ltd, A-609, 406 Teheran-ro, Gangnam-gu, Seoul 06192, Republic of Korea.
| | - Hyeon Gyu Lee
- Department of Food and Nutrition, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Republic of Korea.
| |
Collapse
|
7
|
Wang HP, Fan CL, Lin ZZ, Yin Q, Zhao C, Peng P, Zhang R, Wang ZJ, Du J, Wang ZB. Screening of Potential α-Glucosidase Inhibitors from the Roots and Rhizomes of Panax Ginseng by Affinity Ultrafiltration Screening Coupled with UPLC-ESI-Orbitrap-MS Method. Molecules 2023; 28:molecules28052069. [PMID: 36903317 PMCID: PMC10004417 DOI: 10.3390/molecules28052069] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/09/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Panax ginseng was a traditional Chinese medicine with various pharmacological activities and one of its important activities was hypoglycemic activity; therefore, panax ginseng has been used in China as an adjuvant in the treatment of diabetes mellitus. In vivo and in vitro tests have revealed that ginsenosides, which are derived from the roots and rhizomes of panax ginseng have anti-diabetic effects and produce different hypoglycemic mechanisms by acting on some specific molecular targets, such as SGLT1, GLP-1, GLUTs, AMPK, and FOXO1. α-Glucosidase is another important hypoglycemic molecular target, and its inhibitors can inhibit the activity of α-Glucosidase so as to delay the absorption of dietary carbohydrates and finally reduce postprandial blood sugar. However, whether ginsenosides have the hypoglycemic mechanism of inhibiting α-Glucosidase activity, and which ginsenosides exactly attribute to the inhibitory effect as well as the inhibition degree are not clear, which needs to be addressed and systematically studied. To solve this problem, affinity ultrafiltration screening coupled with UPLC-ESI-Orbitrap-MS technology was used to systematically select α-Glucosidase inhibitors from panax ginseng. The ligands were selected through our established effective data process workflow based on systematically analyzing all compounds in the sample and control specimens. As a result, a total of 24 α-Glucosidase inhibitors were selected from panax ginseng, and it was the first time that ginsenosides were systematically studied for the inhibition of α-Glucosidase. Meanwhile, our study revealed that inhibiting α-Glucosidase activity probably was another important mechanism for ginsenosides treating diabetes mellitus. In addition, our established data process workflow can be used to select the active ligands from other natural products using affinity ultrafiltration screening.
Collapse
Affiliation(s)
- Hong-Ping Wang
- Scientific Research Institute of Beijing Tongrentang Co., Ltd., Beijing 100011, China
- Correspondence: ; Tel./Fax: +86-10-87632655
| | - Chun-Lan Fan
- Beijing Tongrentang Technology Development Co., Ltd., Beijing 100079, China
| | - Zhao-Zhou Lin
- Beijing Tongrentang Technology Development Co., Ltd., Beijing 100079, China
| | - Qiong Yin
- Scientific Research Institute of Beijing Tongrentang Co., Ltd., Beijing 100011, China
| | - Chen Zhao
- Scientific Research Institute of Beijing Tongrentang Co., Ltd., Beijing 100011, China
| | - Ping Peng
- Scientific Research Institute of Beijing Tongrentang Co., Ltd., Beijing 100011, China
| | - Run Zhang
- Beijing Zhongyan Tongrentang Pharmaceutical R & D Co., Ltd., Beijing 100000, China
| | - Zi-Jian Wang
- Scientific Research Institute of Beijing Tongrentang Co., Ltd., Beijing 100011, China
| | - Jing Du
- Scientific Research Institute of Beijing Tongrentang Co., Ltd., Beijing 100011, China
| | - Zhi-Bin Wang
- Scientific Research Institute of Beijing Tongrentang Co., Ltd., Beijing 100011, China
| |
Collapse
|
8
|
The Efficacy of Ginseng (Panax) on Human Prediabetes and Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Nutrients 2022; 14:nu14122401. [PMID: 35745129 PMCID: PMC9227417 DOI: 10.3390/nu14122401] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 05/30/2022] [Accepted: 06/08/2022] [Indexed: 12/12/2022] Open
Abstract
Results from different clinical trials on the effects of ginseng on prediabetes and type 2 diabetes (T2DM) are still inconsistent. To fill this knowledge gap, we investigated the overall effects of ginseng supplementation on improving cardiometabolic biomarkers among these patients. A systematic literature search was conducted on PubMed/MEDLINE, Scopus, Web of Science, and Cochrane library. A random-effect model was applied to estimate the weighted mean difference and 95% CI for each outcome. Overall, 20 eligible RCTs were included. Meta-analyses revealed that ginseng supplementation significantly reduced serum concentration of FPG, TC, IL-6, and HOMA-IR values. It also increased HR and TNF-α levels. Ginseng supplementation changed HOMA-IR and HDL-C significantly based on dose and changed HOMA-IR and LDL-C significantly based on study duration in a non-linear fashion. Furthermore, meta-regression analyses indicated a linear relationship between ginseng dose and absolute changes in HDL-C. Moreover, subgroup analyses showed that ginseng supplementation changed TC and LDL-C when the supplementation dose was ≥2 g/day. Our findings suggest that ginseng supplementation may be an effective strategy for improving cardiometabolic profiles in individuals with prediabetes and T2DM.
Collapse
|
9
|
Qu D, Huo XH, Li ZM, Hua M, Lu YS, Chen JB, Li SS, Wen LK, Sun YS. Sediment formation and analysis of the main chemical components of aqueous extracts from different parts of ginseng roots. Food Chem 2022; 379:132146. [DOI: 10.1016/j.foodchem.2022.132146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/20/2021] [Accepted: 01/10/2022] [Indexed: 11/04/2022]
|
10
|
Bai C, Chen R, Tan L, Bai H, Tian L, Lu J, Gao M, Sun H, Chi Y. Effects of multi-frequency ultrasonic on the physicochemical properties and bioactivities of polysaccharides from different parts of ginseng. Int J Biol Macromol 2022; 206:896-910. [PMID: 35318082 DOI: 10.1016/j.ijbiomac.2022.03.098] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/23/2022] [Accepted: 03/15/2022] [Indexed: 11/05/2022]
Abstract
The effect of multi-frequency ultrasonic extraction (MUE) on the yields, physicochemical properties, antioxidant and α-glucosidase inhibitory activities of polysaccharides (GPs) from different parts of ginseng were compared. Results demonstrated that yields of polysaccharides from different parts were found to vary significantly differences, in the order of roots (M-GRPs) > flowers (M-GFPs) > leaves (M-GLPs). Compared with heat reflux extraction, MUE not only increased the yield of GPs by up to 9.14%-210.87%, with higher uronic acid content (UAC: increased by 4.99%-53.48%), total phenolics content (TPC: increased by 7.60% to 42.61%), total flavonoids content (TFC: increased by 2.52%-5.45%), and lower molecular weight (Mw: reduced by 6.51%- 33.08%) and protein content (PC: reduced by 5.15%-8.95%), but also improved their functional properties and bioactivities. All six purified polysaccharides extracted by MUE were acidic pyran polysaccharide with different monosaccharide composition, possessed remarkable antioxidant and α-glucosidase inhibitory activities. Especially, M-GFP-1 exhibited the highest bioactivities, illustrated that the activities were highly correlated with UAC and TPC, Mw, and triple helical structure. These results indicate that MUE was an efficient technique for improving yields, physicochemical and functional properties and enhancing biological activities of polysaccharide.
Collapse
Affiliation(s)
- Chunlong Bai
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Ruizhan Chen
- College of Chemistry, Changchun Normal University, Changchun 130032, China.
| | - Li Tan
- Institute of Agricultural Quality Standard and Testing Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Helong Bai
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Li Tian
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Juan Lu
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Ming Gao
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Hui Sun
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Yu Chi
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| |
Collapse
|
11
|
Min JH, Cho HJ, Yi YS. A novel mechanism of Korean red ginseng-mediated anti-inflammatory action via targeting caspase-11 non-canonical inflammasome in macrophages. J Ginseng Res 2021; 46:675-682. [PMID: 36090677 PMCID: PMC9459075 DOI: 10.1016/j.jgr.2021.12.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/22/2021] [Accepted: 12/26/2021] [Indexed: 01/05/2023] Open
Abstract
Background Korean Red Ginseng (KRG) was reported to play an anti-inflammatory role, however, previous studies largely focused on the effects of KRG on priming step, the inflammation-preparing step, and the anti-inflammatory effect of KRG on triggering, the inflammation-activating step has been poorly understood. This study demonstrated anti-inflammatory role of KRG in caspase-11 non-canonical inflammasome activation in macrophages during triggering of inflammatory responses. Methods Caspase-11 non-canonical inflammasome-activated J774A.1 macrophages were established by priming with Pam3CSK4 and triggering with lipopolysaccharide (LPS). Cell viability and pyroptosis were examined by MTT and lactate dehydrogenase (LDH) assays. Nitric oxide (NO)-inhibitory effect of KRG was assessed using a NO production assay. Expression and proteolytic cleavage of proteins were examined by Western blotting analysis. In vivo anti-inflammatory action of KRG was evaluated with the LPS-injected sepsis model in mice. Results KRG reduced LPS-stimulated NO production in J774A.1 cells and suppressed pyroptosis and IL-1β secretion in caspase-11 non-canonical inflammasome-activated J774A.1 cells. Mechanistic studies demonstrated that KRG suppressed the direct interaction between LPS and caspase-11 and inhibited proteolytic processing of both caspase-11 and gasdermin D in caspase-11 non-canonical inflammasome-activated J774A.1 cells. Furthermore, KRG significantly ameliorated LPS-mediated lethal septic shock in mice. Conclusion The results demonstrate a novel mechanism of KRG-mediated anti-inflammatory action that operates through targeting the caspase-11 non-canonical inflammasome at triggering step of macrophage-mediated inflammatory response.
Collapse
|
12
|
Schreck K, Melzig MF. Traditionally Used Plants in the Treatment of Diabetes Mellitus: Screening for Uptake Inhibition of Glucose and Fructose in the Caco2-Cell Model. Front Pharmacol 2021; 12:692566. [PMID: 34489694 PMCID: PMC8417609 DOI: 10.3389/fphar.2021.692566] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/15/2021] [Indexed: 01/11/2023] Open
Abstract
The traditional use of plants and their preparations in the treatment of diseases as a first medication in the past centuries indicates the presence of active components for specific targets in the natural material. Many of the tested plants in this study have been traditionally used in the treatment of Diabetes mellitus type 2 and associated symptoms in different cultural areas. Additionally, hypoglycemic effects, such as a decrease in blood glucose concentration, have been demonstrated in vivo for these plants. In order to determine the mode of action, the plants were prepared as methanolic and aqueous extracts and tested for their effects on intestinal glucose and fructose absorption in Caco2 cells. The results of this screening showed significant and reproducible inhibition of glucose uptake between 40 and 80% by methanolic extracts made from the fruits of Aronia melanocarpa, Cornus officinalis, Crataegus pinnatifida, Lycium chinense, and Vaccinium myrtillus; the leaves of Brassica oleracea, Juglans regia, and Peumus boldus; and the roots of Adenophora triphylla. Furthermore, glucose uptake was inhibited between 50 and 70% by aqueous extracts made from the bark of Eucommia ulmoides and the fruit skin of Malus domestica. The methanolic extracts of Juglans regia and Peumus boldus inhibited the fructose transport between 30 and 40% in Caco2 cells as well. These findings can be considered as fundamental work for further research regarding the treatment of obesity-correlated diseases, such as Diabetes mellitus type 2.
Collapse
Affiliation(s)
| | - Matthias F. Melzig
- Pharmaceutical Biology, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany
| |
Collapse
|
13
|
Lee SY, Yuk HG, Ko SG, Cho SG, Moon GS. Gut Microbiome Prolongs an Inhibitory Effect of Korean Red Ginseng on High-Fat-Diet-Induced Mouse Obesity. Nutrients 2021; 13:nu13030926. [PMID: 33809267 PMCID: PMC7999605 DOI: 10.3390/nu13030926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 01/14/2023] Open
Abstract
Although the anti-obesity effect of Korean red ginseng (Panax ginseng Meyer) has been revealed, its underlying mechanisms are not clearly understood. Here, we demonstrate an involvement of gut microbiome in the inhibitory effect of Korean red ginseng on high-fat-diet (HFD)-induced mouse obesity, and further provides information on the effects of saponin-containing red ginseng extract (SGE) and saponin-depleted red ginseng extract (GE). Mice were fed with either SGE or GE every third day for one month, and their food intakes, fat weights, plasma glucose, and insulin and leptin levels were measured. Immunofluorescence assays were conducted to measure pancreatic islet size. Stools from the mice were subjected to metagenomic analysis. Both SGE and GE attenuated HFD-induced gain of body weight, reducing HFD-induced increase of food intakes and fat weights. They also reduced HFD-increased plasma glucose, insulin, and leptin levels, decreased both fasting and postprandial glucose concentrations, and improved both insulin resistance and glucose intolerance. Immunofluorescence assays revealed that they blocked HFD-induced increase of pancreatic islet size. Our pyrosequencing of the 16S rRNA gene V3 region from stools revealed that both SGE and GE modulated HFD-altered composition of gut microbiota. Therefore, we conclude that Korean red ginseng inhibits HFD-induced obesity and diabetes by altering gut microbiome.
Collapse
Affiliation(s)
- Seo Yeon Lee
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02453, Korea; (S.Y.L.); (S.G.K.)
| | - Hyun Gyun Yuk
- Department of Food Science and Technology, Korea National University of Transportation, 61 Daehak-ro, Jeungpyeong, Chungbuk 27909, Korea;
| | - Seong Gyu Ko
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02453, Korea; (S.Y.L.); (S.G.K.)
| | - Sung-Gook Cho
- Department of Biotechnology, Korea National University of Transportation, 61 Daehak-ro, Jeungpyeong, Chungbuk 27909, Korea
- Correspondence: (S.-G.C.); (G.-S.M.); Tel.: +82-43-820-5254 (S.-G.C.); +82-43-820-5272 (G.-S.M.)
| | - Gi-Seong Moon
- Department of Biotechnology, Korea National University of Transportation, 61 Daehak-ro, Jeungpyeong, Chungbuk 27909, Korea
- Correspondence: (S.-G.C.); (G.-S.M.); Tel.: +82-43-820-5254 (S.-G.C.); +82-43-820-5272 (G.-S.M.)
| |
Collapse
|
14
|
Shin SJ, Nam Y, Park YH, Kim MJ, Lee E, Jeon SG, Bae BS, Seo J, Shim SL, Kim JS, Han CK, Kim S, Lee YY, Moon M. Therapeutic effects of non-saponin fraction with rich polysaccharide from Korean red ginseng on aging and Alzheimer's disease. Free Radic Biol Med 2021; 164:233-248. [PMID: 33422674 DOI: 10.1016/j.freeradbiomed.2020.12.454] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 12/18/2022]
Abstract
Biological aging provokes morbidity and several functional declines, causing older adults more susceptible to a variety of diseases than younger adults. In particular, aging is a major risk factor contributing to non-communicable diseases, such as neurodegenerative disorders. Alzheimer's disease (AD) is an aging-related neurodegenerative disease that is characterized by cognitive deficits and the formation of amyloid plaques formed by the accumulation of amyloid-β (Aβ) peptides. Non-saponin fraction with rich polysaccharide (NFP) from red ginseng, the largest fraction of the components of red ginseng, perform many biological activities. However, it has not been clarified whether the NFP from Korean red ginseng (KRG) has beneficial effects in the aging and AD. First, proteomics analysis was performed in aged brain to identify the effect of NFP on protein changes, and we confirmed that NFP induced changes in proteins related to the neuroprotective- and neurogenic-effects. Next, we investigated (1) the effects of NFP on AD pathologies, such as Aβ deposition, neuroinflammation, neurodegeneration, mitochondrial dysfunction, and impaired adult hippocampal neurogenesis (AHN), in 5XFAD transgenic mouse model of AD using immunostaining; (2) the effect of NFP on Aβ-mediated mitochondrial respiration deficiency in HT22 mouse hippocampal neuronal cells (HT22) using Seahorse XFp analysis; (3) the effect of NFP on cell proliferation using WST-1 analysis; and (4) the effect of NFP on Aβ-induced cognitive dysfunction in 5XFAD mouse model of AD using Y-maze test. Histological analysis indicated that NFP significantly alleviated the accumulation of Aβ, neuroinflammation, neuronal loss, and mitochondrial dysfunction in the subiculum of 5XFAD mouse model of AD. In addition, NFP treatment ameliorated mitochondrial deficits in Aβ-treated HT22 cells. Moreover, NFP treatment significantly increased the AHN and neuritogenesis of neural stem cells in both healthy and AD brains. Furthermore, NFP significantly increased cell proliferation in the HT22 cells. Finally, NFP administration significantly enhanced and restored the cognitive function of healthy and AD mice, respectively. Taken together, NFP treatment demonstrated changes in proteins involved in central nervous system organization/maintenance in aged brain and ameliorates AD pathology. Collectively, our findings suggest that NFP from KRG could be a potential therapeutic candidate for aging and AD treatments.
Collapse
Affiliation(s)
- Soo Jung Shin
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon, 35365, Republic of Korea
| | - Yunkwon Nam
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon, 35365, Republic of Korea
| | - Yong Ho Park
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon, 35365, Republic of Korea
| | - Min-Jeong Kim
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon, 35365, Republic of Korea
| | - Eunbeen Lee
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon, 35365, Republic of Korea
| | - Seong Gak Jeon
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, 41068, Republic of Korea
| | - Bong-Seok Bae
- The Korean Ginseng Research Institute, Korea Ginseng Corporation, Gajeong-ro 30, Shinseong-dong, Yuseong-gu, Daejeon, 34128, Republic of Korea
| | - Jiho Seo
- The Korean Ginseng Research Institute, Korea Ginseng Corporation, Gajeong-ro 30, Shinseong-dong, Yuseong-gu, Daejeon, 34128, Republic of Korea
| | - Sung-Lye Shim
- The Korean Ginseng Research Institute, Korea Ginseng Corporation, Gajeong-ro 30, Shinseong-dong, Yuseong-gu, Daejeon, 34128, Republic of Korea
| | - Jong-Seok Kim
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Chang-Kyun Han
- The Korean Ginseng Research Institute, Korea Ginseng Corporation, Gajeong-ro 30, Shinseong-dong, Yuseong-gu, Daejeon, 34128, Republic of Korea
| | - Sujin Kim
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon, 35365, Republic of Korea; Research Institute for Dementia Science, Konyang University, Daejeon, 35365, Republic of Korea.
| | - Yong Yook Lee
- The Korean Ginseng Research Institute, Korea Ginseng Corporation, Gajeong-ro 30, Shinseong-dong, Yuseong-gu, Daejeon, 34128, Republic of Korea.
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon, 35365, Republic of Korea; Research Institute for Dementia Science, Konyang University, Daejeon, 35365, Republic of Korea.
| |
Collapse
|
15
|
Yoon SJ, Kim SK, Lee NY, Choi YR, Kim HS, Gupta H, Youn GS, Sung H, Shin MJ, Suk KT. Effect of Korean Red Ginseng on metabolic syndrome. J Ginseng Res 2020; 45:380-389. [PMID: 34025131 PMCID: PMC8134847 DOI: 10.1016/j.jgr.2020.11.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 09/24/2020] [Accepted: 11/02/2020] [Indexed: 12/27/2022] Open
Abstract
Metabolic syndrome (MS) refers to a clustering of at least three of the following medical conditions: high blood pressure, abdominal obesity, hyperglycemia, low high-density lipoprotein level, and high serum triglycerides. MS is related to a wide range of diseases which includes obesity, diabetes, insulin resistance, cardiovascular disease, dyslipidemia, or non-alcoholic fatty liver disease. There remains an ongoing need for improved treatment strategies for MS. The most important risk factors are dietary pattern, genetics, old age, lack of exercise, disrupted biology, medication usage, and excessive alcohol consumption, but pathophysiology of MS has not been completely identified. Korean Red Ginseng (KRG) refers to steamed/dried ginseng, traditionally associated with beneficial effects such as anti-inflammation, anti-fatigue, anti-obesity, anti-oxidant, and anti-cancer effects. KRG has been often used in traditional medicine to treat multiple metabolic conditions. This paper summarizes the effects of KRG in MS and related diseases such as obesity, cardiovascular disease, insulin resistance, diabetes, dyslipidemia, or non-alcoholic fatty liver disease based on experimental research and clinical studies.
Collapse
Key Words
- ACC, Acetyl-Coenzyme A carboxylase
- ADP, adenosine diphosphate
- AG, American ginseng extract
- AGE, advanced glycation end product
- ALT, alanine aminotransferase
- AMPK, AMP-activated protein kinase
- AST, aspartate aminotransferase
- Akt, protein kinase B
- BMI, body mass index
- C/EBPα, CCAAT/enhancer-binding protein alpha
- COX-2, cyclooxygenase-2
- CPT, current perception threshold
- CPT-1, carnitine palmitoyl transferase 1
- CRP, C-reactive protein
- CVD, Cardiovascular disease
- DBP, diastolic blood pressure
- DEN, diethyl nitrosamine
- EAT, epididymis adipose tissue
- EF, ejection fraction
- FABP4, fatty acid binding protein 4
- FAS, Fatty acid synthase
- FFA, free fatty acid
- FR, fine root concentration
- FS, fractional shortening
- GBHT, ginseng-plus-Bai-Hu-Tang
- GLUT, glucose transporter type
- GPx, glutathione peroxidase
- GS, ginsenoside
- GST, glutathione S-transferase
- GST-P, glutathione S-transferase placental form
- GTT, glucose tolerance test
- HCC, hepatocellular carcinoma
- HCEF-RG, hypotensive components-enriched fraction of red ginseng
- HDL, high-density lipoprotein
- HFD, High fat diet
- HOMA-IR, homeostasis model assessment of insulin resistance index
- HbA1c, glycosylated hemoglobin
- I.P., intraperitoneal injection
- IL, interleukin
- IR, insulin resistance
- ITT, insulin tolerance test
- Insulin resistance
- KRG, Korean Red Ginseng
- LDL, low-density lipoprotein
- LPL, lipoprotein lipase
- Lex, lower extremities
- MDA, malondialdehyde
- MMP, Matrix metallopeptidases
- MS, Metabolic syndrome
- Metabolic syndrome
- NAFLD, Non-alcoholic fatty liver disease
- NF-кB, nuclear factor kappa-light-chain-enhancer of activated B cells
- NK cell, Natural killer cell
- NMDA-NR1, N-methyl-D-aspartate NR1
- NO, nitric oxide
- NRF1, Nuclear respiratory factor 1
- Non-alcoholic fatty liver disease
- Nrf2, Nuclear factor erythroid 2-related factor 2
- OLETF rat, Otsuka Long-Evans Tokushima fatty rat
- PCG-1α, PPAR-γ coactivator-1α
- PI3K, phosphoinositide 3-kinase
- PPAR, peroxisome proliferator-activated receptors
- PPD, protopanaxadiol
- PPT, protopanaxatriol
- Panax ginseng
- REKRG, Rg3-enriched KRG
- ROS, Reactive oxygen species
- Rg3-KGE, Rg3-enriched KRG extract
- SBP, systolic blood pressure
- SCD, Stearoyl-Coenzyme A desaturase
- SHR, spontaneously hypertensive rat
- SREBP-1C, Sterol regulatory element-binding protein 1
- STAT5, Signal transducer and activator of transcription 5
- STZ, streptozotocin
- TBARS, thiobarbituric acid reactive substances
- TC, total cholesterol
- TG, triglyceride
- TNF, tumor necrosis factor
- UCP, Mitochondrial uncoupling proteins
- VLDL, very low-density lipoprotein
- iNOS, inducible nitric oxide synthase
- t-BHP, tert-butyl hyperoxide
- tGST, total glutathione
Collapse
Affiliation(s)
- Sang Jun Yoon
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Seul Ki Kim
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Na Young Lee
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Ye Rin Choi
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Hyeong Seob Kim
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Haripriya Gupta
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Gi Soo Youn
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Hotaik Sung
- School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Min Jea Shin
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Ki Tae Suk
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| |
Collapse
|
16
|
Liu H, Lu X, Hu Y, Fan X. Chemical constituents of Panax ginseng and Panax notoginseng explain why they differ in therapeutic efficacy. Pharmacol Res 2020; 161:105263. [PMID: 33127555 DOI: 10.1016/j.phrs.2020.105263] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/15/2020] [Accepted: 10/18/2020] [Indexed: 02/06/2023]
Abstract
Panax ginseng (Meyer) and Panax notoginseng (Burkill), belonging to the family Araliaceae, are used worldwide as medicinal and functional herbs. Numerous publications over the past decades have revealed that both P. notoginseng and P. ginseng contain important bioactive ingredients such as ginsenosides and exert multiple pharmacological effects on nervous system and immune diseases. However, based on traditional Chinese medicine (TCM) theory, their applications clearly differ as ginseng reinforces vital energy and notoginseng promotes blood circulation. In this article, we review the similarities and differences between ginseng and notoginseng in terms of their chemical composition and pharmacological effects. Their chemical comparisons indicate that ginseng contains more polysaccharides and amino acids, while notoginseng has more saponins, volatile oil, and polyacetylenes. Regarding pharmacological effects, ginseng exhibits better protective effects on cardiovascular disease, nerve disease, cancer, and diabetes mellitus, whereas notoginseng displays a superior protective effect on cerebrovascular disease. The evidence presented in this review facilitates further research and clinical applications of these two herbs, and exploration of the relationship between the chemical components and disease efficacy may be the critical next step.
Collapse
Affiliation(s)
- Hanbing Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoyan Lu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yang Hu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaohui Fan
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
17
|
Kang IS, Agidigbi TS, Kwon YM, Kim DG, Kim RI, In G, Lee MH, Kim C. Effect of Co-Administration of Panax ginseng and Brassica oleracea on Postmenopausal Osteoporosis in Ovariectomized Mice. Nutrients 2020; 12:nu12082415. [PMID: 32806557 PMCID: PMC7468818 DOI: 10.3390/nu12082415] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 11/23/2022] Open
Abstract
Postmenopausal osteoporosis is a common disorder resulting from increased osteoclastic activity. To determine the effect of Panax ginseng on postmenopausal osteoporosis, ovariectomized (OVX) mice were treated with 500 mg/kg/day P. ginseng extract (Pg) alone or in combination with hot water extract of Brassica oleracea (Bo) daily for 10 weeks, and the effect of the treatments on OVX-induced bone loss was examined. Bone weight, bone mineral density (BMD), osteoclast (OC) formation, OC marker expression, and biochemical parameters in blood were determined. OVX significantly increased body weight and decreased bone weight compared with those in the Sham group (p < 0.01). Pg or Bo alone did not affect OVX-induced bone loss, but a combination of Pg and Bo (Pg:Bo) recovered bone weight. The bones of OVX mice showed lower BMD than that of Sham mice, and the Pg:Bo = 3:1 restored the decreased BMD. Single treatment with Pg or Bo did not alter OC formation; however, the Pg:Bo = 3:1 inhibited OC formation. In addition, Pg and Bo lowered the OVX-induced elevation in blood glucose level. Thus, we suggest that Pg in combination with proper materials, such as Bo, might be a potential candidate treatment with minimal side effects protect against postmenopausal osteoporosis.
Collapse
Affiliation(s)
- In Soon Kang
- Laboratory for Leukocyte Signaling Research, Department of Pharmacology, Inha University School of Medicine, Incheon 22212, Korea; (I.S.K.); (T.S.A.); (Y.M.K.); (D.-G.K.); (R.I.K.)
| | - Taiwo Samuel Agidigbi
- Laboratory for Leukocyte Signaling Research, Department of Pharmacology, Inha University School of Medicine, Incheon 22212, Korea; (I.S.K.); (T.S.A.); (Y.M.K.); (D.-G.K.); (R.I.K.)
| | - Young Min Kwon
- Laboratory for Leukocyte Signaling Research, Department of Pharmacology, Inha University School of Medicine, Incheon 22212, Korea; (I.S.K.); (T.S.A.); (Y.M.K.); (D.-G.K.); (R.I.K.)
| | - Dong-Gyu Kim
- Laboratory for Leukocyte Signaling Research, Department of Pharmacology, Inha University School of Medicine, Incheon 22212, Korea; (I.S.K.); (T.S.A.); (Y.M.K.); (D.-G.K.); (R.I.K.)
| | - Rang Ie Kim
- Laboratory for Leukocyte Signaling Research, Department of Pharmacology, Inha University School of Medicine, Incheon 22212, Korea; (I.S.K.); (T.S.A.); (Y.M.K.); (D.-G.K.); (R.I.K.)
| | - Gyo In
- Laboratory of Fundamental Research, Korea Ginseng Research Institute, Korea Ginseng Corporation, Daejeon 34128, Korea; (G.I.); (M.-H.L.)
| | - Mi-Hyang Lee
- Laboratory of Fundamental Research, Korea Ginseng Research Institute, Korea Ginseng Corporation, Daejeon 34128, Korea; (G.I.); (M.-H.L.)
| | - Chaekyun Kim
- Laboratory for Leukocyte Signaling Research, Department of Pharmacology, Inha University School of Medicine, Incheon 22212, Korea; (I.S.K.); (T.S.A.); (Y.M.K.); (D.-G.K.); (R.I.K.)
- Correspondence: ; Tel.: +82-32-860-9874; Fax: +82-32-885-8302
| |
Collapse
|
18
|
Li J, Huang Y, Zhao S, Guo Q, Zhou J, Han W, Xu Y. Based on network pharmacology to explore the molecular mechanisms of astragalus membranaceus for treating T2 diabetes mellitus. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:633. [PMID: 31930034 DOI: 10.21037/atm.2019.10.118] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Astragalus membranaceus refers to a type of traditional Chinese medicine (TCM) used to treat type 2 diabetes mellitus (T2DM), whereas its molecular mechanism remains unclear. In the presented study, network pharmacology was performed to analyze the molecular mechanism of astragalus membranaceus against T2DM. Methods First, we found common targets of astragalus membranaceus and disease, protein-protein interaction (PPI) network was built by String, and then key targets were screened from these common targets by topological analysis. Subsequently, common targets were introduced into DAVID to achieve the results of gene ontology (GO) and KEGG enrichment analysis. The therapeutic effect of astragalus was observed, and several key targets were verified by an animal experiment. Results First, 13 key targets (EGFR, KDR, SRC, ERBB2, FYN, ESR1, AR, HSP90AA1, PTGS2, ABCG2, AB1, MMP2, and CYP1) were found by topological analysis. Then, the results of GO and KEGG suggested that the anti-diabetes effect of astragalus membranaceus was strongly associated with the activation of receptor protein tyrosine kinase (RPTK). The results of animal experiments revealed that astragalus could enhance the morphology of rat pancreas and up-regulate the expression of tyrosine receptor. Conclusions In brief, 13 key targets were found in this study, and astragalus membranaceus was found up-regulating insulin signaling pathways by improving the activity of casein kinase, regulating lipid metabolism, and enhancing insulin resistance to treat T2DM. The present study lays a basis for subsequent experimental research and broadens the clinical application of astragalus membranaceus.
Collapse
Affiliation(s)
- Jie Li
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yanqin Huang
- Department of Endocrine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Sen Zhao
- Department of Chinese Medicine, The General Hospital of the People's Liberation Army, Beijing 100853, China
| | - Qiuyue Guo
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jie Zhou
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Wenjing Han
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yunsheng Xu
- Department of Endocrine, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250001, China
| |
Collapse
|