1
|
Zhang Z, Ying Z, He M, Zhang Y, Nie W, Tang Z, Liu W, Chen J, Ye J, Li W. UPLC-Q-TOF-MS/MS combined with machine learning methods for screening quality indicators of Hypericum perforatum L. J Pharm Biomed Anal 2024; 248:116313. [PMID: 38878453 DOI: 10.1016/j.jpba.2024.116313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 07/20/2024]
Abstract
Hypericum perforatum L. (HPL), also known as St. John's wort, is one of the extensively researched domestically and internationally as a medicinal plant. In this study, non-targeted metabolomics combined with machine learning methods were used to identify reasonable quality indicators for the holistic quality control of HPL. First, the high-resolution MS data from different samples of HPL were collected, and visualized the chemical compounds through the MS molecular network. A total of 122 compounds were identified. Then, the orthogonal partial least squares-discriminant analysis (OPLS-DA) model was established for comparing the differences in metabolite expression between flower, leaf, and branches. A total of 46 differential metabolites were screened out. Subsequently, analyzing the pharmacological activities of these differential metabolites based on protein-protein interaction (PPI) network. A total of 25 compounds associated with 473 gene targets were retrieved. Among them, 13 highly active compounds were selected as potential quality markers, and five compounds were ultimately selected as quality control markers for HPL. Finally, three different classifiers (support vector machine (SVM), random forest (RF), and K-nearest neighbor (KNN)) were used to validate whether the selected quality control markers are qualified. When the feature count is set to 122 and 46, the RF model demonstrates optimal performance. As the number of variables decreases, the performance of the RF model degrades. The KNN model and the SVM model also exhibit a decrease in performance but still manage to satisfy the intended requirements. The strategy can be applied to the quality control of HPL and can provide a reference for the quality control of other herbal medicines.
Collapse
Affiliation(s)
- Zhiyong Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Zehua Ying
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Mulan He
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Yijing Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Wennan Nie
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Zhenhao Tang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Wengang Liu
- Chengdu Kanghong Pharmaceutical Co. Ltd., Chengdu 610036, PR China
| | - Jingchao Chen
- Chengdu Kanghong Pharmaceutical Co. Ltd., Chengdu 610036, PR China
| | - Jianming Ye
- Chengdu Kanghong Pharmaceutical Co. Ltd., Chengdu 610036, PR China
| | - Wenlong Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
2
|
Wu S, Tatsis EC. Specialized metabolism in St John's wort. CURRENT OPINION IN PLANT BIOLOGY 2024; 82:102625. [PMID: 39236592 DOI: 10.1016/j.pbi.2024.102625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 09/07/2024]
Abstract
The specialized metabolism of St. John's wort, Hypericum perforatum L., is a key focus in medicinal plant research due to its hallmark bioactive compounds hyperforin and hypericin. Known for its traditional medicinal uses dating back to ancient times, St. John's wort is currently used for mild depression therapy. Recent research works have shed light on the biosynthesis of various metabolites in this plant, such as flavonoids, xanthones, hyperforin, and hypericin. The elucidation of these pathways, along with the discovery of novel enzymes like hyperforin synthase, support the pharmaceutical research by enabling scalable production of bioactive compounds for the development of new drugs. Elucidation of the hyperforin biosynthesis based on single-cell RNA-seq is an approach that will be expanded and accelerate the gene discovery and full pathway reconstitution of plant specialized metabolites.
Collapse
Affiliation(s)
- Song Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China; University of Chinese Academy of Sciences, Shanghai, China
| | - Evangelos C Tatsis
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China; CEPAMS - CAS-JIC Centre of Excellence for Plant and Microbial Sciences, Shanghai, China.
| |
Collapse
|
3
|
Takizawa R, Shimomoto Y, Tsuji D, Imabayashi K, Itoh K, Akagi R, Kashiwada Y, Tanaka N. Formohyperins G-L, polycyclic prenylated benzoylphloroglucinols from the flowers of Hypericum formosanum. J Nat Med 2024; 78:970-977. [PMID: 39126611 DOI: 10.1007/s11418-024-01839-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
Phytochemical study on the flowers of Hypericum formosanum Maxim. (Hypericaceae) led to the isolation of formohyperins G-L (1-6), whose structures were assigned by detailed spectroscopic analysis. Formohyperins G-L (1-6) are new benzoylphloroglucinols substituted by a C10 unit, a prenyl group, and a methyl group. Formohyperins G-J (1-4) possess a 6/6/6-tricyclic structure, while formohyperins K (5) and L (6) have a unique 6/6/5/4-tetracyclic structure consisting of cyclohexadienone, dihydropyrane, cyclopentane, and cyclobutane rings. The absolute configurations of 1-6 were deduced by analysis of the ECD spectra. Formohyperins G-J (1-4) and L (6) were found to show potent inhibitory activities against IL-1β release from LPS-treated murine microglial cells with EC50 values of 5.0, 10.9, 6.3, 10.8, and 13.7 µM, respectively, without cytotoxicity. 6-O-Methylformohyperins G (1a) and I (3a) also exhibited the inhibitory activities with EC50 values of 4.7 and 2.7 µM, respectively, although they were cytotoxic against microglial cells.
Collapse
Affiliation(s)
- Rena Takizawa
- Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima, 770-8505, Japan
| | - Yusei Shimomoto
- Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima, 770-8505, Japan
| | - Daisuke Tsuji
- Faculty of Pharmacy, Yasuda Women's University, Hiroshima, 731-0153, Japan
| | - Kiyoshi Imabayashi
- Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima, 770-8505, Japan
| | - Kohji Itoh
- Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima, 770-8505, Japan
| | - Reiko Akagi
- Faculty of Pharmacy, Yasuda Women's University, Hiroshima, 731-0153, Japan
| | - Yoshiki Kashiwada
- Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima, 770-8505, Japan
| | - Naonobu Tanaka
- Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima, 770-8505, Japan.
| |
Collapse
|
4
|
Ji Y, Zhang R, Bensalel J, Morcol T, Gu R, Gallego-Delgado J, Kennelly EJ, Long C. Metabolomic and chemometric analyses of St. John's wort and related Asian Hypericum species linked to bioactivity. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118163. [PMID: 38588986 DOI: 10.1016/j.jep.2024.118163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Plants in the genus Hypericum (Hypericaceae), include more than 500 species worldwide, and many are valued for their medicinal properties, and are used as traditional herbal medicines. However, only H. perforatum is officially recognized as herbal drug in several pharmacopoeias, and used as an antidepressant clinically. Hypericum perforatum had been used as an herbal medicine since the Han Dynasty (206 B.C. -220 A.D.) in China. It taxonomically belongs to the section Hypericum in the genus Hypericum. There are about 42 species in the section Hypericum, with six species occurring in China. All six are recorded as traditional herbal medicines for treating aliments, including hepatitis, malaria, traumatic hemorrhage, irregular menstruation, wounds, and bruises. AIM OF THE STUDY The study aimed to characterize the chemical profiles of five phylogenetically related Hypericum species, and compare their metabolites with three H. perforatum products. Informed by ethnobotanical use, the extracts prepared from the five species were further investigated into anticancer, anti-inflammatory and antiplasmodial activity. This study tested the hypothesis that systematic metabolomic and bioactivity characterization of species in section Hypericum will help to validate their phytotherapeutic use and reveal potential drug lead compounds. MATERIALS AND METHODS Targeted and non-targeted metabolic analyses coupled with chemometrics were conducted on H. perforatum and four medicinal species, H. attenuatum, H. enshiense, H. erectum, and H. faberi, native to China from section Hypericum. UPLC-QTOF-MS/MS and UPLC-TQD-MS/MS were used for non-targeted and targeted metabolic analyses, respectively. Cytotoxicity bioassays on four cancer cell lines, anti-inflammation tests and anti-plasmodial activity on Plasmodium falciparum 3D7, selected based on traditional medicinal use, were evaluated on extracts from Hypericum species. Progenesis QI and EZinfo were used for chemometrics analysis to link the chemical profile and bioassay activity to aid in the identification of bioactive compounds. RESULTS In total, 58 compounds were identified from the five species, including compounds with well-characterized bioactivity. Hypericum attenuatum, H. erectum, and H. perforatum, displayed the highest cytotoxicity, and contain the cytotoxic compounds petiolin A, prolificin A, and hypercohin G, respectively. Hypericum faberi and H. perforatum showed the highest anti-inflammatory activity, with pseudohypericin, quercetin and chlorogenic acid being observed at higher concentrations. Hypericum perforatum and H. erectum showed anti-plasmodial activity, with higher hyperforin and xanthones in these species that may account for the anti-plasmodial activity. CONCLUSIONS This study characterized the chemical differences among five Hypericum species using metabolomics. These ethnomedically important species were tested for their biological activities in three distinct in vitro assays. The ethnobotanical data were useful for identifying bioactive Hypericum species. Hypericum attenuatum, H. erectum and H. faberi are promising phytotherapeutic species, although they are much less studied than H. perforatum, St. John's wort. Combining ethnobotanical surveys with chemometric analyses and bioactivity screening can greatly enhance the discovery of promising active constituents.
Collapse
Affiliation(s)
- Yuanyuan Ji
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China; Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; Department of Biological Sciences, Lehman College, City University of New York, Bronx, NY, 10468, United States.
| | - Ruifei Zhang
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China; Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; Department of Biological Sciences, Lehman College, City University of New York, Bronx, NY, 10468, United States.
| | - Johanna Bensalel
- Department of Biological Sciences, Lehman College, City University of New York, Bronx, NY, 10468, United States; Ph.D. Program in Biology, The Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY, 10016, United States.
| | - Taylan Morcol
- Department of Biological Sciences, Lehman College, City University of New York, Bronx, NY, 10468, United States; Ph.D. Program in Biology, The Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY, 10016, United States.
| | - Ronghui Gu
- School of Liquor and Food Engineering, Guizhou University, Huixia Road in Huaxi District, Guiyang, 550025, China.
| | - Julio Gallego-Delgado
- Department of Biological Sciences, Lehman College, City University of New York, Bronx, NY, 10468, United States; Ph.D. Program in Biology, The Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY, 10016, United States.
| | - Edward J Kennelly
- Department of Biological Sciences, Lehman College, City University of New York, Bronx, NY, 10468, United States; Ph.D. Program in Biology, The Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY, 10016, United States.
| | - Chunlin Long
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China; Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China.
| |
Collapse
|
5
|
Duan Y, Tao B, Shi Z, Guo Y, Zhang Y, Zou Y, Qi C, Zhang Y. Patumantanes A-D, seco-Polycyclic Polyprenylated Acylphloroglucinols with Diverse Carbon Skeletons from Hypericum patulum. J Org Chem 2024; 89:8076-8083. [PMID: 38767586 DOI: 10.1021/acs.joc.4c00735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Patumantanes A-D (1-4), four new seco-polycyclic polyprenylated acylphloroglucinols (PPAPs) were isolated from Hypericum patulum. Patumantane A (1) was an unprecedented 1,2-seco-homoadamantane-type PPAP bearing a new 3,7-dioxatetracyclo[7.7.0.01,6.111,15]heptadecane architecture based on a 6/7/5/6 ring system. Patumantane B (2) was a unique 1,9-seco-adamantane-type PPAP with a tricyclo[4.4.4.0.02,12]tridecane core formed by a 6/6/6 carbon skeleton, and the further breakage between C-5 and C-9 decorated patumantane C (3) with the 9-nor-adamantane skeleton. More importantly, compounds 2 and 3 exhibited moderate immunosuppressive activity on Con A-induced T-lymphocyte proliferation in vitro, with IC50 values of 5.6 ± 1.2 and 11.2 ± 1.2 μM, respectively.
Collapse
Affiliation(s)
- Yulin Duan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
- Department of Pharmacy, Wuhan No.1 Hospital, 215 Zhongshan Road, Wuhan, Hubei 430022, People's Republic of China
| | - Bo Tao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Zhengyi Shi
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yi Guo
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yeting Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yu Zou
- Institute of Pharmaceutical Process, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Changxing Qi
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, People's Republic of China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| |
Collapse
|
6
|
Sotirova Y, Kiselova-Kaneva Y, Vankova D, Tasinov O, Ivanova D, Popov H, Hristova M, Nikolova K, Andonova V. Tissue Regeneration and Remodeling in Rat Models after Application of Hypericum perforatum L. Extract-Loaded Bigels. Gels 2024; 10:341. [PMID: 38786258 PMCID: PMC11121646 DOI: 10.3390/gels10050341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/12/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
The wound-healing effect of St. John's Wort (SJW) is mainly attributed to hyperforin (HP), but its low stability restricts its topical administration. This study investigates how "free" HP-rich SJW extract (incorporated into a bigel; B/SJW) and extract "protected" by nanostructured lipid carriers (also included in a biphasic semisolid; B/NLC-SJW) affect tissue regeneration in a rat skin excision wound model. Wound diameter, histological changes, and tissue gene expression levels of fibronectin (Fn), matrix metalloproteinase 8 (MMP8), and tumor necrosis factor-alpha (TNF-α) were employed to quantify the healing progress. A significant wound size reduction was achieved after applying both extract-containing semisolids, but after a 21-day application period, the smallest wound size was observed in the B/NLC-SJW-treated animals. However, the inflammatory response was affected more favorably by the bigel containing the "free" SJW extract, as evidenced by histological studies. Moreover, after the application of B/SJW, the expression of Fn, MMP8, and TNF-α was significantly higher than in the positive control. In conclusion, both bigel formulations exhibited beneficial effects on wound healing in rat skin, but B/SJW affected skin restoration processes in a comprehensive and more efficient way.
Collapse
Affiliation(s)
- Yoana Sotirova
- Department of Pharmaceutical Technologies, Faculty of Pharmacy, Medical University of Varna, 9000 Varna, Bulgaria;
| | - Yoana Kiselova-Kaneva
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Faculty of Pharmacy, Medical University of Varna, 9000 Varna, Bulgaria (O.T.); (D.I.)
| | - Deyana Vankova
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Faculty of Pharmacy, Medical University of Varna, 9000 Varna, Bulgaria (O.T.); (D.I.)
| | - Oskan Tasinov
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Faculty of Pharmacy, Medical University of Varna, 9000 Varna, Bulgaria (O.T.); (D.I.)
| | - Diana Ivanova
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Faculty of Pharmacy, Medical University of Varna, 9000 Varna, Bulgaria (O.T.); (D.I.)
| | - Hristo Popov
- Department of General and Clinical Pathology, Forensic Medicine and Deontology, Faculty of Medicine, Medical University of Varna, 9000 Varna, Bulgaria;
| | - Minka Hristova
- Department of Physiology and Pathophysiology, Faculty of Medicine, Medical University of Varna, 9000 Varna, Bulgaria;
| | - Krastena Nikolova
- Department of Physics and Biophysics, Faculty of Pharmacy, Medical University of Varna, 9000 Varna, Bulgaria;
| | - Velichka Andonova
- Department of Pharmaceutical Technologies, Faculty of Pharmacy, Medical University of Varna, 9000 Varna, Bulgaria;
| |
Collapse
|
7
|
Zhao J, Wei F, Liu H, Qin R, Yang X. Two aromatic acid derivatives and a xanthone from Hypericum hengshanense. Nat Prod Res 2024; 38:1537-1544. [PMID: 36519675 DOI: 10.1080/14786419.2022.2156999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 11/21/2022] [Accepted: 12/03/2022] [Indexed: 12/23/2022]
Abstract
Three previously undescribed compounds including two aromatic acid derivatives (1-2), and one xanthone (3), together with ten known compounds (4-13) were isolated from the aerial part of Hypericum hengshanense. The planar structures of three new compounds were established by 1 D and 2 D NMR and MS data. And the absolute configurations of compounds 1-2 were determined by the quantum chemical ECD calculations. Compounds 1-2 showed weak cytotoxicity against Hep-2 human cancer cell lines with IC50 values of 65.1 ± 2.7 and 78.0 ± 1.0 μg/mL, respectively.
Collapse
Affiliation(s)
- Jiaqi Zhao
- College of Life Sciences, South-Central Minzu University, Wuhan, China
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Feng Wei
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, China
| | - Hong Liu
- College of Life Sciences, South-Central Minzu University, Wuhan, China
| | - Rui Qin
- College of Life Sciences, South-Central Minzu University, Wuhan, China
| | - Xinzhou Yang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| |
Collapse
|
8
|
Wang X, Liu W, Chen S, Gao Y, Tian J, Gao J. Four New Polyprenylated Acylphloroglucinols from Hypericum perforatum L. Molecules 2024; 29:1756. [PMID: 38675576 PMCID: PMC11052217 DOI: 10.3390/molecules29081756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Hyperforatums A-D (1-4), four new polyprenylated acylphloroglucinols, together with 13 known compounds were isolated and identified from the aerial parts of Hypericum perforatum L. (St. John's wort). Their structures were confirmed with a comprehensive analysis comprising spectroscopic methods, including 1D and 2D NMR, HRESIMS, and electronic circular dichroism (ECD) calculations. Hyperforatum A featured an unusual chromene-1,4-dione bicyclic system, and hyperforatums B and C were two rare monocyclic PPAPs with five-membered furanone cores. Compound 1 exhibited a moderate inhibition effect on NO production in BV-2 microglial cells stimulated by LPS.
Collapse
Affiliation(s)
- Xiaoying Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China; (X.W.); (W.L.); (S.C.); (Y.G.)
- Shaanxi Jiahe Phytochem Co., Ltd., Xi’an 710077, China
| | - Wuyang Liu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China; (X.W.); (W.L.); (S.C.); (Y.G.)
| | - Sheng Chen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China; (X.W.); (W.L.); (S.C.); (Y.G.)
| | - Yueshan Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China; (X.W.); (W.L.); (S.C.); (Y.G.)
| | - Junmian Tian
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China; (X.W.); (W.L.); (S.C.); (Y.G.)
| | - Jinming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China; (X.W.); (W.L.); (S.C.); (Y.G.)
| |
Collapse
|
9
|
Hu B, Qian M, Zhang J, Hou X, Wu L. Hyperhenrones: Prenylated α-pyrones with anti-inflammatory activity from Hypericum henryi. PHYTOCHEMISTRY 2024; 220:114007. [PMID: 38296177 DOI: 10.1016/j.phytochem.2024.114007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/24/2024] [Accepted: 01/28/2024] [Indexed: 02/03/2024]
Abstract
Fourteen previously undescribed α-pyrone derivatives (1-14) together with four known analogs (15-18) were isolated from a traditional Chinese medicinal plant Hypericum henryi. Compounds (+)/(-)-1, 2, and 3 share a rare 6/6/4/6/6 polycyclic skeleton. Compound 14 was the first example of a 7,7-dimethyl-pyran-4-one moiety. Their structures were elucidated using comprehensive spectroscopic analyses and electronic circular dichroism calculations. The anti-inflammatory activities of 1-18 were screened in lipopolysaccharide-induced RAW264.7 cells. Among them, compounds 14, (+)-18, and (-)-18 exhibited inhibitory effects against nitric oxide production in LPS-induced RAW264.7 cells. Additionally, compound 14 suppressed the expression of cyclooxygenase-2 and inducible nitric oxide synthase in LPS-induced RAW264.7 cells. Furthermore, preliminary mechanism studies indicated that compound 14 suppressed the phosphorylation and degradation of the inhibitor of NF-κB, and this led to the inhibition of NF-κB activation.
Collapse
Affiliation(s)
- Bo Hu
- School of Pharmacy, Anhui Medical University Hefei, 230032, People's Republic of China
| | - Mengyu Qian
- School of Pharmacy, Anhui Medical University Hefei, 230032, People's Republic of China
| | - Jiayue Zhang
- School of Pharmacy, Anhui Medical University Hefei, 230032, People's Republic of China
| | - Xingcun Hou
- School of Pharmacy, Anhui Medical University Hefei, 230032, People's Republic of China
| | - Lin Wu
- School of Pharmacy, Anhui Medical University Hefei, 230032, People's Republic of China.
| |
Collapse
|
10
|
Duan Y, Shi Z, Song F, Hou Z, Tan X, Zhang Y, Hao X, Chen G, Qi C, Zhang Y. Hyparillums A and B: polycyclic polyprenylated acylphloroglucinols from Hypericum patulum. Chin J Nat Med 2024; 22:273-279. [PMID: 38553194 DOI: 10.1016/s1875-5364(24)60599-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Indexed: 04/02/2024]
Abstract
Hyparillums A (1) and B (2), two previously unidentified polycyclic polyprenylated acylphloroglucinols (PPAPs) with intricate architectures, were isolated from Hypericum patulum Thunb. Hyparillum A was the first PPAP with eight-carbon rings based on an unprecedented 6/6/5/6/6/5/6/4 octocyclic system featuring a rare heptacyclo[10.8.1.11,10.03,8.08,21.012,19.014,17]docosane core. In contrast, hyparillum B featured a novel heptacyclic architecture (6/6/5/6/6/5/5) based on a hexacyclo[9.6.1.11,9.03,7.07,18.011,16]nonadecane motif. Furthermore, hyparillums A and B demonstrated promising inhibitory effects on the proliferation of murine splenocytes stimulated by anti-CD3/anti-CD28 monoclonal antibodies and lipopolysaccharide, exhibiting half-maximal inhibitory concentration (IC50) values ranging from 6.13 ± 0.86 to 12.69 ± 1.31 μmol·L-1.
Collapse
Affiliation(s)
- Yulin Duan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pharmacy, Wuhan No. 1 Hospital, 215 Zhongshan Road, Wuhan 430022, China
| | - Zhengyi Shi
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Fei Song
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhangrong Hou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaosheng Tan
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Yeting Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xincai Hao
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei Engineering Technology Center for Comprehensive Utilization of Medicinal Plants, College of Pharmacy Hubei University of Medicine, Shiyan 442000, China
| | - Gang Chen
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Changxing Qi
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China.
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
11
|
Peron G, López AM, Cabada-Aquirre P, Garay Buenrosto KD, Ostos Mendoza KC, Mahady GB, Seidel V, Sytar O, Koirala N, Gurung R, Acharya Z, Adhikari S, Sureda A, Martorell M, Sharifi-Rad J. Antiviral and antibacterial properties of phloroglucinols: a review on naturally occurring and (semi)synthetic derivatives with potential therapeutic interest. Crit Rev Biotechnol 2024; 44:319-336. [PMID: 36593064 DOI: 10.1080/07388551.2022.2160695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/03/2022] [Accepted: 12/08/2022] [Indexed: 01/04/2023]
Abstract
Phloroglucinol and derived compounds comprise a huge class of secondary metabolites widely distributed in plants and brown algae. A vast array of biological activities, including antioxidant, anti-inflammatory, antimicrobial, and anticancer has been associated to this class of compounds. In this review, the available data on the antiviral and antibacterial capacity of phloroglucinols have been analyzed. Some of these compounds and derivatives show important antimicrobial properties in vitro. Phloroglucinols have been shown to be effective against viruses, such as human immunodeficiency virus (HIV), herpes or enterovirus, and preliminary data through docking analysis suggest that they can be effective against SARS-CoV-19. Also, some phloroglucinols derivatives have shown antibacterial effects against diverse bacteria strains, including Bacillus subtilis and Staphylococcus aureus, and (semi)synthetic development of novel compounds have led to phloroglucinols with a significantly increased biological activity. However, therapeutic use of these compounds is hindered by the absence of in vivo studies and scarcity of information on their mechanisms of action, and hence further research efforts are required. On the basis of this consideration, our work aims to gather data regarding the efficacy of natural-occurring and synthetic phloroglucinol derivatives as antiviral and antibacterial agents against human pathogens, which have been published during the last three decades. The recollection of results reported in this review represents a valuable source of updated information that will potentially help researchers in the development of novel antimicrobial agents.
Collapse
Affiliation(s)
- Gregorio Peron
- Department of Molecular and Translational Medicine (DMMT), University of Brescia, Brescia, Italy
| | - Alice M López
- Department of Chemistry and Nanotechnology, Tecnológico University de Monterrey, Monterrey, Mexico
- Department of Pharmacy Practice, College of Pharmacy, PAHO/WHO Collaborating Centre for Traditional Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Paulina Cabada-Aquirre
- Department of Chemistry and Nanotechnology, Tecnológico University de Monterrey, Monterrey, Mexico
- Department of Pharmacy Practice, College of Pharmacy, PAHO/WHO Collaborating Centre for Traditional Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Karen D Garay Buenrosto
- Department of Pharmacy Practice, College of Pharmacy, PAHO/WHO Collaborating Centre for Traditional Medicine, University of Illinois at Chicago, Chicago, IL, USA
- School of Medicine and Health Sciences, Tecnológico University de Monterrey, Monterrey, México
| | - Keila C Ostos Mendoza
- Department of Pharmacy Practice, College of Pharmacy, PAHO/WHO Collaborating Centre for Traditional Medicine, University of Illinois at Chicago, Chicago, IL, USA
- School of Medicine and Health Sciences, Tecnológico University de Monterrey, Monterrey, México
| | - Gail B Mahady
- Department of Pharmacy Practice, College of Pharmacy, PAHO/WHO Collaborating Centre for Traditional Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Oksana Sytar
- Department of Plant Biology Department, Institute of Biology, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Niranjan Koirala
- Department of Natural Products Research, Dr. Koirala Research Institute for Biotechnology and Biodiversity, Kathmandu, Nepal
| | - Roshani Gurung
- Department of Natural Products Research, Dr. Koirala Research Institute for Biotechnology and Biodiversity, Kathmandu, Nepal
- Department of Pharmacy, Shree Medical and Technical College, Purbanchal University, Chitwan, Nepal
| | - Zenisha Acharya
- Department of Natural Products Research, Dr. Koirala Research Institute for Biotechnology and Biodiversity, Kathmandu, Nepal
| | - Sundar Adhikari
- Department of Pharmacy, Shree Medical and Technical College, Purbanchal University, Chitwan, Nepal
- Department of Pharmacy, Fishtail Hospital and Research Center Pvt. Ltd, Pokhara, Nepal
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress and Health Research Institute of the Balearic Islands (IdISBa, University of Balearic Islands-IUNICS, Palma de Mallorca, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, Madrid, Spain
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, Concepción, Chile
- Unidad de Desarrollo Tecnológico - UDT, Universidad de Concepción, Concepción, Chile
| | | |
Collapse
|
12
|
Kotland A, Thiery J, Hubert J. Chemical profiling of botanical extracts obtained in NADES systems using centrifugal partition chromatography combined with 13 C NMR dereplication-Hypericum perforatum as a case study. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:391-400. [PMID: 37886892 DOI: 10.1002/pca.3297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/15/2023] [Accepted: 10/03/2023] [Indexed: 10/28/2023]
Abstract
INTRODUCTION Natural deep eutectic solvents (NADES) have emerged as interesting extractants to develop botanical ingredients. They are nontoxic and biodegradable, nonflammable, easy to prepare, and able to solubilize a wide range of molecules. However, NADES extracts remain difficult to analyze because the metabolites of interest stay highly diluted in the nonvolatile viscous NADES matrix. OBJECTIVE This study presents a robust analytical workflow for the chemical profiling of NADES extracts. It is applied to Hypericum perforatum aerial parts extracted with the neutral mixture fructose/glycerol/water (3/1/1, w/w/w), and compared to the chemical profiling of a classical dry methanol extract. METHODS Exploiting polarity differences between metabolites, the H. perforatum NADES extract was partitioned in a liquid-liquid solvent system to trap the hydrophilic NADES constituents in the lower phase. The upper phase, containing a diversity of secondary metabolites from H. perforatum, was fractionated by centrifugal partition chromatography. All fractions were chemically investigated using a 13 C NMR dereplication method which involves hierarchical clustering analysis of the whole NMR dataset, a natural metabolite database for metabolite identification, and 2D NMR analyses for validation. Liquid chromatography-mass spectrometry (LC-MS) analyses were also performed to complete the identification process. RESULTS A range of 21 metabolites were unambiguously identified, including glycosylated flavonols, lactones, catechins, phenolic acids, lipids, and simple sugars, and 15 additional minor extract constituents were annotated by LC-MS based on exact mass measurements. CONCLUSION The proposed identification process is rapid and nondestructive and provides good prospects to deeply characterize botanical extracts obtained in nonvolatile and viscous NADES systems.
Collapse
|
13
|
Li Y, Wang M, Su J, Zhong R, Yin S, Zhao Z, Sun Z. Hypersampsonone H attenuates ulcerative colitis via inhibition of PDE4 and regulation of cAMP/PKA/CREB signaling pathway. Int Immunopharmacol 2024; 128:111490. [PMID: 38218008 DOI: 10.1016/j.intimp.2024.111490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/15/2023] [Accepted: 01/02/2024] [Indexed: 01/15/2024]
Abstract
BACKGROUND AND OBJECTIVES Ulcerative colitis (UC) is a recurrent intestinal inflammatory disease which poses a serious threat to the life of patients. However, there are no specific drugs for UC yet. Hypericum sampsonii Hance (HS) is a Chinese herbal medicine traditionally used to treat enteritis and dysentery. Our previous studies have demonstrated that HS holds potential anti-UC effects, and a novel compound named Hypersampsonone H (HS-1) isolated from HS possesses significant anti-inflammatory activity. However, the beneficial effects of HS-1 on UC remain unclear. This study aimed to investigate the therapeutic effects of HS-1 on UC and its potential mechanisms, both in vitro and in vivo. METHODS The in vitro model was employed using LPS-induced RAW264.7 cells to investigate the anti-inflammatory effects of HS-1 and its possible mechanisms. Furthermore, the therapeutic efficacy and potential mechanisms of HS-1 against dextran sulfate sodium (DSS)-induced acute colitis were assessed through histopathological examination, biochemical analysis, and molecular docking. RESULTS In vitro, HS-1 significantly reduced LPS-induced inflammatory responses, as indicated by inhibiting NO production, down-regulating the overexpression of COX-2 and iNOS, as well as regulating the imbalanced levels of IL-6, TNF-α, and IL-10. Moreover, HS-1 also inhibited the expression of PDE4, elevated the intracellular cAMP level, and promoted the phosphorylation of CREB, thereby activating the PKA/CREB pathway in RAW264.7 cells. In vivo, HS-1 demonstrated therapeutic capacity against DSS-induced colitis by alleviating the symptoms of colitis mice, regulating the abnormal expression of inflammatory mediators, protecting the integrity of intestinal epithelial barrier, and reducing tissue fibrosis. Consistently, HS-1 was found to decrease the expression of PDE4 isoforms, subsequently activating the cAMP/PKA/CREB signaling pathway. Furthermore, the molecular docking results indicated that HS-1 exhibited a high affinity for PDE4, particularly PDE4D. Further mechanistic validation in vitro demonstrated that HS-1 possessed a synergistic effect on forskolin and an antagonistic effect on H-89 dihydrochloride, thereby exerting anti-inflammatory effects through the cAMP/PKA/CREB signaling pathway. CONCLUSION We disclose that HS-1 serves as a promising candidate drug for the treatment of UC by virtue of its ability to reduce DSS-induced colitis via the inhibition of PDE4 and the activation of cAMP/PKA/CREB signaling pathway.
Collapse
Affiliation(s)
- Yanzhen Li
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Mingqiang Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jianhui Su
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Ruimin Zhong
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China
| | - Sheng Yin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhongxiang Zhao
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Zhanghua Sun
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China.
| |
Collapse
|
14
|
Jin DX, He JF, Zhang KQ, Zhang NY. Phenolic composition, antioxidant, cytotoxic activities and cardioprotective effect of hydroalcoholic extract from aerial-parts of Hypericum attenuatum Fisch. ex Choisy. Nat Prod Res 2024; 38:781-788. [PMID: 37029624 DOI: 10.1080/14786419.2023.2199214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/28/2023] [Indexed: 04/09/2023]
Abstract
This study investigated phenolic metabolites, antioxidant, cytotoxic and cardioprotective effects of the hydroalcoholic extract from the aerial parts of Hypericum attenuatum Fisch. ex Choisy. The total phenolic and flavonoid contents of the extract were 132.40 ± 2.06 mg GAE/g and 101.46 ± 1.47 mg QE/g respectively. The extract exhibited antioxidant activities with an EC50 value against DPPH radical of 0.099 ± 0.03 mg/mL and a FRAP value of 1.22 ± 0.086 mmol/L Fe2+. The extract could protect H9c2 cardiomyoblasts from the injury of H2O2, while it restored the H9c2 cell viability to 82.69 ± 2.33% at 100 μg/mL. The extract possessed cytotoxicity on MGC803, C666-1 and SW620 cells with IC50 values of 69.77 ± 2.43 μg/mL, 74.97 ± 1.08 μg/mL and 58.91 ± 1.81 μg/mL, respectively. Moreover, it could promote apoptosis of the tested cancer cells. This research provided useful information for the utilization of H. attenuatum as herbal medicine.
Collapse
Affiliation(s)
- Du-Xin Jin
- Department of Food Science and Engineering, Yangzhou University, Yangzhou, P. R. China
| | - Jun-Fang He
- Department of Food Science and Engineering, Yangzhou University, Yangzhou, P. R. China
| | - Ke-Qin Zhang
- Department of Animal Sciences, Jilin College of Agricultural Science and Technology, Jilin, P. R. China
| | - Nan-Yi Zhang
- Department of Animal Science and Technology, Jilin Agricultural University, Jilin, P. R. China
| |
Collapse
|
15
|
Gao J, Yang X, Liang Y, Hu D. Identification of functional biomarkers of Peganum harmala and Hypericum perforatum using PCA-constructed secondary metabolite maps. Heliyon 2024; 10:e23565. [PMID: 38187327 PMCID: PMC10770567 DOI: 10.1016/j.heliyon.2023.e23565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/17/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
Peganum harmala L. (P. harmala), also known as Espand, Harmel, or Syrian rue, and Hypericum perforatum L. (H. perforatum), commonly known as St. John's wort, are two of the widely cultivated industrial crops and used worldwide in antihepatoma-related products. However, their main functional substances are still not clear, thus impeding the efficacy evaluations and quality controls of relative products around the world. In this work, the anti-hepatoma biomarkers of P. harmala and H. perforatum were clarified through the development of principal components analysis (PCA)-HPLC secondary metabolite mapping models. The chemical fingerprints of plant extracts were profiled by HPLC and then mapped to produce the secondary metabolite models using PCA. The models correlated the chemical information with the anti-hepatoma activities of plant extracts, thus indicating the functional inhibitors of P. harmala and H. perforatum against hepatoma cells. The activities of the identified compounds were validated by cytotoxic and apoptotic assays. The major inhibitors of P. harmala and H. perforatum against human hepatoma were determined to be harmine and quercetin, respectively. The IC50 values and the induced apoptotic rate of harmine on HepG2 cells were 20.7 ± 2.8 μM and 46.7 ± 3.5 %, respectively. The IC50 values and the induced apoptotic rate of quercetin on HepG2 cells were 49.5 ± 6.6 μM and 38.7 ± 2.6 %, respectively. In conclusion, the results significantly expanded the understanding of the biochemical foundations of P. harmala and H. perforatum, thus evidently supporting their current applications around the world. Moreover, harmine and quercetin could be used as biomarkers to evaluate the efficacy and quality of related products of industrial crops in therapeutic and health-improving applications.
Collapse
Affiliation(s)
- Jiayu Gao
- School of Chemical Engineering and Pharmaceutics, Henan University of Science & Technology, Luoyang, China
| | - Xinyi Yang
- School of Chemical Engineering and Pharmaceutics, Henan University of Science & Technology, Luoyang, China
| | - Ying Liang
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Key Laboratory of Mental Health, Ministry of Health, Institute of Mental Health, Peking University, Beijing, China
| | - Dongyi Hu
- School of Chemical Engineering and Pharmaceutics, Henan University of Science & Technology, Luoyang, China
| |
Collapse
|
16
|
Xie JY, Li P, Yan XT, Gao JM. Discovery from Hypericum elatoides and synthesis of hyperelanitriles as α-aminopropionitrile-containing polycyclic polyprenylated acylphloroglucinols. Commun Chem 2024; 7:1. [PMID: 38167859 PMCID: PMC10762030 DOI: 10.1038/s42004-023-01091-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
The search for lead compounds with anti-neuroinflammatory activity from structurally 'optimized' natural products is a crucial and promising strategy in the quest to discover safe and efficacious agents for treating neurodegenerative diseases. A phytochemical investigation on the aerial portions of Hypericum elatoides led to the isolation of five nitrogenous polycyclic polyprenylated acylphloroglucinols (PPAPs), hyperelanitriles A-D (1-4) and hyperelamine A (5). Their structures were determined by spectroscopic analysis, ECD and NMR calculations, and X-ray crystallography. To the best of our knowledge, compounds 1-4 represent the first examples of acylphloroglucinols featuring an α-aminonitrile moiety, while 5 is a rare enamine-containing PPAP. Further, the synthesis of these naturally occurring PPAP-based nitriles or amines was accomplished. Compound 5 exhibited inhibitory activity against LPS-activated NO production in BV-2 cells, potentially through the suppression of TLR-4/NF-κB signaling. Here we show the isolation, structural elucidation, synthesis, and bioactive evaluation of compounds 1-5.
Collapse
Affiliation(s)
- Jin-Yan Xie
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 712100, Yangling, People's Republic of China
| | - Pengfei Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 712100, Yangling, People's Republic of China
| | - Xi-Tao Yan
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 712100, Yangling, People's Republic of China.
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 712100, Yangling, People's Republic of China.
| |
Collapse
|
17
|
Ginovyan M, Javrushyan H, Karapetyan H, Koss-Mikołajczyk I, Kusznierewicz B, Grigoryan A, Maloyan A, Bartoszek A, Avtandilyan N. Hypericum alpestre extract exhibits in vitro and in vivo anticancer properties by regulating the cellular antioxidant system and metabolic pathway of L-arginine. Cell Biochem Funct 2024; 42:e3914. [PMID: 38269521 DOI: 10.1002/cbf.3914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/09/2023] [Accepted: 12/17/2023] [Indexed: 01/26/2024]
Abstract
Conventional treatment methods are not effective enough to fight the rapid increase in cancer cases. The interest is increasing in the investigation of herbal sources for the development of new anticancer therapeutics. This study aims to investigate the antitumor capacity of Hypericum alpestre (H. alpestre) extract in vitro and in vivo, either alone or in combination with the inhibitors of the l-arginine/polyamine/nitric oxide (NO) pathway, and to characterize its active phytochemicals using advanced chromatographic techniques. Our previous reports suggest beneficial effects of the arginase inhibitor NG-hydroxy-nor- l-arginine and NO inhibitor NG-nitro-Larginine methyl ester in the treatment of breast cancer via downregulation of polyamine and NO synthesis. Here, the antitumor properties of H. alpestre and its combinations were explored in vivo, in a rat model of mammary gland carcinogenesis induced by subcutaneous injection of 7,12-dimethylbenz[a]anthracene. The study revealed strong antiradical activity of H. alpestre aerial part extract in chemical (DPPH/ABTS) tests. In the in vitro antioxidant activity test, the H. alpestre extract demonstrated pro-oxidant characteristics in human colorectal (HT29) cells, which were contingent upon the hemostatic condition of the cells. The H. alpestre extract expressed a cytotoxic effect on HT29 and breast cancer (MCF-7) cells measured by the MTT test. According to comet assay results, H. alpestre extract did not exhibit genotoxic activity nor possessed antigenotoxic properties in HT29 cells. Overall, 233 substances have been identified and annotated in H. alpestre extract using the LC-Q-Orbitrap HRMS system. In vivo experiments using rat breast cancer models revealed that the H. alpestre extract activated the antioxidant enzymes in the liver, brain, and tumors. H. alpestre combined with chemotherapeutic agents attenuated cancer-like histological alterations and showed significant reductions in tumor blood vessel area. Thus, either alone or in combination with Nω -OH-nor- l-arginine and Nω -nitro- l-arginine methyl ester, H. alpestre extract exhibits pro- and antioxidant, antiangiogenic, and cytotoxic effects.
Collapse
Affiliation(s)
| | | | | | | | | | - Anna Grigoryan
- Department of Human and Animal Physiology, YSU, Yerevan, Armenia
| | - Alina Maloyan
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, USA
| | | | | |
Collapse
|
18
|
Bai RZ, Zhao F, Drew BT, Xu G, Cai J, Shen SK, Xiang CL. Seed morphology of Hypericum (Hypericaceae) in China and its taxonomic significance. Microsc Res Tech 2023; 86:1496-1509. [PMID: 37341239 DOI: 10.1002/jemt.24372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/25/2023] [Accepted: 06/08/2023] [Indexed: 06/22/2023]
Abstract
The seed morphology of 40 taxa within the genus Hypericum (Hypericaceae) from China, representing 9 sections of the genus, was examined using both Light and Scanning Electron Microscopy to evaluate the taxonomic relevance of macro- and micro-morphological features. Details articulating variation in seed size, color, shape, appendages, and seed coat ornamentation are described, illustrated, and compared, and their taxonomic importance is discussed. Seeds were generally brown in color and cylindric-ellipsoid to prolonged cylindric in shape. Seed size displayed wide variation, ranging from 0.37-1.91 mm in length and 0.12-0.75 mm in width. Seed appendages were observed as a characteristic morphological feature. Seed surface ornamentation has high phenotypic plasticity, and four types (reticulate, foveolate, papillose, and ribbed) can be recognized. In general, seed color and shape have limited taxonomic significance. However, some other features represent informative characters that can be used efficiently in distinguishing the studied taxa at the section and/or species levels. The findings illustrate that considerable taxonomic knowledge can be obtained by investigating the seed features of Hypericum, and the use of Scanning Electron Microscopy can reveal inconspicuous morphological affinities among species and play a role in taxonomic and systematic studies of the genus Hypericum. RESEARCH HIGHLIGHTS: Macro- and micro-morphological features of seeds of 40 Hypericum taxa from China were examined using Light and Scanning Electron Microscopy, providing the first broad study regarding seed morphology for Hypericum from China. Details and variations of seed size, shape, color, surface ornamentation, and appendages are fully presented. Seed features and their variation have important taxonomic significance at the section and/or species levels within Hypericum.
Collapse
Affiliation(s)
- Rui-Zhu Bai
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Fei Zhao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chinese Academy of Sciences, Chengdu Institute of Biology, Chengdu, China
| | - Bryan T Drew
- Department of Biology, University of Nebraska-Kearney, Kearney, USA
| | - Gang Xu
- State Key Laboratory of Phytochemistry and Plant Resource in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jie Cai
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Shi-Kang Shen
- School of Ecology and Environmental Sciences, Yunnan University, Kunming, China
| | - Chun-Lei Xiang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
19
|
Sun Z, Li Y, Zhong R, Li R. Hypericum sampsonii Hance: a review of its botany, traditional uses, phytochemistry, biological activity, and safety. Front Pharmacol 2023; 14:1247675. [PMID: 37795026 PMCID: PMC10546196 DOI: 10.3389/fphar.2023.1247675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/31/2023] [Indexed: 10/06/2023] Open
Abstract
Ethnopharmacological relevance: Hypericum sampsonii Hance, also known as Yuanbao Cao in Chinese, is a traditional medicinal herb from the Guttiferae family and has been widely used in China to treat various conditions, including dysentery, enteritis, mastitis, scrofula, and contusion. Aim of the review: This review aims to provide a comprehensive overview of the botany, traditional uses, phytochemistry, biological activity and safety of H. sampsonii and to highlight its potential for medical application and drug development. Materials and methods: We searched several databases, i.e., Web of Science, SciFinder, PubMed, CBM, CNKI, Google Scholar, etc., for relevant information on H. sampsonii. Additionally, we also consulted some books on Chinese medicine. Results: To date, 227 secondary metabolites have been isolated from H. sampsonii, including polycyclic polyprenylated acylphloroglucinols (PPAPs), benzophenones, xanthones, flavonoids, naphthodianthrones, anthraquinones and aromatic compounds. These metabolites exhibit various biological activities such as anti-inflammatory, anti-tumor, anti-depressant, anti-oxidant, anti-viral and anti-bacterial effects. PPAPs are considered the main active metabolites with rich biological activities. Despite being known as rich source of PPAPs, the full extent of H. sampsonii biological activities, including their potential as PDE4 inhibitors, remained unclear. Since, previous studies have mainly been based on structural identification of metabolites in H. sampsonii, and efficacy evaluations of these metabolites based on clinical applications of H. sampsonii lack sufficient data. However, current evidence suggest that PPAPs are the most likely material basis for efficacy. From the limited information available so far, there is no evidence of potential safety issues and the safety data are limited. Conclusion: Collectively, this review provides a comprehensive overview of the botany, traditional uses, phytochemistry, pharmacology, and safety of H. sampsonii, a valuable medicinal plant in China with various pharmacological activities. Based on pharmacological studies, H. sampsonii shows potential for treating gastrointestinal and gynecological disorders as well as traumatic injuries, which aligns with traditional medicinal use due to the presence of PPAPs, benzophenones, xanthones, and flavonoids. Therefore, further studies are needed to evaluate the pharmacological effects and elucidate the pharmacological mechanisms. In addition, pharmacological mechanisms and safety evaluation of PPAPs on animal models need to be clarified. Yet, further comprehensive studies are required to elucidate the phytochemical constituents, pharmacological mechanisms, structure-activity relationships, safety evaluation, and quality standards of this plant. Takentogether, this review highlights the potential of H. sampsonii for medical application and drug development.
Collapse
Affiliation(s)
- Zhanghua Sun
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, China
- College of Food Science and Technology, Shaoguan University, Shaoguan, China
| | - Yanzhen Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruimin Zhong
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, China
- College of Food Science and Technology, Shaoguan University, Shaoguan, China
| | - Ran Li
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, China
- College of Food Science and Technology, Shaoguan University, Shaoguan, China
| |
Collapse
|
20
|
Xiao R, Sun Y, Yang S, Yang Y, Wang D, Wang Z, Zhou W. Systematic Identification and Functional Analysis of the Hypericum perforatum L. bZIP Gene Family Indicating That Overexpressed HpbZIP69 Enhances Drought Resistance. Int J Mol Sci 2023; 24:14238. [PMID: 37762543 PMCID: PMC10531856 DOI: 10.3390/ijms241814238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Basic leucine zipper (bZIP) transcription factors play significant roles in plants' growth and development processes, as well as in response to biological and abiotic stresses. Hypericum perforatum is one of the world's top three best-selling herbal medicines, mainly used to treat depression. However, there has been no systematic identification or functional analysis of the bZIP gene family in H. perforatum. In this study, 79 HpbZIP genes were identified. Based on phylogenetic analysis, the HpbZIP gene family was divided into ten groups, designated A-I and S. The physicochemical properties, gene structures, protein conserved motifs, and Gene Ontology enrichments of all HpbZIPs were systematically analyzed. The expression patterns of all genes in different tissues of H. perforatum (i.e., root, stem, leaf, and flower) were analyzed by qRT-PCR, revealing the different expression patterns of HpbZIP under abiotic stresses. The HpbZIP69 protein is localized in the nucleus. According to the results of the yeast one-hybrid (Y1H) assays, HpbZIP69 can bind to the HpASMT2 (N-acetylserotonin O-methyltransferase) gene promoter (G-box cis-element) to activate its activity. Overexpressing HpbZIP69 in Arabidopsis wild-type lines enhanced their tolerance to drought. The MDA and H2O2 contents were significantly decreased, and the activity of superoxide dismutase (SOD) was considerably increased under the drought stress. These results may aid in additional functional studies of HpbZIP transcription factors, and in cultivating drought-resistant medicinal plants.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhezhi Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi’an 710119, China; (R.X.); (Y.S.); (S.Y.); (Y.Y.); (D.W.)
| | - Wen Zhou
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi’an 710119, China; (R.X.); (Y.S.); (S.Y.); (Y.Y.); (D.W.)
| |
Collapse
|
21
|
Revathi R, Akash R, Mahadevi R, Sengottuvelu S, Mohanraj P, Vijayakumar N, Krishnamoorthy R, Ahmed MZ, Kazmi S, Kavitha R. Phytochemical characterization, antioxidant and antibacterial activities of crude extracts of Anisomeles malabarica and Coldenia procumbens. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:614-631. [PMID: 37395392 DOI: 10.1080/15287394.2023.2231484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The aim of this study was to determine the phytochemical profile, antibacterial and antioxidant activities of crude aqueous leaf extracts of Anisomeles malabarica and Coldenia procumbens. The predominant components present in these crude extracts of test plants identified using gas chromatography-mass spectrometry (GC-MS) analysis in both plant extracts were phytochemicals including flavonoids, tannins, terpenoids, and phenols. The antibacterial activity of crude extracts of these plants against bacterial pathogens including Escherichia coli, Bacillus subtilis, Shigella sp., Salmonella paratyphi A and B, Proteus mirabilis, Proteus vulgaris, Pseudomonas sp. Klebsiella pneumoniae, and Staphylococcus aureus were examined. Data demonstrated that the extracts of A. malabarica and C. procumbens exhibited significant antibacterial activity against B.subtilis and P.vulgaris at the concentration of 50 mg/ml. A. malabarica aqueous extract displayed significant antioxidant activity on 2,2-diphenyl-1-picrylhydrazl (DPPH), fluorescence recovery after photobleaching (FRAP) and hydrogen peroxide (H2O2) free radicals at the concentration of 90 mg/ml. The antioxidant activity was significantly higher with A. malabarica than extract of C. procumbens. Evidence indicates that both plant extracts may possess significant pharmaceutical potential as antibacterial and antioxidant agents.
Collapse
Affiliation(s)
- Ramalingam Revathi
- Department of Biotechnology, Periyar University Centre for Post Graduate and Research Studies, Dharmapuri, Tamil Nadu, India
| | - R Akash
- Department of Biotechnology, Periyar University Centre for Post Graduate and Research Studies, Dharmapuri, Tamil Nadu, India
| | - Ramasamy Mahadevi
- Department of Biotechnology, Periyar University Centre for Post Graduate and Research Studies, Dharmapuri, Tamil Nadu, India
| | | | - Palanisamy Mohanraj
- Department of Pharmaceutics, Nandha College of Pharmacy, Erode, Tamil Nadu, India
| | - Natesan Vijayakumar
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamil Nadu, India
| | - Rajapandiyan Krishnamoorthy
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Mohammad Z Ahmed
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Shadab Kazmi
- Department of Child Health, School of Medicine, University of Missouri, Columbia, MO, USA
| | | |
Collapse
|
22
|
Li Y, Wang M, Su J, Wang Y, Zhao Z, Sun Z. Polycyclic polyprenylated acylphloroglucinols from Hypericum sampsonii Hance and their anti-inflammatory activity. Fitoterapia 2023; 169:105610. [PMID: 37451349 DOI: 10.1016/j.fitote.2023.105610] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Phytochemical investigation of Hypericum sampsonii Hance resulted in the isolation of thirty-five polycyclic polyprenylated acylphloroglucinols including six new ones (1, 3, 5, and 15-17). Their structures were elucidated by UV, IR, NMR, HRESIMS, and calculated ECD analysis. Some compounds were evaluated for their anti-inflammatory effects in LPS-induced RAW264.7 cells. Compounds 1 and 26 showed significant inhibitory effects on LPS-induced NO production, and markedly suppressed the protein expression of iNOS and COX-2 in LPS-activated RAW264.7 cells.
Collapse
Affiliation(s)
- Yanzhen Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Mingqiang Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jianhui Su
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yuanyuan Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zhongxiang Zhao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Zhanghua Sun
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China.
| |
Collapse
|
23
|
Safapour S, Rather LJ, Safapour R, Mir SS. Valorization of bio-colorants extracted from Hypercium scabrum L. plant for sustainable and ecological coloration of wool yarns. Heliyon 2023; 9:e19439. [PMID: 37809794 PMCID: PMC10558613 DOI: 10.1016/j.heliyon.2023.e19439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 10/10/2023] Open
Abstract
Recently, natural dyes are being explored all over the world as safer and highly sustainable bio-based alternatives to synthetic dyes. Agricultural wastes and plant by-products are the most commonly explored alternatives with dual benefits of waste reclamation and sustainable dye production with extra value-adds. Hypercium scabrum plant contains interesting bio-dye molecules with high flavonoids and tannin contents. The present study aims at exploring the potential of H. scabrum plant extract to color wool textiles with a focus on sustainable bio-dye production and fastness properties. The extracted bio-dye was quantitatively (for total phenolic (2.733 mg per CE/g) and total flavonoid (1.140 mg per GAE/g) content using the Folin-Ciocalteu method) and qualitatively (UV-Vis, FT-IR, and EDX) characterized. The effect of dyeing parameters like pH (2-8), temperature (60-90 °C), dry-weight content of plant material as a dye (25-150% o.w.f.), and dyeing time (15-120 min) on color strength (K/S) values were assessed. Color fastness assays showed good resistance to light, washing, and rubbing. The effect of artificial aging (Xenon arc lamp) on the color strength of dyed wool yarns under different exposure times (0-48 h) was explored. The highest color fading occurred in control dyed samples with a first-order rate constant of 131.57 h-1 and a half-life period of 5.26 x 10-3 h. Color difference (ΔE) values suggested that mordanted samples showed less fading compared to control dyed samples at equal times of Xenon exposure. Additionally, the dyed samples were washed in double distilled water, tap water, and 4 g/L NaCl solution to check their effects on the corresponding K/S values while 4 g/L NaCl solution mimics the real conditions of perspiration. Maximum color leaching occurred in 4 g/L NaCl washing with a first-order rate constant of 11.57 min-1. Cost analysis of the dye extraction and dyeing procedure revealed that the process is sustainable and economical. Thus, the use of H. scabrum whole plant can provide a clean, economical, and sustainable source of alternative natural dyes that can be used to substitute synthetic analogs.
Collapse
Affiliation(s)
- Siyamak Safapour
- Key Laboratory of Advanced Eco-Dyeing and Functional Finishing of Textiles, Faculty of Carpet, Tabriz Islamic Art University, P. O. BOX 51385-4567, Tabriz, Iran
| | - Luqman Jameel Rather
- College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing, 400715, PR China
| | - Reza Safapour
- Chemical Engineering Faculty, Sahand University of Technology, P.O. Box 51335-1996, Sahand New Town, Tabriz, Iran
| | - Shazia Shaheen Mir
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Al Baha University, Al Baha, 65431, Saudi Arabia
| |
Collapse
|
24
|
Xie JY, Wang ZX, Liu WY, Liu HW, Li D, Sang YF, Yang Z, Gao JM, Yan XT. Hyperelatolides A-D, Antineuroinflammatory Constituents with Unusual Carbon Skeletons from Hypericum elatoides. JOURNAL OF NATURAL PRODUCTS 2023; 86:1910-1918. [PMID: 37530709 DOI: 10.1021/acs.jnatprod.3c00226] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Four new δ- and γ-lactone derivatives, hyperelatolides A-D (1-4, respectively), were discovered from the aerial portions of Hypericum elatoides R. Keller. Their structures were elucidated by analysis of NMR spectra, HRESIMS, quantum chemical calculations of NMR and ECD spectra, and X-ray crystallographic data. Hyperelatolides A (1) and B (2) represent the first examples of δ-lactone derivatives characterized by a (Z)-(5,5-dimethyl-2-(2-oxopropyl)cyclohexylidene)methyl moiety and a benzoyloxy group attached to the β- and γ-positions of the δ-lactone core, respectively, while hyperelatolides C (3) and D (4) are unprecedented γ-lactone derivatives featuring substituents similar to those of 1 and 2. All compounds were tested for their inhibitory effects on NO production in LPS-activated BV-2 cells. Lactones 1 and 2 exhibited considerable antineuroinflammatory activity, with IC50 values of 5.74 ± 0.27 and 7.35 ± 0.26 μM, respectively. Moreover, the mechanistic study revealed that lactone 1 significantly suppressed nuclear factor kappa B signaling and downregulated the expression of inducible nitric oxide synthase and cyclooxygenase-2 in LPS-induced cells, which may contribute to its antineuroinflammatory activity.
Collapse
Affiliation(s)
- Jin-Yan Xie
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, People's Republic of China
| | - Zi-Xuan Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, People's Republic of China
| | - Wu-Yang Liu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, People's Republic of China
| | - Han-Wu Liu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, People's Republic of China
| | - Ding Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, People's Republic of China
| | - Yi-Fan Sang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, People's Republic of China
| | - Zhi Yang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, People's Republic of China
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, People's Republic of China
| | - Xi-Tao Yan
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, People's Republic of China
| |
Collapse
|
25
|
Calva J, Ludeña C, Bec N, Larroque C, Salinas M, Vidari G, Armijos C. Constituents and Selective BuChE Inhibitory Activity of the Essential Oil from Hypericum aciculare Kunth. PLANTS (BASEL, SWITZERLAND) 2023; 12:2621. [PMID: 37514236 PMCID: PMC10383752 DOI: 10.3390/plants12142621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/29/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023]
Abstract
A potential source of new inhibitors of cholinesterase enzymes are certain compounds of natural plant origin; therefore, in the study described herein we have determined the chemical composition and the acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory activities of the essential oil (EO) steam distilled from aerial parts of Hypericum aciculare, which was collected in southern Ecuador. The oil qualitative and quantitative composition was determined by GC-FID and GC-MS using a non-polar and a polar chromatographic column. A total of fifty-three constituents were identified, that accounted for about 98% of the EO content. The hydrocarbon n-nonane (16.4-28.7%) and the aldehyde n-decanal (20.7-23.1%) were the predominant oil constituents. In addition, the EO showed significant inhibition of BuChE (IC50 = 28.3 ± 2.7 μg/mL) and moderate activity towards AChE (IC50 = 82.1 ± 12.1 µg/mL). Thus, the EO from H. aciculare aerial parts is an interesting candidate to investigate the mechanism of selective ChE inhibition by the two ChE enzymes with the aim to discover potential targets to control the progression of the Alzheimer's disease (AD).
Collapse
Affiliation(s)
- James Calva
- Departamento de Química, Universidad Técnica Particular de Loja (UTPL), Loja 1101608, Ecuador
| | - Carlos Ludeña
- Departamento de Química, Universidad Técnica Particular de Loja (UTPL), Loja 1101608, Ecuador
| | - Nicole Bec
- Institute for Regenerative Medicine and Biotherapy (IRMB), Université de Montpellier, National Institute of Health, and Medical Research (INSERM), 34295 Montpellier, France
| | - Christian Larroque
- Institute for Regenerative Medicine and Biotherapy (IRMB), Université de Montpellier, National Institute of Health, and Medical Research (INSERM), 34295 Montpellier, France
- Department Nephrol Dialysis & Transplantat, Montpellier University Hospital, 34295 Montpellier, France
| | - Melissa Salinas
- Departamento de Química, Universidad Técnica Particular de Loja (UTPL), Loja 1101608, Ecuador
| | - Giovanni Vidari
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Kurdistan Region, Erbil 44001, Iraq
| | - Chabaco Armijos
- Departamento de Química, Universidad Técnica Particular de Loja (UTPL), Loja 1101608, Ecuador
| |
Collapse
|
26
|
Raj Y, Kumar A, Kumari S, Kumar R, Kumar R. Comparative Genomics and Physiological Investigations Supported Multifaceted Plant Growth-Promoting Activities in Two Hypericum perforatum L.-Associated Plant Growth-Promoting Rhizobacteria for Microbe-Assisted Cultivation. Microbiol Spectr 2023; 11:e0060723. [PMID: 37199656 PMCID: PMC10269543 DOI: 10.1128/spectrum.00607-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/01/2023] [Indexed: 05/19/2023] Open
Abstract
Plants are no longer considered standalone entities; instead, they harbor a diverse community of plant growth-promoting rhizobacteria (PGPR) that aid them in nutrient acquisition and can also deliver resilience. Host plants recognize PGPR in a strain-specific manner; therefore, introducing untargeted PGPR might produce unsatisfactory crop yields. Consequently, to develop a microbe-assisted Hypericum perforatum L. cultivation technique, 31 rhizobacteria were isolated from the plant's high-altitude Indian western Himalayan natural habitat and in vitro characterized for multiple plant growth-promoting attributes. Among 31 rhizobacterial isolates, 26 produced 0.59 to 85.29 μg mL-1 indole-3-acetic acid and solubilized 15.77 to 71.43 μg mL-1 inorganic phosphate; 21 produced 63.12 to 99.92% siderophore units, and 15 exhibited 103.60 to 1,296.42 nmol α-ketobutyrate mg-1 protein h-1 1-aminocyclopropane-1-carboxylate deaminase (ACCD) activity. Based on superior plant growth-promoting attributes, eight statistically significant multifarious PGPR were further evaluated for an in planta plant growth-promotion assay under poly greenhouse conditions. Plants treated with Kosakonia cowanii HypNH10 and Rahnella variigena HypNH18 showed, by significant amounts, the highest photosynthetic pigments and performance, eventually leading to the highest biomass accumulation. Comparative genome analysis and comprehensive genome mining unraveled their unique genetic features, such as adaptation to the host plant's immune system and specialized metabolites. Moreover, the strains harbor several functional genes regulating direct and indirect plant growth-promotion mechanisms through nutrient acquisition, phytohormone production, and stress alleviation. In essence, the current study endorsed strains HypNH10 and HypNH18 as cogent candidates for microbe-assisted H. perforatum cultivation by highlighting their exclusive genomic signatures, which suggest their unison, compatibility, and multifaceted beneficial interactions with their host and support the excellent plant growth-promotion performance observed in the greenhouse trial. IMPORTANCE Hypericum perforatum L. (St. John's wort) herbal preparations are among the top-selling products to treat depression worldwide. A significant portion of the overall Hypericum supply is sourced through wild collection, prompting a rapid decline in their natural stands. Crop cultivation seems lucrative, although cultivable land and its existing rhizomicrobiome are well suited for traditional crops, and its sudden introduction can create soil microbiome dysbiosis. Also, the conventional plant domestication procedures with increased reliance on agrochemicals can reduce the diversity of the associated rhizomicrobiome and plants' ability to interact with plant growth-promoting microorganisms, leading to unsatisfactory crop production alongside harmful environmental effects. Cultivating H. perforatum with crop-associated beneficial rhizobacteria can reconcile such concerns. Based on a combinatorial in vitro, in vivo plant growth-promotion assay and in silico prediction of plant growth-promoting traits, here we recommend two H. perforatum-associated PGPR, Kosakonia cowanii HypNH10 and Rahnella variigena HypNH18, to extrapolate as functional bioinoculants for H. perforatum sustainable cultivation.
Collapse
Affiliation(s)
- Yog Raj
- Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Anil Kumar
- High Altitude Microbiology Laboratory, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sareeka Kumari
- High Altitude Microbiology Laboratory, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rakshak Kumar
- High Altitude Microbiology Laboratory, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rakesh Kumar
- Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
27
|
Mohagheghzadeh A, Badr P, Mohagheghzadeh A, Hemmati S. Hypericum perforatum L. and the Underlying Molecular Mechanisms for Its Choleretic, Cholagogue, and Regenerative Properties. Pharmaceuticals (Basel) 2023; 16:887. [PMID: 37375834 PMCID: PMC10300974 DOI: 10.3390/ph16060887] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Any defects in bile formation, secretion, or flow may give rise to cholestasis, liver fibrosis, cirrhosis, and hepatocellular carcinoma. As the pathogenesis of hepatic disorders is multifactorial, targeting parallel pathways potentially increases the outcome of therapy. Hypericum perforatum has been famed for its anti-depressive effects. However, according to traditional Persian medicine, it helps with jaundice and acts as a choleretic medication. Here, we will discuss the underlying molecular mechanisms of Hypericum for its use in hepatobiliary disorders. Differentially expressed genes retrieved from microarray data analysis upon treatment with safe doses of Hypericum extract and intersection with the genes involved in cholestasis are identified. Target genes are located mainly at the endomembrane system with integrin-binding ability. Activation of α5β1 integrins, as osmo-sensors in the liver, activates a non-receptor tyrosine kinase, c-SRC, which leads to the insertion of bile acid transporters into the canalicular membrane to trigger choleresis. Hypericum upregulates CDK6 that controls cell proliferation, compensating for the bile acid damage to hepatocytes. It induces ICAM1 to stimulate liver regeneration and regulates nischarin, a hepatoprotective receptor. The extract targets the expression of conserved oligomeric Golgi (COG) and facilitates the movement of bile acids toward the canalicular membrane via Golgi-derived vesicles. In addition, Hypericum induces SCP2, an intracellular cholesterol transporter, to maintain cholesterol homeostasis. We have also provided a comprehensive view of the target genes affected by Hypericum's main metabolites, such as hypericin, hyperforin, quercitrin, isoquercitrin, quercetin, kaempferol, rutin, and p-coumaric acid to enlighten a new scope in the management of chronic liver disorders. Altogether, standard trials using Hypericum as a neo-adjuvant or second-line therapy in ursodeoxycholic-acid-non-responder patients define the future trajectories of cholestasis treatment with this product.
Collapse
Affiliation(s)
- Ala Mohagheghzadeh
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran;
| | - Parmis Badr
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran; (P.B.); (A.M.)
| | - Abdolali Mohagheghzadeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran; (P.B.); (A.M.)
- Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran
| | - Shiva Hemmati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran;
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI University, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
28
|
Ri MH, Xing Y, Zuo HX, Li MY, Jin HL, Ma J, Jin X. Regulatory mechanisms of natural compounds from traditional Chinese herbal medicines on the microglial response in ischemic stroke. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154889. [PMID: 37262999 DOI: 10.1016/j.phymed.2023.154889] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 04/12/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND Development of clinically effective neuroprotective agents for stroke therapy is still a challenging task. Microglia play a critical role in brain injury and recovery after ischemic stroke. Traditional Chinese herbal medicines (TCHMs) are based on a unique therapeutic principle, have various formulas, and have long been widely used to treat stroke. Therefore, the active compounds in TCHMs and their underlying mechanisms of action are attracting increasing attention in the field of stroke drug development. PURPOSE To summarize the regulatory mechanisms of TCHM-derived natural compounds on the microglial response in animal models of ischemic stroke. METHODS We searched studies published until 10 April 2023 in the Web of Science, PubMed, and ScienceDirect using the following keywords: natural compounds, natural products or phytochemicals, traditional Chinese Medicine or Chinese herbal medicine, microglia, and ischemic stroke. This review was prepared according to PRISMA (Preferred Reporting Item for Systematic Reviews and Meta-Analysis) guidelines. RESULTS Natural compounds derived from TCHMs can attenuate the M1 phenotype of microglia, which is involved in the detrimental inflammatory response, via inhibition of NF-κB, MAPKs, JAK/STAT, Notch, TLR4, P2X7R, CX3CR1, IL-17RA, the NLRP3 inflammasome, and pro-oxidant enzymes. Additionally, the neuroprotective response of microglia with the M2 phenotype can be enhanced by activating Nrf2/HO-1, PI3K/AKT, AMPK, PPARγ, SIRT1, CB2R, TREM2, nAChR, and IL-33/ST2. Several clinical trials showed that TCHM-derived natural compounds that regulate microglial responses have significant and safe therapeutic effects, but further well-designed clinical studies are needed. CONCLUSIONS Further research regarding the direct targets and potential pleiotropic or synergistic effects of natural compounds would provide a more reasonable approach for regulation of the microglial response with the possibility of successful stroke drug development.
Collapse
Affiliation(s)
- Myong Hak Ri
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China; Faculty of Life Science, Kim Il Sung University, Pyongyang, Democratic People's Republic of Korea
| | - Yue Xing
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Hong Xiang Zuo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Ming Yue Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Hong Lan Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Juan Ma
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| | - Xuejun Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| |
Collapse
|
29
|
Ilieva Y, Momekov G, Zaharieva MM, Marinov T, Kokanova-Nedialkova Z, Najdenski H, Nedialkov PT. Cytotoxic and Antibacterial Prenylated Acylphloroglucinols from Hypericum olympicum L. PLANTS (BASEL, SWITZERLAND) 2023; 12:1500. [PMID: 37050127 PMCID: PMC10097024 DOI: 10.3390/plants12071500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Two new bicyclo[3.3.1]nonane type bicyclic polyprenylated acylphloroglucinol derivatives (BPAPs), olympiforin A and B as well as three known prenylated phloroglucinols, were isolated from the aerial parts of Hypericum olympicum L. The structures of the isolated compounds were established by means of spectral techniques (HRESIMS and 1D and 2D NMR). All compounds were tested on a panel of human tumor (MDA-MB-231, EJ, K-562, HL-60 and HL-60/DOX) and non- tumorigenic (HEK-293 and EA.hy926) cell lines using the MTT assay. All tested compounds exerted significant in vitro cytotoxicity with IC50 values ranging from 1.2 to 24.9 μM and from 0.9 to 34 μM on tumor and non-cancerous cell lines, respectively. Most of the compounds had good selectivity and were more cytotoxic to the tumor cell lines than to the normal ones. A degradation of the precursor caspase 9 for some of the compounds was observed; therefore, the intrinsic pathway of apoptosis is the most likely mechanism of cytotoxic activity. The BPAPs were examined for antibacterial and antibiofilm activity through the broth microdilution method and the protocol of Stepanović. They showed a moderate effect against Enterococcus faecalis and Streptococcus pyogenes but a very profound activity against Staphylococcus aureus with minimum inhibitory concentrations (MIC) in the range of 0.78-2 mg/L. Olympiforin B also had a great effect against methicillin-resistant S. aureus (MRSA) with an MIC value of 1 mg/L and a very significant antibiofilm activity on that strain with a minimum biofilm inhibition concentration (MBIC) value of 0.5 mg/L. The structures of the isolated compounds were in silico evaluated using ADME and drug likeness tests.
Collapse
Affiliation(s)
- Yana Ilieva
- Department of Infectious Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (Y.I.); (M.M.Z.)
| | - Georgi Momekov
- Department of Pharmacology, Toxicology and Pharmacotherapy, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria;
| | - Maya Margaritova Zaharieva
- Department of Infectious Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (Y.I.); (M.M.Z.)
| | - Teodor Marinov
- Pharmacognosy Department, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | | | - Hristo Najdenski
- Department of Infectious Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (Y.I.); (M.M.Z.)
| | - Paraskev T. Nedialkov
- Pharmacognosy Department, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| |
Collapse
|
30
|
Özdemir S, Bostanabad SY, Parmaksız A, Canatan HC. Combination of St. John's Wort Oil and Neem Oil in Pharmaceuticals: An Effective Treatment Option for Pressure Ulcers in Intensive Care Units. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:467. [PMID: 36984468 PMCID: PMC10054705 DOI: 10.3390/medicina59030467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/07/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023]
Abstract
Background and Objectives: Phytotherapeutically, various herbal remedies, such as St. John's wort oil, have been introduced as wound care options. Recently, Neem oil has been considered a herbal option for the management of superficial wounds. Wound care is a complex process that involves several factors including the patient, caregiver, and medications. Herbal combinations could be an alternative to the chemical counterparts in the wound care area. This report includes an investigation of the possible supportive impacts of the St. John's wort and Neem oil containing ointment (W Cura G Plus ®) in the management of pressure ulcers (PUs) in three intensive care unit (ICU) patients. Materials and Methods: The ointment was administered to individuals once daily for 42 consecutive days. The status of individuals was macroscopically monitored by measuring the PU area and histopathological assessment of the tissue sections taken on the first and last days of wound treatment. Results: The outcomes of the macroscopic and histopathological techniques exhibited that St. John's wort and Neem oil containing ointment provided a remarkable supportive impact on the patients that suffered from PUs in the ICUs. Conclusions: The combination of St. John's wort and Neem oil could be suggested as an efficient active phytoconstituent for the management of PUs. The herbal ointments may be suggested as an alternative for the patients that have PUs in the ICUs.
Collapse
Affiliation(s)
- Samet Özdemir
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul Health and Technology University, Istanbul 34015, Turkey
| | - Saber Yari Bostanabad
- Department of Pharmacology, Faculty of Pharmacy, Istanbul Health and Technology University, Istanbul 34015, Turkey
| | - Ayhan Parmaksız
- Department of Biostatistics, Faculty of Medicine, Istanbul Health and Technology University, Istanbul 34015, Turkey
| | - Halil Can Canatan
- Intensive Care Unit, Department of Anesthesiology and Reanimation, Istanbul Special Güngören Hospital, Istanbul 34164, Turkey
| |
Collapse
|
31
|
Sut S, Dall’Acqua S, Zengin G, Senkardes I, Uba AI, Bouyahya A, Aktumsek A. Novel Signposts on the Road from Natural Sources to Pharmaceutical Applications: A Combinative Approach between LC-DAD-MS and Offline LC-NMR for the Biochemical Characterization of Two Hypericum Species (H. montbretii and H. origanifolium). PLANTS (BASEL, SWITZERLAND) 2023; 12:648. [PMID: 36771732 PMCID: PMC9921756 DOI: 10.3390/plants12030648] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
The members of the genus Hypericum have great potential to develop functional uses in nutraceutical and pharmaceutical applications. With this in mind, we aimed to determine the chemical profiling and biological properties of different extracts (ethyl acetate, methanol and water) from two Hypericum species (H. montbretii and H. origanifolium). We combined two approaches (LC-DAD-MS and LC-NMR) to identify and quantify chemical compounds of the extracts. Antioxidant properties (free radical quenching, reducing power and metal chelating) and enzyme inhibitory effects (cholinesterase, tyrosinase, amylase and glucosidase) were determined as biological properties. The tested extracts were rich in caffeic acid derivatives and flavonoids, and among them, 3-caffeoyl quinic acid and myricetin-3-O-rhamnoside were found to be the main compounds. The total phenolic and flavonoid levels were determined to be 50.97-134.99 mg GAE/g and 9.87-82.63 mg RE/g, respectively. With the exception of metal chelating, the methanol and water extracts showed stronger antioxidant properties than the ethyl acetate extracts. However, different results were obtained for each enzyme inhibition assay, and in general, the ethyl acetate extracts present more enzyme-inhibiting properties than the water or methanol extracts. Results from chemical and biological analyses were combined using multivariate analysis, which allowed establishing relationships between composition and observed effects of the Hypericum extracts based on the extraction solvents. To gain more insights between chemical compounds and enzyme-inhibiting effects, we performed molecular docking analysis. We observed favorable interactions between certain compounds and the tested enzymes during our analysis, confirming the data obtained from the multivariate approach. In conclusion, the obtained results may shed light on the road from natural sources to functional applications, and the tested Hypericum species may be considered potential raw materials, with promising chemical constituents and biological activities.
Collapse
Affiliation(s)
- Stefania Sut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Stefano Dall’Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, 42130 Konya, Turkey
| | - Ismail Senkardes
- Department of Pharmaceutical Botany, Pharmacy Faculty, Marmara University, 34722 Istanbul, Turkey
| | | | - Abdelhakim Bouyahya
- Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 1014, Morocco
| | | |
Collapse
|
32
|
Yan XT, Chen JX, Wang ZX, Zhang RQ, Xie JY, Kou RW, Zhou HF, Zhang AL, Wang MC, Ding YX, Gao JM. Hyperhubeins A-I, Bioactive Sesquiterpenes with Diverse Skeletons from Hypericum hubeiense. JOURNAL OF NATURAL PRODUCTS 2023; 86:119-130. [PMID: 36579935 DOI: 10.1021/acs.jnatprod.2c00810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Nine new sesquiterpenes, hyperhubeins A-I (1-9), and 14 known analogues (10-23) were isolated from the aerial portions of Hypericum hubeiense. Their structures and absolute configurations were determined unambiguously via spectroscopic analysis, single-crystal X-ray diffraction, and electronic circular dichroism calculations. Compounds 1-3 possess an unprecedented sesquiterpene carbon skeleton. Further, a plausible biosynthetic pathway from farnesyl diphosphate (FPP) is proposed. The isolated phytochemicals were evaluated for neuroprotective and anti-neuroinflammatory properties in vitro. Compounds 1, 2, 5-8, 14, and 21 displayed notable neuroprotective activity against hydrogen peroxide (H2O2)-induced lesions in PC-12 cells at 10 μM. Additionally, compounds 1, 2, 12, and 13 exhibited inhibition of lipopolysaccharide (LPS)-induced nitric oxide (NO) production in BV-2 microglial cells, with their IC50 values ranging from 4.92 to 6.81 μM. Possible interactions between these bioactive compounds and inducible nitric oxide synthase (iNOS) were predicted via molecular docking. Moreover, Western blotting indicated that compound 12 exerted anti-neuroinflammatory activity by suppressing LPS-stimulated expression of toll-like receptor-4 (TLR-4) and inhibiting consequent activation of nuclear factor-kappa-B (NF-κB) signaling.
Collapse
Affiliation(s)
- Xi-Tao Yan
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, People's Republic of China
| | - Jiang-Xian Chen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, People's Republic of China
| | - Zi-Xuan Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, People's Republic of China
| | - Rui-Qi Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, People's Republic of China
| | - Jin-Yan Xie
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, People's Republic of China
| | - Rong-Wei Kou
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, People's Republic of China
| | - Hui-Fang Zhou
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, People's Republic of China
| | - An-Ling Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, People's Republic of China
| | - Min-Chang Wang
- State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, Xi'an 710065, People's Republic of China
| | - Yan-Xia Ding
- School of Pharmacy, Henan University, Kaifeng 475004, People's Republic of China
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, People's Republic of China
| |
Collapse
|
33
|
Ilieva Y, Marinov T, Trayanov I, Kaleva M, Zaharieva MM, Yocheva L, Kokanova-Nedialkova Z, Najdenski H, Nedialkov P. Outstanding Antibacterial Activity of Hypericum rochelii-Comparison of the Antimicrobial Effects of Extracts and Fractions from Four Hypericum Species Growing in Bulgaria with a Focus on Prenylated Phloroglucinols. Life (Basel) 2023; 13:life13020274. [PMID: 36836632 PMCID: PMC9959064 DOI: 10.3390/life13020274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Microbial infections are by no means a health problem from a past era due to the increasing antimicrobial resistance of infectious strains. Medicine is in constant need of new drugs and, recently, plant products have had a deserved renaissance and garnered scientific recognition. The aim of this work was to assess the antimicrobial activity of ten active ingredients from four Hypericum species growing in Bulgaria, as well as to obtain preliminary data on the phytochemical composition of the most promising samples. Extracts and fractions from H. rochelii Griseb. ex Schenk, H. hirsutum L., H. barbatum Jacq. and H. rumeliacum Boiss. obtained with conventional or supercritical CO2 extraction were tested on a panel of pathogenic microorganisms using broth microdilution, agar plates, dehydrogenase activity and biofilm assays. The panel of samples showed from weak to extraordinary antibacterial effects. Three of them (from H. rochelii and H. hirsutum) had minimum inhibitory concentrations as low as 0.625-78 mg/L and minimum bactericidal concentrations of 19.5-625 mg/L against Staphylococcus aureus and other Gram-positive bacteria. These values placed these samples among the best antibacterial extracts from the Hypericum genus. Some of the agents also demonstrated very high antibiofilm activity against methicillin-resistant S. aureus. Ultra-high-performance liquid chromatography-high-resolution mass spectrometry revealed the three most potent samples as rich sources of biologically active phloroglucinols. They were shown to be good drug or nutraceutical candidates, presumably without some of the side effects of conventional antibiotics.
Collapse
Affiliation(s)
- Yana Ilieva
- Department of Infectious Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Teodor Marinov
- Pharmacognosy Department, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Iliyan Trayanov
- Department of Chemical Engineering, Faculty of Chemical and System Engineering, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Mila Kaleva
- Department of Infectious Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Maya Margaritova Zaharieva
- Department of Infectious Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Lyubomira Yocheva
- Department of Biology, Medical Genetics and Microbiology, Faculty of Medicine, Sofia University “St. Kliment Ohridski”, 1407 Sofia, Bulgaria
| | | | - Hristo Najdenski
- Department of Infectious Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
- Correspondence: or (H.N.); (P.N.)
| | - Paraskev Nedialkov
- Pharmacognosy Department, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
- Correspondence: or (H.N.); (P.N.)
| |
Collapse
|
34
|
Zhang R, Cheng Z, Fang Q, Kennelly EJ, Long C. Monoterpenoid acylphloroglucinols from Hypericum hengshanense W. T. Wang with antiproliferative activities. PHYTOCHEMISTRY 2023; 205:113500. [PMID: 36379320 DOI: 10.1016/j.phytochem.2022.113500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/09/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Hypericum species (Hypericaceae) are a group of important plants with medicinal, edible, and ornamental values. A phytochemical study on the whole plants of H. hengshanense W. T. Wang, a species endemic to China, led to the isolation and elucidation of 25 monoterpenoid acylphloroglucinols (MAPs). Among them, 10 are undescribed compounds, namely hyphengshanols A-D, (+)-empetrilatinol A, (-)-empetrilatinol B, (-)-hyperjovinol A, (9S,2'S)-dauphinol F, and (8R,2'S)-empetrikathiforin. In addition, the absolute configurations of other six compounds were firstly determined in the current study. The structures were established by ultraviolet (UV), high resolution electrospray ionization mass spectrum (HR-ESI-MS), and nuclear magnetic resonance spectroscopy (NMR) data. The absolute configurations were determined by experimental and calculated electronic circular dichroism (ECD) data analyses. Cytotoxicity assays on five human cell lines HL-60, A549, SMMC-7721, MDA-MB-231, and SW480 revealed that 16 compounds exhibited broad-spectrum antiproliferative activities with IC50 ranging from 7.54 to 45.70 μM.
Collapse
Affiliation(s)
- Ruifei Zhang
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, People's Republic of China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, People's Republic of China.
| | - Zhuo Cheng
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, People's Republic of China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, People's Republic of China.
| | - Qiong Fang
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, People's Republic of China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, People's Republic of China.
| | - Edward J Kennelly
- Department of Biological Sciences, Lehman College, City University of New York, Bronx, NY, 10468, USA; Ph.D. Program in Biology, The Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA.
| | - Chunlin Long
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, People's Republic of China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, People's Republic of China; Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, People's Republic of China; Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, People's Republic of China.
| |
Collapse
|
35
|
Song R, Xia Y, Zhao Z, Yang X, Zhang N. Effects of plant growth regulators on the contents of rutin, hyperoside and quercetin in Hypericum attenuatum Choisy. PLoS One 2023; 18:e0285134. [PMID: 37134044 PMCID: PMC10156007 DOI: 10.1371/journal.pone.0285134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 04/14/2023] [Indexed: 05/04/2023] Open
Abstract
To explore the accumulation of rutin, hyperoside and quercetin in Hypericum attenuatum Choisy under treatment with different plant growth regulators, 100 mg/L, 200 mg/L and 300 mg/L cycocel, 100 mg/L, 200 mg/L and 300 mg/L mepiquat chloride and 1 mg/L, 2 mg/L and 3 mg/L naphthalene acetic acid were foliage sprayed on Hypericum attenuatum Choisy plants at the early growth stage. We sampled and determined the important flavonoid contents at the flowering stage. The results showed that the three plant growth regulators had different effects on the accumulation of rutin, hyperoside and quercetin in the leaves, stems and flowers of Hypericum attenuatum Choisy at the flowering stage. After spraying 1 mg/L naphthalene acetic acid at the early growth stage, the rutin contents in the leaves, stems and flowers increased by approximately 60.33%, 223.85% and 192.02%, respectively (P < 0.05). Spraying 100 mg/L mepiquat chloride increased the hyperoside contents in the leaves and flowers by approximately 7.77% and 12.87%, respectively (P < 0.05). Spraying 2 mg/L naphthalene acetic acid significantly increased the quercetin contents in the flowers and leaves by approximately 95.62% and 47.85%, respectively (P < 0.05). Therefore, at the early growth stage, spraying 1 mg/L naphthalene acetic acid significantly increased rutin content, spraying 100 mg/L mepiquat chloride significantly increased hyperoside content, and spraying 2 mg/L naphthalene acetic acid significantly increased quercetin content in Hypericum attenuatum Choisy. In conclusion, the accumulation of flavonoids in Hypericum attenuatum Choisy was regulated by plant growth regulators.
Collapse
Affiliation(s)
- Rui Song
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, Jilin Province, China
| | - Yunrui Xia
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, Jilin Province, China
| | - Zhe Zhao
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, Jilin Province, China
| | - Xing Yang
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, Jilin Province, China
| | - Nanyi Zhang
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, Jilin Province, China
| |
Collapse
|
36
|
Wang M, Li Y, Su J, Bai J, Zhao Z, Sun Z. Protective effects of 4‐geranyloxy‐2,6‐dihydroxybenzophenonel on
DSS
‐induced ulcerative colitis in mice via regulation of
cAMP
/
PKA
/
CREB
and
NF‐κB
signaling pathways. Phytother Res 2022; 37:1330-1345. [PMID: 36428266 DOI: 10.1002/ptr.7689] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/13/2022] [Accepted: 11/05/2022] [Indexed: 11/27/2022]
Abstract
Hypericum sampsonii Hance has traditionally been used to treat enteritis and diarrhea. As one of the main benzophenones isolated from H. sampsonii, 4-geranyloxy-2,6-dihydroxybenzophenonel (4-GDB) has been shown to possess anti-inflammatory effects. However, the therapeutic effect and potential mechanisms of 4-GDB in ulcerative colitis (UC) remain unclear. This study aimed to evaluate the role of 4-GDB in UC using a dextran sulfate sodium-induced colitis mouse model. Intragastric administration of 4-GDB (20 mg/kg/day) for 8 days significantly attenuated colonic injury, reduced the expression of inflammatory mediators, and improved colonic barrier function in mice with colitis. Furthermore, in vivo and in vitro experiments indicated that 4-GDB could activate cAMP/PKA/CREB and inhibit the NF-κB pathway. Collectively, 4-GDB may be a potential agent for treating UC by regulating the cAMP/PKA/CREB and NF-κB pathways.
Collapse
Affiliation(s)
- Mingqiang Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine Guangzhou China
| | - Yanzhen Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine Guangzhou China
| | - Jianhui Su
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine Guangzhou China
| | - Jingyan Bai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine Guangzhou China
| | - Zhongxiang Zhao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine Guangzhou China
| | - Zhanghua Sun
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine Guangzhou China
| |
Collapse
|
37
|
Salinas M, Bec N, Calva J, Larroque C, Vidari G, Armijos C. Constituents, Enantiomeric Content, and ChE Inhibitory Activity of the Essential Oil from Hypericum laricifolium Juss. Aerial Parts Collected in Ecuador. PLANTS (BASEL, SWITZERLAND) 2022; 11:2962. [PMID: 36365414 PMCID: PMC9659171 DOI: 10.3390/plants11212962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
The physical properties, chemical composition, enantiomer distribution, and cholinesterase (ChE) inhibitory activity were determined for a steam-distilled essential oil (EO), with a yield of 0.15 ± 0.05 % (w/w), from H. laricifolium aerial parts, collected in southern Ecuador. The oil qualitative and quantitative analyses were performed by GC-EIMS and GC-FID techniques, using two capillary columns containing a non-polar 5%-phenyl-methylpolysiloxane and a polar polyethylene glycol stationary phase, respectively. The main constituents (>10%) detected on the two columns were, respectively, limonene (24.29, 23.16%), (E)-β-ocimene (21.89, 27.15%), and (Z)-β-ocimene (12.88, 16.03%). The EO enantioselective analysis was carried out using a column based on 2,3-diethyl-6-tert-butyldimethylsilyl-β-cyclodextrin. Two mixtures of chiral monoterpenes were detected containing (1R,5R)-(+)-α-pinene (ee = 83.68%), and (S)-(-)-limonene (ee = 88.30%) as the major enantiomers. This finding led to some hypotheses about the existence in the plant of two enantioselective biosynthetic pathways. Finally, the EO exhibited selective inhibitory effects in vitro against butyrylcholinesterase (BuChE) (IC50 = 36.80 ± 2.40 µg/mL), which were about three times greater than against acetylcholinesterase (IC50 = 106.10 ± 20.20). Thus, the EO from Ecuadorian H. laricifolium is an interesting candidate for investigating the mechanism of the selective inhibition of BuChE and for discovering novel drugs to manage the progression of Alzheimer’s disease.
Collapse
Affiliation(s)
- Melissa Salinas
- Departamento de Química, Universidad Técnica Particular de Loja (UTPL), Loja 1101608, Ecuador
| | - Nicole Bec
- Institute for Regenerative Medicine and Biotherapy (IRMB), Université de Montpellier, National Institute of Health and Medical Research (INSERM), 34295 Montpellier, France
| | - James Calva
- Departamento de Química, Universidad Técnica Particular de Loja (UTPL), Loja 1101608, Ecuador
| | - Christian Larroque
- Institute for Regenerative Medicine and Biotherapy (IRMB), Université de Montpellier, National Institute of Health and Medical Research (INSERM), 34295 Montpellier, France
| | - Giovanni Vidari
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil 44001, Kurdistan Region, Iraq
| | - Chabaco Armijos
- Departamento de Química, Universidad Técnica Particular de Loja (UTPL), Loja 1101608, Ecuador
| |
Collapse
|
38
|
Benzophenone Rhamnosides and Chromones from Hypericum seniawinii Maxim. Molecules 2022; 27:molecules27207056. [PMID: 36296651 PMCID: PMC9609419 DOI: 10.3390/molecules27207056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Two new benzophenone glycosides, hypersens A and B, along with four known compounds, (S)-(+)-5,7-dihydroxy-2-(1-methylpropyl) chromone (3), 5,7-dihydroxy-2-isopropylchromone (4), urachromone B (5), and 3-8′′ bisapigenin (6), were isolated from Hypericum seniawinii. The structures of new compounds (1 and 2) were elucidated according to comprehensive spectroscopic data analyses. The absolute configurations of 1 and 2 were determined by electronic circular dichroism (ECD) calculations. All isolated compounds were evaluated for their neuroprotective effect using corticosterone-induced PC12 cell injury. In addition, compounds 1–6 were evaluated for their anti-inflammatory activity in lipopolysaccharide-induced RAW 264.7 cells. Compound 6 was a biflavonoid and significantly inhibited the production of nitric oxide with an IC50 value of 11.48 ± 1.23 μM.
Collapse
|
39
|
Caldeira GI, Gouveia LP, Serrano R, Silva OD. Hypericum Genus as a Natural Source for Biologically Active Compounds. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11192509. [PMID: 36235373 PMCID: PMC9573133 DOI: 10.3390/plants11192509] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 06/08/2023]
Abstract
Hypericum L. genus plants are distributed worldwide, with numerous species identified throughout all continents, except Antarctica. These plant species are currently used in various systems of traditional medicine to treat mild depression, wounds and burns, diarrhea, pain, fevers, and their secondary metabolites previously shown, and the in vitro and/or in vivo cytotoxic, antimicrobial, anti-inflammatory, antioxidant, antihyperglycemic, and hepatoprotective activities, as well as the acetylcholinesterase and monoamine oxidase inhibitory activities. We conducted a systematic bibliographic search according to the Cochrane Collaboration guidelines to answer the question: "What is known about plants of Hypericum genus as a source of natural products with potential clinical biological activity?" We documented 414 different natural products with confirmed in vitro/in vivo biological activities, and 58 different Hypericum plant species as sources for these natural products. Phloroglucinols, acylphloroglucinols, xanthones, and benzophenones were the main chemical classes identified. The selective cytotoxicity against tumor cells, cell protection, anti-inflammatory, antimicrobial, antidepressant, anti-Alzheimer's, and adipogenesis-inhibition biological activities are described. Acylphloroglucinols were the most frequent compounds with anticancer and cell-protection mechanisms. To date, no work has been published with a full descriptive list directly relating secondary metabolites to their species of origin, plant parts used, extraction methodologies, mechanisms of action, and biological activities.
Collapse
|
40
|
Grafakou ME, Barda C, Karikas GA, Skaltsa H. Hypericum Essential Oils—Composition and Bioactivities: An Update (2012–2022). Molecules 2022; 27:molecules27165246. [PMID: 36014484 PMCID: PMC9413127 DOI: 10.3390/molecules27165246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/18/2022] Open
Abstract
Hypericum genus, considered to comprise over 500 species that exhibit cosmopolitan distribution, has attracted human interest since ancient times. The present review aims to provide and summarize the recent literature (2012–2022) on the essential oils of the title genus. Research articles were collected from various scientific databases such as PubMed, ScienceDirect, Reaxys, and Google Scholar. Scientific reports related to the chemical composition, as well as the in vitro and in vivo pharmacological activities, are presented, also including a brief outlook of the potential relationship between traditional uses and Hypericum essential oils bioactivity.
Collapse
Affiliation(s)
- Maria-Eleni Grafakou
- Department of Pharmacognosy & Chemistry of Natural Products, Faculty of Pharmacy, School of Health Sciences, National & Kapodistrian University of Athens, 15771 Athens, Greece
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Beethovenstraße 8, 8010 Graz, Austria
| | - Christina Barda
- Department of Pharmacognosy & Chemistry of Natural Products, Faculty of Pharmacy, School of Health Sciences, National & Kapodistrian University of Athens, 15771 Athens, Greece
| | - George Albert Karikas
- Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece
- Correspondence: (G.A.K.); (H.S.)
| | - Helen Skaltsa
- Department of Pharmacognosy & Chemistry of Natural Products, Faculty of Pharmacy, School of Health Sciences, National & Kapodistrian University of Athens, 15771 Athens, Greece
- Correspondence: (G.A.K.); (H.S.)
| |
Collapse
|
41
|
Qualitative, Quantitative, Cytotoxic, Free Radical Scavenging, and Antimicrobial Characteristics of Hypericum lanuginosum from Palestine. Molecules 2022; 27:molecules27144574. [PMID: 35889448 PMCID: PMC9323161 DOI: 10.3390/molecules27144574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 01/27/2023] Open
Abstract
Hypericum lanuginosum is one of the traditional medicinal plants that grows in the arid area of the Al-Naqab desert in Palestine and is used by Bedouins to heal various communicable and non-communicable illnesses. The purpose of this investigation was to estimate the total phenolic, flavonoid, and tannin contents of aqueous, methanol, acetone, and hexane H. lanuginosum extracts and evaluate their cytotoxic, anti-oxidative, and antimicrobial properties. Qualitative phytochemical tests were used to identify the major phytochemical classes in H. lanuginosum extracts, while total phenol, flavonoid, and tannin contents were determined using Folin–Ciocalteu, aluminum chloride, and vanillin assays, respectively. Moreover, a microdilution test was employed to estimate the antimicrobial activity of H. lanuginosum extracts against several microbial species. At the same time, the cytotoxic and free radical scavenging effects were evaluated using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) and 2, 2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) assays, respectively. Quantitative examinations showed that the highest amounts of phenols, flavonoids, and tannins were noticed in the H. lanuginosum aqueous extract. Moreover, H. lanuginosum aqueous extract showed potent activity against methicillin-resistant Staphylococcus aureus even more than Amoxicillin and Ofloxacin antibiotics, with Minimum Inhibitory Concentrations (MICs) of 0.78 ± 0.01, 0, and 1.56 ± 0.03 µg/mL, respectively. Additionally, the aqueous extract exhibited the highest activity against Candida albicans and Epidermatophyton floccosum pathogens, with MIC values of 0.78 ± 0.01 µg/mL. Actually, the aqueous extract showed more potent antimold activity than Ketoconazole against E. floccosum with MICs of 0.78 ± 0.01 and 1.56 ± 0.02 µg/mL, respectively. Furthermore, all H. lanuginosum extracts showed potential cytotoxic effects against breast cancer (MCF-7), hepatocellular carcinoma (Hep 3B and Hep G2), and cervical adenocarcinoma (HeLa) tumor cell lines. In addition, the highest free radical scavenging activity was demonstrated by H. lanuginosum aqueous extract compared with Trolox with IC50 doses of 6.16 ± 0.75 and 2.23 ± 0.57 µg/mL, respectively. Studying H. lanuginosum aqueous extract could lead to the development of new treatments for diseases such as antibiotic-resistant microbes and cancer, as well as for oxidative stress-related disorders such as oxidative stress. H. lanuginosum aqueous extract may help in the design of novel natural preservatives and therapeutic agents.
Collapse
|
42
|
Zhang Y, Ye S, Lu W, Zhong J, Leng Y, Yang T, Luo J, Xu W, Zhang H, Kong L. RNA helicase DEAD-box protein 5 alleviates nonalcoholic steatohepatitis progression via tethering TSC complex and suppressing mTORC1 signaling. Hepatology 2022; 77:1670-1687. [PMID: 35796622 DOI: 10.1002/hep.32651] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Nonalcoholic fatty liver disease and its progressive form, nonalcoholic steatohepatitis (NASH), are rapidly becoming the top causes of hepatocellular carcinoma (HCC). Currently, there are no approved therapies for the treatment of NASH. DEAD-box protein 5 (DDX5) plays important roles in different cellular processes. However, the precise role of DDX5 in NASH remains unclear. APPROACH AND RESULTS DDX5 expression was downregulated in patients with NASH, mouse models with diet-induced NASH (high-fat diet [HFD], methionine- and choline-deficient diet, and choline-deficient HFD), mouse models with NASH-HCC (diethylnitrosamine with HFD), and palmitic acid-stimulated hepatocytes. Adeno-associated virus-mediated DDX5 overexpression ameliorates hepatic steatosis and inflammation, whereas its deletion worsens such pathology. The untargeted metabolomics analysis was carried out to investigate the mechanism of DDX5 in NASH and NASH-HCC, which suggested the regulatory effect of DDX5 on lipid metabolism. DDX5 inhibits mechanistic target of rapamycin complex 1 (mTORC1) activation by recruiting the tuberous sclerosis complex (TSC)1/2 complex to mTORC1, thus improving lipid metabolism and attenuating the NACHT-, leucine-rich-repeat (LRR)-, and pyrin domain (PYD)-containing protein 3 inflammasome activation. We further identified that the phytochemical compound hyperforcinol K directly interacted with DDX5 and prevented its ubiquitinated degradation mediated by ubiquitin ligase (E3) tripartite motif protein 5, thereby significantly reducing lipid accumulation and inflammation in a NASH mouse model. CONCLUSIONS These findings provide mechanistic insight into the role of DDX5 in mTORC1 regulation and NASH progression, as well as suggest a number of targets and a promising lead compound for therapeutic interventions against NASH.
Collapse
Affiliation(s)
- Yanqiu Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shengtao Ye
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Weijia Lu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jiawen Zhong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yingrong Leng
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ting Yang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jun Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wenjun Xu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hao Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
43
|
Duan Y, Hu P, Guo Y, Bu P, Shi Z, Cao Y, Zhang Y, Hu H, Tong Q, Qi C, Zhang Y. Kiiacylphnols A-H, eight undescribed polycyclic polyprenylated acylphloroglucinols with anticancer activities from Hypericum przewalskii Maxim. PHYTOCHEMISTRY 2022; 199:113166. [PMID: 35367463 DOI: 10.1016/j.phytochem.2022.113166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Kiiacylphnols A-H, eight previously undescribed polycyclic polyprenylated acylphloroglucinols (PPAPs), along with two known congeners (hyperforcinol F and oxepahyperforin), were obtained from Hypericum przewalskii Maxim. The structures of these metabolites were confirmed by spectroscopic analyses, quantum-chemical 1H and 13C NMR calculations with DP4+ analyses, electronic circular dichroism (ECD) comparisons and calculations. Kiiacylphnols A and B were the first [3.3.1]-type PPAPs with an unusual octahydrooxireno[2,3-i]chromene scaffold bearing a rare 6/6/6/3 ring system. More significantly, kiiacylphnol A and oxepahyperforin displayed cytotoxicity against acute myeloid leukemia and diffuse large B-cell lymphoma cell lines by inducing cell apoptosis.
Collapse
Affiliation(s)
- Yulin Duan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Ping Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Yi Guo
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Pengfei Bu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Zhengyi Shi
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Yunfang Cao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Yeting Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Hong Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Qingyi Tong
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Changxing Qi
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
44
|
Zhao X, Guo Y, Xu Q, Shi Z, Xiang M, Li H, Wang Y, Qi C, Zhang Y. (±)-Hyperpyran A: Terpenoid-based bicyclic dihydropyran enantiomers with hypoglycemic activity from Hypericum perforatum (St. John's wort). Fitoterapia 2022; 161:105221. [PMID: 35584720 DOI: 10.1016/j.fitote.2022.105221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 11/20/2022]
Abstract
(±)-Hyperpyran A (1a/1b), a pair of new terpenoid-based bicyclic dihydropyran enantiomers, were isolated from the aerial parts of Hypericum perforatum (St. John's wort). Their structures and absolute configurations were elucidated by NMR spectroscopic analyses, ECD comparison, and X-ray crystal diffraction. Compounds 1a/1b possess hexahydrocyclopenta[c]pyran ring system and a plausible biosynthetic pathway was also proposed. In addition, compound 1a exhibited a moderate promotion of glucose uptake activity in hepatocytes.
Collapse
Affiliation(s)
- Xuebing Zhao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China; First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang 443003, People's Republic of China
| | - Yi Guo
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Qianqian Xu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Zhengyi Shi
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Ming Xiang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Hua Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Yanyan Wang
- First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang 443003, People's Republic of China.
| | - Changxing Qi
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China.
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China.
| |
Collapse
|
45
|
Duan Y, Guo Y, Deng Y, Bu P, Shi Z, Cao Y, Zhang Y, Hu H, Sun W, Qi C, Zhang Y. Norprzewalsone A, a Rearranged Polycyclic Polyprenylated Acylphloroglucinol with a Spiro[cyclopentane-1,3'-tricyclo[7.4.0.0 1,6]tridecane] Core from Hypericum przewalskii. J Org Chem 2022; 87:6824-6831. [PMID: 35545918 DOI: 10.1021/acs.joc.2c00503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Norprzewalsone A (1), a rearranged polyprenylated polycyclic acylphloroglucinol (PPAP) with a new carbon skeleton, along with a new congener, norprzewalsone B (2), were isolated from Hypericum przewalskii. Compound 1 possessed a new 5/6/5/6/6 pentacyclic ring system based on a spiro[cyclopentane-1,3'-tricyclo[7.4.0.01,6]tridecane] core, which might be derived from the common [3.3.1]-type bicyclic polyprenylated acylphloroglucinol (BPAP) via the key retro-Claisen, intramolecular cyclization, and Diels-Alder cyclization reactions. Their structures and absolute configurations were confirmed by spectroscopic data, calculated 1D NMR data with DP4+ probability analyses, and electronic circular dichroism calculations and comparison. More significantly, compound 1 exhibited a moderate inhibitory effect on NO production in lipopolysaccharide-stimulated RAW264.7 cells.
Collapse
Affiliation(s)
- Yulin Duan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yi Guo
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yanfang Deng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Pengfei Bu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhengyi Shi
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yunfang Cao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yeting Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hong Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Weiguang Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Changxing Qi
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
46
|
YILMAZOĞLU E, HASDEMİR M, HASDEMİR B. Recent Studies on Antioxidant, Antimicrobial, and Ethnobotanical Uses of Hypericum perforatum L. (Hypericaceae). JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2022. [DOI: 10.18596/jotcsa.1024791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
47
|
Hu L, Wang Z, Tong Z, Hu P, Kong L, Luo M, Li X, Zhang Y, Huang Z, Zhang Y. Undescribed Meroterpenoids from
Hypericum japonicum
with Neuroprotective Effects on
H
2
O
2
Insult
SH‐SY5Y
Cells Targeting
Keap1‐Nrf2. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Linzhen Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Centre of High‐throughput Drug Screening Technology, Hubei Key Laboratory of Biotechnology of Traditional Chinese Medicine, School of Life Sciences Hubei University Wuhan 430062 Hubei Province People's Republic of China
| | - Zhenzhen Wang
- School of Pharmacy, Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 Hubei Province People's Republic of China
| | - Zhou Tong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Centre of High‐throughput Drug Screening Technology, Hubei Key Laboratory of Biotechnology of Traditional Chinese Medicine, School of Life Sciences Hubei University Wuhan 430062 Hubei Province People's Republic of China
| | - Ping Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Centre of High‐throughput Drug Screening Technology, Hubei Key Laboratory of Biotechnology of Traditional Chinese Medicine, School of Life Sciences Hubei University Wuhan 430062 Hubei Province People's Republic of China
| | - Luqi Kong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Centre of High‐throughput Drug Screening Technology, Hubei Key Laboratory of Biotechnology of Traditional Chinese Medicine, School of Life Sciences Hubei University Wuhan 430062 Hubei Province People's Republic of China
| | - Mengying Luo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Centre of High‐throughput Drug Screening Technology, Hubei Key Laboratory of Biotechnology of Traditional Chinese Medicine, School of Life Sciences Hubei University Wuhan 430062 Hubei Province People's Republic of China
| | - Xiao‐Nian Li
- Kunming Institute of Botany Chinese Academy of Sciences Kunming 650204 People's Republic of China
| | - Yuexing Zhang
- College of Chemistry and Chemical Engineering Hubei University Wuhan 430062 Hubei Province People's Republic of China
| | - Zhiyong Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Centre of High‐throughput Drug Screening Technology, Hubei Key Laboratory of Biotechnology of Traditional Chinese Medicine, School of Life Sciences Hubei University Wuhan 430062 Hubei Province People's Republic of China
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences Tianjin 300308 People's Republic of China
| | - Yonghui Zhang
- School of Pharmacy, Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 Hubei Province People's Republic of China
| |
Collapse
|
48
|
Abstract
The Hypericum genus contains one of the few genera of flowering plants that contains a species with authorization for marketing as a traditional medicine, H. perforatum. Due to the fact that this is a large genus, comprising numerous species, a large amount of interest has been shown over the years in the study of its various pharmacological activities. The chemical composition of these species is quite similar, containing compounds belonging to the class of phloroglucinol derivatives, naphthodianthrones, phenols, flavonoids and essential oils. Taking all of this into consideration, the present study aims to offer an overview of the species of the genus from the point of view of their extraction techniques and analysis methods. An extensive study on the scientific literature was performed, and it revealed a wide range of solvents and extraction methods, among which ethanol and methanol, together with maceration and ultrasonication, are the most frequent. Regarding analysis methods, separation and spectral techniques are the most employed. Therefore, the present study provides necessary data for future studies on the species of the genus, offering a complete overview and a possible basis for their development.
Collapse
|
49
|
Hu D, Gao J, Yang X, Liang Y. Chinese Pharmacopoeia Revisited: A Review of Anti-Depression Herbal Sources. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211059312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Depression, which can be accompanied by many fatal diseases and a low life quality, has become the leading cause of ill health and disability worldwide. However, Chinese Pharmacopoeia, the most authoritative and evidence-based encyclopedia of Traditional Chinese Medicine (TCM), could contain leads and insights into the development of new antidepressant drugs. In this work, nine herbal medicines with ‘dispel melancholy functions’ specifically documented in Chinese Pharmacopoeia have been comprehensively reviewed with respect to clinical trials, and phytochemical and pharmacological aspects. The nine drugs are Rosae Chinensis Flos, Croci Stigma, Albiziae Cortex and Flos, Roase Rugosae Flos, Curcumae Radix, Hyperici Perforati Herba, Cyperi Rhizoma and Bupleuri Radix. The mechanisms of action of their functional antidepressant compounds, including gallic acid, hypericin, kaempferol, crocetin, crocin, quercetin, luteolin, isorhamnetin, curcumin, hyperforin, adhyperforin, catechin, rutin, puerarin, and saikosaponins A and D, have been collected and discussed. These traditional Chinese herbs and their active compounds provide a promising resource to develop effective new antidepressant drugs in future. Moreover, mechanistic investigations, safety verification and large-scale clinical trials are still expected to finally transform such TCM-based antidepressant resources to new drugs for patients suffering from depression.
Collapse
Affiliation(s)
- Dongyi Hu
- School of Chemical Engineering and Pharmaceutics, Henan University of Science and Technology, Henan, China
| | - Jiayu Gao
- School of Chemical Engineering and Pharmaceutics, Henan University of Science and Technology, Henan, China
| | - Xiao Yang
- School of Clinical Medicine, Henan University of Science and Technology, Henan, China
| | - Ying Liang
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Institute of Mental Health, Peking University, Beijing, China
| |
Collapse
|
50
|
Bo R, Wu J, Wu J, Bai L, Ye M, Huang L, Chen H, Rui W. Rapid analysis and identification of dianthrone glycosides in Polygoni Multiflori Caulis based on enrichment of macroporous absorbent resin and UPLC-Q-TOF-MS/MS. PHYTOCHEMICAL ANALYSIS : PCA 2021; 32:1082-1101. [PMID: 33928688 DOI: 10.1002/pca.3050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
INTRODUCTION Polygoni Multiflori Caulis (PMC) has been used as a traditional Chinese medicine for a long time in China. However, hepatotoxic events of PMC have been reported in recent years, but the potential toxic compounds have remained unclear. Dianthrones as the secondary plant metabolites were revealed to potential hepatotoxicity in a previous study. However, no reports focused on dianthrones in PMC. OBJECTIVE In the quest for exploring potential hepatotoxic compounds in PMC, the aim of this work was to undertake a comprehensive characterisation of dianthrones in PMC. METHODS A simple and effective macroporous absorbent resin column chromatography method was established in this study to enrich the minor dianthrones from PMC extracts. Exploration and characterisation of dianthrones in PMC was conducted by an ultra-high-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UPLC-QTOF-MS/MS) method and information dependent acquisition (IDA) mode. The aglycones of dianthrone glycosides were further verified by acid hydrolysis method. RESULTS Seventy-two dianthrone glycosides and their five aglycones were discovered and tentatively characterised in PMC for the first time, of which 29 dianthrones were identified as potential new compounds. Dianthrone glycosides could be classified into three types according to their aglycone structures, and their fragmentation pathway rules and diagnosed ions were also summarised comprehensively. CONCLUSION This was the first comprehensive investigation on dianthrones in PMC. The result would help to fully understand the phytochemical constituents and toxic components in PMC, and highlight the need for further toxicological investigations of the dianthrones in PMC due to their potential hepatotoxicity correlation.
Collapse
Affiliation(s)
- Rui Bo
- The Centre for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, Guangdong, P. R. China
| | - Jian Wu
- The Centre for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, Guangdong, P. R. China
| | - Jiacai Wu
- The Centre for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, Guangdong, P. R. China
| | - Lisha Bai
- The Centre for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, Guangdong, P. R. China
| | - Mingzhu Ye
- The Centre for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, Guangdong, P. R. China
| | - Li Huang
- The Centre for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, Guangdong, P. R. China
| | - Hongyuan Chen
- Department of Immunology, School of Life Sciences and Biopharmaceuticals Engineering, Guangdong Pharmaceutical University, Guangzhou, Guangdong, P. R. China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangzhou, Guangdong, P. R. China
- Guangdong Engineering & Technology Research Centre of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, Guangdong, P. R. China
- Guangdong Cosmetics Engineering & Technology Research Centre, Guangzhou, Guangdong, P. R. China
| | - Wen Rui
- The Centre for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, Guangdong, P. R. China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangzhou, Guangdong, P. R. China
- Guangdong Engineering & Technology Research Centre of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, Guangdong, P. R. China
| |
Collapse
|