1
|
Banerjee S, Sarkar A, Rao KVB. Extraction and characterization of carotenoid pigments with antioxidant and antibacterial potential from marine yeast Rhodotorula sp. KSB1. Int Microbiol 2025; 28:137-156. [PMID: 38748297 DOI: 10.1007/s10123-024-00529-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/13/2024] [Accepted: 05/07/2024] [Indexed: 01/29/2025]
Abstract
Pigments are coloring agents used widely in different industrial sectors. There is a demand for using natural pigments rather than synthetic dyes because of the health hazards caused by synthetic dyes. Many natural pigments have different medicinal activities which can contribute to the nutritional value of the product. This study was carried forward with marine yeasts which can produce pigments. A total of 4 marine yeast isolates were recovered from the mangrove area of Sundarbans, West Bengal, India. Among them, the isolate KSB1 produced 856 µg/g total concentration of carotenoid pigment and the dry mass weight was 3.56 g/L. The stability of the extracted pigments was checked using temperature, pH, UV light exposure time, and different saline conditions. The pigments were characterized using HPLC and FTIR analysis. All of the extracted pigments showed good antioxidant activity in DPPH, metal chelating, and reducing power assay. The pigments were also found to have good antibacterial activity against the bacterial pathogens Staphylococcus aureus, Listeria monocytogenes, and Escherichia coli. Carotenoid pigment from KSB1 was found to have maximum activity in all the pathogens. The cytogenotoxicity using onion roots and phytotoxicity analysis indicated that the pigments were non-toxic and safe for cells. Finally, the potential marine yeast was identified using 18 s rRNA sequencing and identified as Rhodotorula sp. KSB1 (Accession no. MH782232).
Collapse
Affiliation(s)
- Somak Banerjee
- Marine Biotechnology Laboratory, Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Anwesha Sarkar
- Marine Biotechnology Laboratory, Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - K V Bhaskara Rao
- Marine Biotechnology Laboratory, Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
2
|
Griep P, Gayeski L, Colet R, Zeni J, Valduga E. Recent updates of carotenoid encapsulation by spray-drying technique. J Microencapsul 2025; 42:26-46. [PMID: 39579156 DOI: 10.1080/02652048.2024.2430643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/13/2024] [Indexed: 11/25/2024]
Abstract
Carotenoids are compounds sensitive to environmental factors such as light, heat, and oxygen, which can result in the loss of their properties due to isomerisation and oxidation. To overcome this problem, spray drying encapsulation has been widely used as a method to protect and stabilise carotenoids in different wall materials. This article summarises the findings and research on spray drying encapsulation of carotenoids over the past 15 years, with an emphasis on the importance of controlling the operational conditions of the drying process and the association of different wall materials (proteins and polysaccharides), promising to increase encapsulation efficiency and stabilise carotenoids, with perspectives and trends in applications. The use of spray drying for carotenoid microencapsulation can open up new opportunities for controlled delivery of beneficial compounds. Based on the study, it is expected to provide information for researchers, professionals, and companies interested in the development of functional food products.
Collapse
Affiliation(s)
- Patrícia Griep
- Department of Food Engineering, URI Erechim, Erechim, Brazil
| | - Luana Gayeski
- Department of Food Engineering, URI Erechim, Erechim, Brazil
| | - Rosicler Colet
- Department of Food Engineering, URI Erechim, Erechim, Brazil
| | - Jamile Zeni
- Department of Food Engineering, URI Erechim, Erechim, Brazil
| | - Eunice Valduga
- Department of Food Engineering, URI Erechim, Erechim, Brazil
| |
Collapse
|
3
|
Samsonov A, Urlacher SS. Oxidative Stress in Children and Adolescents: Insights Into Human Biology. Am J Hum Biol 2025; 37:e24200. [PMID: 39815753 PMCID: PMC11736247 DOI: 10.1002/ajhb.24200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 01/18/2025] Open
Abstract
Oxidative stress (OS) is a key biological challenge and selective pressure for organisms with aerobic metabolism. The result of the imbalance between reactive oxygen species production and antioxidant defense, OS can damage proteins, lipids, and nucleic acids and plays an important role in driving variation in biological aging and health. Among humans, OS research has focused overwhelmingly on adults, with demonstrated connections between OS, inflammation, and metabolic and neurodegenerative conditions. Relatively little attention has been given to OS during childhood and adolescence. This lack of early life OS research exists despite clear implications for informing human life history evolution, subadult development, and lifelong health. Here, we review current knowledge on OS during human subadulthood. Our objectives are threefold: (1) To highlight common methods for measuring OS among children and adolescents and to establish typical measurement values; (2) To summarize the evidence linking demographic and ecological factors to variation in subadult OS; (3) To identify avenues for future OS research in human biology. Our review underscores an expanding methodological toolkit for assessing OS among children and adolescents. Subadult OS is considerably elevated compared to OS among adults, a pattern eliciting unknown consequences and likely related to increased early life metabolic demands (e.g., unique human brain development). Factors such as diet, physical activity, infectious disease, and structural neglect also appear to drive subadult OS. Current limitations for research on subadult OS are evident. Future work should emphasize evolutionary, biocultural, and energetic life course perspectives to advance this promising area of human biology.
Collapse
Affiliation(s)
- Anna Samsonov
- Department of AnthropologyBaylor UniversityWacoTexasUSA
| | | |
Collapse
|
4
|
Lopes A, Correia-Sá L, Vieira M, Delerue-Matos C, Soares C, Grosso C. Sustainable Carotenoid Extraction from Macroalgae: Optimizing Microwave-Assisted Extraction Using Response Surface Methodology. Life (Basel) 2024; 14:1573. [PMID: 39768280 PMCID: PMC11676899 DOI: 10.3390/life14121573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
This study aimed at optimizing carotenoid extraction using the macroalga Himanthalia elongata (L.) S.F.Gray as a model. Firstly, traditional extraction procedures were employed, using various solvents and temperatures to enhance the extraction conditions. Once the most effective extraction conditions were identified, the study transitioned to a more efficient and environmentally friendly approach, microwave-assisted extraction (MAE). By applying a three-parameter (solid-to-solvent ratio, temperature, and time) Box-Behnken design, the optimal extraction conditions were found to be a solid-to-solvent ratio of 1/13.6 g/mL at 60 °C for 15 min. Under these conditions, the predicted and experimental carotenoid contents were 2.94 and 2.12 µg/mL, respectively. Furthermore, an HPLC-DAD method was developed and validated for the characterization of carotenoids. β-Carotene was the predominant carotenoid in H. elongata, alongside fucoxanthin. The optimized MAE method was applied to other seaweeds, including Fucus vesiculosus L., Codium tomentosum Stackhouse, Gracilaria gracilis (Stackhouse) Steentoft, L.M.Irvine & Farnham, and Eiseinia bicyclis (Kjellman) Setchell. Among all, F. vesiculosus exhibited the highest carotenoid content compared to the others. This study concludes that MAE under optimized conditions is an effective and sustainable approach for carotenoid extraction, providing significant yields of bioactive compounds such as β-carotene and fucoxanthin, which have promising applications in enhancing human health and nutrition.
Collapse
Affiliation(s)
- Andreia Lopes
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (A.L.); (L.C.-S.); (C.D.-M.)
- Chemical and Biomolecular Sciences, School of Health (ESS), Polytechnic of Porto, 4200-465 Porto, Portugal;
| | - Luísa Correia-Sá
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (A.L.); (L.C.-S.); (C.D.-M.)
| | - Mónica Vieira
- Chemical and Biomolecular Sciences, School of Health (ESS), Polytechnic of Porto, 4200-465 Porto, Portugal;
- Center for Translational Health and Medical Biotechnology Research (TBIO)/Health Research Network (RISE-Health), ESS, Polytechnic of Porto, 4200-072 Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (A.L.); (L.C.-S.); (C.D.-M.)
| | - Cristina Soares
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (A.L.); (L.C.-S.); (C.D.-M.)
| | - Clara Grosso
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (A.L.); (L.C.-S.); (C.D.-M.)
| |
Collapse
|
5
|
Grahovac N, Lužaić T, Živančev D, Stojanović Z, Đurović A, Romanić R, Kravić S, Miklič V. Assessing Nutritional Characteristics and Bioactive Compound Distribution in Seeds, Oil, and Cake from Confectionary Sunflowers Cultivated in Serbia. Foods 2024; 13:1882. [PMID: 38928823 PMCID: PMC11202591 DOI: 10.3390/foods13121882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Sunflower seeds are key agricultural commodities due to their nutritional and industrial value. This study aimed to analyze the distribution of targeted bioactive compounds and assess the physical properties across 27 sunflower seed genotypes, including parental lines and F1 and F2 hybrids, cultivated in Serbia. Various analytical techniques were employed to determine the chemical composition and physical characteristics of the seeds. This research revealed significant genetic variability in fatty acid profiles, with differences in polyunsaturated and saturated fatty acid levels among the genotypes. Hybrid seeds displayed variations in 1000-seed weight and bulk density compared to parental lines, which exhibited higher essential fatty acid contents and mechanical properties advantageous for industrial processing. These insights highlight the potential for refining breeding strategies to improve seed quality for specific industrial purposes. Overall, this study emphasizes the critical role of genetic selection in enhancing the nutritional and processing qualities of sunflower seeds, offering valuable perspectives for advancing agricultural and breeding practices.
Collapse
Affiliation(s)
- Nada Grahovac
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21 000 Novi Sad, Serbia; (D.Ž.); (V.M.)
| | - Tanja Lužaić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21 000 Novi Sad, Serbia; (T.L.); (Z.S.); (A.Đ.); (R.R.); (S.K.)
| | - Dragan Živančev
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21 000 Novi Sad, Serbia; (D.Ž.); (V.M.)
| | - Zorica Stojanović
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21 000 Novi Sad, Serbia; (T.L.); (Z.S.); (A.Đ.); (R.R.); (S.K.)
| | - Ana Đurović
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21 000 Novi Sad, Serbia; (T.L.); (Z.S.); (A.Đ.); (R.R.); (S.K.)
| | - Ranko Romanić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21 000 Novi Sad, Serbia; (T.L.); (Z.S.); (A.Đ.); (R.R.); (S.K.)
| | - Snežana Kravić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21 000 Novi Sad, Serbia; (T.L.); (Z.S.); (A.Đ.); (R.R.); (S.K.)
| | - Vladimir Miklič
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21 000 Novi Sad, Serbia; (D.Ž.); (V.M.)
| |
Collapse
|
6
|
Leite MDMR, Bobrowski Rodrigues D, Brison R, Nepomuceno F, Bento ML, de Oliveira LDL. A Scoping Review on Carotenoid Profiling in Passiflora spp.: A Vast Avenue for Expanding the Knowledge on the Species. Molecules 2024; 29:1585. [PMID: 38611864 PMCID: PMC11013783 DOI: 10.3390/molecules29071585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 04/14/2024] Open
Abstract
The Passiflora genus is recognised for its ethnopharmacological, sensorial, and nutritional significance. Yet, the screening of its dietary and bioactive molecules has mainly targeted hydrophilic metabolites. Following the PRISMA-P protocol, this review assessed the current knowledge on carotenoid composition and analysis within Passiflora, examining 968 records from seven databases and including 17 studies focusing on carotenoid separation and identification in plant parts. Those publications originated in America and Asia. P. edulis was the most frequently examined species of a total of ten, while pulp was the most studied plant part (16 studies). Carotenoid analysis involved primarily high-performance liquid chromatography separation on C18 columns and detection using diode array detectors (64.71%). Most studies identified the provitamin A β-carotene and xanthophylls lutein and zeaxanthin, with their geometric configuration often neglected. Only one study described carotenoid esters. Besides the methodology's insufficient description, the lack of use of more accurate techniques and practices led to a high risk of bias in the carotenoid assignment in 17.65% of the articles. This review highlights the opportunity to broaden carotenoid studies to other species and parts within the diverse Passiflora genus, especially to wild, locally available fruits, which may have a strategic role in enhancing food diversity and security amidst climatic changes. Additionally, it urges the use of more accurate and efficient analytical methods based on green chemistry to better identify Passiflora carotenoids.
Collapse
Affiliation(s)
- Marina de Macedo Rodrigues Leite
- Department of Nutrition, University of Brasília (UnB), Campus Darcy Ribeiro, Brasilia 70910-900, DF, Brazil; (M.d.M.R.L.); (R.B.); (F.N.); (L.d.L.d.O.)
| | - Daniele Bobrowski Rodrigues
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Raquel Brison
- Department of Nutrition, University of Brasília (UnB), Campus Darcy Ribeiro, Brasilia 70910-900, DF, Brazil; (M.d.M.R.L.); (R.B.); (F.N.); (L.d.L.d.O.)
| | - Fernanda Nepomuceno
- Department of Nutrition, University of Brasília (UnB), Campus Darcy Ribeiro, Brasilia 70910-900, DF, Brazil; (M.d.M.R.L.); (R.B.); (F.N.); (L.d.L.d.O.)
| | - Maria Lua Bento
- Department of Pharmacy, University of Brasília (UnB), Campus de Ceilândia, Brasilia 72220-275, DF, Brazil;
| | - Lívia de Lacerda de Oliveira
- Department of Nutrition, University of Brasília (UnB), Campus Darcy Ribeiro, Brasilia 70910-900, DF, Brazil; (M.d.M.R.L.); (R.B.); (F.N.); (L.d.L.d.O.)
| |
Collapse
|
7
|
Batool U, Nawaz R, Ahmad S, Irshad MA, Irfan A, Gaafar ARZ, Arshad M, Wondmie GF, Qayyum MMN, Bourhia M. Physico- and phytochemical properties of Brassica juncea as affected by agroclimatic conditions. Sci Rep 2024; 14:797. [PMID: 38191635 PMCID: PMC10774400 DOI: 10.1038/s41598-023-48808-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024] Open
Abstract
Physicochemical and phytochemical assessment of leaf mustard (Brassica juncea L.) grown in different agroclimatic conditions is essential to highlight their compositional variability and evaluate the most suitable bunch of agroclimatic and agronomic practices. B. juncea is one of the important leafy vegetables that serve as source of vitamin A and C and iron, and plenty of antioxidants. This in situ research was executed to assess the quality variability of B. juncea grown in different agroecosystems. Leaves' samples of B. juncea were procured from 15 farmers' fields exhibiting different agroclimatic conditions i.e., elevation, nutrient management, temperature, irrigation, and tillage practices. Leaves' samples were subjected to physicochemical and phytochemical analysis, i.e., moisture, pH, TSS, ascorbic acid, carotenoids, phenolics, flavonoids, and antioxidant potential. In the leaves' samples of B. juncea, the target properties were found to vary significantly (P ≤ 0.05) in different agroclimatic conditions. The moisture content, ascorbic acid, phenolic content, carotenoids, and antioxidants were found in the range of 62.7-79.3%, 74-91 mg/100 g, 49.2-49.2 mg GAE/100 g, 436.3-480 mg β carotene/100 g, 32.7-46.67%, respectively. This study elaborates the significant variation of physicochemical and phytochemical attributes of B. juncea due to the prevailing agroclimatic conditions. This necessitates the appropriate choice of B. juncea concerning its composition and ecological conditions of its cultivation in the prospective health benefits.
Collapse
Affiliation(s)
- Uzma Batool
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Rab Nawaz
- Department of Environmental Sciences, The University of Lahore, Lahore, 54000, Pakistan
- Faculty of Engineering and Quantity Surveying, INTI International University, 71800, Nilai, Negeri Sembilan, Malaysia
| | - Sajjad Ahmad
- Department of Civil Engineering, COMSATS University Islamabad, Sahiwal Campus, Sahiwal, 57000, Pakistan
| | - Muhammad Atif Irshad
- Department of Environmental Sciences, The University of Lahore, Lahore, 54000, Pakistan
| | - Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Abdel-Rhman Z Gaafar
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 11451, Riyadh, Saudi Arabia
| | - Muhammad Arshad
- Department of Agriculture & Food Technology, Karakoram International University, Gilgit, 15100, Pakistan.
| | | | - Mir Muhammad Nasir Qayyum
- Department of Agriculture & Food Technology, Karakoram International University, Gilgit, 15100, Pakistan
| | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune, Morocco
- Laboratory of Chemistry-Biochemistry, Environment, Nutrition, and Health, Faculty of Medicine and Pharmacy, University Hassan II, B. P. 5696, Casablanca, Morocco
| |
Collapse
|
8
|
Indirapriyadarshini R, Radhiga T, Kanimozhi G, Prasad NR. Preventive effect of andrographolide against ultraviolet-B radiation-induced oxidative stress and apoptotic signaling in human dermal fibroblasts. Cell Biochem Funct 2023; 41:1370-1382. [PMID: 37842803 DOI: 10.1002/cbf.3871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/19/2023] [Accepted: 10/07/2023] [Indexed: 10/17/2023]
Abstract
Ultraviolet radiation induces oxidative photoaging in the skin cells. In this study, we investigated the ability of andrographolide (ADP) to protect human dermal fibroblasts (HDFa) from UVB radiation-induced oxidative stress and apoptosis. The HDFa cells were exposed to UVB (19.8 mJ/cm2 ) radiation in the presence or absence of ADP (7 μM) and then oxidative stress and apoptotic protein expression were analyzed. UVB exposure resulted in a significant decline in the activity of antioxidant enzymes and altered mitochondrial membrane potential (MMP). Furthermore, UVB-irradiation causes increased intracellular reactive oxygen species (ROS) production, apoptotic morphological changes, and lipid peroxidation levels in the HDFa. Moreover, the pretreatment with ADP reduced the UVB-induced cytotoxicity, ROS production, and increased antioxidant enzymes activity. Further, the ADP pretreatment prevents the UVB-induced loss of MMP and apoptotic signaling in HDFa cells. Therefore, the present results suggest that ADP protects HDFa cells from UVB-induced oxidative stress and apoptotic damage.
Collapse
Affiliation(s)
| | - Thangaiyan Radhiga
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamilnadu, India
| | - Govindasamy Kanimozhi
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamilnadu, India
- Department of Biochemistry, Dharmapuram Gnanambigai Government Arts College for Women, Mayiladuthurai, India
| | - N Rajendra Prasad
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamilnadu, India
| |
Collapse
|
9
|
Wei J, Li Y, Ye Z, Li Y, Zhou Z. Citrus Carotenoid Extracts Exert Anticancer Effects through Anti-Proliferation, Oxidative Stress, and Mitochondrial-Dependent Apoptosis in MCF-7 Cells. Foods 2023; 12:3469. [PMID: 37761178 PMCID: PMC10529845 DOI: 10.3390/foods12183469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Citrus is a globally popular fruit crop that contains bioactive compounds with numerous health benefits. Carotenoids are one of the main bioactive compounds present in citrus pulp. They possess exceptional antioxidant and anticancer properties, making them potentially effective in the prevention and treatment of breast cancer. Different citrus species, identified as ZMPG, DFGJ, NFMJ, XY, and ZHQC, were studied for their antioxidant activity and anticancer activity. XY had the highest total carotenoid content (75.30 µg/g FW), and ZHQC (ZH) had the lowest carotenoid content (19.74 µg/g FW). The composition of NFMJ, ZMPG, and DFHJ consisted of the most abundant number of carotenoids, while XY only had three types. The antioxidant capacity of the carotenoid extracts was evaluated, and ZH and DFHJ were identified as good sources of antioxidants. XY and ZH significantly inhibited cell proliferation, migration, and arresting cells during the G0/G1 phase. XY and ZH enhanced the accumulation of reactive oxygen species (ROS); reduced mitochondrial membrane potential (MMP); reduced the activities of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), and peroxidase (POD); decreased glutathione (GSH) levels; and increased the malonaldehyde (MDA) content. Apoptosis occurred through the mitochondrial-mediated pathway through the up-regulation of BAX, caspase-3, and caspase-9 and the down-regulation of Bcl-2. In this study, the carotenoid-rich extracts of citrus pulp were found to induce oxidative stress through their pro-oxidant potential and regulate cell apoptosis in MCF-7 cancer cells. These results indicate that citrus carotenoids act as pro-oxidants and have the potential to be utilized for the development of anti-breast cancer products.
Collapse
Affiliation(s)
- Juanjuan Wei
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei District, Chongqing 400715, China; (J.W.); (Y.L.); (Z.Y.)
| | - Yurong Li
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei District, Chongqing 400715, China; (J.W.); (Y.L.); (Z.Y.)
| | - Zimao Ye
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei District, Chongqing 400715, China; (J.W.); (Y.L.); (Z.Y.)
| | - Yi Li
- Zhejiang Citrus Research Institute, Taizhou 318020, China;
| | - Zhiqin Zhou
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei District, Chongqing 400715, China; (J.W.); (Y.L.); (Z.Y.)
- The Southwest Institute of Fruits Nutrition, Banan District, Chongqing 400054, China
| |
Collapse
|
10
|
Lužaić T, Kravić S, Stojanović Z, Grahovac N, Jocić S, Cvejić S, Pezo L, Romanić R. Investigation of oxidative characteristics, fatty acid composition and bioactive compounds content in cold pressed oils of sunflower grown in Serbia and Argentina. Heliyon 2023; 9:e18201. [PMID: 37519709 PMCID: PMC10372673 DOI: 10.1016/j.heliyon.2023.e18201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 08/01/2023] Open
Abstract
Background In this work, the chemical composition analysis was performed for cold pressed oils obtained from the 15 sunflower hybrids grown in Serbia and Argentina, as well as the determination of their oxidative quality. The fatty acid composition and bioactive compounds including total tocopherols, phenols, carotenoids, and chlorophyll contents were investigated. The oxidation products were monitored through the peroxide value (PV), anisidine value (AnV), conjugated dienes (CD) and conjugated trienes (CT) content, and total oxidation index (TOTOX) under accelerated oxidation conditions by the oven method. Results Linoleic acid was the most abundant fatty acid in investigated oil samples, followed by oleic and palmitic acids. The mean contents of total tocopherols, phenols, carotenoids, and chlorophyll were 518.24, 9.42, 7.54 and 0.99 mg/kg, respectively. In order to obtain an overview of sample variations according to the tested parameters Principal Component Analysis (PCA) was applied. Conclusion PCA indicated that phenols, chlorophyll, linoleic and oleic acid were the most effective variables for the differentiation of sunflower hybrids grown in Serbia and Argentina. Furthermore, based on the fatty acid composition and bioactive compounds content in the oils, a new Artificial Neural Network (ANN) model was developed to predict the oxidative stability parameters of cold pressed sunflower oil.
Collapse
Affiliation(s)
- Tanja Lužaić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Snežana Kravić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Zorica Stojanović
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Nada Grahovac
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Maksima Gorkog 30, 21000 Novi Sad, Serbia
| | - Siniša Jocić
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Maksima Gorkog 30, 21000 Novi Sad, Serbia
| | - Sandra Cvejić
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Maksima Gorkog 30, 21000 Novi Sad, Serbia
| | - Lato Pezo
- Institute of General and Physical Chemistry, University of Belgrade, Studentski trg 12/V, 11000 Belgrade, Serbia
| | - Ranko Romanić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| |
Collapse
|
11
|
Chaves NSG, Janner DE, Poetini MR, Fernandes EJ, de Almeida FP, Musachio EAS, Reginaldo JC, Dahleh MMM, de Carvalho AS, Leimann FV, Gonçalves OH, Ramborger BP, Roehrs R, Prigol M, Guerra GP. β-carotene-loaded nanoparticles protect against neuromotor damage, oxidative stress, and dopamine deficits in a model of Parkinson's disease in Drosophila melanogaster. Comp Biochem Physiol C Toxicol Pharmacol 2023; 268:109615. [PMID: 36940893 DOI: 10.1016/j.cbpc.2023.109615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/23/2023]
Abstract
β-carotene-loaded nanoparticles improves absorption by increasing bioavailability. The Drosophila melanogaster model of Parkinson's disease must be helpful in investigating potential neuroprotective effects. Four groups of four-day-old flies were exposed to: (1) control; (2) diet containing rotenone (500 μM); (3) β-carotene-loaded nanoparticles (20 μM); (4) β-carotene-loaded nanoparticles and rotenone for 7 days. Then, the percentage of survival, geotaxis tests, open field, aversive phototaxis and food consumption were evaluated. At the end of the behaviors, the analyses of the levels of reactive species (ROS), thiobarbituric acid reactive substances (TBARS), catalase (CAT) and superoxide dismutase (SOD) activity was carried out, as well as an evaluation of the levels of dopamine and acetylcholinesterase (AChE) activity, in the head of flies. Nanoparticles loaded with β-carotene were able to improve motor function, memory, survival and also restored the oxidative stress indicators (CAT, SOD, ROS and TBARS), dopamine levels, AChE activity after exposure to rotenone. Overall, nanoparticles loaded with β-carotene showed significant neuroprotective effect against damage induced by the Parkinson-like disease model, emerging as a possible treatment. Overall, β-carotene-loaded nanoparticles presented significant neuroprotective effect against damage induced by model of Parkinson-like disease, emerging as a possible treatment.
Collapse
Affiliation(s)
- Nathalie Savedra Gomes Chaves
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal do Pampa - Campus Itaqui, 97650-000 Itaqui, RS, Brazil; Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa - Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil
| | - Dieniffer Espinosa Janner
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal do Pampa - Campus Itaqui, 97650-000 Itaqui, RS, Brazil; Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa - Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil
| | - Marcia Rósula Poetini
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal do Pampa - Campus Itaqui, 97650-000 Itaqui, RS, Brazil; Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa - Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil
| | - Eliana Jardim Fernandes
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal do Pampa - Campus Itaqui, 97650-000 Itaqui, RS, Brazil; Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa - Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil
| | - Francielli Polet de Almeida
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal do Pampa - Campus Itaqui, 97650-000 Itaqui, RS, Brazil; Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa - Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil
| | - Elize Aparecida Santos Musachio
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal do Pampa - Campus Itaqui, 97650-000 Itaqui, RS, Brazil; Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa - Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil
| | - Jocemara Corrêa Reginaldo
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal do Pampa - Campus Itaqui, 97650-000 Itaqui, RS, Brazil
| | - Mustafa Munir Mustafa Dahleh
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal do Pampa - Campus Itaqui, 97650-000 Itaqui, RS, Brazil
| | - Amarilis Santos de Carvalho
- Programa de Pós-Graduação em Tecnologia de Alimentos, Universidade Tecnológica Federal do Paraná - Campus Campo Mourão, 87301-006 Campo Mourão, PR, Brazil
| | - Fernanda Vitória Leimann
- Programa de Pós-Graduação em Tecnologia de Alimentos, Universidade Tecnológica Federal do Paraná - Campus Campo Mourão, 87301-006 Campo Mourão, PR, Brazil
| | - Odinei Hess Gonçalves
- Programa de Pós-Graduação em Tecnologia de Alimentos, Universidade Tecnológica Federal do Paraná - Campus Campo Mourão, 87301-006 Campo Mourão, PR, Brazil
| | - Bruna Piaia Ramborger
- Grupo Interdisciplinar de Pesquisa em Prática de Ensino (GIPPE), Universidade Federal do Pampa - Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil
| | - Rafael Roehrs
- Grupo Interdisciplinar de Pesquisa em Prática de Ensino (GIPPE), Universidade Federal do Pampa - Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil
| | - Marina Prigol
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal do Pampa - Campus Itaqui, 97650-000 Itaqui, RS, Brazil; Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa - Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil
| | - Gustavo Petri Guerra
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal do Pampa - Campus Itaqui, 97650-000 Itaqui, RS, Brazil; Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa - Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil.
| |
Collapse
|
12
|
Kaimal AM, Singhal RS. A bigel based formulation protects lutein better in the gastric environment with controlled release and antioxidant profile than other gel based systems. Food Chem 2023; 423:136304. [PMID: 37159969 DOI: 10.1016/j.foodchem.2023.136304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 05/11/2023]
Abstract
Gel based formulations offer an opportunity to fortify bioactives in food. However, a comparative evaluation of gel systems is scantly available. Thus, this study intended to evaluate the impact of various gel formulations (hydrogel, oleogel, emulsion gel, bigels of different compositions) on the delivery and antioxidant activity of lutein. Ethyl cellulose (EC,15 %w/w) and guar-xanthan gum mixture (1:1,1.5 %w/w) was used as oleogelator and hydrogelator, respectively. The microscopic evaluation indicated an oil-based continuous-phase for bigel with 75% oleogel. An increase in oleogel content enhanced textural and rheological properties. An increase in hydrogel composition (25%-75%) of bigel improved the lutein release (70.4%-83.2%). The highest release of lutein was recorded for emulsion gel (84.9%) and bigel with 25% oleogel (83.2%). The antioxidant activity was comparatively lower in gastric medium than simulated intestinal fluid. It could be inferred that the gel matrix significantly affected the lutein release, antioxidant profile, physiochemical and mechanical characteristics.
Collapse
Affiliation(s)
- Admajith M Kaimal
- Department of Food Engineering and Technology, Institute of Chemical Technology, ICT-IOC Campus, Bhubaneswar 751013, India.
| | - Rekha S Singhal
- Department of Food Engineering and Technology, Institute of Chemical Technology, Matunga (E), Mumbai 400 019, India
| |
Collapse
|
13
|
Bioactive Compounds in Extracts from the Agro-Industrial Waste of Mango. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010458. [PMID: 36615647 PMCID: PMC9823791 DOI: 10.3390/molecules28010458] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023]
Abstract
Mango by-products are important sources of bioactive compounds generated by agro-industrial process. During mango processing, 35-60% of the fruit is discarded, in many cases without treatment, generating environmental problems and economic losses. These wastes are constituted by peels and seeds (tegument and kernel). The aim of this review was to describe the extraction, identification, and quantification of bioactive compounds, as well as their potential applications, published in the last ten years. The main bioactive compounds in mango by-products are polyphenols and carotenoids, among others. Polyphenols are known for their high antioxidant and antimicrobial activities. Carotenoids show provitamin A and antioxidant activity. Among the mango by-products, the kernel has been studied more than tegument and peels because of the proportion and composition. The kernel represents 45-85% of the seed. The main bioactive components reported for the kernel are gallic, caffeic, cinnamic, tannic, and chlorogenic acids; methyl and ethyl gallates; mangiferin, rutin, hesperidin, and gallotannins; and penta-O-galloyl-glucoside and rhamnetin-3-[6-2-butenoil-hexoside]. Meanwhile, gallic acid, ferulic acid, and catechin are reported for mango peel. Although most of the reports are at the laboratory level, they include potential applications in the fields of food, active packaging, oil and fat, and pharmaceutics. At the market level, two trends will stimulate the industrial production of bioactive compounds from mango by-products: the increasing demand for industrialized fruit products (that will increase the by-products) and the increase in the consumption of bioactive ingredients.
Collapse
|
14
|
Complexation of anthocyanins, betalains and carotenoids with biopolymers: An approach to complexation techniques and evaluation of binding parameters. Food Res Int 2023; 163:112277. [PMID: 36596187 DOI: 10.1016/j.foodres.2022.112277] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/22/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022]
Abstract
Natural pigments are bioactive compounds that can present health-promoting bioactivities in the human body. Due to their strong coloring properties, these compounds have been widely used as color additives as an alternative to artificial colorants. However, since these pigments are unstable under certain conditions, such as the presence of light, oxygen, and heat, the use of complexation and encapsulation techniques with biopolymers is in demand. Moreover, some functional properties can be achieved by using natural pigments-biopolymers complexes in food matrices. The complexation and encapsulation of natural pigments with biopolymers consist of forming a complex with the aim to make these compounds less susceptible to oxidative and degrading agents, and can also be used to improve their solubility in different media. This review aims to discuss different techniques that have been used over the last years to create natural pigment-biopolymers complexes, as well as the recent advances, limitations, effects, and possible applications of these complexes in foods. Moreover, the understanding of thermodynamic parameters between natural pigments and biopolymers is very important regarding the complex formation and their use in food systems. In this sense, thermodynamic techniques that can be used to determine binding parameters between natural pigments and potential wall materials, as well as their applications, advantages, and limitations are presented in this work. Several studies have shown an improvement in many aspects regarding the use of these complexes, including increased thermal and storage stability. Nonetheless, data regarding the biological effects on the human body and the sensory acceptance of natural pigments-biopolymers complexes in food systems are scarce in the literature.
Collapse
|
15
|
Zacarías-García J, Pérez-Través L, Gil JV, Rodrigo MJ, Zacarías L. Bioactive Compounds, Nutritional Quality and Antioxidant Capacity of the Red-Fleshed Kirkwood Navel and Ruby Valencia Oranges. Antioxidants (Basel) 2022; 11:1905. [PMID: 36290628 PMCID: PMC9598057 DOI: 10.3390/antiox11101905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/28/2022] Open
Abstract
Kirkwood Navel and Ruby Valencia are two spontaneous bud-mutations of the ordinary Washington Navel and Valencia late oranges characterized by the red coloration of their flesh. The purpose of this study was to analyze the physiological features, internal fruit quality, contents of relevant bioactive compounds and antioxidant capacity in the pulps of the red-fleshed fruits compared with the ordinary oranges during late development and maturation. In general, the content of sugars, organic acids, vitamin C, tocopherols, total phenolics and flavonoids, the hydrophilic antioxidant capacity and their changes during maturation were similar in the red-fleshed oranges and in the corresponding blond oranges. However, the mature Ruby fruits contained lower concentrations of sugars, malic and succinic acid and higher levels of citric acid than the ordinary Valencia. The major difference between the pulps of the Kirkwood and Ruby oranges and those of the ordinary oranges was the higher lipophilic antioxidant capacity and SOAC (singlet oxygen absorption capacity) of the former. Together, the high and unique content and composition of carotenoids in Kirkwood and Ruby may contribute to an enhanced antioxidant capacity without any detrimental effects on other fruit-quality attributes, making these varieties good sources of phytochemicals for the fresh-fruit and juice-processing citrus industries.
Collapse
Affiliation(s)
- Jaime Zacarías-García
- Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), 46980 Valencia, Spain
| | - Laura Pérez-Través
- Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), 46980 Valencia, Spain
| | - José-Vicente Gil
- Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), 46980 Valencia, Spain
- Food Technology Area, Faculty of Pharmacy, University of Valencia, 46100 Valencia, Spain
| | - María-Jesús Rodrigo
- Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), 46980 Valencia, Spain
| | - Lorenzo Zacarías
- Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), 46980 Valencia, Spain
| |
Collapse
|
16
|
Kluai Hin (Musa sapientum Linn.) peel as a source of functional polyphenols identified by HPLC-ESI-QTOF-MS and its potential antidiabetic function. Sci Rep 2022; 12:4145. [PMID: 35264695 PMCID: PMC8907229 DOI: 10.1038/s41598-022-08008-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/28/2022] [Indexed: 02/04/2023] Open
Abstract
To date, information on the polyphenolic composition of Kluai Hin banana peel and pulp and the potential antidiabetic activity of its major active compounds is limited. This study aimed to identify polyphenols in extracts of fresh and freeze-dried Kluai Hin banana peel and pulp (methanol:water; M:W, 80:20 for flavonoids and acetone:water:acetic acid; A:W:A, 50:49:1 for phenolic acids) by RP-HPLC-DAD and HPLC-ESI-QTOF-MS. Additionally, inhibition of α-amylase and α-glucosidase activities was investigated with crude extracts from Kluai Hin banana peel and pulp, and compared with its major polyphenols ((+)-catechin, (-)-epicatechin and gallic acid) and the antidiabetic drug acarbose. (-)-Gallocatechin was the most abundant polyphenol and was detected in all fresh and freeze-dried pulp and peel extracts by RP-HPLC-DAD. Furthermore, unidentified polyphenol peaks of Kluai Hin were further explored by HPLC-ESI-QTOF-MS. The A:W:A fresh peel extract contained more total phenolic content (811.56 mg GAE/100 g) than the freeze-dried peel (565.03 mg GAE/100 g). A:W:A extraction of the fresh and freeze-dried peel of exhibited IC50 values for α-amylase activity 2.66 ± 0.07 mg/ml and 2.97 ± 0.00 mg/ml, respectively, but its inhibitory activity was lower than acarbose (IC50 = 0.25 ± 0.01 mg/ml). Peel extracts inhibited α-glucosidase activity, whereas pulp extracts had no effect. In addition, all standards, except gallocatechin, activated α-amylase activity, while, gallocatechin inhibited α-glucosidase activity better than acarbose. Therefore, we propose a further investigation into the use of Kluai Hin banana peel as a potential functional food for the management of postprandial glycaemic response to reduce diabetes risk and in the management of diabetes with a commercial drug.
Collapse
|
17
|
A fast and simplified method to estimate bioaccessibility of carotenoids from plant tissues. Methods Enzymol 2022; 674:329-341. [DOI: 10.1016/bs.mie.2021.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Anwar S, Nayak JJ, Alagoz Y, Wojtalewicz D, Cazzonelli CI. Purification and use of carotenoid standards to quantify cis-trans geometrical carotenoid isomers in plant tissues. Methods Enzymol 2022; 670:57-85. [DOI: 10.1016/bs.mie.2022.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
19
|
Zhang Y, Zhang T, Liang Y, Jiang L, Sui X. Dietary Bioactive Lipids: A Review on Absorption, Metabolism, and Health Properties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8929-8943. [PMID: 34161727 DOI: 10.1021/acs.jafc.1c01369] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dietary lipids are an indispensable source of energy and nutrition in human life. Numerous studies have shown that dietary bioactive lipids have many health benefits, including prevention or treatment of chronic diseases. The different chemical compositions and structural characteristics of bioactive lipids not only affect their digestion, absorption, and metabolism but also affect their health properties. In this review, the major dietary bioactive lipids (fatty acids, carotenoids, phytosterols, phenolic lipids, fat-soluble vitamins, and sphingomyelins) in foods are systematically summarized, from the aspects of composition, digestion, absorption, metabolism, source, structural characteristics, and their health properties. In particular, the relationship between the compositional and structural changes of bioactive lipids and their absorption and metabolism is discussed as well as their effect on health properties. This review provides a comprehensive summary toward health properties of dietary bioactive lipids.
Collapse
Affiliation(s)
- Yan Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Tianyi Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Yan Liang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| |
Collapse
|
20
|
Janarny G, Ranaweera K, Gunathilake K. Antioxidant activities of hydro-methanolic extracts of Sri Lankan edible flowers. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
21
|
Flieger J, Flieger W, Baj J, Maciejewski R. Antioxidants: Classification, Natural Sources, Activity/Capacity Measurements, and Usefulness for the Synthesis of Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4135. [PMID: 34361329 PMCID: PMC8347950 DOI: 10.3390/ma14154135] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/15/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023]
Abstract
Natural extracts are the source of many antioxidant substances. They have proven useful not only as supplements preventing diseases caused by oxidative stress and food additives preventing oxidation but also as system components for the production of metallic nanoparticles by the so-called green synthesis. This is important given the drastically increased demand for nanomaterials in biomedical fields. The source of ecological technology for producing nanoparticles can be plants or microorganisms (yeast, algae, cyanobacteria, fungi, and bacteria). This review presents recently published research on the green synthesis of nanoparticles. The conditions of biosynthesis and possible mechanisms of nanoparticle formation with the participation of bacteria are presented. The potential of natural extracts for biogenic synthesis depends on the content of reducing substances. The assessment of the antioxidant activity of extracts as multicomponent mixtures is still a challenge for analytical chemistry. There is still no universal test for measuring total antioxidant capacity (TAC). There are many in vitro chemical tests that quantify the antioxidant scavenging activity of free radicals and their ability to chelate metals and that reduce free radical damage. This paper presents the classification of antioxidants and non-enzymatic methods of testing antioxidant capacity in vitro, with particular emphasis on methods based on nanoparticles. Examples of recent studies on the antioxidant activity of natural extracts obtained from different species such as plants, fungi, bacteria, algae, lichens, actinomycetes were collected, giving evaluation methods, reference antioxidants, and details on the preparation of extracts.
Collapse
Affiliation(s)
- Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland
| | - Wojciech Flieger
- Chair and Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (W.F.); (J.B.); (R.M.)
| | - Jacek Baj
- Chair and Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (W.F.); (J.B.); (R.M.)
| | - Ryszard Maciejewski
- Chair and Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (W.F.); (J.B.); (R.M.)
| |
Collapse
|
22
|
Moltedo A, Álvarez-Sánchez C, Grande F, Charrondiere UR. The complexity of producing and interpreting dietary vitamin A statistics. J Food Compost Anal 2021; 100:103926. [PMID: 34219918 PMCID: PMC8140404 DOI: 10.1016/j.jfca.2021.103926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
38 of 90 food composition tables reviewed report total vitamin A values poorly. Only 9 tables provide total vitamin A values expressed in both RE and RAE. 25 tables provide enough information to calculate total vitamin A in RE and RAE. Consensus on the conversion of pro-vitamin A carotenoids to retinol is needed. Vitamin A adequacy ratios vary with the unit of intake and source of requirements.
Producing, reporting, and interpreting vitamin A statistics present multiple challenges largely attributable to the systems of equivalence used to convert pro-vitamin A carotenoids into retinol equivalents, and to the criteria used by institutions to set recommendations. This study describes the information on total vitamin A, retinol and provitamin A carotenoids available in 90 food composition tables/databases (FCTs/FCDBs). It also evaluates the effect of the definition of vitamin A intake (Retinol Equivalents [RE] or Retinol Activity Equivalents [RAE]) and the source of requirements on the potential contribution of dietary intake to the population’s requirements. We found that 43 percent of the FCTs/FCDBs reviewed, many of them from high-income countries, do not provide total vitamin A or sufficient information for computing it, or present inconsistencies between the metadata and the published values; 9 percent publish total vitamin A in RE and RAE; and 28 percent provide information on retinol and provitamin A carotenoids that enables calculating total vitamin A in both definitions. Vitamin A adequacy ratios are lowest when the consumption unit is RAE and the source of requirements is the US Health and Medicine Division. When the consumption definition is RE, adequacy ratios are higher using FAO/WHO than EFSA requirements. It is imperative to reach consensus on the system of conversion of provitamin A carotenoids into retinol equivalents.
Collapse
Affiliation(s)
- Ana Moltedo
- Statistics Division, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00153, Rome, Italy
| | - Cristina Álvarez-Sánchez
- Statistics Division, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00153, Rome, Italy
| | - Fernanda Grande
- Food and Nutrition Division, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00153, Rome, Italy
| | - U Ruth Charrondiere
- Food and Nutrition Division, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00153, Rome, Italy
| |
Collapse
|
23
|
Stoll L, Domenek S, Hickmann Flôres S, Nachtigall SMB, Oliveira Rios A. Polylactide films produced with bixin and acetyl tributyl citrate: Functional properties for active packaging. J Appl Polym Sci 2021. [DOI: 10.1002/app.50302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Liana Stoll
- Institute of Food Sciences and Technology Federal University of Rio Grande do Sul (UFRGS) Porto Alegre Brazil
| | - Sandra Domenek
- UMR SayFood Université Paris‐Saclay, INRAE, AgroParisTech Massy France
| | - Simone Hickmann Flôres
- Institute of Food Sciences and Technology Federal University of Rio Grande do Sul (UFRGS) Porto Alegre Brazil
| | | | - Alessandro Oliveira Rios
- Institute of Food Sciences and Technology Federal University of Rio Grande do Sul (UFRGS) Porto Alegre Brazil
| |
Collapse
|
24
|
Isomerization and degradation of all-trans-β-carotene during in-vitro digestion. FOOD SCIENCE AND HUMAN WELLNESS 2021. [DOI: 10.1016/j.fshw.2021.02.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
Nascimento REA, Monte J, Cadima M, Alves VD, Neves LA. Rendering Banana Plant Residues into a Potentially Commercial Byproduct by Doping Cellulose Films with Phenolic Compounds. Polymers (Basel) 2021; 13:843. [PMID: 33803474 PMCID: PMC7967194 DOI: 10.3390/polym13050843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/11/2021] [Accepted: 03/04/2021] [Indexed: 01/27/2023] Open
Abstract
This study seeks to render residues from banana plants into a useful byproduct with possible applications in wound dressings and food packaging. Films based on cellulose extracted from banana plant pseudostem and doped with phenolic compounds extracted from banana plant leaves were developed. The phenolic compounds were extracted using batch solid-liquid and Soxhlet methods, with different drying temperatures and periods of time. The total phenolic content and antioxidant activity were quantified. The optimum values were obtained using a three-day period batch-solid extraction at 40 °C (791.74 ± 43.75 mg/L). SEM analysis indicates that the pseudostem (PS) films have a porous structure, as opposed to hydroxyethyl cellulose (HEC) films which presented a homogeneous and dense surface. Mechanical properties confirmed the poor robustness of PS films. By contrast HEC films manifested improved tensile strength at low levels of water activity. FTIR spectroscopy reinforced the need to improve the cellulose extraction process, the success of lignin and hemicellulose removal, and the presence of phenolic compounds. XRD, TGA and contact angle analysis showed similar results for both films, with an amorphous structure, thermal stability and hydrophilic behavior.
Collapse
Affiliation(s)
- Rosa E. A. Nascimento
- LAQV/REQUIMTE, Chemistry Department, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal; (R.E.A.N.); (J.M.); (M.C.)
| | - Joana Monte
- LAQV/REQUIMTE, Chemistry Department, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal; (R.E.A.N.); (J.M.); (M.C.)
| | - Mafalda Cadima
- LAQV/REQUIMTE, Chemistry Department, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal; (R.E.A.N.); (J.M.); (M.C.)
| | - Vítor D. Alves
- LEAF, Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal;
| | - Luísa A. Neves
- LAQV/REQUIMTE, Chemistry Department, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal; (R.E.A.N.); (J.M.); (M.C.)
| |
Collapse
|
26
|
Meléndez-Martínez AJ, Mandić AI, Bantis F, Böhm V, Borge GIA, Brnčić M, Bysted A, Cano MP, Dias MG, Elgersma A, Fikselová M, García-Alonso J, Giuffrida D, Gonçalves VSS, Hornero-Méndez D, Kljak K, Lavelli V, Manganaris GA, Mapelli-Brahm P, Marounek M, Olmedilla-Alonso B, Periago-Castón MJ, Pintea A, Sheehan JJ, Tumbas Šaponjac V, Valšíková-Frey M, Meulebroek LV, O'Brien N. A comprehensive review on carotenoids in foods and feeds: status quo, applications, patents, and research needs. Crit Rev Food Sci Nutr 2021; 62:1999-2049. [PMID: 33399015 DOI: 10.1080/10408398.2020.1867959] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Carotenoids are isoprenoids widely distributed in foods that have been always part of the diet of humans. Unlike the other so-called food bioactives, some carotenoids can be converted into retinoids exhibiting vitamin A activity, which is essential for humans. Furthermore, they are much more versatile as they are relevant in foods not only as sources of vitamin A, but also as natural pigments, antioxidants, and health-promoting compounds. Lately, they are also attracting interest in the context of nutricosmetics, as they have been shown to provide cosmetic benefits when ingested in appropriate amounts. In this work, resulting from the collaborative work of participants of the COST Action European network to advance carotenoid research and applications in agro-food and health (EUROCAROTEN, www.eurocaroten.eu, https://www.cost.eu/actions/CA15136/#tabs|Name:overview) research on carotenoids in foods and feeds is thoroughly reviewed covering aspects such as analysis, carotenoid food sources, carotenoid databases, effect of processing and storage conditions, new trends in carotenoid extraction, daily intakes, use as human, and feed additives are addressed. Furthermore, classical and recent patents regarding the obtaining and formulation of carotenoids for several purposes are pinpointed and briefly discussed. Lastly, emerging research lines as well as research needs are highlighted.
Collapse
Affiliation(s)
- Antonio J Meléndez-Martínez
- Nutrition and Food Science, Toxicology and Legal Medicine Department, Universidad de Sevilla, Sevilla, Spain
| | - Anamarija I Mandić
- Institute of Food Technology in Novi Sad, University of Novi Sad, Novi Sad, Serbia
| | - Filippos Bantis
- Department of Horticulture, Aristotle University, Thessaloniki, Greece
| | - Volker Böhm
- Institute of Nutritional Sciences, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Grethe Iren A Borge
- Fisheries and Aquaculture Research, Nofima-Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Mladen Brnčić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Anette Bysted
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - M Pilar Cano
- Institute of Food Science Research (CIAL) (CSIC-UAM), Madrid, Spain
| | - M Graça Dias
- Instituto Nacional de Saúde Doutor Ricardo Jorge, I.P., Lisboa, Portugal
| | | | - Martina Fikselová
- Department of Food Hygiene and Safety, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | | | | | | | | | - Kristina Kljak
- Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | - Vera Lavelli
- DeFENS-Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - George A Manganaris
- Department of Agricultural Sciences, Biotechnology & Food Science, Cyprus University of Technology, Lemesos, Cyprus
| | - Paula Mapelli-Brahm
- Institute of Food Technology in Novi Sad, University of Novi Sad, Novi Sad, Serbia
| | | | | | | | - Adela Pintea
- Chemistry and Biochemistry Department, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | | | | | | | - Lieven Van Meulebroek
- Department of Veterinary Public Health and Food Safety, Ghent University, Merelbeke, Belgium
| | - Nora O'Brien
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| |
Collapse
|
27
|
Coulombier N, Blanchier P, Le Dean L, Barthelemy V, Lebouvier N, Jauffrais T. The effects of CO 2-induced acidification on Tetraselmis biomass production, photophysiology and antioxidant activity: A comparison using batch and continuous culture. J Biotechnol 2020; 325:312-324. [PMID: 33038474 DOI: 10.1016/j.jbiotec.2020.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/15/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022]
Abstract
A Tetraselmis sp. was selected for its antioxidant activity owing to its high lipid peroxidation inhibition capacity. With the aim to monitor culture conditions to improve antioxidant activity, effects of CO2-induced acidification on Tetraselmis growth, elemental composition, photosynthetic parameters and antioxidant activity were determined. Two pH values were tested (6.5 and 8.5) in batch and continuous cultures in photobioreactors. Acidification enhanced cell growth under both culture methods. However, the microalgae physiological state was healthier at pH 8.5 than at pH 6.5. Indeed, photosynthetic parameters measured with pulse amplitude modulated (PAM) fluorometry showed a decrease in the photosystem II (PSII) efficiency at pH 6.5 in batch culture. Yet, with the exception of the PSII recovering capacity, photosynthetic parameters were similar in continuous culture at both pH. These results suggest that lowering pH through CO2-induced acidification may induce a lower conversion of light to chemical energy especially when coupled with N-limitation and/or under un-balanced culture conditions. The highest antioxidant activity was measured in continuous culture at pH 6.5 with an IC50 of 3.44 ± 0.6 μg mL-1, which is close to the IC50 of reference compounds (trolox and α-tocopherol). In addition, the principal component analysis revealed a strong link between the antioxidant activity and the culture method, the photophysiological state and the nitrogen cell quota and C:N ratio of Tetraselmis sp.. These results highlight Tetraselmis sp. as a species of interest for natural antioxidant production and the potential of PAM fluorometry to monitor culture for production of biomass with a high antioxidant activity.
Collapse
Affiliation(s)
- Noémie Coulombier
- ADECAL Technopole, 1 bis rue Berthelot, 98846, Noumea, New Caledonia, France.
| | - Paul Blanchier
- Ifremer, IRD, Univ Nouvelle-Calédonie, Univ La Réunion, UMR 9220 ENTROPIE, BP 32078, 98800, Nouméa, New Caledonia, France
| | - Loïc Le Dean
- Ifremer, IRD, Univ Nouvelle-Calédonie, Univ La Réunion, UMR 9220 ENTROPIE, BP 32078, 98800, Nouméa, New Caledonia, France
| | - Vanille Barthelemy
- Ifremer, IRD, Univ Nouvelle-Calédonie, Univ La Réunion, UMR 9220 ENTROPIE, BP 32078, 98800, Nouméa, New Caledonia, France
| | - Nicolas Lebouvier
- ISEA, EA7484, Université de la Nouvelle Calédonie, Campus de Nouville, 98851, Nouméa, New Caledonia, France
| | - Thierry Jauffrais
- Ifremer, IRD, Univ Nouvelle-Calédonie, Univ La Réunion, UMR 9220 ENTROPIE, BP 32078, 98800, Nouméa, New Caledonia, France.
| |
Collapse
|
28
|
Zhang C, Khoo SLA, Swedlund P, Ogawa Y, Shan Y, Quek SY. Fabrication of Spray-Dried Microcapsules Containing Noni Juice Using Blends of Maltodextrin and Gum Acacia: Physicochemical Properties of Powders and Bioaccessibility of Bioactives during In Vitro Digestion. Foods 2020; 9:foods9091316. [PMID: 32961991 PMCID: PMC7555337 DOI: 10.3390/foods9091316] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 11/25/2022] Open
Abstract
Microencapsulation of fermented noni juice (FNJ) into powder format could protect bioactive compounds, reduce the unpleasant odour and improve the acceptability for consumers. Blends of maltodextrin (MD) and gum acacia (GA) were used to achieve spray-drying microencapsulation of noni juice at different blending ratios. The physicochemical properties including microstructure, moisture content, water activity, particle size, bulk/tapped density, dissolution rate, ATR-FTIR and the bioaccessibility of bioactive compounds in powders during in vitro digestion were examined. Results showed that blends produced with more GA produced microcapsules with lower moisture content, water activity and bulk/tapped density, but slower powder dissolution. The ATR-FTIR results suggested that there were no significant chemical interactions between the core material and carrier or between the MD and GA in the blend powders. The spray-dried noni juice powder produced using the blends with higher ratio of GA to MD showed a better protection on the bioactive compounds, resulting in a higher bioaccessibility of powders during in vitro digestion. This study provides insights into microencapsulation of noni juice using blends of MD and GA and examines the physicochemical properties and bioaccessibilities of spray-dried powders as affected by the selected carriers.
Collapse
Affiliation(s)
- Chuang Zhang
- Food Science, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand; (C.Z.); (S.L.A.K.); (P.S.)
| | - Siew Lin Ada Khoo
- Food Science, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand; (C.Z.); (S.L.A.K.); (P.S.)
| | - Peter Swedlund
- Food Science, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand; (C.Z.); (S.L.A.K.); (P.S.)
| | - Yukiharu Ogawa
- Graduate School of Horticulture, Chiba University, 648, Matsudo, Matsudo 271-8510, Japan;
| | - Yang Shan
- Hunan Key Lab of Fruits &Vegetables Storage, Processing, Quality and Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Correspondence: (Y.S.); (S.Y.Q.)
| | - Siew Young Quek
- Food Science, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand; (C.Z.); (S.L.A.K.); (P.S.)
- Riddet Institute, Centre of Research Excellence for Food Research, Palmerston North 4474, New Zealand
- Correspondence: (Y.S.); (S.Y.Q.)
| |
Collapse
|
29
|
Zacarías-García J, Rey F, Gil JV, Rodrigo MJ, Zacarías L. Antioxidant capacity in fruit of Citrus cultivars with marked differences in pulp coloration: Contribution of carotenoids and vitamin C. FOOD SCI TECHNOL INT 2020; 27:210-222. [PMID: 32727209 DOI: 10.1177/1082013220944018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The purpose of this study was to evaluate the specific contribution of carotenoids and vitamin C to the lipophilic and hydrophilic antioxidant capacity, respectively, of the pulp of citrus fruits using the genetic diversity in pigmentation and in the carotenoid complement. To this end, six citrus varieties were selected: two mandarins, Clemenules (Citrus clementina) and Nadorcott (C. reticulata); two grapefruits (C. paradisi), Marsh and Star Ruby; and two sweet oranges (C. sinensis), Valencia late and Valencia Ruby. Total carotenoid content and composition in the pulp of fruits were very different, in relation to their color singularities. Valencia Ruby and Nadorcott had the highest carotenoid content, accumulating the former large amounts of linear carotenes (phytoene, phytofluene, and lycopene) and Nadorcott of β-cryptoxanthin. Orange fruits contained the highest amount of vitamin C while in Nadorcott mandarin it was substantially lower. Analysis of antioxidant capacity, evaluated by 2,2'-azino-di-(3-ethylbenzthiazoline sulfonate) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays, in the pulp of the different fruit varieties indicated a high and positive correlation between vitamin C content and hydrophilic antioxidant capacity. Nevertheless, a weak correlation was observed between carotenoids content and lipophilic antioxidant capacity in the pulp extracts assayed by ABTS. Overall, vitamin C in the pulp of citrus fruit had an important contribution to the hydrophilic antioxidant capacity, whereas that of carotenoids to lipophilic antioxidant capacity was very variable, being the highest that of Valencia Ruby orange, with large concentrations of lycopene and phytoene, followed by Nadorcott mandarin, with high β-cryptoxanthin content.
Collapse
Affiliation(s)
- Jaime Zacarías-García
- Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Florencia Rey
- Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - José-Vicente Gil
- Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Valencia, Spain.,Food Technology Area, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - María J Rodrigo
- Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Lorenzo Zacarías
- Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| |
Collapse
|
30
|
Kolawole FL, Balogun MA, Oyeyinka SA, Adejumo RO, Sanni‐Olayiwola HO. Effect of processing methods on the chemical composition and bio‐accessibility of beta‐carotene in orange‐fleshed sweet potato. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fausat L. Kolawole
- Department of Home Economics and Food ScienceUniversity of Ilorin Ilorin Nigeria
| | - Mutiat A. Balogun
- Department of Home Economics and Food ScienceUniversity of Ilorin Ilorin Nigeria
| | - Samson A. Oyeyinka
- Department of Home Economics and Food ScienceUniversity of Ilorin Ilorin Nigeria
- School of Agriculture and Food TechnologyAlafua CampusUniversity of the South Pacific Suva Fiji
| | - Raheemat O. Adejumo
- Department of Home Economics and Food ScienceUniversity of Ilorin Ilorin Nigeria
| | | |
Collapse
|
31
|
Hrichi S, Chaabane-Banaoues R, Giuffrida D, Mangraviti D, Oulad El Majdoub Y, Rigano F, Mondello L, Babba H, Mighri Z, Cacciola F. Effect of seasonal variation on the chemical composition and antioxidant and antifungal activities of Convolvulus althaeoides L. leaf extracts. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
32
|
FTIR-ATR Spectroscopy Combined with Multivariate Regression Modeling as a Preliminary Approach for Carotenoids Determination in Cucurbita spp. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10113722] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Quantitative analysis of carotenoids has been extensively reported using UV-Vis spectrophotometry and chromatography, instrumental techniques that require complex extraction protocols with organic solvents. Fourier transform infrared spectroscopy (FTIR) is a potential alternative for simplifying the analysis of food constituents. In this work, the application of FTIR with attenuated total reflectance (ATR) was evaluated for the determination of total carotenoid content (TCC) in Cucurbita spp. samples. Sixty-three samples, belonging to different cultivars of butternut squash (C. moschata) and pumpkin (C. maxima), were selected and analyzed with FTIR- ATR (attenuated total reflectance). Three different preparation protocols for samples were followed: homogenization (A), freeze-drying (B), and solvent extraction (C). The recorded spectra were used to develop regression models by Partial Least Squares (PLS), using data from TCC, determined by UV-Vis spectrophotometry. The PLS regression model obtained with the FTIR data from the freeze-dried samples, using the spectral range 920–3000 cm−1, had the best figures of merit (R2CAL of 0.95, R2PRED of 0.93 and RPD of 3.78), being reliable for future application in agriculture. This approach for carotenoid determination in pumpkin and squash avoids the use of organic solvents. Moreover, these results are a rationale for further exploring this technique for the assessment of specific carotenoids in food matrices.
Collapse
|
33
|
Zhou YM, Liu XC, Li YQ, Wang P, Han RM, Zhang JP, Skibsted LH. Synergy between plant phenols and carotenoids in stabilizing lipid-bilayer membranes of giant unilamellar vesicles against oxidative destruction. SOFT MATTER 2020; 16:1792-1800. [PMID: 31970380 DOI: 10.1039/c9sm01415b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We have investigated the synergism between plant phenols and carotenoids in protecting the phosphatidylcholine (PC) membranes of giant unilamellar vesicles (GUVs) from oxidative destruction, for which chlorophyll-a (Chl-a) was used as a lipophilic photosensitizer. The effect was examined for seven different combinations of β-carotene (β-CAR) and plant phenols. The light-induced change in GUV morphology was monitored via conventional optical microscopy, and quantified by a dimensionless image-entropy parameter, ΔE. The ΔE-t time evolution profiles exhibiting successive lag phase, budding phase and ending phase could be accounted for by a Boltzmann model function. The length of the lag phase (LP in s) for the combination of syringic acid and β-CAR was more than seven fold longer than for β-CAR alone, and those for other different combinations followed the order: salicylic acid < vanillic acid < syringic acid > rutin > caffeic acid > quercetin > catechin, indicating that moderately reducing phenols appeared to be the most efficient membrane co-stabilizers. The same order held for the residual contents of β-CAR in membranes after light-induced oxidative degradation as determined by resonance Raman spectroscopy. The dependence of LP on the reducing power of phenols coincided with the Marcus theory plot for the rate of electron transfer from phenols to the radical cation β-CAR˙+ as a primary oxidative product, suggesting that the plant phenol regeneration of β-CAR plays an important role in stabilizing the GUV membranes, as further supported by the involvement of CAR˙+ and the distinct shortening of its lifetime as shown by transient absorption spectroscopy.
Collapse
Affiliation(s)
- Yi-Ming Zhou
- Department of Chemistry, Renmin University of China, Beijing, 100872, China.
| | | | | | | | | | | | | |
Collapse
|
34
|
Coulombier N, Nicolau E, Le Déan L, Antheaume C, Jauffrais T, Lebouvier N. Impact of Light Intensity on Antioxidant Activity of Tropical Microalgae. Mar Drugs 2020; 18:E122. [PMID: 32085557 PMCID: PMC7073765 DOI: 10.3390/md18020122] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 02/07/2023] Open
Abstract
Twelve microalgae species isolated in tropical lagoons of New Caledonia were screened as a new source of antioxidants. Microalgae were cultivated at two light intensities to investigate their influence on antioxidant capacity. To assess antioxidant property of microalgae extracts, four assays with different modes of action were used: 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azino-bis (3-éthylbenzothiazoline-6-sulphonique) (ABTS), oxygen radical absorbance capacity (ORAC), and thiobabituric acid reactive substances (TBARS). This screening was coupled to pigment analysis to link antioxidant activity and carotenoid content. The results showed that none of the microalgae studied can scavenge DPPH and ABTS radicals, but Chaetoceros sp., Nephroselmis sp., and Nitzschia A sp. have the capacity to scavenge peroxyl radical (ORAC) and Tetraselmis sp., Nitzschia A sp., and Nephroselmis sp. can inhibit lipid peroxidation (TBARS). Carotenoid composition is typical of the studied microalgae and highlight the siphonaxanthin, detected in Nephroselmis sp., as a pigment of interest. It was found that xanthophylls were the major contributors to the peroxyl radical scavenging capacity measured with ORAC assay, but there was no link between carotenoids and inhibition of lipid peroxidation measured with TBARS assay. In addition, the results showed that light intensity has a strong influence on antioxidant capacity of microalgae: Overall, antioxidant activities measured with ORAC assay are better in high light intensity whereas antioxidant activities measured with TBARS assay are better in low light intensity. It suggests that different antioxidant compounds production is related to light intensity.
Collapse
Affiliation(s)
| | - Elodie Nicolau
- Ifremer, RBE/BRM/PBA, Rue de l’île d’Yeu, 44311 Nantes, France;
| | - Loïc Le Déan
- Ifremer, UMR 9220 ENTROPIE, RBE/LEAD, 101 Promenade Roger Laroque, 98897 Noumea, New Caledonia; (L.L.D.); (T.J.)
| | - Cyril Antheaume
- ISEA, EA7484, Université de Nouvelle Calédonie, Campus de Nouville, 98851 Nouméa, New Caledonia; (C.A.); (N.L.)
| | - Thierry Jauffrais
- Ifremer, UMR 9220 ENTROPIE, RBE/LEAD, 101 Promenade Roger Laroque, 98897 Noumea, New Caledonia; (L.L.D.); (T.J.)
| | - Nicolas Lebouvier
- ISEA, EA7484, Université de Nouvelle Calédonie, Campus de Nouville, 98851 Nouméa, New Caledonia; (C.A.); (N.L.)
| |
Collapse
|
35
|
Sztretye M, Singlár Z, Szabó L, Angyal Á, Balogh N, Vakilzadeh F, Szentesi P, Dienes B, Csernoch L. Improved Tetanic Force and Mitochondrial Calcium Homeostasis by Astaxanthin Treatment in Mouse Skeletal Muscle. Antioxidants (Basel) 2020; 9:antiox9020098. [PMID: 31979219 PMCID: PMC7070261 DOI: 10.3390/antiox9020098] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Astaxanthin (AX) a marine carotenoid is a powerful natural antioxidant which protects against oxidative stress and improves muscle performance. Retinol and its derivatives were described to affect lipid and energy metabolism. Up to date, the effects of AX and retinol on excitation-contraction coupling (ECC) in skeletal muscle are poorly described. METHODS 18 C57Bl6 mice were divided into two groups: Control and AX supplemented in rodent chow for 4 weeks (AstaReal A1010). In vivo and in vitro force and intracellular calcium homeostasis was studied. In some experiments acute treatment with retinol was employed. RESULTS The voltage activation of calcium transients (V50) were investigated in single flexor digitorum brevis isolated fibers under patch clamp and no significant changes were found following AX supplementation. Retinol shifted V50 towards more positive values and decreased the peak F/F0 of the calcium transients. The amplitude of tetani in the extensor digitorum longus was significantly higher in AX than in control group. Lastly, the mitochondrial calcium uptake was found to be less prominent in AX. CONCLUSION AX supplementation increases in vitro tetanic force without affecting ECC and exerts a protecting effect on the mitochondria. Retinol treatment has an inhibitory effect on ECC in skeletal muscle.
Collapse
Affiliation(s)
- Mónika Sztretye
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (M.S.); (Z.S.); (L.S.); (Á.A.); (N.B.); (F.V.); (P.S.); (B.D.)
| | - Zoltán Singlár
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (M.S.); (Z.S.); (L.S.); (Á.A.); (N.B.); (F.V.); (P.S.); (B.D.)
- Doctoral School of Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - László Szabó
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (M.S.); (Z.S.); (L.S.); (Á.A.); (N.B.); (F.V.); (P.S.); (B.D.)
- Doctoral School of Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Ágnes Angyal
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (M.S.); (Z.S.); (L.S.); (Á.A.); (N.B.); (F.V.); (P.S.); (B.D.)
- Doctoral School of Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Norbert Balogh
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (M.S.); (Z.S.); (L.S.); (Á.A.); (N.B.); (F.V.); (P.S.); (B.D.)
- Doctoral School of Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Faranak Vakilzadeh
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (M.S.); (Z.S.); (L.S.); (Á.A.); (N.B.); (F.V.); (P.S.); (B.D.)
- Doctoral School of Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Péter Szentesi
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (M.S.); (Z.S.); (L.S.); (Á.A.); (N.B.); (F.V.); (P.S.); (B.D.)
| | - Beatrix Dienes
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (M.S.); (Z.S.); (L.S.); (Á.A.); (N.B.); (F.V.); (P.S.); (B.D.)
| | - László Csernoch
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (M.S.); (Z.S.); (L.S.); (Á.A.); (N.B.); (F.V.); (P.S.); (B.D.)
- Correspondence: ; Tel.: +36-52-255575; Fax: +36-52-255116
| |
Collapse
|
36
|
Sea Buckthorn Oil as a Valuable Source of Bioaccessible Xanthophylls. Nutrients 2019; 12:nu12010076. [PMID: 31892138 PMCID: PMC7020026 DOI: 10.3390/nu12010076] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 01/28/2023] Open
Abstract
Sea buckthorn oil, derived from the fruits of the shrub, also termed seaberry or sandthorn, is without doubt a strikingly rich source of carotenoids, in particular zeaxanthin and β-carotene. In the present study, sea buckthorn oil and an oil-in-water emulsion were subjected to a simulated gastro-intestinal in vitro digestion, with the main focus on xanthophyll bioaccessibility. Zeaxanthin mono- and di-esters were the predominant carotenoids in sea buckthorn oil, with zeaxanthin dipalmitate as the major compound (38.0%). A typical fatty acid profile was found, with palmitic (49.4%), palmitoleic (28.0%), and oleic (11.7%) acids as the dominant fatty acids. Taking into account the high amount of carotenoid esters present in sea buckthorn oil, the use of cholesterol esterase was included in the in vitro digestion protocol. Total carotenoid bioaccessibility was higher for the oil-in-water emulsion (22.5%) compared to sea buckthorn oil (18.0%) and even higher upon the addition of cholesterol esterase (28.0% and 21.2%, respectively). In the case of sea buckthorn oil, of all the free carotenoids, zeaxanthin had the highest bioaccessibility (61.5%), followed by lutein (48.9%), making sea buckthorn oil a potential attractive source of bioaccessible xanthophylls.
Collapse
|
37
|
Fractionation of Tomato Fruit Chromoplasts. Methods Mol Biol 2019. [PMID: 31745922 DOI: 10.1007/978-1-4939-9952-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Chromoplast differentiation involves an active synthesis of carotenoids associated with the remodeling of the preexisting plastid membrane systems to form specialized structures involved in the sequestration and storage of the synthesized carotenoids. These subplastidial structures show remarkable morphological differences and seem to be adapted to the accumulation of particular carotenoids in some plant species and organs. At present, very little is known about chromoplast biogenesis and the role of the different suborganellar structures in the synthesis and storage of carotenoids. The combination of classical fractionation methods with the use of biochemical and -omics techniques represents an attractive approach to unravel novel aspects related with the biochemical and cellular mechanisms underlying the biogenesis of the structures involved in the biosynthesis and storage of carotenoids during chromoplast differentiation. Here we describe a combined protocol for the isolation, lysis and fractionation of tomato fruit chromoplast. The fractions obtained are suitable for metabolomics and proteomics analysis.
Collapse
|
38
|
Astaxanthin: A Potential Mitochondrial-Targeted Antioxidant Treatment in Diseases and with Aging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3849692. [PMID: 31814873 PMCID: PMC6878783 DOI: 10.1155/2019/3849692] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 08/30/2019] [Indexed: 12/23/2022]
Abstract
Oxidative stress is characterized by an imbalance between prooxidant and antioxidant species, leading to macromolecular damage and disruption of redox signaling and cellular control. It is a hallmark of various diseases including metabolic syndrome, chronic fatigue syndrome, neurodegenerative, cardiovascular, inflammatory, and age-related diseases. Several mitochondrial defects have been considered to contribute to the development of oxidative stress and known as the major mediators of the aging process and subsequent age-associated diseases. Thus, mitochondrial-targeted antioxidants should prevent or slow down these processes and prolong longevity. This is the reason why antioxidant treatments are extensively studied and newer and newer compounds with such an effect appear. Astaxanthin, a xanthophyll carotenoid, is the most abundant carotenoid in marine organisms and is one of the most powerful natural compounds with remarkable antioxidant activity. Here, we summarize its antioxidant targets, effects, and benefits in diseases and with aging.
Collapse
|
39
|
Kan X, Yan Y, Ran L, Lu L, Mi J, Zhang Z, Li X, Zeng X, Cao Y. Ultrasonic-assisted extraction and high-speed counter-current chromatography purification of zeaxanthin dipalmitate from the fruits of Lycium barbarum L. Food Chem 2019; 310:125854. [PMID: 31784067 DOI: 10.1016/j.foodchem.2019.125854] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/23/2019] [Accepted: 10/31/2019] [Indexed: 12/31/2022]
Abstract
Zeaxanthin dipalmitate (ZDP) is a major non-saponified carotenoid in fully ripe fruits of Lycium barbarum L. In the present study, response surface methodology was used to optimize the ultrasonic-assisted extraction (UAE) conditions of carotenoids from the fruits of L. barbarum, and the optimal extraction conditions were determined as follows: ultrasonic power of 360 W, ultrasonic time of 40 min and the ratio of extraction solvent to sample of 30 mL/g. An actual value of ZDP content of 5.40 mg/g and short extraction time indicated the efficiency of UAE. Furthermore, a promising high-speed counter-current chromatography (HSCCC) method was established for the purification of ZDP from the fruits of L. barbarum. With a developed two-phase solvent system composed of n-hexane/dichloromethane/acetonitrile (10/3/7, v/v/v), ZDP with a purity of higher than 95% was successfully isolated from the crude extract. This is the first report on the purification of ZDP by using HSCCC.
Collapse
Affiliation(s)
- Xuhui Kan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Yamei Yan
- National Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, China
| | - Linwu Ran
- Laboratory Animal Center, Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Lu Lu
- National Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, China
| | - Jia Mi
- National Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, China
| | - Zhijuan Zhang
- National Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, China
| | - Xiaoying Li
- National Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Youlong Cao
- National Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, China.
| |
Collapse
|
40
|
Lafrenière J, Couillard C, Lamarche B, Laramée C, Vohl MC, Lemieux S. Associations between self-reported vegetable and fruit intake assessed with a new web-based 24-h dietary recall and serum carotenoids in free-living adults: a relative validation study. J Nutr Sci 2019; 8:e26. [PMID: 31428333 PMCID: PMC6683236 DOI: 10.1017/jns.2019.23] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 12/15/2022] Open
Abstract
The aim of the present study was to assess the relative validity of a new web-based 24-h dietary recall (R24W) in terms of vegetable and fruit (VF) intake assessment using serum carotenoid concentrations as reference biomarkers. A total of seventy-four women and seventy-three men (mean age 47·5 (sd 13·3) years; mean BMI 25·5 (sd 4·4) kg/m2) completed the R24W four times to assess their VF intake. Serum carotenoids were obtained from 12-h fasted blood samples and measured by HPLC. Raw and de-attenuated partial Spearman's correlations were performed to determine how usual vegetable and/or fruit intake was associated with serum carotenoids. Relevant confounders were selected using a stepwise regression analysis. Finally, cross-classification was used to determine agreement between intake of VF and serum carotenoids. Intake of total dietary carotenoids was significantly associated (r 0·40; P < 0·01) with total serum carotenoids (without lycopene). Total VF intake was also associated with total serum carotenoid concentrations without lycopene (r 0·44; P < 0·01). HDL-cholesterol, waist circumference and age were identified as confounders in the association between total VF intake and total serum carotenoids (without lycopene). De-attenuated partial correlation adjusted for these confounders increased the associations between dietary carotenoids and total serum carotenoids without lycopene (r 0·49; P < 0·01) and between total VF intake and total serum carotenoids without lycopene (r 0·48; P < 0·01). Almost 80 % of respondents were classified in the same or the adjacent quartile for total VF intake and total serum carotenoids without lycopene, while less than 6 % were classified in the opposite quartile. Overall, these observations support the appropriateness of the R24W to assess the dietary intake of VF.
Collapse
Affiliation(s)
- J. Lafrenière
- Institute of Nutrition and Functional Foods, School of Nutrition, Laval University, Québec, QC, Canada
| | - C. Couillard
- Institute of Nutrition and Functional Foods, School of Nutrition, Laval University, Québec, QC, Canada
| | - B. Lamarche
- Institute of Nutrition and Functional Foods, School of Nutrition, Laval University, Québec, QC, Canada
| | - C. Laramée
- Institute of Nutrition and Functional Foods, School of Nutrition, Laval University, Québec, QC, Canada
| | - M. C. Vohl
- Institute of Nutrition and Functional Foods, School of Nutrition, Laval University, Québec, QC, Canada
| | - S. Lemieux
- Institute of Nutrition and Functional Foods, School of Nutrition, Laval University, Québec, QC, Canada
| |
Collapse
|
41
|
Haas K, Robben P, Kiesslich A, Volkert M, Jaeger H. Stabilization of Crystalline Carotenoids in Carrot Concentrate Powders: Effects of Drying Technology, Carrier Material, and Antioxidants. Foods 2019; 8:E285. [PMID: 31349652 PMCID: PMC6724047 DOI: 10.3390/foods8080285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 11/16/2022] Open
Abstract
Coloring concentrates of carotenoid-rich plant materials are currently used in the food industry to meet the consumer's demand for natural substitutes for food colorants. The production of shelf-stable powders of such concentrates comes with particular challenges linked to the sensitivity of the active component towards oxidation and the complexity of the composition and microstructure of such concentrates. In this study, different strategies for the stabilization of crystalline carotenoids as part of a natural carrot concentrate matrix during drying and storage were investigated. The evaluated approaches included spray- and freeze drying, the addition of functional additives, and oxygen free storage. Functional additives comprised carrier material (maltodextrin, gum Arabic, and octenyl succinic anhydride (OSA)-modified starch) and antioxidants (mixed tocopherols, sodium ascorbate). Degradation and changes in the physical state of the carotenoid crystals were monitored during processing and storage. Carotenoid losses during processing were low (>5%) irrespective of the used technology and additives. During storage, samples stored in nitrogen showed the highest carotenoid retention (97-100%). The carotenoid retention in powders stored with air access varied between 12.3% ± 2.1% and 66.0% ± 5.4%, having been affected by the particle structure as well as the formulation components used. The comparative evaluation of the tested strategies allows a more targeted design of processing and formulation of functional carrot concentrate powders.
Collapse
Affiliation(s)
- Klara Haas
- Department of Food Science and Technology, University of Natural Resources and Life Sciences (BOKU), 1190 Vienna, Austria.
| | | | | | | | - Henry Jaeger
- Department of Food Science and Technology, University of Natural Resources and Life Sciences (BOKU), 1190 Vienna, Austria
| |
Collapse
|
42
|
Drying Optimisation to Obtain Carotenoid-Enriched Extracts from Industrial Peach Processing Waste (Pomace). BEVERAGES 2019. [DOI: 10.3390/beverages5030043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this study, peach pomace (PP) moisture reduction using conventional oven-drying was investigated by implementing the Box-Behnken experimental design, considering two major process variables, time—t and temperature—T. The purpose was the optimisation of the process to obtain PP extracts as rich as possible in total carotenoids (TCn). It was shown that effective moisture removal up to a final level of approximately 24%, could be achieved after 8.27 h (496 min) at 70 °C. Under these optimised drying conditions, the maximum carotenoid yield was 84.57 ± 8.56 μg CtE g−1 dm. This yield was by almost 63% lower than that achieved using fresh (non-dried) samples. Temperatures higher than 70 °C were demonstrated to be even more detrimental in this regard, yet from the model built, it was made clear that prolonged drying time may bring about a more pronounced negative effect on the total carotenoid yield. The drop in total carotenoid content of PP as a result of drying was accompanied by a significant decline in the antiradical activity of PP extracts.
Collapse
|
43
|
do Nascimento TC, Cazarin CB, Roberto Maróstica M, Risso ÉM, Amaya-Farfan J, Grimaldi R, Mercadante AZ, Jacob-Lopes E, Zepka LQ. Microalgae biomass intake positively modulates serum lipid profile and antioxidant status. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.04.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
44
|
Cipolatti EP, Remedi RD, Sá CDS, Rodrigues AB, Gonçalves Ramos JM, Veiga Burkert CA, Furlong EB, Fernandes de Medeiros Burkert J. Use of agroindustrial byproducts as substrate for production of carotenoids with antioxidant potential by wild yeasts. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101208] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
45
|
Athanase N, Rob M. Gene action and heterosis in F 1 clonal progenies of cassava for β-Carotene and farmers' preferred traits. Heliyon 2019; 5:e01807. [PMID: 31249885 PMCID: PMC6584772 DOI: 10.1016/j.heliyon.2019.e01807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/24/2019] [Accepted: 05/21/2019] [Indexed: 11/26/2022] Open
Abstract
Gene action and heterosis provides information to assist breeder for selecting and generating improved plant recombinants. This study aimed at determining the gene action of selected cassava traits. The F1 clones exhibited considerable phenotypic variability between families and offsprings. The best F1 progenies had a higher amount of β-carotene (β-C) of 6.12 mg 100 g−1 against 1.32 mg 100 g−1 of the best parent. This superiority could be attributed to the over-dominance from the recombination of additive gene action and epistasis. The general combining ability (GCA) of parents and specific combining ability (SCA) of combinations were significant for different traits, and indicating the role of additive and non-additive gene action in controlling such traits. The significant GCA for β-C and postharvest physiological deterioration (PPD) indicates the role of additive gene action. The significant SCA for cassava mosaic disease (CMD) and cassava brown streak disease (CBSD) showed a predominance of non-additive gene action. The F1 progenies from the family Mavoka x Garukunsubire expressed the highest positive heterosis for CMD, dry matter and β-C. The high positive heterosis for β-C and DMC could be linked to transgressive segregation, because one of the parents was poor combiner.
Collapse
Affiliation(s)
- Nduwumuremyi Athanase
- Rwanda Agriculture and Animal Resources Development Board (RAB), Kigali, P.O. Box 5016, Rwanda.,University of KwaZulu-Natal, African Centre for Crop Improvement (ACCI), Scottville, Private Box X01, 3029, South Africa
| | - Melis Rob
- University of KwaZulu-Natal, African Centre for Crop Improvement (ACCI), Scottville, Private Box X01, 3029, South Africa
| |
Collapse
|
46
|
Meléndez-Martínez AJ. An Overview of Carotenoids, Apocarotenoids, and Vitamin A in Agro-Food, Nutrition, Health, and Disease. Mol Nutr Food Res 2019; 63:e1801045. [PMID: 31189216 DOI: 10.1002/mnfr.201801045] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 05/14/2019] [Indexed: 01/05/2023]
Abstract
Carotenoids are fascinating compounds that can be converted into many others, including retinoids that also play key roles in many processes. Although carotenoids are largely known in the context of food science, nutrition, and health as natural colorants and precursors of vitamin A (VA), evidence has accumulated that even those that cannot be converted to VA may be involved in health-promoting biological actions. It is not surprising that carotenoids (most notably lutein) are among the bioactives for which the need to establish recommended dietary intakes have been recently discussed. In this review, the importance of carotenoids (including apocarotenoids) and key derivatives (retinoids with VA activity) in agro-food with relevance to health is summarized. Furthermore, the European Network to Advance Carotenoid Research and Applications in Agro-Food and Health (EUROCAROTEN) is introduced. EUROCAROTEN originated from the Ibero-American Network for the Study of Carotenoids as Functional Food Ingredients (IBERCAROT).
Collapse
Affiliation(s)
- Antonio J Meléndez-Martínez
- Food Colour & Quality Laboratory, Area of Nutrition & Food Science, Universidad de Sevilla, 41012, Seville, Spain
| |
Collapse
|
47
|
Chacón-Ordóñez T, Carle R, Schweiggert R. Bioaccessibility of carotenoids from plant and animal foods. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:3220-3239. [PMID: 30536912 DOI: 10.1002/jsfa.9525] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/18/2018] [Accepted: 12/02/2018] [Indexed: 06/09/2023]
Abstract
The frequent consumption of carotenoid-rich foods has been associated with numerous health benefits, such as the supply of provitamin A. To exert these health benefits, carotenoids need to be efficiently liberated from the food matrix, micellized in the small intestine, taken up by the enterocytes and absorbed into the human blood stream. Enormous efforts have been made to better understand these processes. Because human studies are costly, labor-intense and time-consuming, the evaluation of carotenoid liberation and micellization at the laboratory scale using simulated in vitro digestion models has proven to be an important tool for obtaining preliminary results prior to conducting human studies. In particular, the liberation from the food matrix and the intestinal micellization can be mimicked by simulated digestion, yielding an estimate of the so-called bioaccessibility of a carotenoid. In the present review, we provide an overview of the carotenoid digestion process in vivo, the currently used in vitro digestion models and the outcomes of previous bioaccessibility studies, with a special focus on correlations with concomitantly conducted human studies. Furthermore, we advocate for the on-going requirement of better standardized digestion protocols and, in addition, we provide suggestions for the complementation of the acquired knowledge and current nutritional recommendations. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tania Chacón-Ordóñez
- Institute of Food Science and Biotechnology, Chair Plant Foodstuff Technology and Analysis, University of Hohenheim, Stuttgart, Germany
| | - Reinhold Carle
- Institute of Food Science and Biotechnology, Chair Plant Foodstuff Technology and Analysis, University of Hohenheim, Stuttgart, Germany
- Biological Science Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ralf Schweiggert
- Institute of Food Science and Biotechnology, Chair Plant Foodstuff Technology and Analysis, University of Hohenheim, Stuttgart, Germany
- Analysis and Technology of Plant-based Foods, Department of Beverage Research, Geisenheim University, Geisenheim, Germany
| |
Collapse
|
48
|
Antognoni F, Mandrioli R, Potente G, Taneyo Saa DL, Gianotti A. Changes in carotenoids, phenolic acids and antioxidant capacity in bread wheat doughs fermented with different lactic acid bacteria strains. Food Chem 2019; 292:211-216. [PMID: 31054667 DOI: 10.1016/j.foodchem.2019.04.061] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/08/2019] [Accepted: 04/16/2019] [Indexed: 10/27/2022]
Abstract
Amongst the processing technologies able to improve the functional features of cereal-based foods, sourdough fermentation using Lactic Acid Bacteria (LAB) has been recently rediscovered for its beneficial effects. Wheat (Triticum aestivum L.) bread doughs were prepared using LAB strains belonging to different Lactobacillus species and changes in phenolic acid, carotenoid content and antioxidant capacity were evaluated. Two L. plantarum strains out of six were able to significantly increase carotenoid content in the dough, suggesting that a higher mobilization/solubilisation of these antioxidant compounds occurs. Within different fractions (free, soluble-conjugated, insoluble-bound), the relative distribution of ferulic acid and antioxidant activity changes depending on the specific strain. Overall, results indicate that some LAB strains cause in situ changes, significantly increasing the content of functional compounds in doughs during fermentation. This, in turn, could improve the functional features of bakery foods characterised by a high content in carotenoids and other bioactive compounds.
Collapse
Affiliation(s)
- Fabiana Antognoni
- Department for Life Quality Studies, University of Bologna, Corso d'Augusto 237, 47921 Rimini, Italy.
| | - Roberto Mandrioli
- Department for Life Quality Studies, University of Bologna, Corso d'Augusto 237, 47921 Rimini, Italy.
| | - Giulia Potente
- Department for Life Quality Studies, University of Bologna, Corso d'Augusto 237, 47921 Rimini, Italy
| | - Danielle Laure Taneyo Saa
- Department of Agricultural and Food Sciences and Technologies, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| | - Andrea Gianotti
- Department of Agricultural and Food Sciences and Technologies, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy.
| |
Collapse
|
49
|
Piovesana A, Rodrigues E, Noreña CPZ. Composition analysis of carotenoids and phenolic compounds and antioxidant activity from hibiscus calyces (Hibiscus sabdariffa L.) by HPLC-DAD-MS/MS. PHYTOCHEMICAL ANALYSIS : PCA 2019; 30:208-217. [PMID: 30426586 DOI: 10.1002/pca.2806] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 08/17/2018] [Accepted: 10/02/2018] [Indexed: 06/09/2023]
Abstract
INTRODUCTION The hibiscus flower has received increasing interest because it contains high levels of bioactive compounds with remarkable functional properties. To the best of our knowledge, for the first time a detailed description of the carotenoid composition of hibiscus calyces is reported. OBJECTIVES Identification and quantification of carotenoids, phenolic compounds and antioxidant activity from hibiscus calyces. MATERIAL AND METHODS The composition of the carotenoids and phenolic compounds from hibiscus calyces was determined by high-performance liquid chromatography coupled to a diode array detector and tandem mass spectrometry (HPLC-DAD-MS/MS). Antioxidant activity was assessed using 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging and hydroxyl radicals scavenging assays. RESULTS Twenty-one carotenoids were found and from these compounds 15 were identified or tentatively identified. The major carotenoids were all-trans-lutein (316.43 ± 19.92 μg/100 g) and all-trans-β-carotene (147.76 ± 5.59 μg/100 g). Twenty phenolic compounds were found, from which 14 compounds were identified or tentatively identified. The major phenolic compounds were delphinidin 3-sambubioside (218.17 ± 12.69 mg/100 g) and 3-caffeoylquinic acid (79.22 ± 7.01 mg/100 g), representing almost 60% (w/w) of the total phenolic compounds from hibiscus calyces. The hibiscus presented low vitamin A activity, measure as retinol activity equivalent (13.52 μg/100 g). The scavenging activity of ABTS and hydroxyl radicals were 7.8 μmol Trolox equivalent/g and 81%, respectively. CONCLUSION In this study we have shown that the hibiscus calyces can be considered as a food rich in lutein, chlorogenic acids and anthocyanins (delphinidin 3-sambubioside).
Collapse
Affiliation(s)
- Alessandra Piovesana
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Eliseu Rodrigues
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | |
Collapse
|
50
|
Chung RW, Leanderson P, Gustafsson N, Jonasson L. Liberation of lutein from spinach: Effects of heating time, microwave-reheating and liquefaction. Food Chem 2019; 277:573-578. [DOI: 10.1016/j.foodchem.2018.11.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/09/2018] [Accepted: 11/03/2018] [Indexed: 01/23/2023]
|