1
|
Ben Selma W, Alibi S, Ferjeni M, Ghezal S, Gallala N, Belghouthi A, Gargouri A, Marzouk M, Boukadida J. Synergistic activity of Thymus capitatus essential oil and cefotaxime against ESBL-producing Klebsiella pneumoniae. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:2936-2946. [PMID: 37952172 DOI: 10.1080/09603123.2023.2280149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/02/2023] [Indexed: 11/14/2023]
Abstract
The objective of the current study was to evaluate the interaction between Tunisian Thymus capitatus essential oil (EO) and cefotaxime against Extended-Spectrum Beta-lactamases (ESBLs) producing Klebsiella pneumoniae hospital strains. GC-MS revealed that the major component of EO was found to be carvacrol (69.28%). The EO exerts an advanced bactericidal effect against all strains. Synergy between EO and cefotaxime was obtained by combined disk diffusion and checkerboard techniques. Combined use of EO and cefotaxime reduced the MIC of imipenem by 8- to 128-fold for all strains (fractional inhibitory concentration index ˂ 0.5, synergy). The time kill curve assay confirmed the advanced activity of combinatory effects of EO and cefotaxime, with total reduce of bacterial number (CFU/mL) after 6 h of culture. Synergistic activity of the combination between EO and cefotaxime constitute an important strategy as therapeutical option to combat infections caused by ESBLs producing Klebsiella pneumoniae.
Collapse
Affiliation(s)
- Walid Ben Selma
- Department of Biochemistry, Faculty of Medicine, Laboratory of biological and genetic markers studying for early diagnosis and follow-up of neurological diseases (LR18ES47), Sousse, Tunisia
- Higher Institute of Applied Sciences and Technology, Mahdia, Tunisia
| | - Sana Alibi
- Research Unit Analysis and Process Applied to the Environment UR17ES32, Higher Institute of Applied Sciences and Technology, Mahdia, Tunisia
| | - Mohamed Ferjeni
- Department of Biochemistry, Faculty of Medicine, Laboratory of biological and genetic markers studying for early diagnosis and follow-up of neurological diseases (LR18ES47), Sousse, Tunisia
| | - Samira Ghezal
- Laboratory of Microbiology, Farhat Hached University Hospital, Sousse, Tunisia
| | - Najla Gallala
- Laboratory of Microbiology, Farhat Hached University Hospital, Sousse, Tunisia
| | - Amir Belghouthi
- Laboratory of Microbiology, Farhat Hached University Hospital, Sousse, Tunisia
| | - Ali Gargouri
- Biotechnology center of Sfax, Laboratory of Molecular biology, Sfax, Tunisia
| | - Manel Marzouk
- Department of Biochemistry, Faculty of Medicine, Laboratory of biological and genetic markers studying for early diagnosis and follow-up of neurological diseases (LR18ES47), Sousse, Tunisia
- Laboratory of Microbiology, Farhat Hached University Hospital, Sousse, Tunisia
- Department of Microbiology, Faculty of medicine, University of Sousse, Sousse, Tunisia
| | - Jalel Boukadida
- Department of Biochemistry, Faculty of Medicine, Laboratory of biological and genetic markers studying for early diagnosis and follow-up of neurological diseases (LR18ES47), Sousse, Tunisia
- Laboratory of Microbiology, Farhat Hached University Hospital, Sousse, Tunisia
- Department of Microbiology, Faculty of medicine, University of Sousse, Sousse, Tunisia
| |
Collapse
|
2
|
Amel A, Sebai E, Mhadhbi M, Akkari H. In vitro and in vivo anthelmintic effect of essential oil obtained from Thymus capitatus flowers against Haemonchus contortus and Heligmosomoides polygyrus. Exp Parasitol 2024; 262:108778. [PMID: 38735517 DOI: 10.1016/j.exppara.2024.108778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 05/14/2024]
Abstract
Sheep haemonchosis is a disease that causes serious losses in livestock production, particularly with the increase of cases of anthelmintic resistance around the world. This justifies the urgent need of alternative solutions. The aim of this study was to determine the chemical profile, in vitro, and, in vivo, anthelmintic properties of Thymus capitatus essential oil. To evaluate the, in vitro, anthelmintic activity of the T. capitatus EO on Haemonchus contortus, two tests were used: egg hatch assay (EHA) and adult worm motility (AWM) assay. The nematicidal effect of this oil was evaluated, in vivo, in mice infected artificially with Heligmosomoides polygyrus using faecal egg count reduction (FECR) and total worm count reduction (TWCR). Chromatographic characterization of T.capitatus composition using gas chromatography coupled to mass spectrometry (GC-MS) demonstrated the presence of carvacrol (81.16%), as the major constituents. The IC50 values obtained was 1.9 mg/mL in the EHT. In the AWM assay; T. capitatus essential oil achieved 70.8% inhibition at 1 mg/mL after 8 h incubation. The in vivo, evaluation on H. polygyrus revealed a significant nematicidal effect 7 days post-treatment by inducing 49.5% FECR and 64.5% TWCR, using the highest dose (1600 mg/kg). The results of present study, demonstrate that T.capitatus EO possess a significant anthelmintic properties. Furthermore, it could be an alternative source of anthelmintic agents against gastrointestinal infections caused by H. contortus.
Collapse
Affiliation(s)
- Abidi Amel
- Laboratory of Parasitology, University of Manouba, National School of Veterinary Medicine of Sidi Thabet, 2020, Sidi Thabet, Tunisia; Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Manar II, Tunis, Tunisia.
| | - Essia Sebai
- Laboratory of Parasitology, University of Manouba, National School of Veterinary Medicine of Sidi Thabet, 2020, Sidi Thabet, Tunisia
| | - Moez Mhadhbi
- Laboratory of Parasitology, University of Manouba, National School of Veterinary Medicine of Sidi Thabet, 2020, Sidi Thabet, Tunisia
| | - Hafidh Akkari
- Laboratory of Parasitology, University of Manouba, National School of Veterinary Medicine of Sidi Thabet, 2020, Sidi Thabet, Tunisia
| |
Collapse
|
3
|
Etri K, Pluhár Z. Exploring Chemical Variability in the Essential Oils of the Thymus Genus. PLANTS (BASEL, SWITZERLAND) 2024; 13:1375. [PMID: 38794445 PMCID: PMC11124942 DOI: 10.3390/plants13101375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Thyme remains an indispensable herb today, finding its place in gastronomy, medicine, cosmetics, and gardens worldwide. It is highly valued in herbal remedies and pharmaceutical formulations for its antibacterial, antifungal, and antioxidant properties derived from the richness of its essential oil, which comprises various volatile components. However, climate change poses a significant challenge today, potentially affecting the quality of thyme, particularly the extracted essential oil, along with other factors such as biotic influences and the plant's geographical distribution. Consequently, complex diversity in essential oil composition was observed, also influenced by genetic diversity within the same species, resulting in distinct chemotypes. Other factors contributing to this chemodiversity include the chosen agrotechnology and processing methods of thyme, the extraction of the essential oil, and storage conditions. In this review, we provide the latest findings on the factors contributing to the chemovariability of thyme essential oil.
Collapse
Affiliation(s)
- Karim Etri
- Department of Medicinal and Aromatic Plants, Institute of Horticultural Science, Hungarian University of Agriculture and Life Sciences, H-1118 Villányi Str. 29–43, 1118 Budapest, Hungary;
| | | |
Collapse
|
4
|
Annaz H, Annaz H, Ajaha A, Bouayad N, El Fakhouri K, Laglaoui A, El Bouhssini M, Sobeh M, Rharrabe K. Chemical profiling and bioactivities of essential oils from Thymus capitatus and Origanum compactum against Tribolium castaneum. Heliyon 2024; 10:e26102. [PMID: 38444480 PMCID: PMC10912041 DOI: 10.1016/j.heliyon.2024.e26102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 03/07/2024] Open
Abstract
The use of essential oils has emerged as an ecofriendly solution for controlling different pests, particularly insects of stored products. Essential oils (EOs) from Thymus capitatus (TC) and Origanum compactum (OC) have received less attention for these bioactivities. Therefore, our study aimed to assess the repellent, antifeedant and contact toxicity of their EOs against a major stored product pest Tribolium castaneum. Besides, GC-MS was also carried out to determine the compounds responsible for the observed bioactivities. Regarding contact toxicity, LC50 values were 0.58 and 0.35 μL/cm2 for TC and OC after 24 h of exposure, respectively. For the repellent effect, the percentage of repellency (PR) was variable across different concentrations and exposure durations. TC exhibited the best PR (98%) after 3 h of exposure at 0.031 μL/cm2. For prolonged repulsive effect (24 h), TC sustained its repulsive efficacy with a PR of 90% at 0.062 μL/cm2 followed by OC with a PR of 88% at 0.125 μL/cm2. As for the antifeedant effect, both EOs had a significant impact on nutritional indexes, especially the feeding deterrent index and relative consumption rate. OC displayed a notable effect, causing 59% of feeding deterrence at 1.92 μL/pellet. These multifaced effects can be explained by the high content of carvacrol in both EOs (OC: 90% and TC: 78%). These multifaced effects demonstrated through different exposure routes and bioassays promote the use of T. capitatus and O. compactum EOs as a sustainable management strategy to control T. castaneum.
Collapse
Affiliation(s)
- Houssam Annaz
- Research Team Agricultural and Aquacultural Engineering, FPL, Abdelmalek Essaadi University, Tetouan, Morocco
- Research Team Biotechnology and Biomolecules Engineering, FSTT, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Hassan Annaz
- AgroBioSciences Program, College of Agriculture and Environmental Sciences, University Mohammed VI Polytechnic, Ben Guerir, Morocco
| | - Ayoub Ajaha
- Research Team Agricultural and Aquacultural Engineering, FPL, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Noureddin Bouayad
- Research Team Biotechnology and Biomolecules Engineering, FSTT, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Karim El Fakhouri
- AgroBioSciences Program, College of Agriculture and Environmental Sciences, University Mohammed VI Polytechnic, Ben Guerir, Morocco
| | - Amin Laglaoui
- Research Team Biotechnology and Biomolecules Engineering, FSTT, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Mustapha El Bouhssini
- AgroBioSciences Program, College of Agriculture and Environmental Sciences, University Mohammed VI Polytechnic, Ben Guerir, Morocco
| | - Mansour Sobeh
- AgroBioSciences Program, College of Agriculture and Environmental Sciences, University Mohammed VI Polytechnic, Ben Guerir, Morocco
| | - Kacem Rharrabe
- Research Team Agricultural and Aquacultural Engineering, FPL, Abdelmalek Essaadi University, Tetouan, Morocco
- Research Laboratory Biology, Environment and Sustainable Development, ENS, Abdelmalek Essaadi University, Tetouan, Morocco
| |
Collapse
|
5
|
Chrysargyris A, Petrovic JD, Tomou EM, Kyriakou K, Xylia P, Kotsoni A, Gkretsi V, Miltiadous P, Skaltsa H, Soković MD, Tzortzakis N. Phytochemical Profiles and Biological Activities of Plant Extracts from Aromatic Plants Cultivated in Cyprus. BIOLOGY 2024; 13:45. [PMID: 38248476 PMCID: PMC10813336 DOI: 10.3390/biology13010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/09/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024]
Abstract
Medicinal and aromatic plants' properties, still an interesting research area, are attributed to the presence of various specialized products that possess important pharmacological activities. In the present study, six medicinal/aromatic plants (Sideritis cypria, Origanum dubium, Melissa officinalis, Mentha piperita, Thymus capitatus, and Salvia fruticosa) were evaluated for their phytochemical and nutritive composition, as well as their biological activities, including antioxidant, antimicrobial, and cytotoxic properties. The results obtained indicate that M. piperita was rich in proteins and minerals such as N and Mg, while S. cypria accumulated more K, Na, P, and Ca. The highest content of phenols and flavonoids was observed in M. piperita, followed by O. dubium and T. capitatus, which eventually influenced their high antioxidant capacity. NMR screening revealed the presence of (i) triterpenoids and hydroxycinnamic acid derivatives in M. officinalis; (ii) terpenoids, flavonoids, and phenolic acid derivatives in S. fruticosa; (iii) flavonoids and phenolic acid derivatives in M. piperita; (iv) phenolic monoterpenes in O. dubium and T. capitatus; and (v) terpenoids, flavones, and phenylethanoid glycosides in S. cypria. The results of the antimicrobial activity showed that the tested samples overall had quite good antimicrobial potential. High antibacterial activity was found in O. dubium and T. capitatus, while O. dubium and S. cypria exhibited great antifungal activities. The studied species also had an important effect on the viability of female-derived and colon cancer cells. In particular, in colon cancer cells, the extracts from T. capitatus, M. officinalis, M. piperita, and S. fruticosa exhibited a stronger effect on cell viability in the more metastatic cell line at significantly lower concentrations, indicating an important therapeutic potential in targeting highly metastatic tumors. This finding is worth further investigation. The present study unveiled interesting phytochemical profiles and biological properties of the six medicinal/aromatic plants, which should be further explored, contributing to green chemistry and the possible creation of natural health products for humans' health/nutrition and additives in cosmetics.
Collapse
Affiliation(s)
- Antonios Chrysargyris
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3036, Cyprus
| | - Jovana D. Petrovic
- Institute for Biological Research “Siniša Stanković” - National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11108 Belgrade, Serbia; (J.D.P.)
| | - Ekaterina-Michaela Tomou
- Department of Pharmacognosy & Chemistry of Natural Products, School of Health Sciences, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece
| | - Kalia Kyriakou
- Department of Nursing, School of Health Sciences, Cyprus University of Technology, Limassol 3041, Cyprus; (K.K.)
| | - Panayiota Xylia
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3036, Cyprus
| | - Andria Kotsoni
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 2404, Cyprus; (A.K.); (V.G.)
- Cancer Metastasis and Adhesion Group, Basic and Translational Cancer Research Center (BTCRC), European University Cyprus, Nicosia 2404, Cyprus
| | - Vasiliki Gkretsi
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 2404, Cyprus; (A.K.); (V.G.)
- Cancer Metastasis and Adhesion Group, Basic and Translational Cancer Research Center (BTCRC), European University Cyprus, Nicosia 2404, Cyprus
| | - Panagiota Miltiadous
- Department of Nursing, School of Health Sciences, Cyprus University of Technology, Limassol 3041, Cyprus; (K.K.)
| | - Helen Skaltsa
- Department of Pharmacognosy & Chemistry of Natural Products, School of Health Sciences, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece
| | - Marina D. Soković
- Institute for Biological Research “Siniša Stanković” - National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11108 Belgrade, Serbia; (J.D.P.)
| | - Nikolaos Tzortzakis
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3036, Cyprus
| |
Collapse
|
6
|
El Omari N, Balahbib A, Bakrim S, Benali T, Ullah R, Alotaibi A, Naceiri El Mrabti H, Goh BH, Ong SK, Ming LC, Bouyahya A. Fenchone and camphor: Main natural compounds from Lavandula stoechas L., expediting multiple in vitro biological activities. Heliyon 2023; 9:e21222. [PMID: 38053906 PMCID: PMC10694050 DOI: 10.1016/j.heliyon.2023.e21222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 09/17/2023] [Accepted: 10/18/2023] [Indexed: 12/07/2023] Open
Abstract
Lavandula stoechas, a Mediterranean plant, renowned in traditional medicine for its health benefits, is also arousing strong interest associated with its essential oils (EOs) with promising therapeutic properties. The aim of this study was to analyze the chemical composition of the plant, as well as to study its major activities, including antioxidant, anti-diabetic, dermatoprotective, anti-inflammatory, and antibacterial effects, focusing on its major molecules. Using the GC-MS method, the main compounds identified in L. stoechas EO (LSEO) were fenchone (31.81 %) and camphor (29.60 %), followed by terpineol (13.14 %) and menthone (8.96 %). To assess their antioxidant activity, three in vitro methods were used (DPPH, FRAP, and ABTS). The results revealed that LSEO exhibited the best antiradical property (54 ± 62 μg/mL) according to the DPPH test, while fenchone demonstrated the highest antioxidant capacity (87 ± 92 μg/mL) in the FRAP test, and camphor displayed the highest antioxidant capacity (96 ± 32 μg/mL) in the ABTS test. However, these results were lower than those obtained by Trolox used as a reference. In addition, study also explored the anti-diabetic potential of LSEO and its major compounds by evaluating their inhibitory activity towards two digestive enzymes, α-glucosidase and α-amylase. Camphor (76.92 ± 2.43 μg/mL) and fenchone (69.03 ± 2.31 μg/mL) exhibited the best inhibitory activities for α-amylase and α-glucosidase assays, respectively. Interestingly, all elements of the study exerted activities superior to those of acarbose, regardless of the test performed. In contrast, the evaluation of the dermatoprotective potential was carried out in vitro by targeting two enzymes involved in cutaneous processes, tyrosinase and elastase. In this light, fenchone (53.14 ± 3.06 μg/mL) and camphor (48.39 ± 1.92 μg/mL) were the most active against tyrosinase and elastase, respectively. It should be noted that the effect of both molecules, as well as that of LSEO, ranged between 53.14 ± 3.06 and 97.45 ± 5.22 μg/mL, which was significantly lower than the standard, quercetin (IC50 of 246.90 ± 2 0.54 μg/mL) against tyrosinase. Furthermore, the anti-inflammatory potential of these elements has been studied by evaluating their ability to inhibit lipooxygenase (LOX), a class of enzymes involved in the inflammatory process in the human body. As a result, the LSEO demonstrated a remarkable effect with an IC50 of 6.34 ± 1.29 μg/mL, which was almost comparable to the standard, quercetin (IC50 = 3.93 ± 0.45 μg/mL). Concerning the antibacterial potential, we carried out a quantitative analysis of the various products tested, revealing a bactericidal activity of the LSEO against the strain L. monocytogenes ATCC 13932 at a minimum effective concentration (MIC = CMB = 0.25). Overall, LSEOs offer significant potential as a source of natural antioxidants, and antidiabetic and anti-inflammatory agents, as well as dermatoprotective and antibacterial compounds. Its major molecules, fenchone and camphor, showed promising activity in these areas of study, making it a valuable candidate for future research and development in the field of natural medicine.
Collapse
Affiliation(s)
- Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, 10100, Morocco
| | - Abdelaali Balahbib
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, 10106, Morocco
| | - Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnology and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir, 80000, Morocco
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Safi, B.P. 4162, Morocco
| | - Riaz Ullah
- Medicinal Aromatic and Poisonous Plants Research Center, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Amal Alotaibi
- Department of Basic Science, College of Medicine, Princess Nourah bint Abdulrahman University, P. O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Hanae Naceiri El Mrabti
- Higher Institute of Nursing Professions and Health Techniques, Casablanca, Morocco
- Sidi Mohammed Ben Abdellah University, Laboratory of Applied Organic Chemistry, Faculty of Sciences and Technology of Fez, Morocco
| | - Bey Hing Goh
- Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, 47500 Subang Jaya, Selangor, Malaysia
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, PR China
| | - Seng-Kai Ong
- Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, 47500 Subang Jaya, Selangor, Malaysia
| | - Long Chiau Ming
- Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, 47500 Subang Jaya, Selangor, Malaysia
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, 10106, Morocco
| |
Collapse
|
7
|
Zhong X, Song R, Shan D, Ren X, Zheng Y, Lv F, Deng Q, He Y, Li X, Li R, Yan L, She G. Discovery of hepatoprotective activity components from Thymus quinquecostatus celak. by molecular networking, biological evaluation and molecular dynamics studies. Bioorg Chem 2023; 140:106790. [PMID: 37604095 DOI: 10.1016/j.bioorg.2023.106790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 08/23/2023]
Abstract
Thymus quinquecostatus Celak. is an edible herb that widely cultivated in Asia and possesses hepatoprotective activity, but the underlying non-volatile components of this protective activity are not well studied. In this study, combining molecular networking visualization and bioassay-guided fractionation strategies, a pair of novel skeleton diterpenoid enantiomers, (+)- and (-)-thymutatusone A [(+)- and (-)-1], along with one new and one known biogenetically related compounds (2-3) and 16 other known compounds (4-19), were identified from T. quinquecostatus. Their structures were exhaustively characterized by comprehensive spectroscopic data, X-ray diffraction analysis, and ECD calculations. Compounds (±)-1, (-)-1, and (+)-1, with a rare tricyclo [7.3.1.02,7] tridecane skeleton, exhibited potent hepatoprotective activity in HepG2 cells injured by acetaminophen, with EC50 values of 11.5 ± 2.8, 8.4 ± 1.9, and 12.2 ± 0.3 μM respectively. They were more potent than positive drug bifendate (EC50 15.2 ± 1.3). Further, the underlying mechanism for the hepatoprotective activity of compound (-)-1 related to activating the Nrf 2 signaling pathway. What's more, molecular docking and molecular dynamics simulation analysis showed that compound (-)-1 could dock with the active site of Nrf 2 protein and form a stable system through hydrogen bonding. These results suggest that T. quinquecostatus can be used as a valuable source of hepatoprotective activity compounds.
Collapse
Affiliation(s)
- Xiangjian Zhong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
| | - Ruolan Song
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
| | - Dongjie Shan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
| | - Xueyang Ren
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
| | - Yuan Zheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
| | - Fang Lv
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
| | - Qingyue Deng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
| | - Yingyu He
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
| | - Xianxian Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
| | - Ruiwen Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
| | - Li Yan
- Analysis & Testing Center, Beijing Institute of Technology, Beijing 102488, People's Republic of China
| | - Gaimei She
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China.
| |
Collapse
|
8
|
Aborehab NM, Salama MM, Ezzat SM. A novel lupene derivative from Thymus capitatus possesses an apoptosis-inducing effect via Let-7 miRNA/Cyclin D1/VEGF cascade in the A549 cell line. BMC Complement Med Ther 2023; 23:365. [PMID: 37845669 PMCID: PMC10577955 DOI: 10.1186/s12906-023-04201-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/06/2023] [Indexed: 10/18/2023] Open
Abstract
Non-small-cell lung carcinoma (NSCLC) is a type of epithelial lung cancer accounting for about 85% of all lung cancers. In our research, a novel lupene derivative namely acetoxy-lup-5(6), 20(29)-diene (ALUP), as well as two known triterpenes; lupeol (LUP) and betulinic acid (BA) were isolated through the chromatographic purification of the 95% ethanolic extract of Thymus capitatus. Identification of the compounds was carried out by physicochemical properties as well as spectral 1D and 2D NMR analysis. The anti-cancer activity of the three triterpenes was assessed on non-small cell lung cancer cell line; A549 using MTT assay and cell cycle analysis using annexin V/propidium iodide. The molecular mechanism underlying anti-apoptotic effects was determined by analyzing Let-7 miRNA and miRNA-21 expression, the mRNA gene expression level of Bax, CASP-8, CD95, Bcl2, KRAS, VEGF, Cyclin D1 using qRT-PCR. Our results revealed that the three isolated compounds ALUP, LUP, and BA caused cell cycle arrest at the G2/M phase with an increase in the apoptosis which may be attributed to their significant effect on raising Bax, CASP-8, and CD95 and reducing the mRNA expression levels of Bcl-2, KRAS, VEGF, and Cyclin D1 compared to control cells. RT-PCR results showed that the ALUP, LUP, and BA significantly downregulated miRNA-21 expression. Meanwhile, the three compounds caused significant overexpression of Let-7 miRNA. This is the first report on the anti-cancer activity of acetoxy-lup-5(6), 20(29)-diene (ALUP) in reducing the proliferation and differentiation of the A549 cell line through inducing apoptosis. Finally, by targeting the Let-7 miRNA/Cyclin D1/VEGF cascade, acetoxy-lup-5(6), 20(29)-diene could be a potential therapeutic agent for lung cancer.
Collapse
Affiliation(s)
- Nora M Aborehab
- Department of Biochemistry, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 12451, Egypt
| | - Maha M Salama
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Ainy St., Cairo11562, Cairo, 11562, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, The British University in Egypt, Suez Desert Road, El Sherouk City, Cairo, 11837, Egypt
| | - Shahira M Ezzat
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Ainy St., Cairo11562, Cairo, 11562, Egypt.
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 12451, Egypt.
| |
Collapse
|
9
|
Martínez-Lobos M, Tapia-Venegas E, Celis-Plá P, Villena J, Jara-Gutiérrez C, Lobos Pessini A, Madrid-Villegas A. Effect of Industrial Pollution in Puchuncaví Valley on the Medicinal Properties of Senecio fistulosus Poepp. ex Les (Asteraceae): Content of Phytoconstituents and Their Antioxidant and Cytotoxic Activities. Molecules 2023; 28:7038. [PMID: 37894517 PMCID: PMC10609587 DOI: 10.3390/molecules28207038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/14/2023] [Accepted: 09/16/2023] [Indexed: 10/29/2023] Open
Abstract
Senecio fistulosus, an endemic plant in Chile, is highly regarded for its medicinal properties and is popular in alternative medicine. It thrives even in polluted areas, like Puchuncaví Valley, Chile. Therefore, the study aimed to assess the impact of industrial pollution in Puchuncaví Valley, Chile, on the phytoconstituent content, as well as the antioxidant and cytotoxic activities, of S. fistulosus. Phenols, flavonoids, and anthraquinones content were measured, alongside the assessment of antioxidant activities. Additionally, a GC-MS analysis was conducted to profile the phytoconstituents, while the cytotoxic potential was evaluated in HT-29 and MCF-7 and cell line non-tumorigenic MCF-10. The Wild sample exhibited a greater concentration of phytoconstituents (0 to 169.48 mg·L-1) compared to the Commercial control (0 to 95.38 mg·L-1), directly correlating with its antioxidant activity. While the Wild species showed cytotoxic activity, the Commercial control demonstrated cytotoxic effects on MCF-10 and MCF-7. Noteworthy compounds identified were hexadecanoic acid (12.76 to 19.57% relative area) and (Z,Z,Z)-9,12,15-octadecatrienoic acid (18.36% relative area), with anticancer properties. In conclusion, the abiotic stress experienced by S. fistulosus led to higher phytoconstituent content and improved antioxidant activity when contrasted with the Commercial control. The Commercial species showed increased cytotoxic activity against both tumorigenic and non-tumorigenic cell lines.
Collapse
Affiliation(s)
- Manuel Martínez-Lobos
- Programa de Doctorado Interdisciplinario en Ciencias Ambientales, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Valparaíso 2360002, Chile
- Laboratorio de Productos Naturales y Síntesis Orgánica, Universidad de Playa Ancha, Av. Leopoldo Carvallo 270, Valparaíso 2360002, Chile;
| | - Estela Tapia-Venegas
- Departamento de Ciencias de la Ingeniería para la Sostenibilidad, Facultad de Ingeniería, Universidad de Playa Ancha, Valparaíso 2360002, Chile;
- Laboratorio de Bioprocesos, HUB Ambiental UPLA, Universidad de Playa Ancha, Valparaíso 2360004, Chile
| | - Paula Celis-Plá
- Laboratorio de Investigación Ambiental Acuática (LACER), HUB Ambiental UPLA, Universidad de Playa Ancha, Valparaíso 2360002, Chile;
- Departamento de Ciencias Naturales y Geografía, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Valparaíso 2360002, Chile
| | - Joan Villena
- Laboratorio de Bioensayos, Universidad de Valparaíso, Angamos 655, Viña del Mar 2340064, Chile; (J.V.); (C.J.-G.)
| | - Carlos Jara-Gutiérrez
- Laboratorio de Bioensayos, Universidad de Valparaíso, Angamos 655, Viña del Mar 2340064, Chile; (J.V.); (C.J.-G.)
| | | | - Alejandro Madrid-Villegas
- Laboratorio de Productos Naturales y Síntesis Orgánica, Universidad de Playa Ancha, Av. Leopoldo Carvallo 270, Valparaíso 2360002, Chile;
- Departamento de Ciencias Naturales y Geografía, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Valparaíso 2360002, Chile
| |
Collapse
|
10
|
Alves-Silva JM, Pedreiro S, Cavaleiro C, Cruz MT, Figueirinha A, Salgueiro L. Effect of Thymbra capitata (L.) Cav. on Inflammation, Senescence and Cell Migration. Nutrients 2023; 15:nu15081930. [PMID: 37111149 PMCID: PMC10146686 DOI: 10.3390/nu15081930] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/30/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Aromatic plants are reported to display pharmacological properties, including anti-aging. This work aims to disclose the anti-aging effect of the essential oil (EO) of Thymbra capitata (L.) Cav., an aromatic and medicinal plant widely used as a spice, as well as of the hydrodistillation residual water (HRW), a discarded by-product of EO hydrodistillation. The phytochemical characterization of EO and HRW was assessed by GC-MS and HPLC-PDA-ESI-MSn, respectively. The DPPH, ABTS, and FRAP assays were used to disclose the antioxidant properties. The anti-inflammatory potential was evaluated using lipopolysaccharide-stimulated macrophages by assessing NO production, iNOS, and pro-IL-1β protein levels. Cell migration was evaluated using the scratch wound assay, and the etoposide-induced senescence was used to assess the modulation of senescence. The EO is mainly characterized by carvacrol, while the HRW is predominantly characterized by rosmarinic acid. The HRW exerts a stronger antioxidant effect in the DPPH and FRAP assays, whereas the EO was the most active sample in the ABTS assay. Both extracts reduce NO, iNOS, and pro-IL-1β. The EO has no effect on cell migration and presents anti-senescence effects. In opposition, HRW reduces cell migration and induces cellular senescence. Overall, our study highlights interesting pharmacological properties for both extracts, EO being of interest as an anti-aging ingredient and HRW relevant in cancer therapy.
Collapse
Affiliation(s)
- Jorge M Alves-Silva
- Institute for Clinical and Biomedical Research, University of Coimbra, Health Sciences Campus, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Health Sciences Campus, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
| | - Sónia Pedreiro
- Faculty of Pharmacy, University of Coimbra, Health Sciences Campus, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), University of Porto, 4099-002 Porto, Portugal
| | - Carlos Cavaleiro
- Faculty of Pharmacy, University of Coimbra, Health Sciences Campus, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Maria Teresa Cruz
- Faculty of Pharmacy, University of Coimbra, Health Sciences Campus, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| | - Artur Figueirinha
- Faculty of Pharmacy, University of Coimbra, Health Sciences Campus, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), University of Porto, 4099-002 Porto, Portugal
| | - Lígia Salgueiro
- Faculty of Pharmacy, University of Coimbra, Health Sciences Campus, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), University of Porto, 4099-002 Porto, Portugal
- Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal
| |
Collapse
|
11
|
Charfi S, Boujida N, Bouyahya A, El-Shazly M, Khamlichi A, Abrini J, Senhaji NS. Mathematical modeling of Escherichia coli O157:H7 growth in carrot juice influenced by Thymbra capitata essential oil, heat treatment, and storage temperature. Int J Food Microbiol 2023; 386:110044. [PMID: 36502689 DOI: 10.1016/j.ijfoodmicro.2022.110044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 10/23/2022] [Accepted: 11/26/2022] [Indexed: 12/08/2022]
Abstract
The aim of this study was to develop a mathematical model describing the survival of Escherichia coli O157:H7 in carrot juice treated with Thymbra capitata essential oil combined with mild heat treatment and stored at different temperatures. The viable count method was used to investigate the effect of the treatment on bacterial survival, and the response surface methodology was used to develop a statistical model fitting the data. The results showed that the variance of bacterial growth is explained by storage temperature (37 %) and heat treatment (35 %), these are followed by Thymbra capitata essential oil (18 %) and their interaction (9 %). Positive multiplicative interaction was obtained for any pair of the studied treatments and cooperative effect synergy was observed over a large domain of these factors. A mathematical model was successfully developed to describe Escherichia coli O157:H7 response to the selected factors, within the study limits, and to estimate the risk of juice contamination and shelf-life. Based on our results, the use of Thymbra capitata essential oil combined with heat treatment may control Escherichia coli O157:H7 growth in carrot juice stored at low temperature.
Collapse
Affiliation(s)
- Saoulajan Charfi
- Laboratory of Biotechnology and Applied Microbiology, Team Biotechnology and Applied Microbiology, Department of Biology, Faculty of Sciences, Abdelmalek Essaâdi University, Tetouan, Morocco.
| | - Nadia Boujida
- Laboratory of Biotechnology and Applied Microbiology, Team Biotechnology and Applied Microbiology, Department of Biology, Faculty of Sciences, Abdelmalek Essaâdi University, Tetouan, Morocco
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo 11566, Egypt
| | - Abdellatif Khamlichi
- Laboratory Systems of Communications and Detection, Department of Physics, Abdelmalek Essaâdi University, Tetouan, Morocco
| | - Jamal Abrini
- Laboratory of Biotechnology and Applied Microbiology, Team Biotechnology and Applied Microbiology, Department of Biology, Faculty of Sciences, Abdelmalek Essaâdi University, Tetouan, Morocco
| | - Nadia Skali Senhaji
- Laboratory of Biotechnology and Applied Microbiology, Team Biotechnology and Applied Microbiology, Department of Biology, Faculty of Sciences, Abdelmalek Essaâdi University, Tetouan, Morocco
| |
Collapse
|
12
|
Chemical Composition, Antioxidant, and Antibiofilm Properties of Essential Oil from Thymus capitatus Plants Organically Cultured on the Greek Island of Lemnos. Molecules 2023; 28:molecules28031154. [PMID: 36770821 PMCID: PMC9919994 DOI: 10.3390/molecules28031154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023] Open
Abstract
Essential oils (EOs) are mixtures of volatile plant secondary metabolites and have been exploited by humans for thousands of years for various purposes because of their many bioactivities. In this study, the EO from Thymus capitatus, a thyme species organically cultured on the Greek Island of Lemnos, was analyzed for its chemical composition (through GC-FID and GC-MS), antioxidant activity (AA), and total phenolic content (TPC), as well as its antimicrobial and antibiofilm actions against three important foodborne bacterial pathogens (Salmonella enterica ser. Typhimurium, Listeria monocytogenes, and Yersinia enterocolitica). For the latter investigations, the minimum inhibitory concentrations (MICs) and minimum biofilm inhibitory concentrations (MBICs) of the EO against the planktonic and biofilm growth of each pathogen were determined, together with the minimum biofilm eradication concentrations (MBECs). Results revealed that T. capitatus EO was rich in thymol, p-cymene, and carvacrol, presenting high AA and TPC (144.66 μmol TroloxTM equivalents and 231.32 mg gallic acid equivalents per g of EO, respectively), while its MICs and MBICs ranged from 0.03% to 0.06% v/v and 0.03% to 0.13% v/v, respectively, depending on the target pathogen. The EO was able to fully destroy preformed (mature) biofilms of all three pathogenic species upon application for 15 min, with MBECs ranging from 2.00 to 6.25% v/v. Overall, the results demonstrate that the EO of organically cultured T. capitatus presents strong antioxidant, antibacterial, and antibiofilm properties and could, therefore, be further exploited as a functional and antimicrobial natural formulation for food and health applications.
Collapse
|
13
|
MRABTİ NN, MRABTİ HN, DOUDACH L, KHALİL Z, KACHMAR MR, MEKKAOUİ M, FAOUZİ MEA, ABDALLAH EM, ZENGİN G, BOUYAHYA A, ELHALLAOUİ M. Mineral contents, antimicrobial profile, acute and chronic toxicity of the aqueous extract of Moroccan Thymus vulgaris in rodents. INTERNATIONAL JOURNAL OF SECONDARY METABOLITE 2022. [DOI: 10.21448/ijsm.1106820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Moroccan flora is rich in plants used in traditional medicine, but the further scientific investigation is necessary. The aim of the research was to evaluate the nutritional content and antimicrobial activity of Moroccan Thymus vulgaris, as well as its possible acute and chronic toxicological effects on rodents. Inductively coupled plasma atomic emission spectroscopy (ICP-AES) was used to determine the mineral content. The antimicrobial activity was determined using a well-diffusion test, a minimum inhibitory concentration (MIC), and a minimum bactericidal/fungicidal concentration (MBC/MFC) assay. Acute and chronic toxicity studies were conducted in vivo on mice and rats, respectively. Following that, haematological, serum-biochemistry, and histological investigations were performed. Moroccan Thyme was shown to be a source of numerous minerals which are necessary for health promotion. All antimicrobial testing, disc diffusion, MIC, and MBC tests revealed that thyme had potent antibacterial activity against all microorganisms tested. Staphylococcus aureus was the most susceptible bacterium, followed by Salmonella enterica and Escherichia coli. Additionally, thyme exhibited great antifungal efficacy against Candida albicans. The acute toxicity results indicated that the aqueous extract of T. vulgaris is almost non-toxic when taken orally. According to the chronic toxicity study, the extract is generally safe when taken orally over an extended period of time. The biochemical and haematological characteristics of the serum and blood were within acceptable limits, and histological examination revealed no abnormalities. In conclusion, the findings of this investigation, confirm the antimicrobial efficacy of the aqueous extract of Moroccan T. vulgaris and its safety for experimental animals.
Collapse
|
14
|
Phytochemistry, pharmacological investigations, industrial applications, and encapsulation of Thymbra capitata L., a review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Al-Mijalli SH, Mrabti NN, Ouassou H, Sheikh RA, Abdallah EM, Assaggaf H, Bakrim S, Alshahrani MM, Awadh AAA, Qasem A, Attar A, Lee LH, Bouyahya A, Goh KW, Ming LC, Mrabti HN. Phytochemical Variability, In Vitro and In Vivo Biological Investigations, and In Silico Antibacterial Mechanisms of Mentha piperita Essential Oils Collected from Two Different Regions in Morocco. Foods 2022; 11:3466. [PMID: 36360079 PMCID: PMC9658668 DOI: 10.3390/foods11213466] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 08/13/2023] Open
Abstract
The objective of this work is to explore the phytochemical profile of Mentha piperita essential oils (MPEO) collected from two different Moroccan regions using gas chromatography-mass spectrophotometer (GC-MS) and to investigate their antioxidant, anti-inflammatory, antidiabetic and, antimicrobial effects using in vivo and in vitro assays. The chemical constituent of MPEO from the Azrou zone is dominated by carvone (70.25%), while MPEO from the Ouazzane zone is rich in Menthol (43.32%) and Menthone (29.4%). MPEO from Ouezzane showed higher antioxidant activity than EO from Azrou. Nevertheless, EO from Ouezzane considerably inhibited 5-Lipoxygenase (IC50 = 11.64 ± 0.02 µg/mL) compared to EO from Azro (IC50 = 23.84 ± 0.03 µg/mL). Both EOs from Azrou and Ouazzane inhibited the α-amylase activity in vitro, with IC50 values of 131.62 ± 0.01 µg/mL and 91.64 ± 0.03 µg/mL, respectively. The EOs were also tested for minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The discdiffusion test revealed that MPEOs from both regions have significant antibacterial efficacy, and MPEOs from the north region showed the highest effect. The gram-positive bacteria were the most susceptible organisms. The MIC concentrations were in the range of 0.05 to 6.25 mg/mL, and the MBC concentrations were within 0.05-25.0 mg/mL. The MBC/MIC index indicated that MPEO has strong bactericidal effects.
Collapse
Affiliation(s)
- Samiah Hamad Al-Mijalli
- Department of Biology, College of Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Nidal Naceiri Mrabti
- Computer Chemistry and Modeling Team, Laboratory of Materials, Modeling and Environmental Engineering (LIMME), Faculty of Sciences Dhar El Mehraz, Sidi Mohamed Ben Abdellah University (USMBA), BP 1796, Atlas, Fez 30000, Morocco
| | - Hayat Ouassou
- Faculty of Sciences, University Mohammed First, Boulevard Mohamed VI BP 717, Oujda 60000, Morocco
| | - Ryan A. Sheikh
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Emad M. Abdallah
- Department of Science Laboratories, College of Science and Arts, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Hamza Assaggaf
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnology and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco
| | - Mohammed Merae Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, 1988, Najran 61441, Saudi Arabia
| | - Ahmed Abdullah Al Awadh
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, 1988, Najran 61441, Saudi Arabia
| | - Ahmed Qasem
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Ammar Attar
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat BP 6203, Morocco
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia
| | - Long Chiau Ming
- Pengiran Anak Puteri Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei
| | - Hanae Naceiri Mrabti
- Laboratoires TBC, Faculty of Pharmaceutical and Biological Sciences, B.P. 8359006 Lille, France
- Laboratory of Pharmacology and Toxicology, Bio Pharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, University Mohammed V in Rabat, Rabat BP 6203, Morocco
| |
Collapse
|
16
|
The Current State of Knowledge in Biological Properties of Cirsimaritin. Antioxidants (Basel) 2022; 11:antiox11091842. [PMID: 36139916 PMCID: PMC9495358 DOI: 10.3390/antiox11091842] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
The search for natural plant-based products as new pharmacological alternatives to treat various human pathologies has taken on great importance for researchers and research laboratories. In this context, research has intensified to extract and identify natural molecules endowed with biological effects. The objective of this study is to review the source and pharmacological properties of cirsimaritin. The identification and isolation of this flavonoid from various natural sources, including medicinal plants such as Artemisia judaica, Cirsium japonicum, Lithocarpus dealbatus, Microtea debilis, and Ocimum sanctum, has been carried out and verified using different spectral techniques. Biological effect investigations are carried out with a wide variety of experimental models in vitro and in vivo and laboratory techniques. The results of these research works showed the biological properties of cirsimaritin including anticancer, antimicrobial, antidiabetic, antiparasitic, antioxidant, and anti-inflammatory effects. The mechanisms involved in the multiple activities of this molecule are diverse and include sub-cellular, cellular, and molecular levels. Indeed, this bioactive induces anti-inflammatory and antiproliferative effects by inhibiting cell membrane receptors, interference with signaling pathways, and inhibiting transcriptional factors such as Nf-κB involved in cell promotion and proliferation. In the light of these results, cirsimaritin appears as a promising and viable alternative natural bioactive drug to treat many pathological conditions.
Collapse
|
17
|
Antioxidant, Antidiabetic, and Antibacterial Potentials and Chemical Composition of Salvia officinalis and Mentha suaveolens Grown Wild in Morocco. Adv Pharmacol Pharm Sci 2022; 2022:2844880. [PMID: 35755940 PMCID: PMC9217590 DOI: 10.1155/2022/2844880] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/24/2022] [Accepted: 05/31/2022] [Indexed: 12/18/2022] Open
Abstract
This work evaluated in vitro antioxidant, antidiabetic, and antibacterial properties of Salvia officinalis (S. officinalis) and Mentha suaveolens (M. suaveolens) essential oils (EO). The EOs were extracted, and their chemical composition was determined using GC-MS analysis. The in vitro antioxidant, antidiabetic, and antibacterial activities of S. officinalis and M. suaveolens EO were shown to be remarkable. Furthermore, S. officinalis EO demonstrated better antioxidant findings (using DPPH, ABTS, and FRAP test) than M. suaveolens EO (p < 0.5). There were no significant differences in the inhibitory effects of the EOs on α-amylase and α-glucosidase activities in the antidiabetic assays. All of the examined bacterial strains (10 different strains), with the exception of P. aeruginosa, demonstrated significant sensitivity to the tested EOs, with M. suaveolens EO exhibiting better activity than S. officinalis EO. Thus, the research indicated that EO from these two medicinal plants has considerable potential for application in the formulation of antibacterial, antioxidant, and antidiabetic pharmaceuticals. However, more research studies are required to interpret the pharmacologic action of the studied EOs and their principal constituents and to confirm their safety.
Collapse
|
18
|
Bouyahya A, El Allam A, Zeouk I, Taha D, Zengin G, Goh BH, Catauro M, Montesano D, El Omari N. Pharmacological Effects of Grifolin: Focusing on Anticancer Mechanisms. Molecules 2022; 27:284. [PMID: 35011516 PMCID: PMC8746472 DOI: 10.3390/molecules27010284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/31/2021] [Accepted: 12/31/2021] [Indexed: 02/05/2023] Open
Abstract
Grifolin is a volatile compound contained in essential oils of several medicinal plants. Several studies show that this substance has been the subject of numerous pharmacological investigations, which have yielded interesting results. Grifolin demonstrated beneficial effects for health via its multiple pharmacological activities. It has anti-microbial properties against bacteria, fungi, and parasites. In addition, grifolin exhibited remarkable anti-cancer effects on different human cancer cells. The anticancer action of this molecule is related to its ability to act at cellular and molecular levels on different checkpoints controlling the signaling pathways of human cancer cell lines. Grifolin can induce apoptosis, cell cycle arrest, autophagy, and senescence in these cells. Despite its major pharmacological properties, grifolin has only been investigated in vitro and in vivo. Therefore, further investigations concerning pharmacodynamic and pharmacokinetic tests are required for any possible pharmaceutical application of this substance. Moreover, toxicological tests and other investigations involving humans as a study model are required to validate the safety and clinical applications of grifolin.
Collapse
Affiliation(s)
- Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University, Rabat 10106, Morocco; (A.B.); (A.E.A.)
| | - Aicha El Allam
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University, Rabat 10106, Morocco; (A.B.); (A.E.A.)
| | - Ikrame Zeouk
- Pharmaceutical Industry Laboratory, National Agency of Medicinal and Aromatic Plants, Taounate 34025, Morocco;
| | - Douae Taha
- Laboratoire de Spectroscopie, Modélisation Moléculaire, Matériaux, Nanomatériaux, Eau et Environnement, CERNE2D, Faculté des Sciences, Mohammed V University, Rabat 10106, Morocco;
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, 42130 Konya, Turkey;
| | - Bey Hing Goh
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Malaysia;
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Michelina Catauro
- Department of Engineering, University of Campania “Luigi Vanvitelli”, Via Roma 29, 81031 Aversa, Italy
| | - Domenico Montesano
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat 10100, Morocco;
| |
Collapse
|
19
|
In Vitro and In Vivo Antidiabetic Potential of Monoterpenoids: An Update. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010182. [PMID: 35011414 PMCID: PMC8746715 DOI: 10.3390/molecules27010182] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/20/2021] [Accepted: 12/25/2021] [Indexed: 12/11/2022]
Abstract
Diabetes mellitus (DM) is a chronic metabolic condition characterized by persistent hyperglycemia due to insufficient insulin levels or insulin resistance. Despite the availability of several oral and injectable hypoglycemic agents, their use is associated with a wide range of side effects. Monoterpenes are compounds extracted from different plants including herbs, vegetables, and fruits and they contribute to their aroma and flavor. Based on their chemical structure, monoterpenes are classified into acyclic, monocyclic, and bicyclic monoterpenes. They have been found to exhibit numerous biological and medicinal effects such as antipruritic, antioxidant, anti-inflammatory, and analgesic activities. Therefore, monoterpenes emerged as promising molecules that can be used therapeutically to treat a vast range of diseases. Additionally, monoterpenes were found to modulate enzymes and proteins that contribute to insulin resistance and other pathological events caused by DM. In this review, we highlight the different mechanisms by which monoterpenes can be used in the pharmacological intervention of DM via the alteration of certain enzymes, proteins, and pathways involved in the pathophysiology of DM. Based on the fact that monoterpenes have multiple mechanisms of action on different targets in in vitro and in vivo studies, they can be considered as lead compounds for developing effective hypoglycemic agents. Incorporating these compounds in clinical trials is needed to investigate their actions in diabetic patients in order to confirm their ability in controlling hyperglycemia.
Collapse
|
20
|
Bouyahya A, Mechchate H, Benali T, Ghchime R, Charfi S, Balahbib A, Burkov P, Shariati MA, Lorenzo JM, Omari NE. Health Benefits and Pharmacological Properties of Carvone. Biomolecules 2021; 11:1803. [PMID: 34944447 PMCID: PMC8698960 DOI: 10.3390/biom11121803] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 12/22/2022] Open
Abstract
Carvone is a monoterpene ketone contained in the essential oils of several aromatic and medicinal plants of the Lamiaceae and Asteraceae families. From aromatic plants, this monoterpene is secreted at different concentrations depending on the species, the parts used, and the extraction methods. Currently, pharmacological investigations showed that carvone exhibits multiple pharmacological properties such as antibacterial, antifungal, antiparasitic, antineuraminidase, antioxidant, anti-inflammatory, and anticancer activities. These studies were carried out in vitro and in vivo and involved a great deal of knowledge on the mechanisms of action. Indeed, the antimicrobial effects are related to the action of carvone on the cell membrane and to ultrastructural changes, while the anti-inflammatory, antidiabetic, and anticancer effects involve the action on cellular and molecular targets such as inducing of apoptosis, autophagy, and senescence. With its multiple mechanisms, carvone can be considered as natural compounds to develop therapeutic drugs. However, other investigations regarding its precise mechanisms of action as well as its acute and chronic toxicities are needed to validate its applications. Therefore, this review discusses the principal studies investigating the pharmacological properties of carvone, and the mechanism of action underlying some of these properties. Moreover, further investigations of major pharmacodynamic and pharmacokinetic studies were also suggested.
Collapse
Affiliation(s)
- Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, and Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Hamza Mechchate
- Laboratory of Biotechnology, Environment, Agri-Food, and Health (LBEAS), Faculty of Sciences, University Sidi Mohamed Ben Abdellah (USMBA), Fez B.P. 1796, Morocco;
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Sidi Bouzid B.P. 4162, Morocco;
| | - Rokia Ghchime
- Department of Clinical Neurophysiology, Hospital of Specialities, Ibn Sina University Hospital, Rabat B.P 6527, Morocco; Rabat
| | - Saoulajan Charfi
- Laboratory of Biotechnology and Applied Microbiology, Department of Biology, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan B.P. 2117, Morocco;
| | - Abdelaali Balahbib
- Laboratory of Biodiversity, Ecology and Genome, Faculty of Sciences, Mohammed V University, Rabat 10106, Morocco;
| | - Pavel Burkov
- South Ural State Agrarian University, 13 Gagarina St., 457100 Troitsk, Russia;
| | - Mohammad Ali Shariati
- Research Department, K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), 73, Zemlyanoy Val St., 109004 Moscow, Russia;
| | - Jose M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10100, Morocco;
| |
Collapse
|
21
|
Guesmi F, Prasad S, Ali MB, Ismail IA, Landoulsi A. Thymus hirtus sp. algeriensis Boiss. and Reut. volatile oil enhances TRAIL/Apo2L induced apoptosis and inhibits colon carcinogenesis through upregulation of death receptor pathway. Aging (Albany NY) 2021; 13:21975-21990. [PMID: 34543231 PMCID: PMC8507293 DOI: 10.18632/aging.203552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 08/11/2021] [Indexed: 11/25/2022]
Abstract
Background: The aim of the study is to determine the anticancer activity of Thymus algeriensis (TS) and its underlying mechanisms using in vitro and in animal models. Methods: HCT116 cells were treated with TS essential oil alone or with TRAIL, and then its anticancer effect was determined by using MTT assay, live dead assay, caspase activation and PARP cleavage. Further mechanisms of its anticancer effects was determined by analyzing expression of death receptor signaling pathway using Western blotting. A mouse model was also used to assess the antitumor potential of thyme essential oil. Results: TS oily fraction showed tumor growth inhibitory effect even at lower concentration. TS induces apoptotic cell death as indicated by cleavage of PARP, and activation of the initiator and effector caspases (caspase-3, -8 and -9). Further, results showed that TS increases the expression of death receptors (DRs) and reduces the expression of TRAIL decoy receptors (DcRs). In addition, upregulation of signaling molecules of MAPK pathway (p38 kinase, ERK, JNK), down-regulation of c-FLIP, and overexpression of SP1 and CHOP were observed by TS. Further in animal model, intragastric administration of TS (12.5 mg/ml and 50 mg/ml) prevented colorectal carcinogenesis by blocking multi-steps in carcinoma. Conclusion: Overall, these results indicate that thymus essential oil promotes apoptosis in HCT116 cells and impedes tumorigenesis in animal model. Moreover, thyme potentiates TRAIL-induced cell death through upregulation of DRs, CHOP and SP1 as well as downregulation of antiapoptotic proteins in HCT116 cells. However, therapeutic potential of TS needs to be further explored.
Collapse
Affiliation(s)
- Fatma Guesmi
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Laboratory of Biochemistry and Molecular Biology, University of Carthage, Faculty of Sciences of Bizerte, Zarzouna, Bizerte 7021, Tunisia
| | - Sahdeo Prasad
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Research and Development, Noble Pharma LLC, Menomonie, WI 54751, USA
| | - Manel Ben Ali
- Department of Biology, College of Science, Taif University, Taif 21944, Saudi Arabia
| | - Ismail A Ismail
- Department of Biology, College of Science, Taif University, Taif 21944, Saudi Arabia
| | - Ahmed Landoulsi
- Laboratory of Biochemistry and Molecular Biology, University of Carthage, Faculty of Sciences of Bizerte, Zarzouna, Bizerte 7021, Tunisia
| |
Collapse
|
22
|
Ghazal H, Adam Y, Idrissi Azami A, Sehli S, Nyarko HN, Chaouni B, Olasehinde G, Isewon I, Adebiyi M, Ajani O, Matovu E, Obembe O, Ajamma Y, Kuzamunu G, Pandam Salifu S, Kayondo J, Benkahla A, Adebiyi E. Plant genomics in Africa: present and prospects. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:21-36. [PMID: 33837593 DOI: 10.1111/tpj.15272] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Plants are the world's most consumed goods. They are of high economic value and bring many health benefits. In most countries in Africa, the supply and quality of food will rise to meet the growing population's increasing demand. Genomics and other biotechnology tools offer the opportunity to improve subsistence crops and medicinal herbs in the continent. Significant advances have been made in plant genomics, which have enhanced our knowledge of the molecular processes underlying both plant quality and yield. The sequencing of complex genomes of African plant species, facilitated by the continuously evolving next-generation sequencing technologies and advanced bioinformatics approaches, has provided new opportunities for crop improvement. This review summarizes the achievements of genome sequencing projects of endemic African plants in the last two decades. We also present perspectives and challenges for future plant genomic studies that will accelerate important plant breeding programs for African communities. These challenges include a lack of basic facilities, a lack of sequencing and bioinformatics facilities, and a lack of skills to design genomics studies. However, it is imperative to state that African countries have become key players in the plant genome revolution and genome derived-biotechnology. Therefore, African governments should invest in public plant genomics research and applications, establish bioinformatics platforms and training programs, and stimulate university and industry partnerships to fully deploy plant genomics, particularly in the fields of agriculture and medicine.
Collapse
Affiliation(s)
- Hassan Ghazal
- National Center for Scientific and Technical Research, Rabat, Morocco
- Mohammed VI University of Health Sciences, Casablanca, Morocco
| | - Yagoub Adam
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ogun State, Km 10 Idiroko Road, P.M.B. 1023, Nigeria
| | | | - Sofia Sehli
- Mohammed VI University of Health Sciences, Casablanca, Morocco
| | - Hannah N Nyarko
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Bouchra Chaouni
- Laboratory of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, University Mohammed V, Rabat, Morocco
| | - Grace Olasehinde
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ogun State, Km 10 Idiroko Road, P.M.B. 1023, Nigeria
- Department of Biological Sciences, Covenant University, Ogun State, Km 10 Idiroko Road, P.M.B. 1023, Ota, Nigeria
| | - Itunuoluwa Isewon
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ogun State, Km 10 Idiroko Road, P.M.B. 1023, Nigeria
- Department of Computer and Information Sciences, Covenant University, Ogun State, Km 10 Idiroko Road, P.M.B. 1023, Ota, Nigeria
| | - Marion Adebiyi
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ogun State, Km 10 Idiroko Road, P.M.B. 1023, Nigeria
- Department of Computer Science, Landmark University, Kwara-State, Omu-Aran, Nigeria
| | - Olayinka Ajani
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ogun State, Km 10 Idiroko Road, P.M.B. 1023, Nigeria
- Department of Chemistry, Covenant University, Ogun State, Km 10 Idiroko Road, P.M.B. 1023, Ota, Nigeria
| | - Enock Matovu
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Olawole Obembe
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ogun State, Km 10 Idiroko Road, P.M.B. 1023, Nigeria
- Department of Biological Sciences, Covenant University, Ogun State, Km 10 Idiroko Road, P.M.B. 1023, Ota, Nigeria
| | - Yvonne Ajamma
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ogun State, Km 10 Idiroko Road, P.M.B. 1023, Nigeria
| | - Gaston Kuzamunu
- African Institute for Mathematical Sciences, Cape Town, 7945, South Africa
- Department of Pathology, Division of Human Genetics, University of Cape Town, IDM, Cape Town, South Africa
- Department of Integrative Biomedical Sciences, Computational Biology Division, University of Cape Town, Observatory, 7925, South Africa
| | - Samson Pandam Salifu
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Jonathan Kayondo
- Uganda Virus Research Institute (UVRI), Uganda Research Unit on AIDS, Entebbe, Uganda
| | - Alia Benkahla
- Bioinformatics and Biostatistics Laboratory (LR16IPT09), Pasteur Institute of Tunis, Tunis, Tunisia
| | - Ezekiel Adebiyi
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ogun State, Km 10 Idiroko Road, P.M.B. 1023, Nigeria
- Department of Computer and Information Sciences, Covenant University, Ogun State, Km 10 Idiroko Road, P.M.B. 1023, Ota, Nigeria
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), G200, Im Neuenheimer Feld 280, Heidelberg, 69120, Germany
| |
Collapse
|
23
|
Maksimov AY, Balandina SY, Topanov PA, Mashevskaya IV, Chaudhary S. Organic Antifungal Drugs and Targets of Their Action. Curr Top Med Chem 2021; 21:705-736. [PMID: 33423647 DOI: 10.2174/1568026621666210108122622] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/20/2020] [Accepted: 09/03/2020] [Indexed: 11/22/2022]
Abstract
In recent decades, there has been a significant increase in the number of fungal diseases. This is due to a wide spectrum of action, immunosuppressants and other group drugs. In terms of frequency, rapid spread and globality, fungal infections are approaching acute respiratory infections. Antimycotics are medicinal substances endorsed with fungicidal or fungistatic properties. For the treatment of fungal diseases, several groups of compounds are used that differ in their origin (natural or synthetic), molecular targets and mechanism of action, antifungal effect (fungicidal or fungistatic), indications for use (local or systemic infections), and methods of administration (parenteral, oral, outdoor). Several efforts have been made by various medicinal chemists around the world for the development of antifungal drugs with high efficacy with the least toxicity and maximum selectivity in the area of antifungal chemotherapy. The pharmacokinetic properties of the new antimycotics are also important: the ability to penetrate biological barriers, be absorbed and distributed in tissues and organs, get accumulated in tissues affected by micromycetes, undergo drug metabolism in the intestinal microflora and human organs, and in the kinetics of excretion from the body. There are several ways to search for new effective antimycotics: - Obtaining new derivatives of the already used classes of antimycotics with improved activity properties. - Screening of new chemical classes of synthetic antimycotic compounds. - Screening of natural compounds. - Identification of new unique molecular targets in the fungal cell. - Development of new compositions and dosage forms with effective delivery vehicles. The methods of informatics, bioinformatics, genomics and proteomics were extensively investigated for the development of new antimycotics. These techniques were employed in finding and identification of new molecular proteins in a fungal cell; in the determination of the selectivity of drugprotein interactions, evaluation of drug-drug interactions and synergism of drugs; determination of the structure-activity relationship (SAR) studies; determination of the molecular design of the most active, selective and safer drugs for the humans, animals and plants. In medical applications, the methods of information analysis and pharmacogenomics allow taking into account the individual phenotype of the patient, the level of expression of the targets of antifungal drugs when choosing antifungal agents and their dosage. This review article incorporates some of the most significant studies covering the basic structures and approaches for the synthesis of antifungal drugs and the directions for their further development.
Collapse
Affiliation(s)
- Alexander Yu Maksimov
- Department of Pharmacy and Pharmacology, Faculty of Chemistry, Perm State University, Perm 614990, Russian Federation
| | - Svetlana Yu Balandina
- Department of Pharmacy and Pharmacology, Faculty of Chemistry, Perm State University, Perm 614990, Russian Federation
| | - Pavel A Topanov
- Department of Pharmacy and Pharmacology, Faculty of Chemistry, Perm State University, Perm 614990, Russian Federation
| | - Irina V Mashevskaya
- Department of Pharmacy and Pharmacology, Faculty of Chemistry, Perm State University, Perm 614990, Russian Federation
| | - Sandeep Chaudhary
- Laboratory of Organic and Medicinal Chemistry (OMC lab), Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jawaharlal Nehru Marg, Jaipur 302017, India
| |
Collapse
|