1
|
Schneider E, Balasubramanian R, Ferri A, Cotter PD, Clarke G, Cryan JF. Fibre & fermented foods: differential effects on the microbiota-gut-brain axis. Proc Nutr Soc 2024:1-16. [PMID: 39449646 DOI: 10.1017/s0029665124004907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
The ability to manipulate brain function through the communication between the microorganisms in the gastrointestinal tract and the brain along the gut-brain axis has emerged as a potential option to improve cognitive and emotional health. Dietary composition and patterns have demonstrated a robust capacity to modulate the microbiota-gut-brain axis. With their potential to possess pre-, pro-, post-, and synbiotic properties, dietary fibre and fermented foods stand out as potent shapers of the gut microbiota and subsequent signalling to the brain. Despite this potential, few studies have directly examined the mechanisms that might explain the beneficial action of dietary fibre and fermented foods on the microbiota-gut-brain axis, thus limiting insight and treatments for brain dysfunction. Herein, we evaluate the differential effects of dietary fibre and fermented foods from whole food sources on cognitive and emotional functioning. Potential mediating effects of dietary fibre and fermented foods on brain health via the microbiota-gut-brain axis are described. Although more multimodal research that combines psychological assessments and biological sampling to compare each food type is needed, the evidence accumulated to date suggests that dietary fibre, fermented foods, and/or their combination within a psychobiotic diet can be a cost-effective and convenient approach to improve cognitive and emotional functioning across the lifespan.
Collapse
Affiliation(s)
| | - Ramya Balasubramanian
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Cork, Ireland
| | - Aimone Ferri
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Paul D Cotter
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
2
|
Andreozzi V, Cuoco S, Balestrieri M, Fierro F, Ferrara N, Erro R, Di Filippo M, Barbella G, Memoli MC, Silvestri A, Squillante M, Guglielmetti S, Barone P, Iovino P, Pellecchia MT. Synbiotic supplementation may globally improve non-motor symptoms in patients with stable Parkinson's disease: results from an open label single-arm study. Sci Rep 2024; 14:23095. [PMID: 39367119 PMCID: PMC11452401 DOI: 10.1038/s41598-024-74400-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/25/2024] [Indexed: 10/06/2024] Open
Abstract
Gut microbiota changes and brain-gut-axis (BGA) dysregulation are common in people with Parkinson's Disease (PD). Probiotics and prebiotics are emerging as a potential therapeutic approach for PD patients. The aim of this paper was to assess the neurological and gastroenterological effects in PD patients with constipation after the administration of a synbiotic product, with a focus on behavioral and cognitive symptoms. We enrolled patients with stable PD who met diagnostic criteria for functional constipation and/or irritable bowel syndrome with constipation according to Rome IV Criteria. Patients received a synbiotic treatment (Enterolactis Duo, containing the probiotic strain Lacticaseibacillus paracasei DG and the prebiotic fiber inulin) for 12 weeks. A neurological and a gastroenterological evaluation were collected before and after the treatment. In addition, 16S rRNA gene profiling and short chain fatty acid quantification were performed to characterize the microbial ecosystem of fecal samples collected before (n = 22) and after (n = 9) the synbiotic administration. 30 patients were consecutively enrolled. After treatment, patients performed better in MDS-UPDRS part 1 (p = 0.000), SCOPA-AUT (p = 0.001), TAS-20 (p = 0.014), HAM-D (p = 0.026), DIFt (p = 0.003), PAS-A (p = 0.048). Gastroenterological evaluations showed improvements in PAC-SYM score (p < 0.001), number of complete bowel movement (p < 0.001) and BSFS (p < 0.001). After the synbiotic administration, we observed a significant increase in the abundance of the order Oscillospirales, as well as the Oscillospiraceae family and the species Faecalibacterium prausnitzii within this order in fecal samples. Synbiotic treatment demonstrates potential efficacy in ameliorating non-motor features in PD patients.
Collapse
Affiliation(s)
- V Andreozzi
- Department of Medicine Surgery and Dentistry, Scuola Medica Salernitana, Neuroscience Section, University of Salerno, Salerno, Italy
| | - S Cuoco
- Department of Medicine Surgery and Dentistry, Scuola Medica Salernitana, Neuroscience Section, University of Salerno, Salerno, Italy
| | - M Balestrieri
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", Gastrointestinal Unit, University of Salerno, Salerno, Italy
| | - F Fierro
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", Gastrointestinal Unit, University of Salerno, Salerno, Italy
| | - N Ferrara
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", Gastrointestinal Unit, University of Salerno, Salerno, Italy
| | - R Erro
- Department of Medicine Surgery and Dentistry, Scuola Medica Salernitana, Neuroscience Section, University of Salerno, Salerno, Italy
| | - M Di Filippo
- Department of Medicine Surgery and Dentistry, Scuola Medica Salernitana, Neuroscience Section, University of Salerno, Salerno, Italy
| | - G Barbella
- Department of Medicine Surgery and Dentistry, Scuola Medica Salernitana, Neuroscience Section, University of Salerno, Salerno, Italy
| | - M C Memoli
- Department of Medicine Surgery and Dentistry, Scuola Medica Salernitana, Neuroscience Section, University of Salerno, Salerno, Italy
| | - A Silvestri
- Department of Medicine Surgery and Dentistry, Scuola Medica Salernitana, Neuroscience Section, University of Salerno, Salerno, Italy
| | - M Squillante
- Department of Medicine Surgery and Dentistry, Scuola Medica Salernitana, Neuroscience Section, University of Salerno, Salerno, Italy
| | - S Guglielmetti
- μbEat Lab, Department of Biotechnology and Biosciences (BtBs), University of Milano-Bicocca, Milan, Italy
| | - P Barone
- Department of Medicine Surgery and Dentistry, Scuola Medica Salernitana, Neuroscience Section, University of Salerno, Salerno, Italy
| | - P Iovino
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", Gastrointestinal Unit, University of Salerno, Salerno, Italy
| | - M T Pellecchia
- Department of Medicine Surgery and Dentistry, Scuola Medica Salernitana, Neuroscience Section, University of Salerno, Salerno, Italy.
| |
Collapse
|
3
|
Di Chiano M, Sallustio F, Fiocco D, Rocchetti MT, Spano G, Pontrelli P, Moschetta A, Gesualdo L, Gadaleta RM, Gallone A. Psychobiotic Properties of Lactiplantibacillus plantarum in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:9489. [PMID: 39273435 PMCID: PMC11394828 DOI: 10.3390/ijms25179489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Neurodegenerative disorders are the main cause of cognitive and physical disabilities, affect millions of people worldwide, and their incidence is on the rise. Emerging evidence pinpoints a disturbance of the communication of the gut-brain axis, and in particular to gut microbial dysbiosis, as one of the contributors to the pathogenesis of these diseases. In fact, dysbiosis has been associated with neuro-inflammatory processes, hyperactivation of the neuronal immune system, impaired cognitive functions, aging, depression, sleeping disorders, and anxiety. With the rapid advance in metagenomics, metabolomics, and big data analysis, together with a multidisciplinary approach, a new horizon has just emerged in the fields of translational neurodegenerative disease. In fact, recent studies focusing on taxonomic profiling and leaky gut in the pathogenesis of neurodegenerative disorders are not only shedding light on an overlooked field but are also creating opportunities for biomarker discovery and development of new therapeutic and adjuvant strategies to treat these disorders. Lactiplantibacillus plantarum (LBP) strains are emerging as promising psychobiotics for the treatment of these diseases. In fact, LBP strains are able to promote eubiosis, increase the enrichment of bacteria producing beneficial metabolites such as short-chain fatty acids, boost the production of neurotransmitters, and support the homeostasis of the gut-brain axis. In this review, we summarize the current knowledge on the role of the gut microbiota in the pathogenesis of neurodegenerative disorders with a particular focus on the benefits of LBP strains in Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, autism, anxiety, and depression.
Collapse
Affiliation(s)
- Mariagiovanna Di Chiano
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Fabio Sallustio
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Daniela Fiocco
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Maria Teresa Rocchetti
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Giuseppe Spano
- Department of Agriculture Food Natural Science Engineering (DAFNE), University of Foggia, 71122 Foggia, Italy
| | - Paola Pontrelli
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
- National Institute for Biostructure and Biosystems (INBB), Viale delle Medaglie d'Oro n. 305, 00136 Roma, Italy
| | - Loreto Gesualdo
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Raffaella Maria Gadaleta
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
- National Institute for Biostructure and Biosystems (INBB), Viale delle Medaglie d'Oro n. 305, 00136 Roma, Italy
| | - Anna Gallone
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| |
Collapse
|
4
|
Białoń MN, Górka DHNOZD, Górka MM. The brain-gut axis: communication mechanisms and the role of the microbiome as a neuroprotective factor in the development of neurodegenerative diseases: A literature overview. AIMS Neurosci 2024; 11:289-311. [PMID: 39431278 PMCID: PMC11486619 DOI: 10.3934/neuroscience.2024019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 10/22/2024] Open
Abstract
The study of the brain-gut axis and its impact on cognitive function and in the development of neurodegenerative diseases is a very timely topic of interest to researchers. This review summarizes information on the basic mechanisms of gut-brain communication. We then discuss the roles of the gut microbiome as a neuroprotective factor in neurodegeneration. The gut microbiota is extremely important in maintaining the body's homeostasis, shaping the human immune system and the proper functioning of the brain. The intestinal microflora affects the processes of neuroplasticity, synaptogenesis, and neuronal regeneration. This review aims to explain changes in the composition of the bacterial population of the intestinal microflora among patients with Alzheimer's disease, Parkinson's disease, and multiple sclerosis. Abnormalities in gut microflora composition are also noted in stress, depression, or autism spectrum development. New observations on psychobiotic supplementation in alleviating the symptoms of neurodegenerative diseases are also presented.
Collapse
Affiliation(s)
- Mgr Natalia Białoń
- Faculty of Health Sciences in Katowice, Department of Sports Medicine and Physiology of Physical Exercise, Medical University of Silesia in Katowice, 12 Medyków St., 40-752 Katowice, Poland
| | - Dr Hab N O Zdr Dariusz Górka
- Faculty of Health Sciences in Katowice, Department of Sports Medicine and Physiology of Physical Exercise, Medical University of Silesia in Katowice, 12 Medyków St., 40-752 Katowice, Poland
| | - Mgr Mikołaj Górka
- Center for Experimental Medicine of the Silesian Medical University in Katowice, 4 Medyków St., 40-752 Katowice, Poland
| |
Collapse
|
5
|
Govaert M, Rotsaert C, Vannieuwenhuyse C, Duysburgh C, Medlin S, Marzorati M, Jarrett H. Survival of Probiotic Bacterial Cells in the Upper Gastrointestinal Tract and the Effect of the Surviving Population on the Colonic Microbial Community Activity and Composition. Nutrients 2024; 16:2791. [PMID: 39203927 PMCID: PMC11357584 DOI: 10.3390/nu16162791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/09/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Many health-promoting effects have been attributed to the intake of probiotic cells. However, it is important that probiotic cells arrive at the site of their activity in a viable state in order to exert their beneficial effects. Careful selection of the appropriate probiotic formulation is therefore required as mainly the type of probiotic species/strain and the administration strategy may affect survival of the probiotic cells during the upper gastrointestinal (GIT) passage. Therefore, the current study implemented Simulator of the Human Microbial Ecosystem (SHIME®) technology to investigate the efficacy of different commercially available probiotic formulations on the survival and culturability of probiotic bacteria during upper GIT passage. Moreover, Colon-on-a-Plate (CoaP™) technology was applied to assess the effect of the surviving probiotic bacteria on the gut microbial community (activity and composition) of three human donors. Significantly greater survival and culturability rates were reported for the delayed-release capsule formulation (>50%) as compared to the powder, liquid, and standard capsule formulations (<1%) (p < 0.05), indicating that the delayed-release capsule was most efficacious in delivering live bacteria cells. Indeed, administration of the delayed-release capsule probiotic digest resulted in enhanced production of SCFAs and shifted gut microbial community composition towards beneficial bacterial species. These results thus indicate that careful selection of the appropriate probiotic formulation and administration strategy is crucial to deliver probiotic cells in a viable state at the site of their activity (distal ileum and colon).
Collapse
Affiliation(s)
- Marlies Govaert
- ProDigest BV, Technologiepark 82, 9052 Ghent, Belgium; (M.G.); (C.R.); (C.V.)
| | - Chloë Rotsaert
- ProDigest BV, Technologiepark 82, 9052 Ghent, Belgium; (M.G.); (C.R.); (C.V.)
| | | | - Cindy Duysburgh
- ProDigest BV, Technologiepark 82, 9052 Ghent, Belgium; (M.G.); (C.R.); (C.V.)
| | - Sophie Medlin
- Heights, Department for Research and Development, London W1D 2LG, UK; (S.M.); (H.J.)
| | - Massimo Marzorati
- ProDigest BV, Technologiepark 82, 9052 Ghent, Belgium; (M.G.); (C.R.); (C.V.)
- Center of Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Harry Jarrett
- Heights, Department for Research and Development, London W1D 2LG, UK; (S.M.); (H.J.)
| |
Collapse
|
6
|
Mudaliar SB, Poojary SS, Bharath Prasad AS, Mazumder N. Probiotics and Paraprobiotics: Effects on Microbiota-Gut-Brain Axis and Their Consequent Potential in Neuropsychiatric Therapy. Probiotics Antimicrob Proteins 2024; 16:1440-1464. [PMID: 38294675 PMCID: PMC11322360 DOI: 10.1007/s12602-024-10214-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2024] [Indexed: 02/01/2024]
Abstract
Neuropsychiatric disorders are clinical conditions that affect cognitive function and emotional stability, often resulting from damage or disease in the central nervous system (CNS). These disorders are a worldwide concern, impacting approximately 12.5% of the global population. The gut microbiota has been linked to neurological development and function, implicating its involvement in neuropsychiatric conditions. Due to their interaction with gut microbial communities, probiotics offer a natural alternative to traditional treatments such as therapeutic drugs and interventions for alleviating neuropsychiatric symptoms. Introduced by Metchnikoff in the early 1900s, probiotics are live microorganisms that provide various health benefits, including improved digestion, enhanced sleep quality, and reduced mental problems. However, concerns about their safety, particularly in immunocompromised patients, warrant further investigation; this has led to the concept of "paraprobiotics", inactivated forms of beneficial microorganisms that offer a safer alternative. This review begins by exploring different methods of inactivation, each targeting specific cellular components like DNA or proteins. The choice of inactivation method is crucial, as the health benefits may vary depending on the conditions employed for inactivation. The subsequent sections focus on the potential mechanisms of action and specific applications of probiotics and paraprobiotics in neuropsychiatric therapy. Probiotics and paraprobiotics interact with gut microbes, modulating the gut microbial composition and alleviating gut dysbiosis. The resulting neuropsychiatric benefits primarily stem from the gut-brain axis, a bidirectional communication channel involving various pathways discussed in the review. While further research is needed, probiotics and paraprobiotics are promising therapeutic agents for the management of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Samriti Balaji Mudaliar
- Department of Public Health & Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sumith Sundara Poojary
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Alevoor Srinivas Bharath Prasad
- Department of Public Health & Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| | - Nirmal Mazumder
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
7
|
Schneider E, O'Riordan KJ, Clarke G, Cryan JF. Feeding gut microbes to nourish the brain: unravelling the diet-microbiota-gut-brain axis. Nat Metab 2024; 6:1454-1478. [PMID: 39174768 DOI: 10.1038/s42255-024-01108-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 07/15/2024] [Indexed: 08/24/2024]
Abstract
The prevalence of brain disorders, including stress-related neuropsychiatric disorders and conditions with cognitive dysfunction, is rising. Poor dietary habits contribute substantially to this accelerating trend. Conversely, healthy dietary intake supports mood and cognitive performance. Recently, the communication between the microorganisms within the gastrointestinal tract and the brain along the gut-brain axis has gained prominence as a potential tractable target to modulate brain health. The composition and function of the gut microbiota is robustly influenced by dietary factors to alter gut-brain signalling. To reflect this interconnection between diet, gut microbiota and brain functioning, we propose that a diet-microbiota-gut-brain axis exists that underpins health and well-being. In this Review, we provide a comprehensive overview of the interplay between diet and gut microbiota composition and function and the implications for cognition and emotional functioning. Important diet-induced effects on the gut microbiota for the development, prevention and maintenance of neuropsychiatric disorders are described. The diet-microbiota-gut-brain axis represents an uncharted frontier for brain health diagnostics and therapeutics across the lifespan.
Collapse
Affiliation(s)
| | | | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
8
|
Dhyani P, Goyal C, Dhull SB, Chauhan AK, Singh Saharan B, Harshita, Duhan JS, Goksen G. Psychobiotics for Mitigation of Neuro-Degenerative Diseases: Recent Advancements. Mol Nutr Food Res 2024; 68:e2300461. [PMID: 37715243 DOI: 10.1002/mnfr.202300461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/01/2023] [Indexed: 09/17/2023]
Abstract
Ageing is inevitable and poses a universal challenge for all living organisms, including humans. The human body experiences rapid cell division and metabolism until approximately 25 years of age, after which the accumulation of metabolic by-products and cellular damage leads to age-related diseases. Neurodegenerative diseases are of concern due to their irreversible nature, lack of effective treatment, and impact on society and the economy. Researchers are interested in finding drugs that can effectively alleviate ageing and age-related diseases without side-effects. Psychobiotics are a novel class of probiotic organisms and prebiotic interventions that confer mental health benefits to the host when taken appropriately. Psychobiotic strains affect functions related to the central nervous system (CNS) and behaviors mediated by the Gut-Brain-Axis (GBA) through various pathways. There is an increasing interest in researchers of these microbial-based psychopharmaceuticals. Psychobiotics have been reported to reduce neuronal ageing, inflammation, oxidative stress, and cortisol levels; increase synaptic plasticity and levels of neurotransmitters and antioxidants. The present review focuses on the manifestation of elderly neurodegenerative and mental disorders, particularly Alzheimer's disease (AD), Parkinson's disease (PD), and depression, and the current status of their potential alleviation through psychobiotic interventions, highlighting their possible mechanisms of action.
Collapse
Affiliation(s)
- Priya Dhyani
- Department of Dairy Science & Food Technology, Institute of Agricultural Sciences, BHU, Varansi, 121005, India
| | - Chhaya Goyal
- Department of Dairy Science & Food Technology, Institute of Agricultural Sciences, BHU, Varansi, 121005, India
| | - Sanju Bala Dhull
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa, 125055, India
| | - Anil Kumar Chauhan
- Department of Dairy Science & Food Technology, Institute of Agricultural Sciences, BHU, Varansi, 121005, India
| | - Baljeet Singh Saharan
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125 004, India
| | - Harshita
- West China School of Medicine, Sichuan University, Chengdu, 610041, China
| | - Joginder Singh Duhan
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa, 125055, India
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus, Organized Industrial Zone, Tarsus University, Mersin, 33100, Türkiye
| |
Collapse
|
9
|
Ruiz-Gonzalez C, Cardona D, Rueda-Ruzafa L, Rodriguez-Arrastia M, Ropero-Padilla C, Roman P. Cognitive and Emotional Effect of a Multi-species Probiotic Containing Lactobacillus rhamnosus and Bifidobacterium lactis in Healthy Older Adults: A Double-Blind Randomized Placebo-Controlled Crossover Trial. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10315-2. [PMID: 38935259 DOI: 10.1007/s12602-024-10315-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
As the population ages, cognitive decline becomes more common. Strategies targeting the gut-brain axis using probiotics are emerging to achieve improvements in neuropsychiatric and neurological disorders. However, the beneficial role of probiotics on brain function in healthy older adults remains unclear. Our aim was to evaluate a multi-species probiotic formulation as a therapeutic approach to reduce emotional and cognitive decline associated with aging in healthy adults. A randomized double-blind placebo-controlled crossover trial was conducted. The study involved a 10-week intervention where participants consumed the assigned probiotic product daily, followed by a 4-week washout period before the second condition started. Cognitive function was assessed using the Mini-Mental State Examination (MMSE) and the Psychological Experiments Construction Language Test Battery. At the emotional level, the Beck Depression Inventory (BDI) and the State-Trait Anxiety Inventory (STAI) were used. Thirty-three participants, recruited between July 2020 and April 2022, ingested a multispecies probiotic (Lactobacillus rhamnosus and Bifidobacterium lactis). After the intervention, noticeable enhancements were observed in cognitive function (mean difference 1.90, 95% CI 1.09 to 2.70, p < 0.005), memory (mean difference 4.60, 95% CI 2.91 to 6.29, p < 0.005) by MMSE and digit task, and depressive symptoms (mean difference 4.09, 95% CI 1.70 to 6.48, p < 0.005) by BDI. Furthermore, there were significant improvements observed in planning and problem-solving skills, selective attention, cognitive flexibility, impulsivity, and inhibitory ability. Probiotics administration improved cognitive and emotional function in older adults. Limited research supports this, requiring more scientific evidence for probiotics as an effective therapy for cognitive decline. This study has been prospectively registered at ClinicalTrials.gov (NCT04828421; 2020/July/17).
Collapse
Affiliation(s)
- Cristofer Ruiz-Gonzalez
- Torrecárdenas University Hospital, Almeria, Andalusia, 04009, Spain
- Research Group CTS-1114 Advances and Innovation in Health, University of Almeria, Almeria, Andalusia, 04120, Spain
| | - Diana Cardona
- Department of Nursing Science, Physiotherapy and Medicine, Faculty of Health Sciences, University of Almeria, Almeria, Andalusia, 04120, Spain
- Health Research Center CEINSA, University of Almeria, Almeria, Andalusia, 04120, Spain
| | - Lola Rueda-Ruzafa
- Research Group CTS-1114 Advances and Innovation in Health, University of Almeria, Almeria, Andalusia, 04120, Spain.
- Department of Nursing Science, Physiotherapy and Medicine, Faculty of Health Sciences, University of Almeria, Almeria, Andalusia, 04120, Spain.
- Health Research Center CEINSA, University of Almeria, Almeria, Andalusia, 04120, Spain.
| | - Miguel Rodriguez-Arrastia
- Research Group CTS-1114 Advances and Innovation in Health, University of Almeria, Almeria, Andalusia, 04120, Spain
- Department of Nursing Science, Physiotherapy and Medicine, Faculty of Health Sciences, University of Almeria, Almeria, Andalusia, 04120, Spain
- Health Research Center CEINSA, University of Almeria, Almeria, Andalusia, 04120, Spain
- ScienceFlows, Universitat de València, Valencia, 46010, Spain
| | - Carmen Ropero-Padilla
- Research Group CTS-1114 Advances and Innovation in Health, University of Almeria, Almeria, Andalusia, 04120, Spain
- Department of Nursing Science, Physiotherapy and Medicine, Faculty of Health Sciences, University of Almeria, Almeria, Andalusia, 04120, Spain
- Health Research Center CEINSA, University of Almeria, Almeria, Andalusia, 04120, Spain
- ScienceFlows, Universitat de València, Valencia, 46010, Spain
| | - Pablo Roman
- Research Group CTS-1114 Advances and Innovation in Health, University of Almeria, Almeria, Andalusia, 04120, Spain
- Department of Nursing Science, Physiotherapy and Medicine, Faculty of Health Sciences, University of Almeria, Almeria, Andalusia, 04120, Spain
- Health Research Center CEINSA, University of Almeria, Almeria, Andalusia, 04120, Spain
| |
Collapse
|
10
|
Deady C, McCarthy FP, Barron A, McCarthy CM, O’Keeffe GW, O’Mahony SM. An altered gut microbiome in pre-eclampsia: cause or consequence. Front Cell Infect Microbiol 2024; 14:1352267. [PMID: 38774629 PMCID: PMC11106424 DOI: 10.3389/fcimb.2024.1352267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/22/2024] [Indexed: 05/24/2024] Open
Abstract
Hypertensive disorders of pregnancy, including pre-eclampsia, are a leading cause of serious and debilitating complications that affect both the mother and the fetus. Despite the occurrence and the health implications of these disorders there is still relatively limited evidence on the molecular underpinnings of the pathophysiology. An area that has come to the fore with regard to its influence on health and disease is the microbiome. While there are several microbiome niches on and within the body, the distal end of the gut harbors the largest of these impacting on many different systems of the body including the central nervous system, the immune system, and the reproductive system. While the role of the microbiome in hypertensive disorders, including pre-eclampsia, has not been fully elucidated some studies have indicated that several of the symptoms of these disorders are linked to an altered gut microbiome. In this review, we examine both pre-eclampsia and microbiome literature to summarize the current knowledge on whether the microbiome drives the symptoms of pre-eclampsia or if the aberrant microbiome is a consequence of this condition. Despite the paucity of studies, obvious gut microbiome changes have been noted in women with pre-eclampsia and the individual symptoms associated with the condition. Yet further research is required to fully elucidate the role of the microbiome and the significance it plays in the development of the symptoms. Regardless of this, the literature highlights the potential for a microbiome targeted intervention such as dietary changes or prebiotic and probiotics to reduce the impact of some aspects of these disorders.
Collapse
Affiliation(s)
- Clara Deady
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Fergus P. McCarthy
- Department of Obstetrics and Gynecology, University College Cork, Cork, Ireland
- The Infant Research Centre, University College Cork, Cork, Ireland
| | - Aaron Barron
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Cathal M. McCarthy
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Gerard W. O’Keeffe
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Cork Neuroscience Centre, University College Cork, Cork, Ireland
| | - Siobhain M. O’Mahony
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
11
|
Ferrari S, Mulè S, Parini F, Galla R, Ruga S, Rosso G, Brovero A, Molinari C, Uberti F. The influence of the gut-brain axis on anxiety and depression: A review of the literature on the use of probiotics. J Tradit Complement Med 2024; 14:237-255. [PMID: 38707924 PMCID: PMC11069002 DOI: 10.1016/j.jtcme.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/19/2024] [Accepted: 03/05/2024] [Indexed: 05/07/2024] Open
Abstract
This review aims to argue how using probiotics can improve anxiety and depressive behaviour without adverse effects, also exploring the impact of postbiotics on it. Specifically, probiotics have drawn more attention as effective alternative treatments, considering the rising cost of antidepressant and anti-anxiety drugs and the high risk of side effects. Depression and anxiety disorders are among the most common mental illnesses in the world's population, characterised by low mood, poor general interest, and cognitive or motor dysfunction. Thus, this study analysed published literature on anxiety, depression, and probiotic supplementation from PubMed and Scopus, focusing on the last twenty years. This study focused on the effect of probiotics on mental health as they have drawn more attention because of their extensive clinical applications and positive impact on various diseases. Numerous studies have demonstrated how the gut microbiota might be critical for mood regulation and how probiotics can affect host health by regulating the gut-brain axis. By comparing the different works analysed, it was possible to identify a strategy by which they are selected and employed and, at the same time, to assess how the effect of probiotics can be optimised using postbiotics, an innovation to improve mental well-being in humans.
Collapse
Affiliation(s)
- Sara Ferrari
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via So-laroli 17, 28100, Novara, Italy
| | - Simone Mulè
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via So-laroli 17, 28100, Novara, Italy
| | - Francesca Parini
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via So-laroli 17, 28100, Novara, Italy
| | - Rebecca Galla
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via So-laroli 17, 28100, Novara, Italy
- Noivita srls, spin Off, University of Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
| | - Sara Ruga
- Noivita srls, spin Off, University of Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
| | - Giorgia Rosso
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via So-laroli 17, 28100, Novara, Italy
| | - Arianna Brovero
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via So-laroli 17, 28100, Novara, Italy
| | - Claudio Molinari
- Department for Sustainable Development and Ecological Transition, Italy
| | - Francesca Uberti
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via So-laroli 17, 28100, Novara, Italy
| |
Collapse
|
12
|
Balasubramanian R, Schneider E, Gunnigle E, Cotter PD, Cryan JF. Fermented foods: Harnessing their potential to modulate the microbiota-gut-brain axis for mental health. Neurosci Biobehav Rev 2024; 158:105562. [PMID: 38278378 DOI: 10.1016/j.neubiorev.2024.105562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 01/28/2024]
Abstract
Over the past two decades, whole food supplementation strategies have been leveraged to target mental health. In addition, there has been increasing attention on the ability of gut microbes, so called psychobiotics, to positively impact behaviour though the microbiota-gut-brain axis. Fermented foods offer themselves as a combined whole food microbiota modulating intervention. Indeed, they contain potentially beneficial microbes, microbial metabolites and other bioactives, which are being harnessed to target the microbiota-gut-brain axis for positive benefits. This review highlights the diverse nature of fermented foods in terms of the raw materials used and type of fermentation employed, and summarises their potential to shape composition of the gut microbiota, the gut to brain communication pathways including the immune system and, ultimately, modulate the microbiota-gut-brain axis. Throughout, we identify knowledge gaps and challenges faced in designing human studies for investigating the mental health-promoting potential of individual fermented foods or components thereof. Importantly, we also suggest solutions that can advance understanding of the therapeutic merit of fermented foods to modulate the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Ramya Balasubramanian
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, P61C996, County Cork, Ireland
| | | | - Eoin Gunnigle
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Paul D Cotter
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, P61C996, County Cork, Ireland.
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
13
|
Hashemi-Mohammadabad N, Taghavi SA, Lambert N, Moshtaghi R, Bazarganipour F, Sharifi M. Adjuvant administration of probiotic effects on sexual function in depressant women undergoing SSRIs treatment: a double-blinded randomized controlled trial. BMC Psychiatry 2024; 24:44. [PMID: 38216917 PMCID: PMC10785460 DOI: 10.1186/s12888-023-05429-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/30/2023] [Indexed: 01/14/2024] Open
Abstract
BACKGROUND According to the Institute of Health Metrics and Evaluation's Global Health Data Exchange (2023) it is estimated that 5% of all adults will experience depressive disorder. Amongst the general loss of pleasure and interest in everyday activities that are symptoms of low mood, reduced sexual desire and sexual dysfunction can be particularly overlooked. Human sexuality is complex, but finding solutions based on scientific evidence to limit the symptoms of depressive disorder and the iatrogenic impact of antidepressant treatment to improve this outcome is an important step in promoting psychological health and general wellbeing. OBJECTIVE The present study aimed is to provide scientific evidence to assess the effect of oral probiotic on sexual function in women with depressive disorder treated with Selective Serotonin Reuptake Inhibitors (SSRIs) in an Iranian population. DESIGN This study was a double-blind randomized clinical trial. Eligible women were assigned to lactofem plus SSRIs (n = 58) or SSRIs alone (n = 54). In group A, SSRI antidepressants were prescribed together with Lactofem, and in group B, SSRI antidepressants were prescribed alone. Lactofem including Lactobacillus acidophilus 2 × 109 cfu/g, Bifidobacterium bifidus 2 × 109 cfu/g, Lactobacillus rutri 2 × 109 cfu/g, Lactobacillus fermentum 2 × 109 cfu/g; capsule weight of 500 mg bio-capsule administered orally and daily. The duration of intervention in two groups was two months. All questionnaires were completed by the patients before and after the intervention. The Female Sexual Function Index (FSFI), Hamilton Depression Rating Scale and Larson's Sexual Satisfaction Questionnaire were used to evaluate sexual function, severity of depressive disorder and sexual satisfaction, respectively. RESULTS Based on the results of the present study, there was a statistically significant difference in sexual satisfaction and severity of depressive disorder between the groups before and after the intervention (P < 0.05). Also, our findings showed that after eight weeks, the Lactofem plus SSRIs group showed significant improvement in FSFI domains and total scores compared to SSRIs alone group (P < 0.05). CONCLUSIONS The results of the present study show that taking probiotics for eight weeks may improve the severity of depressive disorder, sexual function and sexual satisfaction in depressed women treated with SSRIs. TRIAL REGISTRATION ClinicalTrials.govidentifier: IRCT20160524028038N14 (19/12/2022).
Collapse
Affiliation(s)
| | | | - Nicky Lambert
- Department of Mental Health and Social Work, Middlesex University, London, England
| | - Raana Moshtaghi
- Department of Psychiatry, School of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Fatemeh Bazarganipour
- Social Determinants of Health Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Mahboubeh Sharifi
- Department of Midwifery, School of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran.
| |
Collapse
|
14
|
Borrego-Ruiz A, Borrego JJ. An updated overview on the relationship between human gut microbiome dysbiosis and psychiatric and psychological disorders. Prog Neuropsychopharmacol Biol Psychiatry 2024; 128:110861. [PMID: 37690584 DOI: 10.1016/j.pnpbp.2023.110861] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 09/12/2023]
Abstract
There is a lot of evidence establishing that nervous system development is related to the composition and functions of the gut microbiome. In addition, the central nervous system (CNS) controls the imbalance of the intestinal microbiota, constituting a bidirectional communication system. At present, various gut-brain crosstalk routes have been described, including immune, endocrine and neural circuits via the vagal pathway. Several empirical data have associated gut microbiota alterations (dysbiosis) with neuropsychiatric diseases, such as Alzheimer's disease, autism and Parkinson's disease, and with other psychological disorders, like anxiety and depression. Fecal microbiota transplantation (FMT) therapy has shown that the gut microbiota can transfer behavioral features to recipient animals, which provides strong evidence to establish a causal-effect relationship. Interventions, based on prebiotics, probiotics or synbiotics, have demonstrated an important influence of microbiota on neurological disorders by the synthesis of neuroactive compounds that interact with the nervous system and by the regulation of inflammatory and endocrine processes. Further research is needed to demonstrate the influence of gut microbiota dysbiosis on psychiatric and psychological disorders, and how microbiota-based interventions may be used as potential therapeutic tools.
Collapse
Affiliation(s)
- Alejandro Borrego-Ruiz
- Departamento de Psicología Social y de las Organizaciones, Facultad de Psicología, UNED, Madrid, Spain
| | - Juan J Borrego
- Departamento de Microbiología, Universidad de Málaga, Málaga, Spain.
| |
Collapse
|
15
|
Han Y, Yang M, Tian M, Yang Y, Liu W, Liu Y. The Relationship Between Fermented Dairy Consumption with Cognitive Function Among Older US Adults: Data from the NHANES 2011-2014. J Alzheimers Dis 2024; 97:1877-1887. [PMID: 38306036 DOI: 10.3233/jad-230865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Background The aging global population has led to an increased burden of cognitive impairment in older adults. Objective This study examined the relationship between fermented dairy intake and cognitive function in this population. Methods Yogurt, cheese, and fermented dairy consumption were assessed through two 24-hour dietary recall interviews, categorized into low, medium, and high intake groups. Multivariate linear regression was employed to examine the relationship between fermented dairy intake and cognitive tests, including the Alzheimer's Disease Word Learning Immediate Recall Test (CERAD-IRT), CERAD Delayed Recall Test (CERAD-DRT), Animal Fluency Test (AFT), Digit Symbol Substitution Test (DSST), and global cognitive z-scores, adjusting for potential confounding factors. Results The study comprised 2,462 participants (average age 69.34±6.75 years, 52.07% female). Among yogurt consumers, global cognition and AFT z-scores are notably higher than non-consumers. Conversely, individuals who consume cheese display significantly lower CERAD-DRT z-scores. Compared to participants not intake fermented dairy, consumers of fermented dairy show significantly higher AFT and DSST z-scores and lower CERAD-DRT z-scores. Moreover, when categorizing individuals based on their intake of fermented dairy, those with low and medium consumption show significantly higher AFT and DSST z-scores, as well as significantly lower CERAD-DRT z-scores compared to non-consumers. Conclusions Our study suggests that moderate consumption of fermented dairy products is associated with better executive function and verbal fluency in the elderly.
Collapse
Affiliation(s)
- Yinlian Han
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, China
| | - Mu Yang
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, China
| | - Min Tian
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, China
| | - Yang Yang
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, China
| | - Wen Liu
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, China
| | | |
Collapse
|
16
|
Dehghani F, Abdollahi S, Shidfar F, Clark CCT, Soltani S. Probiotics supplementation and brain-derived neurotrophic factor (BDNF): a systematic review and meta-analysis of randomized controlled trials. Nutr Neurosci 2023; 26:942-952. [PMID: 35996352 DOI: 10.1080/1028415x.2022.2110664] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND AND AIMS An emerging body of evidence has demonstrated the beneficial effects of probiotics on various mental health conditions. In this systematic review and meta-analysis, we sought to examine the effects of probiotics supplementation on brain-derived neurotrophic factor (BDNF) in adults. METHODS PubMed, Scopus, ISI Web of Science, and the Cochrane Library were searched, from database inception to April 2021, for eligible randomized controlled trials (RCTs). We pooled mean differences and standard deviations from RCTs using random-effect models. RESULTS Overall, meta-analysis of 11 trials (n = 648 participants) showed no significant changes in serum level of BDNF following probiotics. However, subgroup analysis revealed that probiotics increased BDNF levels in individuals suffering from neurological disorders (n = 214 participants; WMD = 3.08 ng/mL, 95% CI: 1.83, 4.34; P = 0.001; I2 = 7.5%; P-heterogeneity 0.34), or depression (n = 268 participants; WMD = 0.77 ng/mL, 95% CI: 0.07, 1.47; P = 0.032; I2 = 88.4%; P-heterogeneity < 0.001). Furthermore, a significant increase in BDNF levels was found in studies that administered the mixture of Lactobacillus and Bifidobacterium genera, and were conducted in Asia . CONCLUSION Our main findings suggest that probiotics may be effective in elevating BDNF levels in patients with depression and neurological disorders, and a mixed of Lactobacillus and Bifidobacterium appear to show greater efficacy than the single genus supplement. The low quality of evidence reduces clinical advocacy, and indicates that more large-scale, high-quality, RCTs are needed to facilitate reliable conclusions.
Collapse
Affiliation(s)
- Fereshteh Dehghani
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| | - Shima Abdollahi
- Department of Nutrition, School of Health, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Farzad Shidfar
- Department of nutrition, School of public health, Iran University of Medical Sciences, Teharn, Iran
| | - Cain C T Clark
- Centre for Intelligent Healthcare, Coventry University, Coventry, UK
| | - Sepideh Soltani
- Yazd Cardiovascular Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
17
|
Lin YK, Lin YH, Chiang CF, Jingling L. Effectiveness of Fish Roe, Snow Fungus, and Yeast Supplementation for Cognitive Function: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Nutrients 2023; 15:4221. [PMID: 37836504 PMCID: PMC10574613 DOI: 10.3390/nu15194221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
The brain is one of the most critical organs in the human body, regulating functions such as thinking, memory, learning, and perception. Studies have indicated that fish roe, snow fungus, and yeast may have the potential to modulate cognitive, memory, and emotional functions. However, more relevant clinical research in this area still needs to be conducted. This study explored the cognition-enhancing potential of a formula beverage including fish roe, snow fungus, and yeast. Sixty-four subjects were divided into a placebo group (n = 32) and a formula-drink group (n = 32), who consumed the product for 8 weeks. Cognitive tests were administered and analyzed at weeks 0, 4, and 8. After 4 and 8 weeks, there was a significant increase in the number of memory cards, and the response times among those who consumed the formula beverage were significantly faster than those in the placebo group. The subjects remembered the old items better and were more impressed with similar items based on the week effect. There was a significant increase in the cue effect of happy facial expressions after the subjects consumed the formula beverage for 8 weeks. In addition, there was a significant decrease in anxiety and fatigue, and improved quality of life. This formula beverage is a promising option that could be used to prevent further cognitive decline in adults with subjective cognitive complaints.
Collapse
Affiliation(s)
- Yung-Kai Lin
- Institute of Food Safety and Risk Management, National Taiwan Ocean University, Keelung 20224, Taiwan;
- Department of Food Science, National Taiwan Ocean University, Keelung 202301, Taiwan
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 40227, Taiwan
| | - Yung-Hsiang Lin
- Research & Design Center, TCI Co., Ltd., Taipei 11494, Taiwan; (Y.-H.L.); (C.-F.C.)
| | - Chi-Fu Chiang
- Research & Design Center, TCI Co., Ltd., Taipei 11494, Taiwan; (Y.-H.L.); (C.-F.C.)
| | - Li Jingling
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
18
|
Bartos A, Weinerova J, Diondet S. Effects of human probiotics on memory and psychological and physical measures in community-dwelling older adults with normal and mildly impaired cognition: results of a bi-center, double-blind, randomized, and placebo-controlled clinical trial (CleverAge biota). Front Aging Neurosci 2023; 15:1163727. [PMID: 37502424 PMCID: PMC10369778 DOI: 10.3389/fnagi.2023.1163727] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/02/2023] [Indexed: 07/29/2023] Open
Abstract
Objectives This study presents results of our randomized clinical trial studying the effect of human probiotics on memory and psychological and physical measures following our study protocol registered at clinicaltrials.gov NCT05051501 and described in detail in our previous paper. Methods Community dwelling participants aged between 55 and 80 years were randomly assigned to receive a single dose of 106 colony-forming units of human Streptococcus thermophilus GH, Streptococcus salivarius GH NEXARS, Lactobacilus plantarum GH, and Pediococcus pentosaceus GH or placebo. A cross-over design allowed each group to receive probiotics and placebo for 3 months each in reverse order. A small subset of participants was examined online due to the COVID-19 pandemic. After 6 months a small number of volunteers were additionally assessed after 2 months without any intervention. Primary outcome measures included changes in cognitive functions assessed using brief tests and a neuropsychological battery and changes in mood assessed using validated questionnaires. Secondary outcome measures included changes in self-report and subjective measures using depression and anxiety questionnaires, seven visual analog scales of subjective feelings (memory, digestion, etc.), and physical performance. Results At baseline, the probiotic-placebo group A (n = 40, age 69 ± 7 years, education 16 ± 3 years, 63% females, body mass index 28.5 ± 6, subjective memory complaint in 43%) did not differ from the placebo-probiotic group B (n = 32) in any of the sociodemographic characteristics and evaluated measures including cognitive status. At follow-up visits after 3, 6, and 8 months, no cross-sectional differences in any of the measures were found between the groups except worse sentence recall of the ALBA test after 3 months of probiotic use. Score changes were not observed for all cognitive tests but one in any group between visits 1 and 3 and between visits 3 and 6. The only change was observed for the TMT B test after the first three months but no change was observed after the second three months. Conclusion The treatment with human probiotics and prebiotics did not improve cognitive, affective, or physical measures in community-dwelling individuals with normal or mildly impaired cognitive functions. Clinical trial registration clinicaltrials.gov, identifier NCT05051501.
Collapse
Affiliation(s)
- Ales Bartos
- Department of Neurology, Third Faculty of Medicine, Charles University, Prague, Czechia
- Department of Neurology, Faculty Hospital Královské Vinohrady, Prague, Czechia
| | | | - Sofia Diondet
- First Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
19
|
Rusch JA, Layden BT, Dugas LR. Signalling cognition: the gut microbiota and hypothalamic-pituitary-adrenal axis. Front Endocrinol (Lausanne) 2023; 14:1130689. [PMID: 37404311 PMCID: PMC10316519 DOI: 10.3389/fendo.2023.1130689] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/25/2023] [Indexed: 07/06/2023] Open
Abstract
Cognitive function in humans depends on the complex and interplay between multiple body systems, including the hypothalamic-pituitary-adrenal (HPA) axis. The gut microbiota, which vastly outnumbers human cells and has a genetic potential that exceeds that of the human genome, plays a crucial role in this interplay. The microbiota-gut-brain (MGB) axis is a bidirectional signalling pathway that operates through neural, endocrine, immune, and metabolic pathways. One of the major neuroendocrine systems responding to stress is the HPA axis which produces glucocorticoids such as cortisol in humans and corticosterone in rodents. Appropriate concentrations of cortisol are essential for normal neurodevelopment and function, as well as cognitive processes such as learning and memory, and studies have shown that microbes modulate the HPA axis throughout life. Stress can significantly impact the MGB axis via the HPA axis and other pathways. Animal research has advanced our understanding of these mechanisms and pathways, leading to a paradigm shift in conceptual thinking about the influence of the microbiota on human health and disease. Preclinical and human trials are currently underway to determine how these animal models translate to humans. In this review article, we summarize the current knowledge of the relationship between the gut microbiota, HPA axis, and cognition, and provide an overview of the main findings and conclusions in this broad field.
Collapse
Affiliation(s)
- Jody A. Rusch
- Division of Chemical Pathology, Department of Pathology, University of Cape Town, Cape Town, South Africa
- C17 Chemical Pathology Laboratory, Groote Schuur Hospital, National Health Laboratory Service, Cape Town, South Africa
| | - Brian T. Layden
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States
| | - Lara R. Dugas
- Division of Epidemiology and Biostatistics, School of Public Health, University of Cape Town, Cape Town, South Africa
- Public Health Sciences, Parkinson School of Health Sciences and Public Health, Loyola University Chicago, Maywood, IL, United States
| |
Collapse
|
20
|
Li J, Li D, Chen Y, Chen W, Xu J, Gao L. Gut Microbiota and Aging: Traditional Chinese Medicine and Modern Medicine. Clin Interv Aging 2023; 18:963-986. [PMID: 37351381 PMCID: PMC10284159 DOI: 10.2147/cia.s414714] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/08/2023] [Indexed: 06/24/2023] Open
Abstract
The changing composition of gut microbiota, much like aging, accompanies people throughout their lives, and the inextricable relationship between both has recently attracted extensive attention as well. Modern medical research has revealed that a series of changes in gut microbiota are involved in the aging process of organisms, which may be because gut microbiota modulates aging-related changes related to innate immunity and cognitive function. At present, there is no definite and effective method to delay aging. However, Nobel laureate Tu Youyou's research on artemisinin has inspired researchers to study the importance of Traditional Chinese Medicine (TCM). TCM, as an ancient alternative medicine, has unique advantages in preventive health care and in treating diseases as it already has formed an independent understanding of the aging system. TCM practitioners believe that the mechanism of aging is mainly deficiency, and pathological states such as blood stasis, qi stagnation and phlegm coagulation can exacerbate the process of aging, which involves a series of organs, including the brain, kidney, heart, liver and spleen. Our current understanding of aging has led us to realise that TCM can indeed make some beneficial changes, such as the improvement of cognitive impairment. However, due to the multi-component and multi-target nature of TCM, the exploration of its mechanism of action has become extremely complex. While analysing the relationship between gut microbiota and aging, this review explores the similarities and differences in treatment methods and mechanisms between TCM and Modern Medicine, in order to explore a new approach that combines TCM and Modern Medicine to regulate gut microbiota, improve immunity and delay aging.
Collapse
Affiliation(s)
- Jinfan Li
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250000, People’s Republic of China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Dong Li
- Department of Diabetes, Licheng District Hospital of Traditional Chinese Medicine, Jinan, Shandong, 250100, People’s Republic of China
| | - Yajie Chen
- Department of Rehabilitation and Health Care, Jinan Vocational College of Nursing, Jinan, Shandong, 250100, People’s Republic of China
| | - Wenbin Chen
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, People’s Republic of China
| | - Jin Xu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, People’s Republic of China
| | - Ling Gao
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, People’s Republic of China
| |
Collapse
|
21
|
Sasso J, Ammar RM, Tenchov R, Lemmel S, Kelber O, Grieswelle M, Zhou QA. Gut Microbiome-Brain Alliance: A Landscape View into Mental and Gastrointestinal Health and Disorders. ACS Chem Neurosci 2023; 14:1717-1763. [PMID: 37156006 PMCID: PMC10197139 DOI: 10.1021/acschemneuro.3c00127] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023] Open
Abstract
Gut microbiota includes a vast collection of microorganisms residing within the gastrointestinal tract. It is broadly recognized that the gut and brain are in constant bidirectional communication, of which gut microbiota and its metabolic production are a major component, and form the so-called gut microbiome-brain axis. Disturbances of microbiota homeostasis caused by imbalance in their functional composition and metabolic activities, known as dysbiosis, cause dysregulation of these pathways and trigger changes in the blood-brain barrier permeability, thereby causing pathological malfunctions, including neurological and functional gastrointestinal disorders. In turn, the brain can affect the structure and function of gut microbiota through the autonomic nervous system by regulating gut motility, intestinal transit and secretion, and gut permeability. Here, we examine data from the CAS Content Collection, the largest collection of published scientific information, and analyze the publication landscape of recent research. We review the advances in knowledge related to the human gut microbiome, its complexity and functionality, its communication with the central nervous system, and the effect of the gut microbiome-brain axis on mental and gut health. We discuss correlations between gut microbiota composition and various diseases, specifically gastrointestinal and mental disorders. We also explore gut microbiota metabolites with regard to their impact on the brain and gut function and associated diseases. Finally, we assess clinical applications of gut-microbiota-related substances and metabolites with their development pipelines. We hope this review can serve as a useful resource in understanding the current knowledge on this emerging field in an effort to further solving of the remaining challenges and fulfilling its potential.
Collapse
Affiliation(s)
- Janet
M. Sasso
- CAS, a division of the American Chemical Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United States
| | - Ramy M. Ammar
- Bayer
Consumer Health, R&D Digestive
Health, Darmstadt 64295, Germany
| | - Rumiana Tenchov
- CAS, a division of the American Chemical Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United States
| | - Steven Lemmel
- CAS, a division of the American Chemical Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United States
| | - Olaf Kelber
- Bayer
Consumer Health, R&D Digestive
Health, Darmstadt 64295, Germany
| | - Malte Grieswelle
- Bayer
Consumer Health, R&D Digestive
Health, Darmstadt 64295, Germany
| | - Qiongqiong Angela Zhou
- CAS, a division of the American Chemical Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United States
| |
Collapse
|
22
|
Aghamohammad S, Hafezi A, Rohani M. Probiotics as functional foods: How probiotics can alleviate the symptoms of neurological disabilities. Biomed Pharmacother 2023; 163:114816. [PMID: 37150033 DOI: 10.1016/j.biopha.2023.114816] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/09/2023] Open
Abstract
Neurological disorders are diseases of the central nervous system with progressive loss of nervous tissue. One of the most difficult problems associated with neurological disorders is that there is no clear treatment for these diseases. In this review, the physiopathology of some neurodegenerative diseases, etiological causes, drugs used and their side effects, and finally the role of probiotics in controlling the symptoms of these neurodegenerative diseases are presented. Recently, researchers have focused more on the microbiome and the gut-brain axis, which may play a critical role in maintaining brain health. Probiotics are among the most important bacteria that have positive effects on the balance of homeostasis via influencing the microbiome. Other important functions of probiotics in alleviating symptoms of neurological disorders include anti-inflammatory properties, short-chain fatty acid production, and the production of various neurotransmitters. The effects of probiotics on the control of abnormalities seen in neurological disorders led to probiotics being referred to as "psychobiotic. Given the important role of the gut-brain axis and the imbalance of the gut microbiome in the etiology and symptoms of neurological disorders, probiotics could be considered safe agents that positively affect the balance of the microbiome as complementary treatment options for neurological disorders.
Collapse
Affiliation(s)
| | - Asal Hafezi
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Mahdi Rohani
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
23
|
Weiner A, Turjeman S, Koren O. Gut microbes and host behavior: The forgotten members of the gut-microbiome. Neuropharmacology 2023; 227:109453. [PMID: 36738776 DOI: 10.1016/j.neuropharm.2023.109453] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/15/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
The gut microbiota refers to an entire population of microorganisms that colonize the gut. This community includes viruses, prokaryotes (bacteria and archaea), and eukaryotes (fungi and parasites). Multiple studies in the last decades described the significant involvement of gut bacteria in gut-brain axis communication; however, the involvement of other members of the gut microbiota has been neglected. Recent studies found that these 'forgotten' members of the gut microbiota may also have a role in gut-brain communication, although it is still unclear whether they have a direct effect on the brain or if their effects are mediated by gut bacteria. Here, we provide concrete suggestions for future research to tease out mechanisms of the microbiota-gut-brain axis. This article is part of the Special Issue on "Microbiome & the Brain: Mechanisms & Maladies".
Collapse
Affiliation(s)
- Ariel Weiner
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Sondra Turjeman
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.
| |
Collapse
|
24
|
Handajani YS, Hengky A, Schröder-Butterfill E, Hogervorst E, Turana Y. Probiotic supplementation improved cognitive function in cognitively impaired and healthy older adults: a systematic review of recent trials. Neurol Sci 2023; 44:1163-1169. [PMID: 36529793 DOI: 10.1007/s10072-022-06540-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Recent evidence suggests that there is clear association between microbiota and cognitive functioning, which is known as microbiome-gut-brain axis. Probiotic bacteria consumption can alter human microbiota; therefore, probiotic supplementation might affect the gut microbiota dynamics and influence cognitive function. METHODS Three electronic databases including PubMed, ProQuest, and EBSCOHost databases were utilized. Manual hand search of article was also done. We selected randomized controlled trial articles that measure cognitive function (as the primary outcome) after intervention with probiotic supplementation on older adult population with AD, MCI, or healthy condition. The following terms and its variant were used: "probiotic," "cognitive function," "mild cognitive impairment," "dementia," and "Alzheimer's disease." RESULT Nine of 10 included studies (AD, MCI, or healthy cognition population) showed cognitive function was improved significantly after probiotic supplementation, compared to control group. One study that included severe AD did not show significant changes. CONCLUSION Most studies involving AD, MCI, or healthy older adults showed cognitive improvement in subjects treated with probiotics for 12-24 weeks.
Collapse
Affiliation(s)
- Yvonne Suzy Handajani
- School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jl. Pluit Raya, No. 2, Jakarta, 14440, Indonesia.
| | - Antoninus Hengky
- Center of Health Research, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | | | - Eef Hogervorst
- Sport Exercise & Health Sciences, Loughborough University, Loughborough, UK
| | - Yuda Turana
- School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jl. Pluit Raya, No. 2, Jakarta, 14440, Indonesia
| |
Collapse
|
25
|
Vera-Santander VE, Hernández-Figueroa RH, Jiménez-Munguía MT, Mani-López E, López-Malo A. Health Benefits of Consuming Foods with Bacterial Probiotics, Postbiotics, and Their Metabolites: A Review. Molecules 2023; 28:molecules28031230. [PMID: 36770898 PMCID: PMC9920731 DOI: 10.3390/molecules28031230] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/11/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Over the years, probiotics have been extensively studied within the medical, pharmaceutical, and food fields, as it has been revealed that these microorganisms can provide health benefits from their consumption. Bacterial probiotics comprise species derived from lactic acid bacteria (LAB) (genus Lactobacillus, Leuconostoc, and Streptococcus), the genus Bifidobacterium, and strains of Bacillus and Escherichia coli, among others. The consumption of probiotic products is increasing due to the current situation derived from the pandemic caused by COVID-19. Foods with bacterial probiotics and postbiotics are premised on being healthier than those not incorporated with them. This review aims to present a bibliographic compilation related to the incorporation of bacterial probiotics in food and to demonstrate through in vitro and in vivo studies or clinical trials the health benefits obtained with their metabolites and the consumption of foods with bacterial probiotics/postbiotics. The health benefits that have been reported include effects on the digestive tract, metabolism, antioxidant, anti-inflammatory, anticancer, and psychobiotic properties, among others. Therefore, developing food products with bacterial probiotics and postbiotics is a great opportunity for research in food science, medicine, and nutrition, as well as in the food industry.
Collapse
|
26
|
Probiotic Bifidobacterium longum BB68S Improves Cognitive Functions in Healthy Older Adults: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2022; 15:nu15010051. [PMID: 36615708 PMCID: PMC9824790 DOI: 10.3390/nu15010051] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/14/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
Probiotics could improve cognitive functions in patients with neurological disorders such as Alzheimer’s disease, but the effects on cognitive function in healthy older adults without cognitive impairment need further study. The purpose of this study was to investigate the effect of Bifidobacterium longum BB68S (BB68S) on cognitive functions among healthy older adults without cognitive impairment. A randomized, double-blind, placebo-controlled trial was conducted with 60 healthy older adults without cognitive impairment who were divided into probiotic or placebo groups and required to consume either a sachet of probiotic (BB68S, 5 × 1010 CFU/sachet) or placebo once daily for 8 weeks. The Montreal Cognitive Assessment (MoCA) was used as an inclusion screening tool to screen elderly participants with healthy cognitive function in our study, and the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) was used to assess cognitive function in subjects before and after intervention as an assessment tool. BB68S significantly improved subjects’ cognitive functions (total RBANS score increased by 18.89 points after intervention, p < 0.0001), especially immediate memory, visuospatial/constructional, attention, and delayed memory domains. BB68S intervention increased the relative abundances of beneficial bacteria Lachnospira, Bifidobacterium, Dorea, and Cellulosilyticum, while decreasing those of bacteria related to cognition impairment, such as Collinsella, Parabacteroides, Tyzzerella, Bilophila, unclassified_c_Negativicutes, Epulopiscium, Porphyromonas, and Granulicatella. In conclusion, BB68S could improve cognitive functions in healthy elderly adults without cognitive impairment, along with having beneficial regulatory effects on their gut microbiota. This study supports probiotics as a strategy to promote healthy aging and advances cognitive aging research.
Collapse
|
27
|
Boehme M, Guzzetta KE, Wasén C, Cox LM. The gut microbiota is an emerging target for improving brain health during ageing. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2022; 4:E2. [PMID: 37179659 PMCID: PMC10174391 DOI: 10.1017/gmb.2022.11] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The gut microbiota plays crucial roles in maintaining the health and homeostasis of its host throughout lifespan, including through its ability to impact brain function and regulate behaviour during ageing. Studies have shown that there are disparate rates of biologic ageing despite equivalencies in chronologic age, including in the development of neurodegenerative diseases, which suggests that environmental factors may play an important role in determining health outcomes in ageing. Recent evidence demonstrates that the gut microbiota may be a potential novel target to ameliorate symptoms of brain ageing and promote healthy cognition. This review highlights the current knowledge around the relationships between the gut microbiota and host brain ageing, including potential contributions to age-related neurodegenerative diseases. Furthermore, we assess key areas for which gut microbiota-based strategies may present as opportunities for intervention.
Collapse
Affiliation(s)
- Marcus Boehme
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Katherine Elizabeth Guzzetta
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Caroline Wasén
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Laura Michelle Cox
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
| |
Collapse
|
28
|
Tahmasbi F, Mirghafourvand M, Shamekh A, Mahmoodpoor A, Sanaie S. Effects of probiotic supplementation on cognitive function in elderly: A systematic review and Meta-analysis. Aging Ment Health 2022; 26:1778-1786. [PMID: 34428991 DOI: 10.1080/13607863.2021.1966743] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVES Probiotic supplementation has been linked to changes in cognitive function via the gut-brain axis (GBA). However, the current literature lacks a comprehensive review regarding this matter in the elderly population. METHOD Electronic databases including Medline (PubMed), Scopus, Embase, Web of Science, and Google Scholar were comprehensively searched for identifying studies that assessed the effects of probiotics on the cognitive function of the elderly published until July 2020. Articles were critically reviewed and if met the inclusion criteria, entered the study. RESULTS Among a total of 1374 studies, 10 were eligible for meta-analysis. No significant alteration was found in the cognition of the elderly (SMD=-0.04; 95% CI [- 1.07,0.98]; P = 0.93). There was a nonsignificant increase in the level of brain-derived neurotrophic factor (SMD = 0.58; 95% CI [-1.40,2.56]; P = 0.56) and a nonsignificant reduction in malondialdehyde levels (SMD=-0.44; 95% CI [-1.07,0.19]; P = 0.17). Levels of total antioxidant capacity (SMD = 39.93; 95% CI [2.92,76.95]; P = 0.03) and total glutathione (SMD = 61.51; 95% CI [12.39,110.62]; P = 0.01) significantly increased. A significant reduction was also noted in total cholesterol levels (SMD=-4.23; 95% CI [-8.32, -0.14]; P = 0.04). CONCLUSION Our study did not support the hypothesis of the positive effect of probiotics on cognitive function in the elderly population; which might be due to the heterogeneity across the studies.
Collapse
Affiliation(s)
- Fateme Tahmasbi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mojgan Mirghafourvand
- Midwifery Department, Social Determinants of Health Research Center, Tabriz, University of Medical Sciences, Tabriz, Iran
| | - Ali Shamekh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ata Mahmoodpoor
- Anesthesiology and Critical Care Department, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sarvin Sanaie
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
29
|
Kim H, Jeon S, Kim J, Seol D, Jo J, Cho S, Kim H. Investigation of memory-enhancing effects of Streptococcus thermophilus EG007 in mice and elucidating molecular and metagenomic characteristics using nanopore sequencing. Sci Rep 2022; 12:13274. [PMID: 35918353 PMCID: PMC9346115 DOI: 10.1038/s41598-022-14837-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/13/2022] [Indexed: 11/15/2022] Open
Abstract
Over the past decades, accumulating evidences have highlighted the gut microbiota as a key player in the brain functioning via microbiota–gut–brain axis, and accordingly, the beneficial role of several probiotic strains in cognitive ability also have been actively investigated. However, the majority of the research have demonstrated the effects against age-related cognitive decline or neurological disease. To this end, we aimed to investigate lactic acid bacteria strains having beneficial effects on the cognitive function of healthy young mice and elucidate underlying characteristics by carrying out nanopore sequencing-based genomics and metagenomics analysis. 8-week consumption of Streptococcus thermophilus EG007 demonstrated marked enhancements in behavior tests assessing short-term spatial and non-spatial learning and memory. It was revealed that EG007 possessed genes encoding various metabolites beneficial for a health condition in many aspects, including gamma-aminobutyric acid producing system, a neurotransmitter associated with mood and stress response. Also, by utilizing 16S–23S rRNA operon as a taxonomic marker, we identified more accurate species-level compositional changes in gut microbiota, which was increase of certain species, previously reported to have associations with mental health or down-regulation of inflammation or infection-related species. Moreover, correlation analysis revealed that the EG007-mediated altered microbiota had a significant correlation with the memory traits.
Collapse
Affiliation(s)
- Hyaekang Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Soomin Jeon
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jina Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Donghyeok Seol
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.,eGnome, Inc, Seoul, Republic of Korea
| | - JinChul Jo
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seoae Cho
- eGnome, Inc, Seoul, Republic of Korea
| | - Heebal Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea. .,eGnome, Inc, Seoul, Republic of Korea.
| |
Collapse
|
30
|
Psychobiotics: the Influence of Gut Microbiota on the Gut-Brain Axis in Neurological Disorders. J Mol Neurosci 2022; 72:1952-1964. [PMID: 35849305 PMCID: PMC9289355 DOI: 10.1007/s12031-022-02053-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/12/2022] [Indexed: 12/01/2022]
Abstract
Nervous system disorders are one of the common problems that affect many people around the world every year. Regarding the beneficial effects of the probiotics on the gut and the gut-brain axis, their application along with current medications has been the subject of intense interest. Psychobiotics are a probiotic strain capable to affect the gut-brain axis. The effective role of Psychobiotics in several neurological disorders is documented. Consumption of the Psychobiotics containing nutrients has positive effects on the improvement of microbiota as well as alleviation of some symptoms of central nervous system (CNS) disorders. In the present study, the effects of probiotic strains on some CNS disorders in terms of controlling the disease symptoms were reviewed. Finding suggests that Psychobiotics can efficiently alleviate the symptoms of several CNS disorders such as autism spectrum disorders, Parkinson’s disease, multiple sclerosis, insomnia, depression, diabetic neuropathy, and anorexia nervosa. It can be concluded that functional foods containing psychotropic strains can help to improve mental health.
Collapse
|
31
|
Abstract
Innate and adaptive immunity are essential for neurodevelopment and central nervous system (CNS) homeostasis; however, the fragile equilibrium between immune and brain cells can be disturbed by any immune dysregulation and cause detrimental effects. Accumulating evidence indicates that, despite the blood-brain barrier (BBB), overactivation of the immune system leads to brain vulnerability that increases the risk of neuropsychiatric disorders, particularly upon subsequent exposure later in life. Disruption of microglial function in later life can be triggered by various environmental and psychological factors, including obesity-driven chronic low-grade inflammation and gut dysbiosis. Increased visceral adiposity has been recognized as an important risk factor for multiple neuropsychiatric conditions. The review aims to present our current understanding of the topic.
Collapse
|
32
|
Sanborn V, Aljumaah M, Azcarate-Peril MA, Gunstad J. Examining the cognitive benefits of probiotic supplementation in physically active older adults: A randomized clinical trial. Appl Physiol Nutr Metab 2022; 47:871-882. [PMID: 35617704 DOI: 10.1139/apnm-2021-0557] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The prevalence of dementia is projected to increase with the growing older adult population and prevention strategies are urgently needed. Two promising interventions include physical activity (PA) and probiotic supplementation, with initial findings suggesting their combined use may confer greater cognitive benefits than either intervention alone. However, no study has yet examined the effects of probiotic supplementation on cognitive function in healthy, physically active older adults. The present study used archival data from a randomized clinical trial including 127 physically active, middle-aged to older adults (avg age 64.3 years) with self-reported PA levels meeting or exceeding recommendations to investigate the effects of probiotic supplementation (Lactobacillus rhamnosus GG; L.GG) on cognitive outcomes. Repeated measures ANOVAs showed no significant changes in cognitive performance from baseline to follow up as an effect of L.GG consumption. These results suggest that probiotic supplementation may not improve cognitive function in persons already engaged in high levels of PA. Future research should include prospective studies to determine whether long-term use of probiotic supplementation may help prevent cognitive decline. Novelty: • Initial research shows promising cognitive benefits of combined physical activity and probiotics consumption. • L.GG did not lead to acute cognitive improvements for older adults already meeting physical activity guidelines. • Prospective studies examining prevention of cognitive decline with probiotics in healthy and clinical samples are much needed.
Collapse
Affiliation(s)
- Victoria Sanborn
- Kent State University, 4229, Psychological Sciences, 600 Hilltop Drive, Kent, Ohio, United States, 44242;
| | - Mashael Aljumaah
- University of North Carolina System, 2332, Department of Medicine, and UNC Microbiome Core, Center for Gastrointestinal Biology and Disease, Division of Gastroenterology and Hepatology, School of Medicine, Chapel Hill, North Carolina, United States.,North Carolina State University at Raleigh, 6798, Department of Plant and Microbial Biology, Raleigh, North Carolina, United States;
| | - M Andrea Azcarate-Peril
- University of North Carolina at Chapel Hill School of Medicine, 6797, Department of Medicine, and UNC Microbiome Core, Center for Gastrointestinal Biology and Disease, Division of Gastroenterology and Hepatology, Chapel Hill, North Carolina, United States;
| | - John Gunstad
- Kent State University College of Arts and Sciences, 142731, Psychological Sciences; Brain Health Research Institute, Kent, Ohio, United States;
| |
Collapse
|
33
|
Clinical and Preclinical Studies of Fermented Foods and Their Effects on Alzheimer’s Disease. Antioxidants (Basel) 2022; 11:antiox11050883. [PMID: 35624749 PMCID: PMC9137914 DOI: 10.3390/antiox11050883] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
The focus on managing Alzheimer’s disease (AD) is shifting towards prevention through lifestyle modification instead of treatments since the currently available treatment options are only capable of providing symptomatic relief marginally and result in various side effects. Numerous studies have reported that the intake of fermented foods resulted in the successful management of AD. Food fermentation is a biochemical process where the microorganisms metabolize the constituents of raw food materials, giving vastly different organoleptic properties and additional nutritional value, and improved biosafety effects in the final products. The consumption of fermented foods is associated with a wide array of nutraceutical benefits, including anti-oxidative, anti-inflammatory, neuroprotective, anti-apoptotic, anti-cancer, anti-fungal, anti-bacterial, immunomodulatory, and hypocholesterolemic properties. Due to their promising health benefits, fermented food products have a great prospect for commercialization in the food industry. This paper reviews the memory and cognitive enhancement and neuroprotective potential of fermented food products on AD, the recently commercialized fermented food products in the health and food industries, and their limitations. The literature reviewed here demonstrates a growing demand for fermented food products as alternative therapeutic options for the prevention and management of AD.
Collapse
|
34
|
Zhu H, Tian P, Zhao J, Zhang H, Wang G, Chen W. A psychobiotic approach to the treatment of depression: A systematic review and meta-analysis. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
35
|
Ong JS, Lew LC, Hor YY, Liong MT. Probiotics: The Next Dietary Strategy against Brain Aging. Prev Nutr Food Sci 2022; 27:1-13. [PMID: 35465109 PMCID: PMC9007707 DOI: 10.3746/pnf.2022.27.1.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 11/06/2022] Open
Abstract
Owing to their long history of safe use, probiotic microorganisms, typically from the genus Lactobacillus, have long been recognized, especially in traditional and fermented food industries. Although conventionally used for dairy, meat, and vegetable fermentation, the use of probiotics in health foods, supplements, and nutraceuticals has gradually increased. Over the past two decades, the importance of probiotics in improving gut health and immunity as well as alleviating metabolic diseases has been recognized. The new concept of a gut-heart-brain axis has led to the development of various innovations and strategies related to the introduction of probiotics in food and diet. Probiotics influence gut microbiota profiles, inflammation, and disorders and directly impact brain neurotransmitter pathways. As brain health often declines with age, the concept of probiotics being beneficial for the aging brain has also gained much momentum and emphasis in both research and product development. In this review, the concept of the aging brain, different in vivo aging models, and various aging-related benefits of probiotics are discussed.
Collapse
Affiliation(s)
- Jia-Sin Ong
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Lee-Ching Lew
- Probionic Corporation, Jeonbuk Institute for Food-Bioindustry, Jeonbuk 54810, Korea
| | - Yan-Yan Hor
- Department of Biotechnology, Yeungnam University, Gyeongbuk 38541, Korea
| | - Min-Tze Liong
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| |
Collapse
|
36
|
The Therapeutic Role of Exercise and Probiotics in Stressful Brain Conditions. Int J Mol Sci 2022; 23:ijms23073610. [PMID: 35408972 PMCID: PMC8998860 DOI: 10.3390/ijms23073610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/14/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
Oxidative stress has been recognized as a contributing factor in aging and in the progression of multiple neurological disorders such as Parkinson’s disease, Alzheimer’s dementia, ischemic stroke, and head and spinal cord injury. The increased production of reactive oxygen species (ROS) has been associated with mitochondrial dysfunction, altered metal homeostasis, and compromised brain antioxidant defence. All these changes have been reported to directly affect synaptic activity and neurotransmission in neurons, leading to cognitive dysfunction. In this context two non-invasive strategies could be employed in an attempt to improve the aforementioned stressful brain status. In this regard, it has been shown that exercise could increase the resistance against oxidative stress, thus providing enhanced neuroprotection. Indeed, there is evidence suggesting that regular physical exercise diminishes BBB permeability as it reinforces antioxidative capacity, reduces oxidative stress, and has anti-inflammatory effects. However, the differential effects of different types of exercise (aerobic exhausted exercise, anaerobic exercise, or the combination of both types) and the duration of physical activity will be also addressed in this review as likely determinants of therapeutic efficacy. The second proposed strategy is related to the use of probiotics, which can also reduce some biomarkers of oxidative stress and inflammatory cytokines, although their underlying mechanisms of action remain unclear. Moreover, various probiotics produce neuroactive molecules that directly or indirectly impact signalling in the brain. In this review, we will discuss how physical activity can be incorporated as a component of therapeutic strategies in oxidative stress-based neurological disorders along with the augmentation of probiotics intake.
Collapse
|
37
|
Eroğlu FE, Sanlier N. Effect of fermented foods on some neurological diseases, microbiota, behaviors: mini review. Crit Rev Food Sci Nutr 2022; 63:8066-8082. [PMID: 35317694 DOI: 10.1080/10408398.2022.2053060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fermented foods are among the traditional foods consumed for centuries. In recent years, awareness of fermented foods has been increasing due to their positive health benefits. Fermented foods contain beneficial microorganisms. Fermented foods, such as kefir, kimchi, sauerkraut, and yoghurt, contain Lactic acid bacteria (LAB), such as Lactobacilli, Bifidobacteria, and their primary metabolites (lactic acid). Although studies on the effect of consumption of fermented foods on diabetes, cardiovascular, obesity, gastrointestinal diseases on chronic diseases have been conducted, more studies are needed regarding the relationship between neurological diseases and microbiota. There are still unexplored mechanisms in the relationship between the brain and intestine. In this review, we answer how the consumption of fermented foods affects the brain and behavior of Alzheimer's disease, Parkinson's disease, multiple sclerosis disease, stroke, and gut microbiota.
Collapse
Affiliation(s)
- Fatma Elif Eroğlu
- Department of Nutrition and Dietetics, Ankara Medipol University, Institute of Health Sciences, Ankara, Turkey
| | - Nevin Sanlier
- Department of Nutrition and Dietetics, School of Health Sciences, Ankara Medipol University, Altındağ, Ankara, Turkey
| |
Collapse
|
38
|
Karbownik MS, Mokros Ł, Dobielska M, Kowalczyk M, Kowalczyk E. Association Between Consumption of Fermented Food and Food-Derived Prebiotics With Cognitive Performance, Depressive, and Anxiety Symptoms in Psychiatrically Healthy Medical Students Under Psychological Stress: A Prospective Cohort Study. Front Nutr 2022; 9:850249. [PMID: 35308282 PMCID: PMC8929173 DOI: 10.3389/fnut.2022.850249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/26/2022] [Indexed: 12/22/2022] Open
Abstract
Background Gut microbiota-based therapeutic strategies, such as probiotic and prebiotic preparations, may benefit mental health. However, commonly consumed fermented and prebiotic-containing foods have not been well-tested. The aim of the present study was to determine whether consumption of fermented food and food-derived prebiotics is associated with cognitive performance, depressive, and anxiety symptoms in psychiatrically healthy medical students under psychological stress. Methods The study protocol with data analysis plan was prospectively registered. Food consumption was evaluated with a 7-day dietary record. Cognitive performance was modeled with academic examination performance in relation to subject knowledge. Pre-exam depressive and anxiety symptoms were assessed with the Patient Health Questionnaire-9 and Generalized Anxiety Disorder-7, respectively. Results In total, 372 medical students (22.7 ± 1.1 years of age, 66% female) completed the study. No relationship was observed between cognitive performance under stress and either fermented food (adjusted β 0.02, 95% CI −0.07–0.11, p = 0.63) or food-derived prebiotics consumption (adjusted β −0.00, 95% CI −0.09–0.09, p = 0.99). High intake of fermented food was associated with more severe depressive (adjusted β 0.11, 95% CI 0.01–0.20, p = 0.032) and anxiety symptoms under stress (adjusted β 0.13, 95% CI 0.04–0.22, p = 0.0065); however, no such link was observed for food-derived prebiotics (adjusted β 0.03, 95% CI −0.07–0.13, p = 0.50 and −0.01, 95% CI −0.11–0.08, p = 0.83, for depression and anxiety, respectively). Conclusions Under psychological stress in medical students, consumption of fermented food and food-derived prebiotics appears to be not associated with cognitive performance. High intake of fermented food, but not food-derived prebiotics, may be associated with severity of depressive and anxiety symptoms. The safety of fermented food in this regard therefore requires further clarification.
Collapse
Affiliation(s)
- Michał Seweryn Karbownik
- Department of Pharmacology and Toxicology, Medical University of Lodz, Łódź, Poland
- *Correspondence: Michał Seweryn Karbownik
| | - Łukasz Mokros
- Department of Clinical Pharmacology, Medical University of Lodz, Łódź, Poland
| | - Maria Dobielska
- Students' Research Club, Department of Pharmacology and Toxicology, Medical University of Lodz, Łódź, Poland
| | | | - Edward Kowalczyk
- Department of Pharmacology and Toxicology, Medical University of Lodz, Łódź, Poland
| |
Collapse
|
39
|
Le Morvan de Sequeira C, Hengstberger C, Enck P, Mack I. Effect of Probiotics on Psychiatric Symptoms and Central Nervous System Functions in Human Health and Disease: A Systematic Review and Meta-Analysis. Nutrients 2022; 14:nu14030621. [PMID: 35276981 PMCID: PMC8839125 DOI: 10.3390/nu14030621] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 12/01/2022] Open
Abstract
Background: The gut microbiota impacts on central nervous system (CNS) function via the microbiota–gut–brain axis. Thus, therapeutics targeting the gut microbiota such as probiotics have the potential for improving mental health. This meta-analysis synthesizes the evidence regarding the impacts of probiotics on psychological well-being, psychiatric symptoms and CNS functioning. Methods: The Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines were applied for executing this review using the databases PubMed, Web of Science and Cochrane Library. The data were summarized at qualitative and quantitative level. Results: Fifty-four randomized placebo-controlled studies were included, of which 30 were eligible for meta-analysis. If investigated, the probiotics mostly exerted effects on CNS function. Most probiotics did not affect mood, stress, anxiety, depression and psychiatric distress when compared to placebo at the qualitative level. At quantitative level, depression and psychiatric distress improved slightly in the probiotic condition (depression: mean difference −0.37 (95% CI: −0.55, −0.20); p ≤ 0.0001; psychiatric distress: mean difference −0.33 (95% CI: −0.53, −0.13); p = 0.001). Conclusions: To date it is unclear to which extent and in which specific areas next generation probiotics selected and developed for their ability to improve psychiatric condition and potentially other CNS functions are promising.
Collapse
|
40
|
Elias E, Zhang AY, Manners MT. Novel Pharmacological Approaches to the Treatment of Depression. Life (Basel) 2022; 12:196. [PMID: 35207483 PMCID: PMC8879976 DOI: 10.3390/life12020196] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/19/2022] [Accepted: 01/23/2022] [Indexed: 12/18/2022] Open
Abstract
Major depressive disorder is one of the most prevalent mental health disorders. Monoamine-based antidepressants were the first drugs developed to treat major depressive disorder. More recently, ketamine and other analogues were introduced as fast-acting antidepressants. Unfortunately, currently available therapeutics are inadequate; lack of efficacy, adverse effects, and risks leave patients with limited treatment options. Efforts are now focused on understanding the etiology of depression and identifying novel targets for pharmacological treatment. In this review, we discuss promising novel pharmacological targets for the treatment of major depressive disorder. Targeting receptors including N-methyl-D-aspartate receptors, peroxisome proliferator-activated receptors, G-protein-coupled receptor 39, metabotropic glutamate receptors, galanin and opioid receptors has potential antidepressant effects. Compounds targeting biological processes: inflammation, the hypothalamic-pituitary-adrenal axis, the cholesterol biosynthesis pathway, and gut microbiota have also shown therapeutic potential. Additionally, natural products including plants, herbs, and fatty acids improved depressive symptoms and behaviors. In this review, a brief history of clinically available antidepressants will be provided, with a primary focus on novel pharmaceutical approaches with promising antidepressant effects in preclinical and clinical studies.
Collapse
Affiliation(s)
| | | | - Melissa T. Manners
- Department of Biological Sciences, University of the Sciences, 600 South 43rd Street, Philadelphia, PA 19104, USA; (E.E.); (A.Y.Z.)
| |
Collapse
|
41
|
One Giant Leap from Mouse to Man: The Microbiota-Gut-Brain Axis in Mood Disorders and Translational Challenges Moving towards Human Clinical Trials. Nutrients 2022; 14:nu14030568. [PMID: 35276927 PMCID: PMC8840472 DOI: 10.3390/nu14030568] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 12/13/2022] Open
Abstract
The microbiota–gut–brain axis is a bidirectional communication pathway that enables the gut microbiota to communicate with the brain through direct and indirect signaling pathways to influence brain physiology, function, and even behavior. Research has shown that probiotics can improve several aspects of health by changing the environment within the gut, and several lines of evidence now indicate a beneficial effect of probiotics on mental and brain health. Such evidence has prompted the arrival of a new term to the world of biotics research: psychobiotics, defined as any exogenous influence whose effect on mental health is bacterially mediated. Several taxonomic changes in the gut microbiota have been reported in neurodevelopmental disorders, mood disorders such as anxiety and depression, and neurodegenerative disorders such as Alzheimer’s disease. While clinical evidence supporting the role of the gut microbiota in mental and brain health, and indeed demonstrating the beneficial effects of probiotics is rapidly accumulating, most of the evidence to date has emerged from preclinical studies employing different animal models. The purpose of this review is to focus on the role of probiotics and the microbiota–gut–brain axis in relation to mood disorders and to review the current translational challenges from preclinical to clinical research.
Collapse
|
42
|
Foshati S, Akhlaghi M, Babajafari S. The Effect of Pro-/Synbiotic Supplementation on Brain-Derived Neurotrophic Factor: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Food Funct 2022; 13:8754-8765. [DOI: 10.1039/d2fo01330d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
There is a growing interest in supplementation with pro-/synbiotics for brain and mental health. Animal studies have reported that pro-/synbiotic administration can increase brain-derived neurotrophic factor (BDNF), a key regulator...
Collapse
|
43
|
Komanduri M, Savage K, Lea A, McPhee G, Nolidin K, Deleuil S, Stough C, Gondalia S. The Relationship between Gut Microbiome and Cognition in Older Australians. Nutrients 2021; 14:nu14010064. [PMID: 35010939 PMCID: PMC8746300 DOI: 10.3390/nu14010064] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/20/2022] Open
Abstract
Ageing is associated with changes in biological processes, including reductions in cognitive functions and gut microbiome diversity. However, not much is known about the relationship between cognition and the microbiome with increasing age. Therefore, we examined the relationship between the gut microbiome and cognition in 69 healthy participants aged 60–75 years. The gut microbiome was analysed with the 16S rRNA sequencing method. The cognitive assessment included the Cognitive Drug Research computerised assessment battery, which produced five cognitive factors corresponding to ‘Quality of Episodic Secondary Memory’, ‘Quality of Working Memory’, ‘Continuity of Attention, ‘Speed of Memory’ and ‘Power of Concentration’. Multiple linear regression showed that the bacterial family Carnobacteriaceae explained 9% of the variance in predicting Quality of Episodic Secondary Memory. Alcaligenaceae and Clostridiaceae explained 15% of the variance in predicting Quality of Working Memory; Bacteroidaceae, Barnesiellaceae, Rikenellaceae and Gemellaceae explained 11% of the variance in Power of Concentration. The present study provides specific evidence of a relationship between specific families of bacteria and different domains of cognition.
Collapse
Affiliation(s)
- Mrudhula Komanduri
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (K.S.); (A.L.); (G.M.); (K.N.); (S.D.); (C.S.); (S.G.)
- Correspondence:
| | - Karen Savage
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (K.S.); (A.L.); (G.M.); (K.N.); (S.D.); (C.S.); (S.G.)
| | - Ana Lea
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (K.S.); (A.L.); (G.M.); (K.N.); (S.D.); (C.S.); (S.G.)
| | - Grace McPhee
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (K.S.); (A.L.); (G.M.); (K.N.); (S.D.); (C.S.); (S.G.)
| | - Karen Nolidin
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (K.S.); (A.L.); (G.M.); (K.N.); (S.D.); (C.S.); (S.G.)
| | - Saurenne Deleuil
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (K.S.); (A.L.); (G.M.); (K.N.); (S.D.); (C.S.); (S.G.)
| | - Con Stough
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (K.S.); (A.L.); (G.M.); (K.N.); (S.D.); (C.S.); (S.G.)
| | - Shakuntla Gondalia
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (K.S.); (A.L.); (G.M.); (K.N.); (S.D.); (C.S.); (S.G.)
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organization, Adelaide, SA 5000, Australia
- Precision Health Future Science Platform, Commonwealth Scientific and Industrial Research Organisation, Adelaide, SA 5000, Australia
| |
Collapse
|
44
|
Dairy Lactic Acid Bacteria and Their Potential Function in Dietetics: The Food-Gut-Health Axis. Foods 2021; 10:foods10123099. [PMID: 34945650 PMCID: PMC8701325 DOI: 10.3390/foods10123099] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 12/23/2022] Open
Abstract
Fermented dairy products are the good source of different species of live lactic acid bacteria (LAB), which are beneficial microbes well characterized for their health-promoting potential. Traditionally, dietary intake of fermented dairy foods has been related to different health-promoting benefits including antimicrobial activity and modulation of the immune system, among others. In recent years, emerging evidence suggests a contribution of dairy LAB in the prophylaxis and therapy of non-communicable diseases. Live bacterial cells or their metabolites can directly impact physiological responses and/or act as signalling molecules mediating more complex communications. This review provides up-to-date knowledge on the interactions between LAB isolated from dairy products (dairy LAB) and human health by discussing the concept of the food–gut-health axis. In particular, some bioactivities and probiotic potentials of dairy LAB have been provided on their involvement in the gut–brain axis and non-communicable diseases mainly focusing on their potential in the treatment of obesity, cardiovascular diseases, diabetes mellitus, inflammatory bowel diseases, and cancer.
Collapse
|
45
|
Baldi S, Mundula T, Nannini G, Amedei A. Microbiota shaping — the effects of probiotics, prebiotics, and fecal microbiota transplant on cognitive functions: A systematic review. World J Gastroenterol 2021; 27:6715-6732. [PMID: 34754163 PMCID: PMC8554405 DOI: 10.3748/wjg.v27.i39.6715] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/12/2021] [Accepted: 09/02/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Dementia is a chronic progressive neurological disease affecting millions of people worldwide, and represents a relevant economic burden for healthcare systems. Although its pathogenesis is still unknown, recent findings have reported that a dysregulated gut-brain axis communication, a fundamental relationship mediated by several host and microbial molecules, is associated with cognitive disorders. In addition, gut microbiota manipulation reduces neuroinflammation, improving cognitive function by restoring the functional gut-brain axis.
AIM To better define the effects of probiotics, prebiotics, synbiotics, and fecal microbiota transplant (FMT) on cognitive function.
METHODS We performed a literature search of human randomized clinical trials to examine the effects of the administration of probiotics, prebiotics, synbiotics, or FMT on cognition outcomes in healthy or sick people of every age, sex, and nationality. We systematically searched Embase, Medline/PubMed, Cochrane Library, central and clinicaltrials.gov databases with a combination of comprehensive terms related to cognition and gut microbiota manipulation. Then we carefully reviewed and synthesized the data by type of study design and setting, characteristics of the studied population, kind of intervention (strain type or mixture type, dosage, and frequency of administration), control treatment, inclusion and exclusion criteria, follow-up duration, and cognitive or memory outcomes.
RESULTS After examining the titles and abstracts, the initial literature screening identified 995 articles, but we added 23 papers in our systematic review. The analyses of these selected studies highlighted that both probiotic supplementation and FMT improved cognitive function regardless of the type and posology of administration and the adopted cognitive tests and questionnaires. We found that most of the studies conducted in healthy people showed a significant positive effect of the intervention on at least one of the performed cognitive tests. Regarding unhealthy subjects, while FMT and especially probiotic administration had multiple beneficial effects on different cognitive functions, supplementation with prebiotics did not provide any cognitive improvement.
CONCLUSION Probiotic supplementation and FMT may represent a promising strategy to restore gut eubiosis and enhance the cognitive functions of healthy people and patients with neurological disorders.
Collapse
Affiliation(s)
- Simone Baldi
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
| | - Tiziana Mundula
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
| | - Giulia Nannini
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
- SOD of Interdisciplinary Internal Medicine, Azienda Ospedaliera Universitaria Careggi, Florence 50134, Italy
| |
Collapse
|
46
|
Hofmeister M, Clement F, Patten S, Li J, Dowsett LE, Farkas B, Mastikhina L, Egunsola O, Diaz R, Cooke NCA, Taylor VH. The effect of interventions targeting gut microbiota on depressive symptoms: a systematic review and meta-analysis. CMAJ Open 2021; 9:E1195-E1204. [PMID: 34933877 PMCID: PMC8695538 DOI: 10.9778/cmajo.20200283] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Despite their popularity, the efficacy of interventions targeting gut microbiota to improve depressive symptoms is unknown. Our objective is to summarize the effect of microbiome-targeting interventions on depressive symptoms. METHODS We conducted a systematic review and meta-analysis. We searched MEDLINE, Embase, PsycINFO, Database of Abstracts of Reviews of Effects, Cochrane Database of Systematic Reviews and the Cochrane Controlled Register of Trials from inception to Mar. 5, 2021. We included studies that evaluated probiotic, prebiotic, synbiotic, paraprobiotic or fecal microbiota transplant interventions in an adult population (age ≥ 18 yr) with an inactive or placebo comparator (defined by the absence of active intervention). Studies must have measured depressive symptoms with a validated scale, and used a randomized controlled trial study design. We conducted a random effects meta-analysis of change scores, using standardized mean difference as the measure of effect. RESULTS Sixty-two studies formed the final data set, with 50 included in the meta-analysis. Probiotic, prebiotic, and synbiotic interventions on depressive symptoms showed statistically significant benefits. In the single studies evaluating each of fecal microbiota transplant and paraprobiotic interventions, neither showed a statistically significant benefit. INTERPRETATION Despite promising findings of benefit of probiotic, prebiotic and synbiotic interventions for depressive symptoms in study populations, there is not yet strong enough evidence to favour inclusion of these interventions in treatment guidelines for depression. Critical questions about species administered, dosage and timing relative to other antidepressant medications remain to be answered. STUDY REGISTRATION PROSPERO no. 143178.
Collapse
Affiliation(s)
- Mark Hofmeister
- Department of Community Health Sciences (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and O'Brien Institute for Public Health (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and Departments of Psychiatry (Patten, Taylor) and Biochemistry and Molecular Biology (Cooke), Teaching Research and Wellness Building, University of Calgary, Calgary, Alta
| | - Fiona Clement
- Department of Community Health Sciences (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and O'Brien Institute for Public Health (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and Departments of Psychiatry (Patten, Taylor) and Biochemistry and Molecular Biology (Cooke), Teaching Research and Wellness Building, University of Calgary, Calgary, Alta
| | - Scott Patten
- Department of Community Health Sciences (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and O'Brien Institute for Public Health (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and Departments of Psychiatry (Patten, Taylor) and Biochemistry and Molecular Biology (Cooke), Teaching Research and Wellness Building, University of Calgary, Calgary, Alta
| | - Joyce Li
- Department of Community Health Sciences (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and O'Brien Institute for Public Health (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and Departments of Psychiatry (Patten, Taylor) and Biochemistry and Molecular Biology (Cooke), Teaching Research and Wellness Building, University of Calgary, Calgary, Alta
| | - Laura E Dowsett
- Department of Community Health Sciences (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and O'Brien Institute for Public Health (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and Departments of Psychiatry (Patten, Taylor) and Biochemistry and Molecular Biology (Cooke), Teaching Research and Wellness Building, University of Calgary, Calgary, Alta
| | - Brenlea Farkas
- Department of Community Health Sciences (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and O'Brien Institute for Public Health (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and Departments of Psychiatry (Patten, Taylor) and Biochemistry and Molecular Biology (Cooke), Teaching Research and Wellness Building, University of Calgary, Calgary, Alta
| | - Liza Mastikhina
- Department of Community Health Sciences (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and O'Brien Institute for Public Health (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and Departments of Psychiatry (Patten, Taylor) and Biochemistry and Molecular Biology (Cooke), Teaching Research and Wellness Building, University of Calgary, Calgary, Alta
| | - Oluwaseun Egunsola
- Department of Community Health Sciences (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and O'Brien Institute for Public Health (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and Departments of Psychiatry (Patten, Taylor) and Biochemistry and Molecular Biology (Cooke), Teaching Research and Wellness Building, University of Calgary, Calgary, Alta
| | - Ruth Diaz
- Department of Community Health Sciences (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and O'Brien Institute for Public Health (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and Departments of Psychiatry (Patten, Taylor) and Biochemistry and Molecular Biology (Cooke), Teaching Research and Wellness Building, University of Calgary, Calgary, Alta
| | - Noah C A Cooke
- Department of Community Health Sciences (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and O'Brien Institute for Public Health (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and Departments of Psychiatry (Patten, Taylor) and Biochemistry and Molecular Biology (Cooke), Teaching Research and Wellness Building, University of Calgary, Calgary, Alta
| | - Valerie H Taylor
- Department of Community Health Sciences (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and O'Brien Institute for Public Health (Hofmeister, Clement, Patten, Li, Dowsett, Farkas, Mastikhina, Egunsola, Diaz), and Departments of Psychiatry (Patten, Taylor) and Biochemistry and Molecular Biology (Cooke), Teaching Research and Wellness Building, University of Calgary, Calgary, Alta.
| |
Collapse
|
47
|
Vitamin K in COVID-19—Potential Anti-COVID-19 Properties of Fermented Milk Fortified with Bee Honey as a Natural Source of Vitamin K and Probiotics. FERMENTATION 2021. [DOI: 10.3390/fermentation7040202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Vitamin K deficiency is evident in severe and fatal COVID-19 patients. It is associated with the cytokine storm, thrombotic complications, multiple organ damage, and high mortality, suggesting a key role of vitamin K in the pathology of COVID-19. To support this view, we summarized findings reported from machine learning studies, molecular simulation, and human studies on the association between vitamin K and SARS-CoV-2. We also investigated the literature for the association between vitamin K antagonists (VKA) and the prognosis of COVID-19. In addition, we speculated that fermented milk fortified with bee honey as a natural source of vitamin K and probiotics may protect against COVID-19 and its severity. The results reported by several studies emphasize vitamin K deficiency in COVID-19 and related complications. However, the literature on the role of VKA and other oral anticoagulants in COVID-19 is controversial: some studies report reductions in (intensive care unit admission, mechanical ventilation, and mortality), others report no effect on mortality, while some studies report higher mortality among patients on chronic oral anticoagulants, including VKA. Supplementing fermented milk with honey increases milk peptides, bacterial vitamin K production, and compounds that act as potent antioxidants: phenols, sulforaphane, and metabolites of lactobacilli. Lactobacilli are probiotic bacteria that are suggested to interfere with various aspects of COVID-19 infection ranging from receptor binding to metabolic pathways involved in disease prognosis. Thus, fermented milk that contains natural honey may be a dietary manipulation capable of correcting nutritional and immune deficiencies that predispose to and aggravate COVID-19. Empirical studies are warranted to investigate the benefits of these compounds.
Collapse
|
48
|
Snigdha S, Ha K, Tsai P, Dinan TG, Bartos JD, Shahid M. Probiotics: Potential novel therapeutics for microbiota-gut-brain axis dysfunction across gender and lifespan. Pharmacol Ther 2021; 231:107978. [PMID: 34492236 DOI: 10.1016/j.pharmthera.2021.107978] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/21/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022]
Abstract
Probiotics are live microorganisms, which when administered in adequate amounts, present a health benefit for the host. While the beneficial effects of probiotics on gastrointestinal function are generally well recognized, new animal research and clinical studies have found that alterations in gut microbial communities can have a broad range of effects throughout the body. Non-intestinal sites impacted include the immune, endocrine, cardiovascular and the central nervous system (CNS). In particular, there has been a growing interest and appreciation about the role that gut microbiota may play in affecting CNS-related function through the 'microbiota-gut-brain axis'. Emerging evidence suggests potential therapeutic benefits of probiotics in several CNS conditions, such as anxiety, depression, autism spectrum disorders and Parkinson's disease. There may also be some gender-specific variances in terms of probiotic mediated effects, with the gut microbiota shaping and being concurrently molded by the hormonal environment governing differences between the sexes. Probiotics may influence the ability of the gut microbiome to affect a variety of biological processes in the host, including neurotransmitter activity, vagal neurotransmission, generation of neuroactive metabolites and inflammatory response mediators. Some of these may engage in cross talk with host sex hormones, such as estrogens, which could be of relevance in relation to their effects on stress response and cognitive health. This raises the possibility of gender-specific variation with regards to the biological action of probiotics, including that on the endocrine and central nervous systems. In this review we aim to describe the current understanding in relation to the role and use of probiotics in microbiota-gut-brain axis-related dysfunction. Furthermore, we will address the conceptualization and classification of probiotics in the context of gender and lifespan as well as how restoring gut microbiota composition by clinical or dietary intervention can help in supporting health outcomes other than those related to the gastrointestinal tract. We also evaluate how these new learnings may impact industrial effort in probiotic research and the discovery and development of novel and more personalized, condition-specific, beneficial probiotic therapeutic agents.
Collapse
Affiliation(s)
| | - Kevin Ha
- MeriCal, 233 E Bristol St., Orange, CA, USA
| | - Paul Tsai
- MeriCal, 233 E Bristol St., Orange, CA, USA
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | | | | |
Collapse
|
49
|
Efficacy and Safety of Sesame Oil Cake Extract on Memory Function Improvement: A 12-Week, Randomized, Double-Blind, Placebo-Controlled Pilot Study. Nutrients 2021; 13:nu13082606. [PMID: 34444766 PMCID: PMC8399671 DOI: 10.3390/nu13082606] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 11/17/2022] Open
Abstract
The goal of treatment for mild cognitive impairment (MCI) is to reduce the existing clinical symptoms, delay the progression of cognitive impairment and prevent the progression to Alzheimer’s disease (AD). At present, there is no effective drug therapy for AD treatment. However, early intake of dietary supplements may be effective in alleviating and delaying the MCI. This study aims to evaluate the effects of sesame oil cake extract (SOCE) supplementation on cognitive function in aged 60 years or older adults with memory impairment. A total of 70 subjects received either SOCE (n = 35) or placebo (n = 35) for 12 weeks based on random 1:1 assignment to these two groups. Cognitive function was evaluated by a computerized neurocognitive function test (CNT), and changes in the concentrations of plasma amyloid β (Aβ) proteins and urine 8-OHdG (8-hydroxy-2′-deoxyguanosine) were investigated before and after the experiment. Verbal learning test index items of the CNT improved markedly in the SOCE group compared to the placebo group (p < 0.05). Furthermore, plasma amyloid-β (1–40) and amyloid-β (1–42) levels in the SOCE group decreased significantly compared to that in the placebo group (p < 0.05). There was no statistically significant difference in urine 8-OHdG between the two groups (p > 0.05). Collectively, intake of SOCE for 12 weeks appears to have a beneficial effect on the verbal memory abilities and plasma β-amyloid levels of older adults with memory impairment.
Collapse
|
50
|
Białecka-Dębek A, Granda D, Szmidt MK, Zielińska D. Gut Microbiota, Probiotic Interventions, and Cognitive Function in the Elderly: A Review of Current Knowledge. Nutrients 2021; 13:2514. [PMID: 34444674 PMCID: PMC8401879 DOI: 10.3390/nu13082514] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/18/2021] [Accepted: 07/18/2021] [Indexed: 12/23/2022] Open
Abstract
Changes in the composition and proportions of the gut microbiota may be associated with numerous diseases, including cognitive impairment. Over the recent years, the growing interest in this relation is observed, but there are still many unknowns, especially in the elderly. To the best of our knowledge, this is the first work that synthesizes and critically evaluates existing evidence on the possible association between human gut microbiota and cognitive function in the elderly. For this purpose, comprehensive literature searches were conducted using the electronic databases PubMed, Google Scholar, and ScienceDirect. The gut microbiota of cognitively healthy and impaired elderly people may differ in the diversity and abundance of individual taxes, but specific taxes cannot be identified. However, some tendencies to changing the Firmicutes/Bacteroidetes ratio can be identified. Currently, clinical trials involving probiotics, prebiotics, and synbiotics supplementation have shown that there are premises for the claim that these factors can improve cognitive functions, however there is no single intervention beneficial to the elderly population. More reliable evidence from large-scale, long-period RCT is needed. Despite proposing several potential mechanisms of the gut microbiota's influence on the cognitive function impairment, prospective research on this topic is extremely difficult to conduct due to numerous confounding factors that may affect the gut microbiota. Heterogeneity of research outcomes impairs insight into these relations.
Collapse
Affiliation(s)
- Agata Białecka-Dębek
- Department of Human Nutrition, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159c, 02-776 Warsaw, Poland; (D.G.); (M.K.S.)
| | - Dominika Granda
- Department of Human Nutrition, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159c, 02-776 Warsaw, Poland; (D.G.); (M.K.S.)
| | - Maria Karolina Szmidt
- Department of Human Nutrition, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159c, 02-776 Warsaw, Poland; (D.G.); (M.K.S.)
| | - Dorota Zielińska
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159c, 02-776 Warsaw, Poland;
| |
Collapse
|