1
|
Sun J, Rene ER, Tao D, Lu Y, Jin Q, Lam JCH, Leung KMY, He Y. Degradation of organic UV filters in the water environment: A concise review on the mechanism, toxicity, and technologies. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132822. [PMID: 37898090 DOI: 10.1016/j.jhazmat.2023.132822] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/15/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023]
Abstract
Organic ultraviolet filters (OUVFs) have been used globally for the past 20 years. Given that OUVFs can be quickly released from sunscreens applied on human skins, they have been frequently detected in aquatic environments and organisms. Some byproducts of OUVFs might be more recalcitrant and toxic than their parent compounds. To further assess the toxicity and potential risk of OUVFs' byproducts, it is necessary to determine the fate of OUVFs and identify their transformation products. This review summarizes and analyzes pertinent literature and reports in the field of OUVFs research. These published research works majorly focus on the degradation mechanisms of OUVFs in aquatic environments, their intermediates/byproducts, and chlorination reaction. Photodegradation (direct photolysis, self-sensitive photolysis and indirect photolysis) and biodegradation are the main transformation pathways of OUVFs through natural degradation. To remove residual OUVFs' pollutants from aqueous environments, novel physicochemical and biological approaches have been developed in recent years. Advanced oxidation, ultrasound, and bio-based technologies have been proven to eliminate OUVFs from wastewaters. In addition, the disinfection mechanism and the byproducts (DBPs) of various OUVFs in swimming pools are discussed in this review. Besides, knowledge gaps and future research directions in this field of study are also mentioned.
Collapse
Affiliation(s)
- Jiaji Sun
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458 Guangzhou, China
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, P. O. Box 3015, 2611AX Delft, the Netherlands
| | - Danyang Tao
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yichun Lu
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458 Guangzhou, China
| | - Qianqian Jin
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Jason Chun-Ho Lam
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458 Guangzhou, China
| | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yuhe He
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458 Guangzhou, China.
| |
Collapse
|
2
|
Zhang Y, Zhu Y, Shao Y, Rong C, Pan Z, Deng J. Toxicity of disinfection byproducts formed during the chlorination of sulfamethoxazole, norfloxacin, and 17β-estradiol in the presence of bromide. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:50718-50730. [PMID: 33966160 DOI: 10.1007/s11356-021-14161-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Brominated disinfection byproducts (Br-DBPs) are formed during the disinfection process of water containing bromine ions, such as marine aquaculture water. Little attention has been paid to Br-DBPs with anthropogenic chemicals as precursors. This study summarized the sodium hypochlorite (NaClO) oxidation of three frequently used pharmaceuticals, including two antibiotics, norfloxacin (NOR) and sulfamethoxazole (SMX), and the growth hormone estrogen 17β-estradiol (E2). Transformations of the pharmaceuticals were found to be faster in marine aquaculture water than in distilled water. Several Br-DBPs and Cl-DBPs were identified for NOR, SMX, and E2. It was shown that the carboxyl group, piperazine ring, C3, and C8 atoms were the primary reaction sites on NOR. The aniline moiety and S-N bond were identified to be the reaction sites on SMX. The C2, C4, C9, and C16 atoms were the potential reaction centers on E2. Preliminary calculation by QSAR model indicated that the value of logKow significantly increased with an increase in the number of bromine atoms in the Br-DBPs. The results of the bioconcentration factors (BCF) analysis suggested that the bioaccumulation of Br-DBPs were greater than that chlorinated DBPs (Cl-DBPs) in distilled water.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- School of Marine Sciences, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, China
| | - Yunjie Zhu
- School of Marine Sciences, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, China
| | - Yanan Shao
- School of Marine Sciences, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, China
| | - Chuan Rong
- School of Marine Sciences, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, China
| | - Zihan Pan
- School of Marine Sciences, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, China
| | - Jie Deng
- Guangxi Bo-Huan Environmental Consulting Services Co. Ltd, 12 Kexing Road, Gaoxin District, Nanning, 530007, Guangxi Autonomous Region, China.
| |
Collapse
|
3
|
Studziński W, Gackowska A, Kudlek E. Determination of environmental properties and toxicity of octyl-dimethyl-para-aminobenzoic acid and its degradation products. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123856. [PMID: 33264932 DOI: 10.1016/j.jhazmat.2020.123856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/20/2020] [Accepted: 08/27/2020] [Indexed: 06/12/2023]
Abstract
Octyl-dimethyl-para-aminobenzoic acid (ODPABA) is one of compounds of emerging concern. It undergoes transformations under the influence of oxidizing or chlorinating agents and UV radiation forming products with different properties. There is very little experimental data concerning the environmental fate of ODPABA and its transformation products. Therefore, the purpose of the studies was to determine environmental parameters: water solubility, soil - water partition coefficient, octanol - air partition coefficient, bioconcentration factor as well as half-life in air, water and soil. Based on the results obtained, the persistence and migration possibilities of ODPABA and its transformation products in the aquatic environment were estimated. Moreover, the ecological toxicity of oxidation and chlorination products was investigated. Microtox®, Daphtoxkit F® and Artoxkit M® tests were used to determine toxicity. LC50 for Fish and Daphnia magna was calculated by Ecosar module. Studies have shown that as a result of ODPABA transformations, chloroorganic products are formed, which are lipophilic, are bioconcentrated in organic matter, are characterized by significant environmental persistence, can spread over considerable distances and are toxic. Oxidation products have significantly smaller impact on the environment. They are characterized by higher water solubility, lower bioconcentration factor and are less toxic.
Collapse
Affiliation(s)
- Waldemar Studziński
- Faculty of Chemical Technology and Engineering, UTP University of Science and Technology, Seminaryjna 3, 85-326 Bydgoszcz, Poland.
| | - Alicja Gackowska
- Faculty of Chemical Technology and Engineering, UTP University of Science and Technology, Seminaryjna 3, 85-326 Bydgoszcz, Poland
| | - Edyta Kudlek
- Institute of Water and Wastewater Engineering, Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland
| |
Collapse
|
4
|
Li B, Li C, Qu R, Wu N, Qi Y, Sun C, Zhou D, Wang Z. Effects of common inorganic anions on the ozonation of polychlorinated diphenyl sulfides on silica gel: Kinetics, mechanisms, and theoretical calculations. WATER RESEARCH 2020; 186:116358. [PMID: 32898788 DOI: 10.1016/j.watres.2020.116358] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/07/2020] [Accepted: 08/29/2020] [Indexed: 06/11/2023]
Abstract
In this work, the ozonation properties of 2,2',3',4,5-pentachlorodiphenyl sulfide (PeCDPS) was systematically studied, with special emphasis on the underlying mechanism for the effects of inorganic ions. Kinetic experiments show that common ions can significantly reduce the oxidative properties of ozone, except for SO32- and Cu2+. The inhibition effect of anions has been explained through the scavenging effect of free radicals and the generation of other free radicals with weaker oxidation potentials, but no research has reported on the effect of free radicals generated by anions on the degradation pathway. However, SO32- and Cu2+ exerted a promoting effect through enhanced formation of ·OH via the hydrolysis effect and the catalyzed decomposition of O3, respectively. According to the intermediate products identified by high performance liquid chromatography-mass spectrometry/mass spectrometry (HPLC-MS/MS) analysis, direct oxidation of S atom, substitution of Cl atom with -OH group, and hydroxylation of the benzene ring were commonly observed. The addition of NO2- and SO32- produced new free radicals like ·NO2, ·SO3 and ·SO4-, which would attack the parent compound or its primary product, thus influencing the degradation efficiency and pathways. The radicals initiated reactions and the structures of the corresponding products were further rationalized by density functional theory (DFT) calculations. These findings provide new insights into the effects of common anions on ozone oxidation of organic compounds.
Collapse
Affiliation(s)
- Beibei Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing 210023, PR China
| | - Chenguang Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing 210023, PR China
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing 210023, PR China
| | - Nannan Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing 210023, PR China
| | - Yumeng Qi
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing 210023, PR China
| | - Cheng Sun
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing 210023, PR China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing 210023, PR China
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing 210023, PR China.
| |
Collapse
|
5
|
Bibliometric review of research trends on disinfection by-products in drinking water during 1975–2018. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116741] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
6
|
Sun X, Chen M, Wei D, Du Y. Research progress of disinfection and disinfection by-products in China. J Environ Sci (China) 2019; 81:52-67. [PMID: 30975330 DOI: 10.1016/j.jes.2019.02.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/25/2019] [Accepted: 02/05/2019] [Indexed: 06/09/2023]
Abstract
Disinfection is an indispensable water treatment process for killing harmful pathogens and protecting human health. However, the disinfection has caused significant public concern due to the formation of toxic disinfection by-products (DBPs). Lots of studies on disinfection and DBPs have been performed in the world since 1974. Although related studies in China started in 1980s, a great progress has been achieved during the last three decades. Therefore, this review summarized the main achievements on disinfection and DPBs studies in China, which included: (1) the occurrence of DBPs in water of China, (2) the identification and detection methods of DBPs, (3) the formation mechanisms of DBPs during disinfection process, (4) the toxicological effects and epidemiological surveys of DBPs, (5) the control and management countermeasures of DBPs in water disinfection, and (6) the challenges and chances of DBPs studies in future. It is expected that this review would provide useful information and reference for optimizing disinfection process, reducing DBPs formation and protecting human health.
Collapse
Affiliation(s)
- Xuefeng Sun
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Miao Chen
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongbin Wei
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yuguo Du
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Richardson SD, Postigo C. Liquid Chromatography–Mass Spectrometry of Emerging Disinfection By-products. ADVANCES IN THE USE OF LIQUID CHROMATOGRAPHY MASS SPECTROMETRY (LC-MS) - INSTRUMENTATION DEVELOPMENTS AND APPLICATIONS 2018. [DOI: 10.1016/bs.coac.2017.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
8
|
Fang C, Wang Z, Feng M, Huang Y, Yang F, Liu J. Trace bromide ion impurity leads to formation of chlorobromoaromatic by-products in peroxymonosulfate-based oxidation of chlorophenols. CHEMOSPHERE 2017; 182:624-629. [PMID: 28527415 DOI: 10.1016/j.chemosphere.2017.05.065] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/03/2017] [Accepted: 05/11/2017] [Indexed: 06/07/2023]
Abstract
Trace bromide (Br-) released from industrial effluents or brominated compounds is able to directly react with peroxymonosulfate (PMS) to generate a series of reactive oxidants which can oxidize and also halogenate organics. We report the identification and evolution of by-products during 2,4,6-trichlorophenol (TCP) degradation in the presence of PMS and trace Br-. The influencing factors, including Br- concentration and pH, were investigated. The depletion of TCP was accelerated with increasing trace Br- concentration (0-0.2 mM) and was affected by the initial pH (3.0-7.0). The chlorinated and brominated compounds were identified in simulated wastewater during treatment with PMS. Notably, the potential formation of chlorobromoaromatic by-products was demonstrated for the first time in the presence of PMS and trace Br-. The possible reaction pathways of TCP and its derivatives are discussed. These findings have important implications for the future applications of PMS-based oxidation processes.
Collapse
Affiliation(s)
- Changling Fang
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Zhaohui Wang
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China; International Centre for Balanced Land Use (ICBLU), The University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Min Feng
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Ying Huang
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Fei Yang
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jianshe Liu
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
9
|
Yang F, Wei D, Xiao M, Sun X, Guo Q, Liu Y, Du Y. The chlorination transformation characteristics of benzophenone-4 in the presence of iodide ions. J Environ Sci (China) 2017; 58:93-101. [PMID: 28774630 DOI: 10.1016/j.jes.2017.04.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/08/2017] [Accepted: 04/20/2017] [Indexed: 06/07/2023]
Abstract
Benzophenone-type UV filters are a group of compounds widely used to protect human skin from damage of UV irradiation. Benzophenone-4 (BP-4) was targeted to explore its transformation behaviors during chlorination disinfection treatment in the presence of iodide ions. With the help of ultra performance liquid phase chromatograph and high-resolution quadrupole time-of-flight mass spectrometer, totally fifteen halogenated products were identified, and five out of them were iodinated products. The transformation mechanisms of BP-4 involved electrophilic substitution generating mono- or di-halogenated products, which would be oxidized into esters and further hydrolyzed into phenolic derivatives. The desulfonation and decarboxylation were observed in chlorination system either. Obeying the transformation pathways, five iodinated products formed. The pH conditions of chlorination system determined the reaction types of transformation and corresponding species of products. The more important was that, the acute toxicity had significant increase after chlorination treatment on BP-4, especially in the presence of iodide ions. When the chlorination treatment was performed on ambient water spiked with BP-4 and iodide ions, iodinated by-products could be detected.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Dongbin Wei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ming Xiao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuefeng Sun
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiaorong Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Liu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, Shandong Province 264005, China
| | - Yuguo Du
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Chai Q, Zhang S, Wang X, Yang H, Xie YF. Effect of bromide on the transformation and genotoxicity of octyl-dimethyl-p-aminobenzoic acid during chlorination. JOURNAL OF HAZARDOUS MATERIALS 2017; 324:626-633. [PMID: 27887814 DOI: 10.1016/j.jhazmat.2016.11.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/07/2016] [Accepted: 11/10/2016] [Indexed: 06/06/2023]
Abstract
Octyl-dimethyl-p-aminobenzoic acid (ODPABA), one of the most commonly used organic UV filters, can undergo considerable transformation in water when entering into the disinfection process. The impacts of bromide on degradation kinetics, formation and speciation of transformation products, regulated disinfection by-products (DBPs) as well as genotoxicity changes during ODPABA chlorination were investigated in this study. Results indicated that the reaction of ODPABA with chlorine followed pseudo-first-order and second-order kinetics. Adding bromide noticeably enhanced the degradation rate of ODPABA, but reduced the impact of chlorine dose. Four halogenated transformation products (Cl-ODPABA, Br-ODPABA, Cl-Br-ODPABA and Br2-ODPABA) were detected by LC-MS/MS. Mono-halogenated products were stable during 24-h chlorination, while di-halogenated products constantly increased. The total yields of trihalomethanes (THMs) and haloacetic acids (HAAs) were both low, but predominated by bromine substitution at high levels of bromide. In addition, SOS/umu tests showed that genotoxicity was generated after ODPABA chlorination, which was increased at least 1.5 times in the presence of bromine. Whereas, no significant genotoxicity variation was observed following bromide concentration change.
Collapse
Affiliation(s)
- Qiwan Chai
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shujuan Zhang
- International Publishing Center, China National Knowledge Infrastructure, Beijing 100192, China
| | - Xiaomao Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hongwei Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Yuefeng F Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Environmental Engineering Programs, The Pennsylvania State University, Middletown, PA 17057, USA
| |
Collapse
|
11
|
Zhang S, Wang X, Yang H, Xie YF. Chlorination of oxybenzone: Kinetics, transformation, disinfection byproducts formation, and genotoxicity changes. CHEMOSPHERE 2016; 154:521-527. [PMID: 27085067 DOI: 10.1016/j.chemosphere.2016.03.116] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 02/27/2016] [Accepted: 03/25/2016] [Indexed: 06/05/2023]
Abstract
UV filters are a kind of emerging contaminant, and their transformation behavior in water treatment processes has aroused great concern. In particular, toxic products might be produced during reaction with disinfectants during the disinfection process. As one of the most widely used UV filters, oxybenzone has received significant attention, because its transformation and toxicity changes during chlorine oxidation are a concern. In our study, the reaction between oxybenzone and chlorine followed pseudo-first-order and second-order kinetics. Three transformation products were detected by LC-MS/MS, and the stability of products followed the order of tri-chloro-methoxyphenoyl > di-chlorinated oxybenzone > mono-chlorinated oxybenzone. Disinfection byproducts (DBPs) including chloroform, trichloroacetic acid, dichloroacetic acid and chloral hydrate were quickly formed, and increased at a slower rate until their concentrations remained constant. The maximum DBP/oxybenzone molar yields for the four compounds were 12.02%, 6.28%, 0.90% and 0.23%, respectively. SOS/umu genotoxicity test indicated that genotoxicity was highly elevated after chlorination, and genotoxicity showed a significantly positive correlation with the response of tri-chloro-methoxyphenoyl. Our results indicated that more genotoxic transformation products were produced in spite of the elimination of oxybenzone, posing potential threats to drinking water safety. This study shed light on the formation of DBPs and toxicity changes during the chlorination process of oxybenzone.
Collapse
Affiliation(s)
- Shujuan Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaomao Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hongwei Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Yuefeng F Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Environmental Engineering Programs, The Pennsylvania State University, Middletown, PA 17057, USA
| |
Collapse
|