1
|
Ma X, Li Y, Niu L, Shang J, Yang N. Microbial community structure and denitrification responses to cascade low-head dams and their contribution to eutrophication in urban rivers. ENVIRONMENTAL RESEARCH 2023; 221:115242. [PMID: 36634891 DOI: 10.1016/j.envres.2023.115242] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Low-head dams are one of the most common hydraulic facilities, yet they often fragment rivers, leading to profound changes in aquatic biodiversity and river eutrophication levels. Systematic assessments of river ecosystem structure and functions, and their contribution to eutrophication, are however lacking, especially for urban rivers where low-head dams prevail. In this study, we address this gap with a field survey on microbial community structure and ecosystem function, in combination with hydrological, environmental and ecological factors. Our findings revealed that microbial communities showed significant differences among the cascade impoundments, which may be due to the environment heterogeneity resulting from the cascade low-head dams. The alternating lentic-lotic flow environment created by the low-head dams caused nutrient accumulation in the cascade impoundments, enhancing environmental sorting and interspecific competition relationships, and thus possibly contributing to the reduction in sediment denitrification function. Decreased denitrification led to excessive accumulation of nutrients, which may have aggravated river eutrophication. In addition, structural equation model analysis showed that flow velocity may be the key controlling factor for river eutrophication. Therefore, in the construction of river flood control and water storage systems, the location, type and water storage capacity of low-head dams should be fully considered to optimize the hydrodynamic conditions of rivers. To summarize, our findings revealed the cumulative effects of cascade low-head dams in an urban river, and provided new insights into the trade-off between construction and decommissioning of low-head dams in urban river systems.
Collapse
Affiliation(s)
- Xin Ma
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, PR China; Research Institute of Mulan Ecological River, Putian, 351100, PR China
| | - Yi Li
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, PR China; Research Institute of Mulan Ecological River, Putian, 351100, PR China.
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China; Research Institute of Mulan Ecological River, Putian, 351100, PR China.
| | - Jiahui Shang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Nan Yang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| |
Collapse
|
2
|
Beltrán de Heredia I, Garbisu C, Alkorta I, Urra J, González-Gaya B, Ruiz-Romera E. Spatio-seasonal patterns of the impact of wastewater treatment plant effluents on antibiotic resistance in river sediments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120883. [PMID: 36572269 DOI: 10.1016/j.envpol.2022.120883] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
There is a growing concern about the risk of antibiotic resistance emergence and dissemination in the environment. Here, we evaluated the spatio-seasonal patterns of the impact of wastewater treatment plant (WWTP) effluents on antibiotic resistance in river sediments. To this purpose, sediment samples were collected in three river basins affected by WWTP effluents in wet (high-water period) and dry (low-water period) hydrological conditions at three locations: (i) upstream the WWTPs; (ii) WWTP effluent discharge points (effluent outfall); and (iii) downstream the WWTPs (500 m downriver from the effluent outfall). The absolute and relative abundances of 9 antibiotic resistance genes (ARGs), 3 mobile genetic element (MGE) genes, and 4 metal resistance genes (MRGs) were quantified in sediment samples, as well as a variety of physicochemical parameters, metal contents, and antibiotic concentrations in both sediment and water samples. In sediments, significantly higher relative abundances of most genes were observed in downstream vs. upstream sampling points. Seasonal changes (higher values in low-water vs. high-water period) were observed for both ARG absolute and relative abundances in sediment samples. Chemical data revealed the contribution of effluents from WWTPs as a source of antibiotic and metal contamination in river ecosystems. The observed positive correlations between ARG and MGE genes relative abundances point out to the role of horizontal gene transfer in antibiotic resistance dissemination. Monitoring plans that take into consideration spatio-temporal patterns must be implemented to properly assess the environmental fate of WWTP-related emerging contaminants in river ecosystems.
Collapse
Affiliation(s)
- Irene Beltrán de Heredia
- Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, 48013, Bilbao, Spain.
| | - Carlos Garbisu
- Department of Conservation of Natural Resources, NEIKER-Basque Institute of Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park, P812, 48160, Derio, Spain
| | - Itziar Alkorta
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080, Bilbao, Spain
| | - Julen Urra
- Department of Conservation of Natural Resources, NEIKER-Basque Institute of Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park, P812, 48160, Derio, Spain
| | - Belén González-Gaya
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), Campus of Leioa, 48940, Leioa, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Areatza Pasealekua 47, 48620, Plentzia, Spain
| | - Estilita Ruiz-Romera
- Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, 48013, Bilbao, Spain
| |
Collapse
|
3
|
Burke RA, Fritz KM, Johnson BR, Price R. Mountaintop removal coal mining impacts on structural and functional indicators in Central Appalachian streams. FRONTIERS IN WATER 2023; 4:1-19. [PMID: 36969749 PMCID: PMC10031508 DOI: 10.3389/frwa.2022.988061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Mountaintop removal coal mining (MTR) has been a major source of landscape change in the Central Appalachians of the United States (US). Changes in stream hydrology, channel geomorphology and water quality caused by MTR coal mining can lead to severe impairment of stream ecological integrity. The objective of the Clean Water Act (CWA) is to restore and maintain the ecological integrity of the Nation's waters. Sensitive, readily measured indicators of ecosystem structure and function are needed for the assessment of stream ecological integrity. Most CWA assessments rely on structural indicators; inclusion of functional indicators could make these assessments more holistic and effective. The goals of this study were: (1) test the efficacy of selected carbon (C) and nitrogen (N) cycling and microbial structural and functional indicators for assessing MTR coal mining impacts on streams; (2) determine whether indicators respond to impacts in a predictable manner; and (3) determine if functional indicators are less likely to change than are structural indicators in response to stressors associated with MTR coal mining. The structural indicators are water quality and sediment organic matter concentrations, and the functional indicators relate to microbial activity and biofilm production. Seasonal measurements were conducted over the course of a year in streams draining small MTR-impacted and forested watersheds in the Twentymile Creek watershed of West Virginia (WV). Five of the eight structural parameters measured had significant responses, with all means greater in the MTR-impacted streams than in the forested streams. These responses resulted from changes in source or augmentation of the original source of the C and N structural parameters because of MTR coal mining. Nitrate concentration and the stable carbon isotopic ratio of dissolved inorganic carbon were the most effective indicators evaluated in this study. Only three of the fourteen functional indicators measured had significant responses to MTR coal mining, with all means greater in the forested streams than in the MTR-impacted streams. These results suggest that stressors associated with MTR coal mining caused reduction in some aspects of microbial cycling, but resource subsidies may have counterbalanced some of the inhibition leading to no observable change in most of the functional indicators. The detritus base, which is thought to confer functional stability, was likely sustained in the MTR-impacted streams by channel storage and/or leaf litter inputs from their largely intact riparian zones. Overall, our results largely support the hypothesis that certain functional processes are more resistant to stress induced change than structural properties but also suggest the difficulty of identifying suitable functional indicators for ecological integrity assessment.
Collapse
Affiliation(s)
- Roger A. Burke
- United States Environmental Protection Agency (USEPA),
Center for Environmental Measurement and Modeling (CEMM), Athens, GA, United
States
| | - Ken M. Fritz
- United States Environmental Protection Agency (USEPA),
Center for Environmental Measurement and Modeling (CEMM), Cincinnati, OH, United
States
| | - Brent R. Johnson
- United States Environmental Protection Agency (USEPA),
Center for Environmental Measurement and Modeling (CEMM), Cincinnati, OH, United
States
| | - Rachel Price
- United States Environmental Protection Agency (USEPA),
Center for Environmental Measurement and Modeling (CEMM), Cincinnati, OH, United
States
| |
Collapse
|
4
|
He S, Wang X, Pan J, Yan Z, Tian L, Li Y, Jiang H. Linking fluorescent dissolved organic matters to microbial carbon metabolism in the overlying water during submerged macrophyte Potamogeton crispus L decomposition in the presence/absence of Vallisneria natans. ENVIRONMENTAL RESEARCH 2023; 216:114381. [PMID: 36243051 DOI: 10.1016/j.envres.2022.114381] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Multi-species submerged plants grow with succession patterns in the same habit and play an important role in the aquatic ecosystems. The decomposition of submerged plants in aquatic environments was a disturbance that affected the water quality and microbial community structures. However, the responses of the microbial community function in surface water to the disturbance remain poorly understood. In this study, the effects of submerged macrophyte Potamogeton crispus L decomposition on the water quality and microbial carbon metabolism functions (MCMF) in the overlying water were investigated in the presence/absence of Vallisneria natans. The result showed that the decomposition rapidly released a large amount of organic matter and nutrients into the overlying water. The presence of Vallisneria natans promoted the removal of dissolved organic carbon and fluorescent component C3, resulting in lower values of the percentage content of C3 (C3%). Under various decomposition processes, the MCMF changed over time and significantly negatively correlated with C3%. The functional diversity of MCMF significantly correlated with the fluorescence organic matters, such as the richness and Simpson index correlated with the amount of C1, C1+C2+C3, and C3%. But UV-visible absorption indexes and nutrients in the overlying water had no relationship with the MCMF, except for the total nitrogen correlated with the richness. These results suggested that under various decomposition conditions, the fluorescent dissolved organic matter could be used as an indicator for quick prediction of MCMF in surface water.
Collapse
Affiliation(s)
- Shangwei He
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; Jiangsu Key Laboratory of Environmental Science and Engineering, Suzhou, 215009, China
| | - Jizheng Pan
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou, 215009, China.
| | - Zaisheng Yan
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Linqi Tian
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; Jiangsu Key Laboratory of Environmental Science and Engineering, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou, 215009, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou, 215009, China
| | - Helong Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|
5
|
Chen Y, Chen R, Liu Z, Yu X, Zheng S, Yuan S. Nitrogen process in stormwater bioretention: the impact of alternate drying and rewetting on nitrogen migration and transformation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:43803-43814. [PMID: 33840026 DOI: 10.1007/s11356-021-13802-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Nitrogen migration and transformation in the stormwater bioretention system were studied in laboratory experiments, in which the effects of drying-rewetting were particularly investigated. The occurrence and distribution of nitrogen in the plants, the soil, and the pore water were explored under different drying-rewetting cycles. The results clearly showed that bioretention system could remove nitrogen efficiently in all drying-rewetting cycles. The incoming nitrogen could be retained in the topsoil (0-10 cm) and accumulated in the planted layer. However, the overlong dry periods (12 and 22 days) cause an increase in nitrate in the pore water. In addition, nitrogen is mostly stored in the plants' stem tissues. Up to 23.26% of the inflowing nitrogen can be immobilized in plant tissues after a dry period of 22 days. In addition, the relationships between nitrogen reductase activity in the soil and soil nitrogen content were explored. The increase of soil TN content could enhance the activity of nitrate reductase. Meanwhile, the activity of hydroxylamine reductase (HyR) could be enhanced with the increase of soil NO3- content. These results provide a reference for the future development of nitrogen transformation mechanism and the construction of stormwater bioretention systems.
Collapse
Affiliation(s)
- Yao Chen
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China.
- Engineering Laboratory of Environmental Hydraulic Engineering of Chongqing Municipal Development and Reform Commission, Chongqing Jiaotong University, Chongqing, 400074, China.
| | - Renyu Chen
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Zhen Liu
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China.
- Engineering Laboratory of Environmental Hydraulic Engineering of Chongqing Municipal Development and Reform Commission, Chongqing Jiaotong University, Chongqing, 400074, China.
| | - Xuehua Yu
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Shuang Zheng
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Shaochun Yuan
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
- Engineering Laboratory of Environmental Hydraulic Engineering of Chongqing Municipal Development and Reform Commission, Chongqing Jiaotong University, Chongqing, 400074, China
| |
Collapse
|
6
|
Lechuga-Crespo JL, Ruiz-Romera E, Probst JL, Unda-Calvo J, Cuervo-Fuentes ZC, Sánchez-Pérez JM. Combining punctual and high frequency data for the spatiotemporal assessment of main geochemical processes and dissolved exports in an urban river catchment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 727:138644. [PMID: 32498214 DOI: 10.1016/j.scitotenv.2020.138644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
The assessment of dissolved loadings and the sources of these elements in urban catchments' rivers is usually measured by punctual sampling or through high frequency sensors. Nevertheless, the combination of both methodologies has been less common even though the information they give is complementary. Major ion (Ca2+, Mg2+, Na+, K+, Cl-, SO42-, and alkalinity), organic matter (expressed as Dissolved Organic Carbon, DOC), and nutrients (NO3-, and PO43-) are punctually measured in the Deba river urban catchment (538 km2), in the northern part of the Iberian Peninsula (draining to the Bay of Biscay). Discharge, precipitation, and Electrical Conductivity (EC) are registered with a high frequency (10 min) in three gauging stations. The combination of both methodologies has allowed the assessment of major geochemical processes and the extent of impact of anthropogenic input on major composition of riverine water, as well as its spatial and temporal evolution. Three methodologies for loading estimation have been assessed and the error committed in the temporal aggregation is quantified. Results have shown that, even though carbonates dominate the draining area, the water major ion chemistry is governed by an evaporitic spring in the upper part of the catchment, while anthropogenic input is specially noted downstream of three wastewater treatment plants, in all nutrients and organic matter. The results of the present work illustrate how the combination of two monitoring methodologies allows for a better assessment of the spatial and temporal evolution on the major water quality in an urban catchment.
Collapse
Affiliation(s)
- Juan Luis Lechuga-Crespo
- Department of Chemical and Environmental Engineering, University of the Basque Country, Plaza Ingeniero Torres Quevedo 1, Bilbao 48013, Basque Country, Spain; ECOLAB, Université de Toulouse, CNRS, INPT, UPS, Campus ENSAT, Avenue de l'Agrobiopole, 31326 Castanet Tolosan Cedex, France.
| | - Estilita Ruiz-Romera
- Department of Chemical and Environmental Engineering, University of the Basque Country, Plaza Ingeniero Torres Quevedo 1, Bilbao 48013, Basque Country, Spain.
| | - Jean-Luc Probst
- ECOLAB, Université de Toulouse, CNRS, INPT, UPS, Campus ENSAT, Avenue de l'Agrobiopole, 31326 Castanet Tolosan Cedex, France
| | - Jessica Unda-Calvo
- Department of Chemical and Environmental Engineering, University of the Basque Country, Plaza Ingeniero Torres Quevedo 1, Bilbao 48013, Basque Country, Spain
| | - Zaira Carolina Cuervo-Fuentes
- Department of Chemical and Environmental Engineering, University of the Basque Country, Plaza Ingeniero Torres Quevedo 1, Bilbao 48013, Basque Country, Spain
| | - José Miguel Sánchez-Pérez
- ECOLAB, Université de Toulouse, CNRS, INPT, UPS, Campus ENSAT, Avenue de l'Agrobiopole, 31326 Castanet Tolosan Cedex, France
| |
Collapse
|
7
|
Unda-Calvo J, Ruiz-Romera E, Martínez-Santos M, Vidal M, Antigüedad I. Multivariate statistical analyses for water and sediment quality index development: A study of susceptibility in an urban river. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:135026. [PMID: 32000333 DOI: 10.1016/j.scitotenv.2019.135026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/10/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
In this study, multivariate statistical analyses were performed to develop water and sediment quality indexes, allowing us (i) to select with reliability the most appropriate chemical variables for the evaluation of river quality susceptibility; (ii) to weight the influence of each variable based on monitored data; (iii) to consider possible synergism or antagonism derived from the combined effect of several pollutants; and (iv) to express the quality as a deviation from selected site-specific reference conditions. For the establishment of these threshold/maximum values, combining two biological indicators related to denitrifying bacteria in sediments turned out to be applicable to ensure compliance with the European water quality standard. The joint implementation of water and sediment quality indexes assisted us in the rapid detection of the deleterious effect of different anthropogenic contamination sources, as well as the influence of hydrological regime seasonality on river quality. In addition, metal-dependent water quality appeared to be coupled to sediment dynamics, since they were preferentially adsorbed onto sediments during low flow seasons, whereas there was potential for metal mobilization to water during sediment resuspension in high flow seasons. Therefore, an annual determination of sediment quality index was also recommended as suitable tool for prospective monitoring water quality, identifying those sites which could deserve special attention during certain periods, and planning future strategies for river quality improvement. However, two limitations were found: (1) sediment was not appropriate for water physicochemical quality early monitoring due to organic matter and nutrient continuous transformation; and (2) a multimetric index did not provide a concise and definitive quality information, thus a new tool for combining with quality index was proposed for specifically evaluate the water and sediment quality by identifying pollutant/s of concern at each location.
Collapse
Affiliation(s)
- Jessica Unda-Calvo
- Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, Bilbao 48013, Basque Country, Spain.
| | - Estilita Ruiz-Romera
- Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, Bilbao 48013, Basque Country, Spain
| | - Miren Martínez-Santos
- Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, Bilbao 48013, Basque Country, Spain
| | - Maider Vidal
- Department of Applied Chemistry, University of the Basque Country (UPV/EHU), Manuel de Lardizabal 3, Donostia-San Sebastián 20018, Basque Country, Spain
| | - Iñaki Antigüedad
- Department of Geodynamic, University of the Basque Country (UPV/EHU), Leioa 48940, Basque Country, Spain
| |
Collapse
|
8
|
Cai Y, Ben T, Zaidi AA, Shi Y, Zhang K. Nitrogen removal augmentation of ship sewage by an innovative aerobic-anaerobic micro-sludge MBR technology. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.04.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|