1
|
Wang Y, Gesang Y, Wang Y, Yang Z, Zhao K, Liu J, Li C, Ouzhu L, Wang H, Chen Y, Jiang Q. Source and health risk of urinary neonicotinoids in Tibetan pregnant women. CHEMOSPHERE 2024; 349:140774. [PMID: 38016522 DOI: 10.1016/j.chemosphere.2023.140774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/16/2023] [Accepted: 11/19/2023] [Indexed: 11/30/2023]
Abstract
High altitude could influence the level of exposure to neonicotinoids, but relevant data remain limited for people living in Tibet. We investigated 476 Tibetan pregnant women from Lhasa of Tibet, China in 2021 and measured eight neonicotinoids and four metabolites in urine. Food consumption was investigated by a food frequency questionnaire. Health risk was assessed by using hazard quotient (HQ) and hazard index (HI) based on acceptable daily dose or chronic reference dose. Neonicotinoids and metabolites were overall detected in 56.5% of urine samples with a median concentration being 0.73 μg g-1 creatinine. Four neonicotinoids or metabolites were detected in more than 10% of urine samples, including N-desmethyl-acetamiprid (47.5%), clothianidin (15.5%), thiamethoxam (16.0%), and imidacloprid (10.5%). Annual household income, family smoking, and pre-pregnancy body mass index were associated with the detection frequencies of neonicotinoids. Pregnant women with a higher consumption frequency of wheat, rice, fresh vegetable, fresh fruit, beef and mutton, fresh milk, yoghourt, candy and chocolate, or carbonated drinks had a higher detection frequency of neonicotinoids. Both HQ and HI were less than one. There was an evident exposure to neonicotinoids in Tibetan pregnant women with both plant- and animal-derived food items as exposure sources, but a low health risk was found based on current safety thresholds.
Collapse
Affiliation(s)
- Yuanping Wang
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai, 200032, China
| | - Yangzong Gesang
- Department of Science and Education, Tibet Autonomous Region People's Hospital, Lhasa, 850000, China
| | - Yi Wang
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai, 200032, China
| | - Zichen Yang
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai, 200032, China
| | - Ke Zhao
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai, 200032, China
| | - Jiaqi Liu
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai, 200032, China
| | - Chunxia Li
- Obstetrics and Gynecology Department, Fukang Hospital, Affiliated Hospital of Tibet University, Lhasa, Tibet, 850000, China
| | - Luobu Ouzhu
- Administrative Department, Fukang Hospital, Affiliated Hospital of Tibet University, Lhasa, Tibet, 850000, China
| | - Hexing Wang
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai, 200032, China.
| | - Yue Chen
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1G5Z3, Canada
| | - Qingwu Jiang
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
2
|
Duttagupta S, Nynas K, Richardot W, Salam SB, Pennington M, Wong J, Van De Werfhorst LC, Dodder NG, Novotny T, Sant K, Holden PA, Hoh E. Influence of tobacco product wastes in a protected coastal reserve adjacent to urbanization. MARINE POLLUTION BULLETIN 2024; 199:115929. [PMID: 38141586 DOI: 10.1016/j.marpolbul.2023.115929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/28/2023] [Accepted: 12/11/2023] [Indexed: 12/25/2023]
Abstract
The present study, conducted at the Kendall-Frost Mission Bay Marsh Reserve in San Diego, California, aimed to assess tobacco-related pollutants in urban waters, a topic with limited prior research. Across 26 events occurring between November 2019 and February 2022, encompassing both wet and dry seasons at two outfall sites (Noyes St. and Olney St.), water and sediment samples were subjected to analysis for nicotine and cotinine levels, with Noyes St. displaying wide variation in nicotine concentrations, reaching a peak of 50.75 ng/L in water samples, whereas Olney St. recorded a peak of 1.46 ng/L. Wet seasons consistently had higher nicotine levels in water, suggesting the possibility of tobacco litter entering the reserve through stormwater runoff. Cotinine was detected in both sites in both water and sediment samples; however, these levels were considerably lower in comparison to nicotine concentrations. Limited research assesses aquatic environmental pollution from tobacco use and disposal, especially in protected areas like urban natural reserves. This study was conducted at the Kendall-Frost Mission Bay Marsh Reserve in San Diego, California, to evaluate tobacco-related pollutants in San Diego's urban waters. Twenty-six sampling events between November 2019 and February 2022, spanning wet and dry seasons at two outfall sites, were conducted. Nicotine and cotinine, a major ingredient of tobacco and its metabolite, were analyzed in the collected water and sediment samples. Nicotine concentrations differed substantially between the outfall locations (Noyes St. and Olney St.), with Noyes St. displaying wide variations, averaging at 9.31 (±13.24) ng/L with a maximum concentration of 50.75 ng/L, and Olney St. at 0.53 (±0.41) ng/L with a maximum concentration of 1.46 ng/L in water samples. In both locations, the nicotine concentrations in water samples were higher during wet seasons than dry seasons, and this pattern was more significant at Noyes St. outfall than at Olney St. outfall, which received not only stormwater runoff but also was connected to Mission Bay. Although this pattern did not directly align with sediment nicotine levels at both sites, maximum nicotine concentration in Noyes St. sediments during wet seasons was approximately 120 times higher than in Olney St. sediments. Regarding cotinine, Noyes St. outfall water averaged 3.17 ng/L (±1.88), and Olney St. water averaged 1.09 ng/L (±1.06). Similar to nicotine, the cotinine concentrations were higher in Noyes St. water and sediment compared to Olney St., but overall, the cotinine concentrations in both water and sediment were much lower than the corresponding nicotine concentrations. The study identifies urban stormwater runoff as a potential source of nicotine and cotinine pollution in a protected reserve, implicating tobacco product litter and human tobacco use as contributing factors.
Collapse
Affiliation(s)
- Srimanti Duttagupta
- School of Public Health, San Diego State University, San Diego, CA 92182, USA; Department of Geology, University of Georgia, Athens, GA 30602, USA
| | - Katelyn Nynas
- School of Public Health, San Diego State University, San Diego, CA 92182, USA
| | - William Richardot
- School of Public Health, San Diego State University, San Diego, CA 92182, USA; San Diego State University Research Foundation, San Diego, CA 92182, USA
| | - Shahrin Binte Salam
- School of Public Health, San Diego State University, San Diego, CA 92182, USA
| | - Melissa Pennington
- School of Public Health, San Diego State University, San Diego, CA 92182, USA
| | - Jade Wong
- School of Public Health, San Diego State University, San Diego, CA 92182, USA
| | - Laurie C Van De Werfhorst
- Bren School of Environmental Science and Management, University of California, Santa Barbara, CA 93106, USA
| | - Nathan G Dodder
- School of Public Health, San Diego State University, San Diego, CA 92182, USA; San Diego State University Research Foundation, San Diego, CA 92182, USA
| | - Thomas Novotny
- School of Public Health, San Diego State University, San Diego, CA 92182, USA
| | - Karilyn Sant
- School of Public Health, San Diego State University, San Diego, CA 92182, USA
| | - Patricia A Holden
- Bren School of Environmental Science and Management, University of California, Santa Barbara, CA 93106, USA
| | - Eunha Hoh
- School of Public Health, San Diego State University, San Diego, CA 92182, USA.
| |
Collapse
|
3
|
Yuan X, Kim CJ, Noh HH. An LC-MS/MS Method for the Simultaneous Analysis of 380 Pesticides in Soybeans, Kidney Beans, Black Soybeans, and Mung Beans: The Effect of Bean Grinding on Incurred Residues and Partitioning. Foods 2023; 12:4477. [PMID: 38137280 PMCID: PMC10742660 DOI: 10.3390/foods12244477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
The significance of sample grinding is frequently disregarded during the development of analytical methods, which are often validated with spiked samples that may not accurately reflect incurred residues. This study investigated the particle size of ground beans as a key factor in optimizing extraction efficiency in order to develop a simple quick, easy, cheap, effective, rugged, and safe (QuEChERS)-based modified method for identifying 380 pesticides in beans using liquid chromatography-tandem mass spectrometry. The efficacy of pesticide extraction was found to be significantly affected by particle size. With small particle sizes (>40 mesh), no supernatant was recovered after QuEChERS partitioning. Therefore, a simple modification was performed before partitioning. The modified method was validated for selective extraction of pesticides, limits of quantification, linearity, accuracy, and precision. This method is simple to implement and, therefore, useful for the analysis of pesticide residues in beans.
Collapse
Affiliation(s)
| | | | - Hyun Ho Noh
- Residual Agrochemical Assessment Division, Department of Agro-Food Safety and Crop Protection, National Institute of Agricultural Sciences, Wanju 55365, Republic of Korea; (X.Y.); (C.J.K.)
| |
Collapse
|
4
|
Screening for pesticide residues in cocoa (Theobroma cacao L.) by portable infrared spectroscopy. Talanta 2023; 257:124386. [PMID: 36858014 DOI: 10.1016/j.talanta.2023.124386] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/20/2023]
Abstract
Rapid assessment of pesticide residues ensures cocoa bean quality and marketability. In this study, a portable FTIR instrument equipped with a triple reflection attenuated total reflectance (ATR) accessory was used to screen cocoa beans for pesticide residues. Cocoa beans (n = 75) were obtained from major cocoa growing regions of Peru and were quantified for pesticides by gas chromatography (GC) or liquid chromatography (LC) coupled with mass spectrometry (MS). The FTIR spectra were used to detect the presence of pesticides in cocoa beans or lipid fraction (butter) by using a pattern recognition (Soft Independent Modeling by Class Analogy, SIMCA) algorithm, which produced a significant discrimination for cocoa nibs (free or with pesticides). The variables related to the class grouping were assigned to the aliphatic (3200-2800 cm-1) region with an interclass distance (ICD) of 3.3. Subsequently, the concentration of pesticides in cocoa beans was predicted using a partial least squares regression analysis (PLSR), using an internal validation of the PLRS model, the cross-validation correlation coefficient (Rval = 0.954) and the cross-validation standard error (SECV = 14.9 mg/kg) were obtained. Additionally, an external validation was performed, obtaining the prediction correlation coefficient (Rpre = 0.940) and the standard error of prediction (SEP = 16.0 μg/kg) with high statistical performances, which demonstrates the excellent predictability of the PLSR model in a similar real application. The developed FTIR method presented limits of detection and quantification (LOD = 9.8 μg/kg; LOQ = 23.1 μg/kg) with four optimum factors (PC). Mid-infrared spectroscopy (MIR) offered a viable alternative for field screening of cocoa.
Collapse
|
5
|
Boateng KO, Dankyi E, Amponsah IK, Awudzi GK, Amponsah E, Darko G. Knowledge, perception, and pesticide application practices among smallholder cocoa farmers in four Ghanaian cocoa-growing regions. Toxicol Rep 2022; 10:46-55. [PMID: 36583134 PMCID: PMC9792701 DOI: 10.1016/j.toxrep.2022.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/20/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Pesticides are widely used in Ghana, especially in cocoa farming. However, the practice is suboptimal and unsupervised. Incorrect use of these chemicals can seriously harm human health, the environment, and economies that rely on these farmers' output. The study assessed cocoa farmers' pesticide knowledge, practices, and risk perception. Four hundred and four cocoa farmers were chosen randomly from 26 communities in four cocoa-growing regions of Ghana to answer questions about their risk knowledge, awareness, and practices, including personal protective equipment, storage and disposal of leftover pesticides, and used containers. The study revealed that 87% of the respondents belonged to cooperatives and certification groups. There was a significant positive relationship between group membership and benefits derived from inputs and training in pesticide use. About 70% of insecticides used were approved by the Ghana Cocoa Board, with neonicotinoids and pyrethroids being the most highly used insecticide classes in cocoa farms. Although farmers claimed adequate pesticide knowledge, this did not translate into practice, with the majority exhibiting improper pesticide storage, application, and disposal practices. Farmers appeared to know a lot but lacked the skills and attitude to put their knowledge to use. The improper practices appear to manifest in a variety of health symptoms experienced by farmers as a result of chemical exposure. The findings from this study suggest that cocoa farmers in Ghana require adequate practical training and support on pesticide use to reduce their associated health risks, protect the environment and ensure sustainable cocoa production in the world's second-largest cocoa bean exporter.
Collapse
Affiliation(s)
- Kwame Osei Boateng
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Ghana
| | - Enock Dankyi
- Department of Chemistry, University of Ghana, Legon, Accra, Ghana
| | - Isaac Kingsley Amponsah
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Ghana
| | | | - Emmanuel Amponsah
- Department of Planning, Kwame Nkrumah University of Science and Technology, Ghana
| | - Godfred Darko
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Ghana
| |
Collapse
|
6
|
A comprehensive review on the pretreatment and detection methods of neonicotinoid insecticides in food and environmental samples. Food Chem X 2022; 15:100375. [PMID: 36211748 PMCID: PMC9532719 DOI: 10.1016/j.fochx.2022.100375] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/07/2022] [Accepted: 06/20/2022] [Indexed: 01/10/2023] Open
Abstract
The metabolism and residue status of neonicotinoids were briefly summarized in this work. Sample pretreatment techniques for the analysis of neonicotinoids were critically discussed. The commonly used detection methods for neonicotinoids residues were also pointed out.
In recent years, the residues of neonicotinoid insecticide in food and environmental samples have attracted extensive attention. Neonicotinoids have many adverse effects on human health, such as cancer, chronic disease, birth defects, and infertility. They have substantial toxicity to some non-target organisms (especially bees). Hence, monitoring the residues of neonicotinoid insecticides in foodstuffs is necessary to guarantee public health and ecological stability. This review aims to summarize and assess the metabolic features, residue status, sample pretreatment methods (solid-phase extraction (SPE), Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS), and some novel pretreatment methods), and detection methods (instrument detection, immunoassay, and some innovative detection methods) for neonicotinoid insecticide residues in food and environmental samples. This review provides detailed references and discussion for the analysis of neonicotinoid insecticide residues, which can effectively promote the establishment of innovative detection methods for neonicotinoid insecticide residues.
Collapse
|
7
|
QuEChERS Method Combined with Gas- and Liquid-Chromatography High Resolution Mass Spectrometry to Screen and Confirm 237 Pesticides and Metabolites in Cottonseed Hull. SEPARATIONS 2022. [DOI: 10.3390/separations9040091] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cottonseed hull is a livestock feed with large daily consumption. If pesticide residues exceed the standard, it is easy for them to be introduced into the human body through the food chain, with potential harm to consumer health. A method for multi-residue analysis of 237 pesticides and their metabolites in cottonseed hull was developed by gas-chromatography and liquid-chromatography time-of-flight mass spectrometry (GC-QTOF/MS and LC-QTOF/MS). After being hydrated, a sample was extracted with 1% acetic acid in acetonitrile, then purified in a clean-up tube containing 400 mg MgSO4, 100 mg PSA, and 100 mg C18. The results showed that this method has a significant effect in removing co-extracts from the oily matrix. The screening detection limit (SDL) was in the range of 0.2–20 μg/kg, and the limit of quantification (LOQ) was in the range of 0.2–20 μg/kg. The recovery was verified at the spiked levels of 1-, 2-, and 10-times LOQ (n = 6), and the 237 pesticides were successfully verified. The percentages of pesticides with recovery in the range of 70–120% were 91.6%, 92.8%, and 94.5%, respectively, and the relative standard deviations (RSDs) of all pesticides were less than 20%. This method was successfully applied to the detection of real samples. Finally, this study effectively reduced the matrix effect of cottonseed hull, which provided necessary data support for the analysis of pesticide residues in oil crops.
Collapse
|
8
|
Development of an isotope dilution liquid chromatography/tandem mass spectrometry method for the accurate determination of neonicotinoid pesticides, imidacloprid, clothianidin, and thiamethoxam in kimchi cabbage reference materials. J Anal Sci Technol 2022. [DOI: 10.1186/s40543-022-00319-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractA method based on isotope dilution liquid chromatography/tandem mass spectrometry (ID-LC/MS/MS) was established as a candidate reference method for accurate determination of neonicotinoid pesticides, imidacloprid, clothianidin, and thiamethoxam in kimchi cabbage. Their deuterated isotopes, imidacloprid-d4, chlothianidin-d3, and thiamethoxam-d4 were used as internal standards. The combination of HLB and Carb solid-phase extraction (SPE) cartridges was used to clean-up kimchi cabbage extracts. The ID-LC/MS/MS conditions were optimized with fortified kimchi cabbage samples for validation. Imidacloprid in the ERM-BC403 cucumber sample (0.627 ± 0.026) mg/kg was analyzed with the developed method, and the measured value (0.604 ± 0.028) mg/kg agreed within their uncertainties. The developed method was employed for the certification of kimchi cabbage reference materials prepared in this laboratory. The measured values of imidacloprid, clothianidin, and thiamethoxam are (0.860 ± 0.020) mg/kg, (0.524 ± 0.012) mg/kg, (0.787 ± 0.014) mg/kg, respectively. The standard deviation of the measured values for ten bottles was < 1%, and the measured values after one year agreed with their first measurements indicating reliable repeatability and reproducibility of the developed method.
Collapse
|
9
|
Yuan B, Zhao D, Lyu W, Yin Z, Kshatriya D, Simon JE, Bello NT, Wu Q. Development and validation of a micro-QuEChERS method with high-throughput enhanced matrix removal followed with UHPLC-QqQ-MS/MS for analysis of raspberry ketone-related phenolic compounds in adipose tissues. Talanta 2021; 235:122716. [PMID: 34517584 DOI: 10.1016/j.talanta.2021.122716] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 11/28/2022]
Abstract
Raspberry ketone (RK) is a major flavor compound in red raspberries, and it has been marketed as a popular weight-loss dietary supplement with high potential in accumulating in fatty tissues. However, challenges in extracting and characterizing RK and its associated phenolic compounds in fatty tissues persist due to the complex matrix effect. In this work, we reported a high-throughput sample preparation method for RK and 25 related phenolic compounds in white adipose tissues using an improved micro-scale QuEChERS (quick, efficient, cheap, easy, rugged and safe) approach with enhanced matrix removal (EMR)-lipid cleanup in 96-well plates, followed by UHPLC-QqQ-MS/MS analysis. The absolute recovery was 73-105% at the extraction step, and achieved 71-96% at the EMR cleanup step. The EMR cleanup removed around 66% of total lipids in the acetonitrile extract as profiled by UHPLC-QTOF-MS/MS. The innovative introduction of a reversed-phase C18 sorbent into the extract significantly improved the analytes' recovery during SpeedVac drying. The final accuracy achieved 80-120% for most analytes. Overall, this newly developed and validated method could serve as a powerful tool for analyzing RK and related phenolic compounds in fatty tissues.
Collapse
Affiliation(s)
- Bo Yuan
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology and Center for Agriculture Food Ecosystems, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ, 08901, USA; Department of Food Science, Rutgers, The State University of New Jersey, 65 Dudley Road, New Brunswick, NJ, 08901, USA
| | - Danyue Zhao
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology and Center for Agriculture Food Ecosystems, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ, 08901, USA; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong.
| | - Weiting Lyu
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology and Center for Agriculture Food Ecosystems, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ, 08901, USA; Department of Medicinal Chemistry, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Zhiya Yin
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology and Center for Agriculture Food Ecosystems, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ, 08901, USA; Department of Food Science, Rutgers, The State University of New Jersey, 65 Dudley Road, New Brunswick, NJ, 08901, USA
| | - Dushyant Kshatriya
- Department of Animal Sciences and Nutritional Sciences, School of Environmental and Biological Sciences,
Rutgers University, 84 Lipman Drive, New Brunswick, NJ, 08901, USA
| | - James E Simon
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology and Center for Agriculture Food Ecosystems, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ, 08901, USA; Department of Medicinal Chemistry, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Nicholas T Bello
- Department of Animal Sciences and Nutritional Sciences, School of Environmental and Biological Sciences,
Rutgers University, 84 Lipman Drive, New Brunswick, NJ, 08901, USA
| | - Qingli Wu
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology and Center for Agriculture Food Ecosystems, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ, 08901, USA; Department of Food Science, Rutgers, The State University of New Jersey, 65 Dudley Road, New Brunswick, NJ, 08901, USA; Department of Medicinal Chemistry, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA.
| |
Collapse
|
10
|
Kaczyński P, Łozowicka B, Perkowski M, Hrynko I, Zoń W. Exposure of wild boars (Sus scrofa L) to neonicotinoid insecticides. CHEMOSPHERE 2021; 279:130519. [PMID: 33862362 DOI: 10.1016/j.chemosphere.2021.130519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/23/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
The aim was to determine, for the first time, concentrations of 7 neonicotinoids (NEOs) and 5 metabolites in Sus scrofa from hunting areas in north-eastern Poland and assess the risk to consumers eating boar meat. 42 wild boar muscle samples were collected over a one-year period. The concentrations of 12 NEOs were determined by a fully validated LC-ESI-MS/MS protocol based on ultrasonic, freezing and cleanup EMR-lipid sample preparation. NEOs were present in over 83% of samples, 17% had no residue, and one pesticide was present in 36% of samples. Most often found were: clothianidin (35%), acetamiprid and imidacloprid (33%), thiacloprid (31%), thiamethoxam (9%), and the average concentrations were (ng g-1): thiacloprid 6.2 > imidacloprid 5.7 > acetamiprid 4.6 > clothianidin 2.2 > thiacloprid 1.6 > thiamethoxam 1.0. Multi-residue samples were found, one with 7 and one with 5 NEOs. Two NEOs were present in 24%; 3 in 39% and 4 in 10% of samples. In the metabolic degradation of acetamiprid, imidacloprid and thiacloprid, it was observed that metabolites account for no more than 8.5% of the measured parent substance. Acetamiprid-n-desmethyl was noted most often (21%). Due to the detection of NEOs in a large proportion of samples, chronic and acute risk assessment were performed. The estimated chronic and acute risk for consumers from NEOs neonicotinoids through the consumption of wild boar was very low and amounted to respectively 0.02% of ADI and 0.86% of ARfD.
Collapse
Affiliation(s)
- Piotr Kaczyński
- Institute of Plant Protection - National Research Institute, Chełmońskiego 22, 15-195, Białystok, Poland.
| | - Bożena Łozowicka
- Institute of Plant Protection - National Research Institute, Chełmońskiego 22, 15-195, Białystok, Poland
| | - Maciej Perkowski
- University of Białystok, Faculty of Law, Department of Public International Law and European Law, Mickiewicza 1, 15-213, Białystok, Poland
| | - Izabela Hrynko
- Institute of Plant Protection - National Research Institute, Chełmońskiego 22, 15-195, Białystok, Poland
| | - Wojciech Zoń
- University of Białystok, Faculty of Law, Department of Public International Law and European Law, Mickiewicza 1, 15-213, Białystok, Poland
| |
Collapse
|
11
|
Zainudin BH, Salleh S, Yaakob AS, Mohamed R. Comprehensive strategy for pesticide residue analysis in cocoa beans through qualitative and quantitative approach. Food Chem 2021; 368:130778. [PMID: 34391100 DOI: 10.1016/j.foodchem.2021.130778] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 01/05/2023]
Abstract
Multiresidue quantitative and qualitative screening method for the analysis of pesticide residues in dried cocoa beans was validated and applied to imported and domestic cocoa beans samples. The quantitative method comprises of 15 pesticides while the screening method covers 110 pesticides of different chemical classes. The method was based on modified QuEChERS (Quick Easy Cheap Efficient Rugged Safe) extraction and detection using triple quadrupole (QQQ-MS) and ion mobility quadrupole time of flight mass spectrometry (IMS-QTOF). The method was quantitatively validated in terms of linearity, limit of quantification (LOQ), specificity, selectivity, accuracy, and precision. On the other hand, screening detection limits were established for 110 pesticides. Finally, the optimized strategy was successfully applied for the routine analysis of pesticide residues in 137 cocoa bean samples and 32% of the total samples were found positive for ametryn, chlorpyrifos, isoprocarb, and metalaxyl.
Collapse
Affiliation(s)
- Badrul Hisyam Zainudin
- Analytical Services Laboratory, Chemistry and Technology Division, Malaysian Cocoa Board, Cocoa Innovation and Technology Centre, Lot 12621 Kawasan Perindustrian Nilai, 71800 Nilai, Negeri Sembilan, Malaysia.
| | - Salsazali Salleh
- Analytical Services Laboratory, Chemistry and Technology Division, Malaysian Cocoa Board, Cocoa Innovation and Technology Centre, Lot 12621 Kawasan Perindustrian Nilai, 71800 Nilai, Negeri Sembilan, Malaysia.
| | - Abdul Syukur Yaakob
- Analytical Services Laboratory, Chemistry and Technology Division, Malaysian Cocoa Board, Cocoa Innovation and Technology Centre, Lot 12621 Kawasan Perindustrian Nilai, 71800 Nilai, Negeri Sembilan, Malaysia.
| | - Rahmat Mohamed
- Analytical Services Laboratory, Chemistry and Technology Division, Malaysian Cocoa Board, Cocoa Innovation and Technology Centre, Lot 12621 Kawasan Perindustrian Nilai, 71800 Nilai, Negeri Sembilan, Malaysia.
| |
Collapse
|
12
|
Nimako C, Ikenaka Y, Akoto O, Bortey-Sam N, Ichise T, Nakayama SMM, Asante KA, Fujioka K, Taira K, Ishizuka M. Human Exposures to Neonicotinoids in Kumasi, Ghana. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:2306-2318. [PMID: 33822397 DOI: 10.1002/etc.5065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/19/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Neonicotinoid insecticides (NNIs) are now popular in many agricultural systems across Africa; however, the extent of human exposures to NNIs in African countries is scarcely reported. The present study evaluates neonicotinoid exposures in the consumer population of Kumasi, a cosmopolitan city in Ghana. A total of 75 human urine samples were collected from healthy volunteers (nonfarmers, aged 13-80 yr) and analyzed with a liquid chromatography electrospray ionization tandem mass spectrometry system. Seven NNIs and 3 NNI metabolites were detected in the following pattern (frequency, median concentration, maximum concentration): N-dm-acetamiprid (94.7%, 0.41 µg/L, 8.79 µg/L) > imidacloprid (70.7%, 0.15 µg/L, 211.62 µg/L) > N-(6-chloro-3-pyridylmethyl)-N-ethyl-N'-methylformamidine (62.2%, 0.43 µg/L, 53.85 µg/L) > 2-[N-(6-chloro-3-pyridylmethyl)-N-ethylamino]-2-(methylimino)acetic acid (56.8%, 0.10 µg/L, 3.53 µg/L) > clothianidin (40%, >limit of quantification [LOQ], 0.45 µg/L) > nitenpyram (18.7%, >LOQ, 0.14 µg/L) ≈ thiamethoxam (18.7%, >LOQ, 0.21 µg/L) > dinotefuran (12.0%, >LOQ, 1.01 µg/L) > acetamiprid (2.7%, >LOQ, 0.08 µg/L) ≈ thiacloprid (2.7%, >LOQ, 0.14 µg/L). Approximately 92% of the subjects were found to be exposed to multiple neonicotinoids simultaneously. The mean, median, and maximum imidacloprid equivalent of the relative potency factor of NNIs were found to be 1.6, 0.5, and 22.52, respectively. The median estimated daily intakes of acetamiprid, imidacloprid, and nitenpyram were 0.47, 1.27, and 0.02 µg/kg/d for females and 0.91, 0.66, and 0.08 µg/kg/d for males, respectively. The maximum daily intakes of all the NNIs were <1% of their chronic reference doses (cRfDs), except for imidacloprid and thiacloprid which recorded maximum daily intakes corresponding to 17.97 and 8.28% of cRfDs, respectively. To the best of our knowledge, the present study is the first biomonitoring report on neonicotinoid insecticides in Africa. Environ Toxicol Chem 2021;40:2306-2318. © 2021 SETAC.
Collapse
Affiliation(s)
- Collins Nimako
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yoshinori Ikenaka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
- Translational Research Unit, Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Osei Akoto
- Chemistry Department, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Nesta Bortey-Sam
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Takahiro Ichise
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Shouta M M Nakayama
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kwadwo A Asante
- Council for Scientific and Industrial Research-Water Research Institute, Achimota-Accra, Ghana
| | - Kazutoshi Fujioka
- Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| | - Kumiko Taira
- Department of Anesthesiology, Tokyo Women's Medical University, Medical Center East, Tokyo, Japan
| | - Mayumi Ishizuka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
13
|
Mahdavi V, Eslami Z, Golmohammadi G, Tajdar-oranj B, Keikavousi Behbahan A, Mousavi Khaneghah A. Simultaneous determination of multiple pesticide residues in Iranian saffron: A probabilistic health risk assessment. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103915] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Revel’skii IA, Chivarzin ME, Gerasimov MA, Frolova AV, Dolgonosov AM, Skalnyi AV, Revel’skii AI, Buryak AK. A New Approach to the Assessment of the Safety of Tea, Coffee, Cocoa, and Vegetable Oils, Based on the Rapid Screening of Samples for the Total Concentration of Fluorine-, Chlorine-, and Bromine-Containing Organic Compounds. JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1134/s1061934821050154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Musarurwa H, Chimuka L, Tavengwa NT. Z-sep+ based QuEChERS technique for the pre-concentration of malathion pesticide in fruits followed by analysis using UV-Vis spectroscopy. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2020; 37:2093-2108. [PMID: 33074788 DOI: 10.1080/19440049.2020.1794054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In this work, the concentrations of malathion in fruits were determined using UV-Vis spectrophotometry prior to pre-concentration using QuEChERS. The Z-sep+/PSA sorbent combination was used for the d-SPE clean-up and extraction was done using acetonitrile during QuEChERS. The absorbance of malathion was measured using a UV-Vis spectrophotometer at a wavelength of 415 nm. The QuEChERS parameters, which included type and volume of extraction solvent, type and mass of sorbents, and centrifugation rate, were optimised prior to application of the developed method to real fruit samples. The linear range was from 0.1 to 0.9 mg kg-1 while the coefficient of determination (R2) was 0.9999. The limit of detection (LOD) for malathion was found to be 0.017 mg kg-1 and the limit of quantification was 0.05 mg kg-1. Orange samples were found to have no malathion residues when the developed method was applied to them while the concentrations of malathion in apple and pear samples were 0.07 mg kg-1 and 0.09 mg kg-1 respectively.
Collapse
Affiliation(s)
- Herbert Musarurwa
- Department of Chemistry, University of Venda , Thohoyandou, South Africa
| | - Luke Chimuka
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand , Johannesburg, South Africa
| | - Nikita T Tavengwa
- Department of Chemistry, University of Venda , Thohoyandou, South Africa
| |
Collapse
|
16
|
Dinh QT, Munoz G, Vo Duy S, Tien Do D, Bayen S, Sauvé S. Analysis of sulfonamides, fluoroquinolones, tetracyclines, triphenylmethane dyes and other veterinary drug residues in cultured and wild seafood sold in Montreal, Canada. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2020.103630] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Ma L, Wang Y, Li H, Peng F, Qiu B, Yang Z. Development of QuEChERS-DLLME method for determination of neonicotinoid pesticide residues in grains by liquid chromatography-tandem mass spectrometry. Food Chem 2020; 331:127190. [DOI: 10.1016/j.foodchem.2020.127190] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 04/02/2020] [Accepted: 05/28/2020] [Indexed: 12/18/2022]
|
18
|
Khanehzar H, Faraji M, Nezhadali A, Yamini Y. Combining of modified QuEChERS and dispersive liquid–liquid microextraction as an efficient sample preparation method for extraction of acetamiprid and imidacloprid from pistachio samples. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-02050-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
19
|
Wu C, Dong F, Mei X, Ning J, She D. Isotope-labeled internal standards and grouping scheme for determination of neonicotinoid insecticides and their metabolites in fruits, vegetables and cereals – A compensation of matrix effects. Food Chem 2020; 311:125871. [DOI: 10.1016/j.foodchem.2019.125871] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/18/2019] [Accepted: 11/05/2019] [Indexed: 10/25/2022]
|
20
|
Rojo-Poveda O, Barbosa-Pereira L, Zeppa G, Stévigny C. Cocoa Bean Shell-A By-Product with Nutritional Properties and Biofunctional Potential. Nutrients 2020; 12:E1123. [PMID: 32316449 PMCID: PMC7230451 DOI: 10.3390/nu12041123] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/11/2020] [Accepted: 04/15/2020] [Indexed: 01/07/2023] Open
Abstract
Cocoa bean shells (CBS) are one of the main by-products from the transformation of cocoa beans, representing 10%‒17% of the total cocoa bean weight. Hence, their disposal could lead to environmental and economic issues. As CBS could be a source of nutrients and interesting compounds, such as fiber (around 50% w/w), cocoa volatile compounds, proteins, minerals, vitamins, and a large spectrum of polyphenols, CBS may be a valuable ingredient/additive for innovative and functional foods. In fact, the valorization of food by-products within the frame of a circular economy is becoming crucial due to economic and environmental reasons. The aim of this review is to look over the chemical and nutritional composition of CBS and to revise the several uses that have been proposed in order to valorize this by-product for food, livestock feed, or industrial usages, but also for different medical applications. A special focus will be directed to studies that have reported the biofunctional potential of CBS for human health, such as antibacterial, antiviral, anticarcinogenic, antidiabetic, or neuroprotective activities, benefits for the cardiovascular system, or an anti-inflammatory capacity.
Collapse
Affiliation(s)
- Olga Rojo-Poveda
- RD3 Department-Unit of Pharmacognosy, Bioanalysis and Drug Discovery, Faculty of Pharmacy, Université libre de Bruxelles, 1050 Brussels, Belgium
- Department of Agriculture, Forestry and Food Sciences (DISAFA), University of Turin, 10095 Grugliasco, Italy
| | - Letricia Barbosa-Pereira
- Department of Agriculture, Forestry and Food Sciences (DISAFA), University of Turin, 10095 Grugliasco, Italy
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Giuseppe Zeppa
- Department of Agriculture, Forestry and Food Sciences (DISAFA), University of Turin, 10095 Grugliasco, Italy
| | - Caroline Stévigny
- RD3 Department-Unit of Pharmacognosy, Bioanalysis and Drug Discovery, Faculty of Pharmacy, Université libre de Bruxelles, 1050 Brussels, Belgium
| |
Collapse
|
21
|
Ling MP, Hsiao HA, Chen SC, Chen WY, Chou WC, Lin YJ, You SH, Yang YF, Lin HC, Chen CY, Lu TH, Liao CM. Assessing dietary exposure risk to neonicotinoid residues among preschool children in regions of Taiwan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:12112-12121. [PMID: 31989497 DOI: 10.1007/s11356-020-07832-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
Neonicotinoids (NEOs) are a class of pesticides widely used worldwide. This study analyzed post-cooking residues of NEO pesticides and assessed their potential health risks for preschool children (0-6 years old) by conducting a total diet study (TDS). It involved food sampling, preparation, analysis of pesticide residues, estimation of food consumption data, and assessment of food safety risks. Food sampling was conducted between March and June 2015. A total of 128 food samples were obtained from 4 parts of Taiwan. After the food had been prepared, the 128 samples were aggregated into 32 composite food items and the NEO residues analyzed. Acetamiprid had the highest detection rate of the NEO residues (59.4%), and the concentrations ranged from not detected to 80.5 μg/kg. The estimated daily intake (EDI) of NEO residues among preschool children was found to be lower than the adjusted acceptable daily intake (ADI) even for highly exposed groups. The results showed that NEO pesticides were primarily detected in preserved fruits, cherry tomato, rape, bell fruit, and baby bok choy. The main health risk posed by detected NEO residues at high consumption rates for preschool children was attributed to acetamiprid (34.20 %ADI) and imidacloprid (23.69 %ADI), respectively. Therefore, this research implicates that the present level of NEO residues in the diets for preschool children in Taiwan does not exceed 100 %ADI.
Collapse
Affiliation(s)
- Min-Pei Ling
- Department of Food Science, National Taiwan Ocean University, Keelung City, 20224, Taiwan
| | - Huai-An Hsiao
- Department of Food Science, National Taiwan Ocean University, Keelung City, 20224, Taiwan
| | - Szu-Chieh Chen
- Department of Public Health, Chung Shan Medical University, Taichung, 40201, Taiwan
- Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung, 40201, Taiwan
| | - Wei-Yu Chen
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-Chun Chou
- Institute of Computational Comparative Medicine, Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Yi-Jun Lin
- Institute of Food Safety and Health Risk Assessment, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Shu-Han You
- Institute of Food Safety and Risk Management, National Taiwan Ocean University, Keelung City, 20224, Taiwan
| | - Ying-Fei Yang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Hsing-Chieh Lin
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Chi-Yun Chen
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Tien-Hsuan Lu
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Chung-Min Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
22
|
Abreu DCP, da Silva Oliveira FA, Vargas EA, Madureira FD, Magalhães EJ, da Silva LP, Saczk AA. Methodology development based on "dilute and shoot" and QuEChERS for determination of multiple mycotoxins in cocoa by LC-MS/MS. Anal Bioanal Chem 2020; 412:1757-1767. [PMID: 32016569 DOI: 10.1007/s00216-020-02390-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/27/2019] [Accepted: 01/06/2020] [Indexed: 11/25/2022]
Abstract
This work proposes an extraction method based on the "dilute and shoot" approach and QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) for the simultaneous determination of 42 mycotoxins (34 quantified and 8 qualitatively studied) in dried cocoa bean samples. The purpose of the developed methodology was the reduction of co-extractives from the matrix and an efficient extraction without a cleanup step, and subsequent analysis by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). In order to obtain the best extraction conditions, gravimetric tests were performed and parameters that influenced the extraction efficiency were evaluated, such as the proportion of extraction phases, amount of salt, acidification, and extraction time. The performance of the developed method was evaluated to ensure its reliability. Considering the recovery range of 70-120% as an accuracy parameter, four of the mycotoxins under study (acetyl T-2, tenuazonic acid, wortmannin, and zearalenone) showed undesirable values at one of the levels evaluated. The repeatability of the method was assessed for 34 mycotoxins by the relative standard deviation (RSD%) of the responses, and all presented satisfactory values. The quantification limits ranged from 1.0 to 33.0 μg kg-1. Modification of the extraction methods made it possible to simultaneously analyze multiple mycotoxins, eliminating the need for the cleanup step, which led to analyte losses. The proposed methodology has a low cost, which makes it advantageous in routine analysis. It also has the potential for scope extension to cocoa-based foods, which are naturally exposed to a greater variety of mycotoxins. Graphical abstract.
Collapse
Affiliation(s)
| | - Fabiano Aurélio da Silva Oliveira
- Laboratory of Quality Control and Food Safety, National Agricultural Laboratory of Minas Gerais, Belo Horizonte, MG, 30380-090, Brazil
| | - Eugenia Azevedo Vargas
- Laboratory of Quality Control and Food Safety, National Agricultural Laboratory of Minas Gerais, Belo Horizonte, MG, 30380-090, Brazil
| | - Fernando Diniz Madureira
- Laboratory of Quality Control and Food Safety, National Agricultural Laboratory of Minas Gerais, Belo Horizonte, MG, 30380-090, Brazil
| | | | - Lucas Pinto da Silva
- Chemistry Department, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | | |
Collapse
|
23
|
Wang Z, Chen J, Zhan T, He X, Wang B. Simultaneous determination of eight neonicotinoid insecticides, fipronil and its three transformation products in sediments by continuous solvent extraction coupled with liquid chromatography-tandem mass spectrometry. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 189:110002. [PMID: 31825794 DOI: 10.1016/j.ecoenv.2019.110002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/20/2019] [Accepted: 11/23/2019] [Indexed: 06/10/2023]
Abstract
Neonicotinoids (NEOs) and fipronil (FIP) are insecticides that are widely used in modern agriculture and have received considerable attention in recent years due to their adverse effects on non-target organisms in the environment. In the present study, a new method to simultaneously detect eight common NEO insecticides and FIP and its three transformation products (FIPs) in sediments was developed using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) based on a combined pretreatment of continuous solvent extraction (CSE) and solid phase extraction (SPE). Under optimized conditions, 5.0 g of freeze-dried sediment samples were initially extracted with methanol (20 mL)-methanol (15 mL)-water (20 mL) in sequence, and then the extract was cleaned with hydrophilic-lypophilic balance SPE cartridges, and HPLC-MS/MS analysis was conducted. The established method was validated to be sensitive, linear, accurate, and precise. The limits of detection (LOD) and limits of quantification (LOQ) of target compounds were 0.012-0.055 μg/kg d.w and 0.031-0.091 μg/kg d.w, respectively. Good linearity (R2 > 0.990) was observed between 4.0 × 10-2 and 20.0 μg/kg d.w. The recovery rates of all target insecticides were between 75.5% and 98.5%, and the relative standard deviations (RSD) were all less than 15.0% at the low, medium, and high spiked levels. Finally, the optimized method was applied to analyze 12 target insecticides in the sediments obtained from Jiaozhou Bay of China and its main inflow rivers. Acetamiprid, thiamethoxam, fipronil sulfide, and fipronil sulfone were detected in the river sediment samples at the concentration from <LOQ to 0.197 μg/kg d.w. Thus, the two types of studied insecticides can enter the sedimentary environment. Overall, the proposed method can be used to investigate the contamination status of typical NEOs and FIP insecticides in sediments and provide base data to comprehensively understand their environmental behavior, safety, and fate.
Collapse
Affiliation(s)
- Zhiwei Wang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China; Key Laboratory of Science and Engineering for Marine Ecology and Environment, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Junhui Chen
- Key Laboratory of Science and Engineering for Marine Ecology and Environment, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071, China
| | - Tianrong Zhan
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xiuping He
- Key Laboratory of Science and Engineering for Marine Ecology and Environment, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071, China.
| | - Baodong Wang
- Key Laboratory of Science and Engineering for Marine Ecology and Environment, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071, China
| |
Collapse
|
24
|
Jiang M, Zhang W, Zhang T, Liang G, Hu B, Han P, Gong W. Assessing transfer of pesticide residues from chrysanthemum flowers into tea solution and associated health risks. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 187:109859. [PMID: 31677573 DOI: 10.1016/j.ecoenv.2019.109859] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
Chrysanthemum (Dendranthema grandiflora) flowers are consumed as a popular, traditional herbal tea worldwide. During tea infusion with hot water pesticide residues in chrysanthemum flowers can be transferred into tea solution, posing potential health risks to consumers. Using greenhouse chrysanthemum this study systematically investigated the transfer of metalaxyl-M, fludioxonil, cyantraniliprole, thiamethoxam, and clothianidin (a major metabolite of thiamethoxam) from dry chrysanthemum flowers to tea solution at a range of infusion repetitions, duration and water temperature. The tested pesticides were released into tea solution at varying degrees, and the maximum transfer percentage was 59.9%, 9.8%, 29.4%, 88.2% and 68.4% for metalaxyl-M, fludioxonil, cyantraniliprole, thiamethoxam, and clothianidin, respectively. The transfer of pesticides into tea solution generally increased with increasing pesticide water solubility, water temperature, infusion duration, and pesticide concentrations in dry chrysanthemum flowers, but decreased with increasing octanol-water partition coefficient and the number of infusion repetitions. Risk quotient for pesticide intake via consuming tea solution of chrysanthemum flowers (one and two times of recommended pesticide dosages) ranged from <0.00003 to 0.0924, indicating a low health risk. This study provides useful information for risk assessment of pesticide residues in greenhouse chrysanthemum flowers and may help establish realistic maximum residue limit of pesticides in chrysanthemum flowers and tea solution.
Collapse
Affiliation(s)
- Mengyun Jiang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China; Beijing Research Center for Agriculture Standards and Testing, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China
| | - Wei Zhang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Tingting Zhang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Gang Liang
- Beijing Research Center for Agriculture Standards and Testing, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China
| | - Bin Hu
- Beijing Plant Protection Station, Beijing, 100029, China
| | - Ping Han
- Beijing Research Center for Agriculture Standards and Testing, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China
| | - Wenwen Gong
- Beijing Research Center for Agriculture Standards and Testing, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China.
| |
Collapse
|
25
|
Recent developments and applications of QuEChERS based techniques on food samples during pesticide analysis. J Food Compost Anal 2019. [DOI: 10.1016/j.jfca.2019.103314] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Hao C, Eng ML, Sun F, Morrissey CA. Part-per-trillion LC-MS/MS determination of neonicotinoids in small volumes of songbird plasma. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 644:1080-1087. [PMID: 30743821 DOI: 10.1016/j.scitotenv.2018.06.317] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 06/09/2023]
Abstract
Neonicotinoids are the most widely used class of insecticides in the world, and there are increasing concerns about their effects on non-target organisms. Analytical methods to diagnose exposure to neonicotinoids in wildlife are still very limited, particularly for small animals such as songbirds. Blood can be used as a non-lethal sampling matrix, but the sample volume is limited by body size. Neonicotinoids have a low bioaccumulation potential and are rapidly metabolized, therefore, sensitive assays are critically needed to reliably detect their residues in blood samples. We developed an efficient LC-MS/MS method at a part-per-trillion (pg/ml) level to measure eight neonicotinoid related insecticides (acetamiprid, clothianidin, dinotefuran, flonicamid, imidacloprid, nitenpyram, thiacloprid and thiamethoxam) plus one metabolite (6-chloronicotinic acid) in small volumes (50 μL) of avian plasma. The average recovery of target compounds ranged from 95.7 to 101.3%, and relative standard deviations were between 0.82 and 2.13%. We applied the method to screen blood samples from 36 seed-eating songbirds (white-crowned sparrows; Zonotrichia leucophrys) at capture, and detected imidacloprid in 78% (28 of 36), thiamethoxam in 22% (8 of 36), thiacloprid in 11% (4 of 36), and acetamiprid in 11% (4 of 36) of wild-caught sparrows. 6 h after capture, birds were orally dosed with 0 (control), 1.2 or 3.9 mg of imidacloprid/kg bw, test results using this method indicated that plasma imidacloprid was significantly elevated (low 26-times, high 316-times) in exposed groups. This is the first study to confirm neonicotinoid exposure in small free-living songbirds through non-lethal blood sampling, and to demonstrate that environmentally realistic doses significantly elevate circulating imidacloprid concentrations. This sensitive method could be applied to characterize exposure to neonicotinoids in free-living wildlife and in toxicological studies.
Collapse
Affiliation(s)
- Chunyan Hao
- Laboratory Services Branch, Ontario Ministry of the Environment and Climate Change, 125 Resources Road, Etobicoke, Ontario M9P 3V6, Canada.
| | - Margaret L Eng
- Toxicology Centre, University of Saskatchewan, 44 Campus Dr, Saskatoon, Saskatchewan, S7N 5B3, Canada
| | - Fengrong Sun
- Laboratory Services Branch, Ontario Ministry of the Environment and Climate Change, 125 Resources Road, Etobicoke, Ontario M9P 3V6, Canada
| | - Christy A Morrissey
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada; School of Environment and Sustainability, University of Saskatchewan, 117 Science Place, Saskatoon, Saskatchewan S7N 5C8, Canada
| |
Collapse
|
27
|
Valverde S, Ares AM, Arribas M, Bernal JL, Nozal MJ, Bernal J. Development and validation of UHPLC–MS/MS methods for determination of neonicotinoid insecticides in royal jelly-based products. J Food Compost Anal 2018. [DOI: 10.1016/j.jfca.2018.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
Zhang Q, Li Z, Chang CH, Lou JL, Zhao MR, Lu C. Potential human exposures to neonicotinoid insecticides: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 236:71-81. [PMID: 29414376 DOI: 10.1016/j.envpol.2017.12.101] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 11/21/2017] [Accepted: 12/25/2017] [Indexed: 05/19/2023]
Abstract
Due to their systemic character and high efficacy to insect controls, neonicotinoid insecticides (neonics) have been widely used in global agriculture since its introduction in early 1990. Recent studies have indicated that neonics may be ubiquitous, have longer biological half-lives in the environment once applied, and therefore implicitly suggested the increasing probability for human exposure to neonics. Despite of neonics' persistent characters and widespread uses, scientific literature in regard of pathways in which human exposure could occur is relatively meager. In this review, we summarized results from peer-reviewed articles published prior to 2017 that address potential human exposures through ingestion and inhalation, as well as results from human biomonitoring studies. In addition, we proposed the use of relative potency factor approach in order to facilitate the assessment of concurrent exposure to a mixture of neonics with similar chemical structures and toxicological endpoints. We believe that the scientific information that we presented in this review will aid to future assessment of total neonic exposure and subsequently human health risk characterization.
Collapse
Affiliation(s)
- Q Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Providence, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston MA, USA
| | - Z Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Providence, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston MA, USA
| | - C H Chang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston MA, USA
| | - J L Lou
- Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, People's Republic of China
| | - M R Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Providence, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
| | - C Lu
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston MA, USA; College of Resources and Environment, Southwest University, Chongqing, 400715, People's Republic of China.
| |
Collapse
|
29
|
Wumbei A, Senaeve D, Houbraken M, Spanoghe P. Pesticides residue analysis in yam from selected markets across Ghana and Belgium: an evaluation of the QUECHERS method. INTERNATIONAL JOURNAL OF FOOD CONTAMINATION 2018. [DOI: 10.1186/s40550-018-0066-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
30
|
Dissipation rate study and pre-harvest intervals calculation of imidacloprid and oxamyl in exported Egyptian green beans and chili peppers after pestigation treatment. Food Chem 2018; 240:1047-1054. [DOI: 10.1016/j.foodchem.2017.08.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/04/2017] [Accepted: 08/10/2017] [Indexed: 11/23/2022]
|
31
|
Determination of acetamiprid, imidacloprid, and spirotetramat and their relevant metabolites in pistachio using modified QuEChERS combined with liquid chromatography-tandem mass spectrometry. Food Chem 2017; 240:634-641. [PMID: 28946322 DOI: 10.1016/j.foodchem.2017.08.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 06/07/2017] [Accepted: 08/02/2017] [Indexed: 11/22/2022]
Abstract
A QuEChERS based methodology was developed for the simultaneous identification and quantification of acetamiprid, imidacloprid, and spirotetramat and their relevant metabolites in pistachio by liquid chromatography-tandem mass spectrometry for the first time. First, sample extraction was done with MeCN:citrate buffer:NaHCO3 followed by phase separation with the addition of MgSO4:NaCl. The supernatant was then cleaned by a primary-secondary amine (PSA), GCB, and MgSO4. The proposed method provides a linearity in the range of 5-200µgL-1, and the linear regression coefficients were higher than 0.99. LOD and LOQ were obtained to be 2 and 5µgkg-1 for the studied insecticides, respectively, with the exception of imidacloprid-olefin (5 and 10µgkg-1). Acceptable recoveries (91-110%) were obtained for all the analytes with good intra- and inter-precisions (0.4≥RSD ≤11.0). The method was then used for the pistachio samples collected from a field trial to estimate the maximum residue limits (MRLs) in next step.
Collapse
|
32
|
Effect of the Storage Conditions (Light and Temperature) on the Detection of Thiamethoxam and Clothianidin Content in Rapeseeds by LC-DAD. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-0986-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
33
|
Xu C, Liao Y, Fang C, Tsunoda M, Zhang Y, Song Y, Deng S. Simultaneous Analysis of Ursolic Acid and Oleanolic Acid in Guava Leaves Using QuEChERS-Based Extraction Followed by High-Performance Liquid Chromatography. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2017; 2017:2984562. [PMID: 28781908 PMCID: PMC5525069 DOI: 10.1155/2017/2984562] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/03/2017] [Accepted: 06/12/2017] [Indexed: 06/07/2023]
Abstract
In this paper, a novel method of QuEChERS-based extraction coupled with high-performance liquid chromatography has been developed for the simultaneous determination of ursolic acid (UA) and oleanolic acid (OA) in guava leaves. The QuEChERS-based extraction parameters, including the amount of added salt, vortex-assisted extraction time, and absorbent amount, and the chromatographic conditions were investigated for the analysis of UA and OA in guava leaves. Under the optimized conditions, the method showed good linearity over a range of 1-320 μg mL-1, with correlation coefficients above 0.999. The limits of detection of UA and OA were 0.18 and 0.36 μg mL-1, respectively. The intraday and interday precision were below 1.95 and 2.55%, respectively. The accuracies of the UA and OA determinations ranged from 97.4 to 111.4%. The contents of UA and OA in the guava leaf samples were 2.50 and 0.73 mg g-1, respectively. These results demonstrate that the developed method is applicable to the simultaneous determination of UA and OA in guava leaves.
Collapse
Affiliation(s)
- Chang Xu
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Department of Pharmaceutical Sciences, College of Marine Science, Hainan University, Haikou 570228, China
| | - Yiyi Liao
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Department of Pharmaceutical Sciences, College of Marine Science, Hainan University, Haikou 570228, China
| | - Chunyan Fang
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Department of Pharmaceutical Sciences, College of Marine Science, Hainan University, Haikou 570228, China
| | - Makoto Tsunoda
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yingxia Zhang
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Department of Pharmaceutical Sciences, College of Marine Science, Hainan University, Haikou 570228, China
| | - Yanting Song
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Department of Pharmaceutical Sciences, College of Marine Science, Hainan University, Haikou 570228, China
| | - Shiming Deng
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Department of Pharmaceutical Sciences, College of Marine Science, Hainan University, Haikou 570228, China
| |
Collapse
|
34
|
Zainudin BH, Salleh S. Method Development, Optimization and Validation of Matrix Hydration Effect on Pesticide Residues in Cocoa Beans Using Modified QuEChERS Method and Gas Chromatography Tandem Mass Spectrometry. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-0954-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Farajzadeh MA, Hojaghan AS, Afshar Mogaddam MR. Development of Heat-Induced Homogeneous Liquid–Liquid Microextraction for Extraction and Preconcentration of Neonicotinoid Insecticides from Fruit Juice and Vegetable Samples. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-0942-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|