1
|
Xu HS, Chen Y, Lin YJ, Eldefrawy F, Kramer NE, Siracusa JS, Kong F, Guo TL. Nanocellulose dysregulated glucose homeostasis in female mice on a Western diet: The role of gut microbiome. Life Sci 2025; 370:123567. [PMID: 40113076 DOI: 10.1016/j.lfs.2025.123567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/12/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025]
Abstract
There is currently increased interest in nanocellulose as a food emulsifier and dietary supplement. It was hypothesized that nanocellulose could modulate behaviors and glucose homeostasis in female mice using mechanisms of altered gut microbiome and immune modulation. An initial experiment was conducted with the objective of examining whether three common types of nanocellulose affected the gut microbiome of female C57BL/6 mice on a Western diet. Cellulose nanofibrils (CNF), TEMPO-CNF and cellulose nanocrystals were administered at the physiologically relevant dose of 30 mg/kg/day for 30 days by gavage, with cellulose and water groups as the positive and negative controls, respectively. Findings suggested that CNF had the strongest effect on the gut microbiome. CNF was therefore selected for a chronic 6-month study on the gut microbiome, immune system and behaviors in female NOD mice, a model for type 1 diabetes. Gut microbiome analysis suggested that there might be some beneficial changes following subchronic exposure (e.g., at the two-month timepoint), however, this effect was no longer seen after chronic consumption (e.g., at the six-month timepoint). CNF treatment also altered the immune homeostasis, including decreases in the splenic Mac-3+ population and serum level of proinflammatory chemokine LIX. Additionally, CNF consumption decreased diabetic incidences but had no effect on the depressive-like behavior and grip strength. However, further analysis, e.g., the insulin tolerance test, indicated that CNF-treated NOD mice might exhibit signs of insulin resistance. Taken together, nanocellulose dysregulated glucose homeostasis in female mice on a Western diet involving mechanisms related to alteration of the gut microbiome.
Collapse
Affiliation(s)
| | - Yingjia Chen
- Department of Veterinary Biomedical Sciences, USA
| | - Yu-Ju Lin
- Department of Pharmaceutical and Biomedical Sciences, USA
| | | | - Naomi E Kramer
- Department of Pharmaceutical and Biomedical Sciences, USA
| | | | - Fanbin Kong
- Department of Food Science and Technology, University of Georgia, Athens, GA 30602, USA
| | - Tai L Guo
- Department of Veterinary Biomedical Sciences, USA.
| |
Collapse
|
2
|
Shen Q, Yang Z, Hu C, Liu Y, Zhao L, Li C, Ma Y, Bian H. Non-starch polysaccharides and health: gut-target organ axis influencing obesity. Food Sci Biotechnol 2025; 34:1771-1788. [PMID: 40196321 PMCID: PMC11972281 DOI: 10.1007/s10068-024-01745-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/09/2024] [Accepted: 10/23/2024] [Indexed: 04/09/2025] Open
Abstract
Obesity is recognized as a global epidemic that can result in changes in the human body and metabolism. Accumulating evidence indicates that gut microbiota (GM) can affect the development of obesity. The GM not only plays a crucial role in digesting and absorbing nutrients, but also in maintaining the overall health of the host. Dietary supplements such as non-starch polysaccharides are mainly fermented by the GM in the colon. Recent findings suggest that shaping the GM through the prebiotic function of non-starch polysaccharides may be a viable strategy against obesity. In this paper, the effects of non-starch polysaccharides on host health, together with their prebiotic function influencing the GM to control obesity via the gut-target organ axis, are reviewed. Potential perspectives of non-starch polysaccharides exhibiting anti-obesity effects via the gut-target organ axis are proposed for future research. Graphical abstract
Collapse
Affiliation(s)
- Qingshan Shen
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Changjiang Road 80, Nanyang, 473004 Henan China
| | - Zhuan Yang
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Wolong Road 1638, Nanyang, 473061 China
| | - Chengzhi Hu
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071000 China
| | - Yilin Liu
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Changjiang Road 80, Nanyang, 473004 Henan China
| | - Lei Zhao
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Changjiang Road 80, Nanyang, 473004 Henan China
| | - Cuicui Li
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Changjiang Road 80, Nanyang, 473004 Henan China
| | - Yanli Ma
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Changjiang Road 80, Nanyang, 473004 Henan China
| | - Hua Bian
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Changjiang Road 80, Nanyang, 473004 Henan China
| |
Collapse
|
3
|
Hong MG, Song EJ, Yoon HJ, Chung WH, Seo HY, Kim D, Lee D, Seo JG, Lee H, Kim SI, Kim GJ, Kim KN, Lee SN, Kim KS, Nam YD. Clade-specific extracellular vesicles from Akkermansia muciniphila mediate competitive colonization via direct inhibition and immune stimulation. Nat Commun 2025; 16:2708. [PMID: 40108178 PMCID: PMC11923206 DOI: 10.1038/s41467-025-57631-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/26/2025] [Indexed: 03/22/2025] Open
Abstract
Akkermansia muciniphila, a promising candidate for next-generation probiotics, exhibits significant genomic diversity, classified into several distinct clades (AmI to AmIV). Notably, a single Akkermansia clade tends to predominate within individual hosts, with co-occurrence of different clades being rare. The mechanisms driving such clade-specific exclusion remain unclear. Here, we show that extracellular vesicles (EVs) derived from AmII clade inhibit the growth of clade I (AmI), conferring a competitive advantage to AmII. Moreover, we observe clade-specific immunoglobulin A (IgA) responses, where AmII clade-specific IgAs, induced by EVs from AmII, facilitate niche occupancy and competitive exclusion of AmI. These findings provide insights into the competitive dynamics of A. muciniphila clades and suggest that future personalized microbiome interventions could be optimized by considering the clade composition of A. muciniphila in individual hosts.
Collapse
Affiliation(s)
- Moon-Gi Hong
- R&D Center, Enterobiome Inc., 814 Siksa-dong, Ilsandong-gu, Goyang-si, Republic of Korea
| | - Eun-Ji Song
- Research Group of Personalized Diet, Korea Food Research Institute, 245 Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Hye Jin Yoon
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Won-Hyong Chung
- Research Group of Personalized Diet, Korea Food Research Institute, 245 Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Hae Yeong Seo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Dohak Kim
- R&D Center, Enterobiome Inc., 814 Siksa-dong, Ilsandong-gu, Goyang-si, Republic of Korea
| | - Dokyung Lee
- R&D Center, Enterobiome Inc., 814 Siksa-dong, Ilsandong-gu, Goyang-si, Republic of Korea
| | - Jae-Gu Seo
- R&D Center, Enterobiome Inc., 814 Siksa-dong, Ilsandong-gu, Goyang-si, Republic of Korea
| | - Hayoung Lee
- Digital Omics Research Center, Korea Basic Science Institute, Cheongju, Republic of Korea
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Seung Il Kim
- Digital Omics Research Center, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Gwang Joong Kim
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju, Republic of Korea
| | - Kil-Nam Kim
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju, Republic of Korea
| | - Sang-Nam Lee
- R&D Center, Enterobiome Inc., 814 Siksa-dong, Ilsandong-gu, Goyang-si, Republic of Korea.
| | - Kwang Soon Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea.
| | - Young-Do Nam
- Research Group of Personalized Diet, Korea Food Research Institute, 245 Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do, Republic of Korea.
| |
Collapse
|
4
|
Wang YT, Wu H, Wu JJ, Yu YS, Wen J, Zou B, Li L, Peng J, Cheng LN, Bu ZB, Xu YJ, Hu TG. The hypoglycemic effect of mulberry ( Morus atropurpurea) fruit lacking fructose and glucose by regulation of the gut microbiota. Food Funct 2025; 16:2444-2460. [PMID: 40017446 DOI: 10.1039/d4fo02781g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Mulberries are known to be rich in hypoglycemic active substances such as anthocyanins and dietary fiber, which primarily aid in regulating gut microbiota. However, their high sugar content, such as fructose, hinders their application in hypoglycemic functional foods. This research utilized microbial fermentation technology to remove the fructose and glucose in mulberries (FM), subsequently evaluating their hypoglycemic properties and balancing gut microbiota. Results indicated that administering varying doses of FM to type 2 diabetic mice for five weeks notably decreased blood sugar and insulin levels, improved dyslipidemia and insulin resistance, enhanced antioxidant capacity, repaired organ damage, and regulated hypoglycemic activity by influencing mRNA expression of key signaling factors in the PI3K/Akt and AMPK pathways. Analysis of the intestinal microbiota composition revealed that FM can modulate specific bacterial populations, increasing beneficial bacteria like Lactobacillus, Bifidobacterium and Akkermansia while inhibiting harmful bacteria like Escherichia-Shigella and Helicobacter. This restoration of the intestinal microecological balance helped regulate host sugar metabolism homeostasis and affect the secretion of short chain fatty acid (SCFA) synthase in the gut microbiota to increase the production of SCFAs. These findings offer significant support for the potential use of FM in the treatment of diabetes.
Collapse
Affiliation(s)
- Ya-Ting Wang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, China.
- School of Food Science and Engineering, South China University of Technology, China
| | - Hong Wu
- School of Food Science and Engineering, South China University of Technology, China
| | - Ji-Jun Wu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, China.
| | - Yuan-Shan Yu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, China.
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, China
- Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, China
| | - Jing Wen
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, China.
| | - Bo Zou
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, China.
- Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, China
| | - Lu Li
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, China.
| | - Jian Peng
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, China.
| | - Li-Na Cheng
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, China.
| | - Zhi-Bin Bu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, China.
| | - Yu-Juan Xu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, China.
- Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, China
| | - Teng-Gen Hu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, China.
- Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, China
| |
Collapse
|
5
|
Zhu S, Wang YY, Hu XY, Zhou HL, Wang G, Chen HX, Zeng HB, Xie H, Wang ZX, Xu R. Akkermansia muciniphila-derived extracellular vesicles mitigate smoking-induced prostate inflammation and fibrosis. Int Immunopharmacol 2025; 149:114195. [PMID: 39904036 DOI: 10.1016/j.intimp.2025.114195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 12/26/2024] [Accepted: 01/27/2025] [Indexed: 02/06/2025]
Abstract
BACKGROUND Cigarette smoking (CS) is a well-known risk factor for inducing prostate inflammation and fibrosis, presenting significant threats to male reproductive health. Recent research has highlighted the significant role of gut microbiota (GM) in regulating extra-intestinal organs. This study aimed to investigate the effects of Akk and its extracellular vesicles (EVs) on CS-induced prostate inflammation and fibrosis. METHODS This study utilized a mouse model of mainstream smoke exposure to investigate the effects of Akkermansia muciniphila (Akk) and its EVs on prostate tissue affected by CS. Prostate inflammation and fibrosis was assessed through HE staining, qRT-PCR, IHC staining, and immunofluorescence staining. Functional protein P9 enriched in Akk-EVs was used to intervene cigarette smoke extract (CSE)-exposed BPH-1 cells in vitro to validate the anti-inflammatory and anti-fibrotic effects. RESULTS The results revealed that CS exposure leads or led to pronounced prostatic inflammation and fibrosis, accompanied by a notable decrease in intestinal levels of Akk. Supplementation with Akk was found to effectively mitigate prostate lesions caused by CS, with the therapeutic effects primarily attributed to the Akk-derived extracellular vesicles (Akk-EVs). The transport kinetics of Akk-EVs to prostate tissue and cells were elucidated, providing insights into their mechanism of action. Both in vitro and in vivo experiments demonstrated that Akk-EVs and their enriched P9 protein effectively ameliorated CS-induced pro-inflammatory cytokine expression and collagen deposition in the prostate. CONCLUSIONS These findings highlight the anti-inflammatory and anti-fibrotic properties of Akk-EVs and P9 protein, suggesting their potential as therapeutic agents for CS-induced prostate lesions.
Collapse
Affiliation(s)
- Sheng Zhu
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Hunan Key Laboratory of Angmedicine, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Yi-Yi Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Hunan Key Laboratory of Angmedicine, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Xin-Yue Hu
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Hunan Key Laboratory of Angmedicine, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Hong-Liang Zhou
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Hunan Key Laboratory of Angmedicine, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Guang Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Hunan Key Laboratory of Angmedicine, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Hui-Xiang Chen
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Hong-Bo Zeng
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Hui Xie
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Hunan Key Laboratory of Angmedicine, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Zhen-Xing Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Hunan Key Laboratory of Angmedicine, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China.
| | - Ran Xu
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
6
|
Liu Y, Li Z, Lee SC, Chen S, Li F. Akkermansia muciniphila: promises and pitfallsfor next-generation beneficial microorganisms. Arch Microbiol 2025; 207:76. [PMID: 40032707 DOI: 10.1007/s00203-025-04263-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 01/29/2025] [Accepted: 01/31/2025] [Indexed: 03/05/2025]
Abstract
Akkermansia muciniphila, a microorganism ubiquitously colonizing the mucosal layer of the human gut, has garnered significant scientific interest as a promising candidate for probiotic therapeutics. Its persistent identification in both laboratory and living organism studies underscores its potential physiological benefits, positioning it as a bacterium of paramount importance in promoting host health. This review examines the diversity and abundance of gut microbiota members, emphasizing the identification of microbial species engaged in cross-feeding networks with A. muciniphila. Insightful exploration into the mechanisms of cross-feeding, including mucin-derived nutrient exchange and metabolite production, unveils the intricate dynamics shaping microbial community stability. Such interactions contribute not only to the availability of essential nutrients within the gut environment but also to the production of metabolites influencing microbial community dynamics and host health. In conclusion, the cumulative evidence from in vitro and in vivo perspectives substantiates the notion that A. muciniphila holds tremendous promise as a next-generation probiotic. By leveraging its unique physiological benefits, particularly in mucosal health and metabolic regulation, A. muciniphila stands poised to revolutionize the landscape of probiotic interventions for enhanced host well-being.
Collapse
Affiliation(s)
- Yantong Liu
- Department of Computer and Information Engineering, Kunsan National University, Gunsan, 54150, Republic of Korea
| | - Zonglun Li
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Sze Ching Lee
- Department of Neurology & Neurosurgery, Mayo clinic, Rochester, MN, 55902, USA
| | - Shurui Chen
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Feifei Li
- Department of Biochemistry and molecular biology, Mayo clinic, 200 First St. SW, Rochester, MN, 55902, USA.
| |
Collapse
|
7
|
Kumar S, Mukherjee R, Gaur P, Leal É, Lyu X, Ahmad S, Puri P, Chang CM, Raj VS, Pandey RP. Unveiling roles of beneficial gut bacteria and optimal diets for health. Front Microbiol 2025; 16:1527755. [PMID: 40041870 PMCID: PMC11877911 DOI: 10.3389/fmicb.2025.1527755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/03/2025] [Indexed: 04/02/2025] Open
Abstract
The gut microbiome plays a pivotal role in human health, influencing digestion, immunity, and disease prevention. Beneficial gut bacteria such as Akkermansia muciniphila, Adlercreutzia equolifaciens, and Christensenella minuta contribute to metabolic regulation and immune support through bioactive metabolites like short-chain fatty acids (SCFAs). Dietary patterns rich in prebiotics, fermented foods, and plant-based bioactive compounds, including polyphenols and flavonoids, promote microbiome diversity and stability. However, challenges such as individual variability, bioavailability, dietary adherence, and the dynamic nature of the gut microbiota remain significant. This review synthesizes current insights into gut bacteria's role in health, emphasizing the mechanisms by which dietary interventions modulate microbiota. Additionally, it highlights advancements in microbiome-targeted therapies and the transformative potential of personalized nutrition, leveraging microbiota profiling and artificial intelligence (AI) to develop tailored dietary strategies for optimizing gut health and mitigating chronic inflammatory disorders. Addressing these challenges requires a multidisciplinary approach that integrates scientific innovation, ethical frameworks, and practical implementation strategies.
Collapse
Affiliation(s)
- Suresh Kumar
- National Institute of Biologicals, Ministry of Health & Family Welfare, Govt. of India, Noida, India
| | - Riya Mukherjee
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan
| | - Pratibha Gaur
- Centre for Drug Design Discovery and Development (C4D), SRM University Delhi-NCR, Sonepat, India
- Department of Biotechnology and Microbiology, SRM University Delhi-NCR, Sonepat, India
| | - Élcio Leal
- Laboratório de Diversidade Viral, Instituto de Ciências Biológicas, Universidade Federal Do Pará, Belém, Brazil
| | - Xiaoming Lyu
- Department of Laboratory Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Saheem Ahmad
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Ha'il, Saudi Arabia
| | - Paridhi Puri
- University Centre for Research and Development, Chandigarh University, Mohali, India
| | - Chung-Ming Chang
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan
- Master & Ph.D Program in Biotechnology Industry, Chang Gung University, Taoyuan, Taiwan
| | - V. Samuel Raj
- Department of Biotechnology and Microbiology, SRM University Delhi-NCR, Sonepat, India
- Laboratório de Diversidade Viral, Instituto de Ciências Biológicas, Universidade Federal Do Pará, Belém, Brazil
| | - Ramendra Pati Pandey
- Department of Biotechnology and Microbiology, SRM University Delhi-NCR, Sonepat, India
- Laboratório de Diversidade Viral, Instituto de Ciências Biológicas, Universidade Federal Do Pará, Belém, Brazil
| |
Collapse
|
8
|
Yang Y, Shi X. Big lessons from the little Akkermansia muciniphila in hepatocellular carcinoma. Front Immunol 2025; 16:1524563. [PMID: 40028328 PMCID: PMC11868108 DOI: 10.3389/fimmu.2025.1524563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/30/2025] [Indexed: 03/05/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is the most frequently occurring type of liver tumor and is considered one of the most common primary malignant neoplasms. The prognosis for HCC is dismal because of its complicated etiology and high level of medication resistance. Immunotherapy is presently regarded as one of the most effective therapeutic options for HCC; nevertheless, because of the disturbance of intestinal flora, immunotherapy shows low antitumor efficacy. An increasing body of research indicates that intestinal flora, particularly Akkermansia muciniphila (A. muciniphila), is vital for the treatment of tumors. Studies have demonstrated that the diminished effectiveness of immunotherapy in cancer patients is associated with a reduction in A. muciniphila levels, suggesting that increasing A. muciniphila levels significantly enhance the efficacy of immunotherapy. A. muciniphila functions as a gut probiotic and can treat and prevent a wide range of illnesses, including cancer. Consequently, preserving A. muciniphila abundance is enough to prevent and lower the danger of developing cancer disorders. In this review, we critically evaluate the current body of research on A. muciniphila, with a primary focus on its biological properties and functions. The different illnesses that A. muciniphila treats were then discussed, particularly the way it works with liver cancer. This review aims to give a novel treatment plan for patients with HCC as well as a theoretical foundation for improving HCC immunotherapy.
Collapse
Affiliation(s)
- Yanguang Yang
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan, China
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xinli Shi
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan, China
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| |
Collapse
|
9
|
Tandoro Y, Chiu HF, Tan CL, Hsieh MH, Huang YW, Yu J, Wang LS, Chan CH, Wang CK. Black raspberry supplementation on overweight and Helicobacter pylori infected mild dementia patients a pilot study. NPJ Sci Food 2025; 9:9. [PMID: 39939643 PMCID: PMC11821819 DOI: 10.1038/s41538-024-00356-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 12/17/2024] [Indexed: 02/14/2025] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia. H. pylori infection and overweight have been implicated in AD via the gut-brain axis (GBA). This study aimed to determine whether supplementation of BRBs has a meaningful effect on H. pylori infection, overweight, and AD development in a clinical trial setting. We conducted a randomized placebo-controlled clinical trial in patients with mild clinical dementia who also had H. pylori infection and were overweight. The study was conducted over 10 weeks, consisting of an 8-week intervention period (25 g powder of black raspberries, BRBs, or placebo twice daily, morning and evening) and a 2-week follow-up. The primary outcomes were changes in Clinical Dementia Rating (CDR), Urea Breath Test (UBT), and Body Mass Index (BMI). Consumption of BRBs improved cognitive functions (p < 0.00001), compared to the placebo group (p > 0.05). Besides, BRBs ingestion decreased H. pylori infection and BMI (p < 0.00001 and p < 0.05 respectively) while the placebo group stayed statistically the same (p = 0.98 and p = 0.25 respectively). BRBs significantly decreased inflammatory markers, improved oxidative index, and adiponectin (p < 0.05) compared to the placebo group, while adenosine monophosphate-activated protein kinase (AMPK) and leptin did not significantly change. BRBs modulated the abundance of several fecal probiotics, particularly, Akkermansia muciniphila. Our results provided that BRBs suppressed H. pylori infection, decreased BMI, and rebalanced the gut microbiome, which could improve cognitive functions in mild dementia patients. Longer and larger randomized clinical trials of BRB interventions targeting H. pylori infection, overweight, or mild dementia are warranted to confirm the results from this pilot trial. Trial Registration: ClinicalTrials.gov identifier: NCT05680532.
Collapse
Affiliation(s)
- Yohanes Tandoro
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
- Faculty of Agricultural Technology, Widya Mandala Surabaya Catholic University, Surabaya, Indonesia
| | - Hui-Fang Chiu
- Department of Chinese Medicine, Taichung Hospital Ministry of Health and Welfare, Taichung, Taiwan
| | - Chei-Ling Tan
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | - Ming-Hong Hsieh
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Psychiatry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yi-Wen Huang
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, Comprehensive Cancer Center, City of Hope National Medical Center, Duarte, CA, USA
| | - Li-Shu Wang
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Chi-Ho Chan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
- Department of Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Chin-Kun Wang
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan.
| |
Collapse
|
10
|
Tasoujlu M, Sharifi Y, Ghahremani M, Alizadeh K, Babaie F, Hosseiniazar MM. Evaluation of variations in predominant gut microbiota members in inflammatory bowel disease using real-time PCR. Mol Biol Rep 2025; 52:143. [PMID: 39836282 DOI: 10.1007/s11033-025-10254-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Inflammatory Bowel Disease (IBD) is a persistent ailment that impacts many individuals worldwide. The interaction between the immune system and gut microbiome is thought to influence IBD development. This study aimed to assess some microbiota in IBD patients compared to healthy individuals. The investigation involved a selected group of twenty patients suffering from IBD and an equal number of healthy participants. Stool specimens were obtained and analyzed for Lactobacillus, Bifidobacterium, Bacteroides, Clostridium leptum, Akkermansia muciniphila, Fusobacterium and Enterobacteriaceae using real-time PCR. The findings indicated significantly higher levels of Bifidobacterium in IBD patients (Pv = 0.009) and lower levels of A. muciniphila (Pv = 0.003) healthy individuals. Other bacteria tested did not show significant differences. The study suggests that the progression of IBD patients could be influenced by the rising of Bifidobacterium and the declining of A. muciniphila. Targeting these bacteria could lead to improved treatments and quality of life for those with IBD.
Collapse
Affiliation(s)
- Mina Tasoujlu
- Cellular and Molecular Research Center, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- Department of Microbiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Yaeghob Sharifi
- Cellular and Molecular Research Center, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
- Department of Microbiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Maryam Ghahremani
- Department of Microbiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Kasra Alizadeh
- Department of Microbiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Farhad Babaie
- Department of Immunology and Genetics, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | | |
Collapse
|
11
|
Seneff S, Kyriakopoulos AM. Taurine prevents mitochondrial dysfunction and protects mitochondria from reactive oxygen species and deuterium toxicity. Amino Acids 2025; 57:6. [PMID: 39789296 PMCID: PMC11717795 DOI: 10.1007/s00726-024-03440-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 12/28/2024] [Indexed: 01/12/2025]
Abstract
Taurine, although not a coding amino acid, is the most common free amino acid in the body. Taurine has multiple and complex functions in protecting mitochondria against oxidative-nitrosative stress. In this comprehensive review paper, we introduce a novel potential role for taurine in protecting from deuterium (heavy hydrogen) toxicity. This can be of crucial impact to either normal or cancer cells that have highly different mitochondrial redox status. Deuterium is an isotope of hydrogen with a neutron as well as a proton, making it about twice as heavy as hydrogen. We first explain the important role that the gut microbiome and the gut sulfomucin barrier play in deuterium management. We describe the synergistic effects of taurine in the gut to protect against the deleterious accumulation of deuterium in the mitochondria, which disrupts ATP synthesis by ATPase pumps. Moreover, taurine's derivatives, N-chlorotaurine (NCT) and N-bromotaurine (NBrT), produced through spontaneous reaction of taurine with hypochlorite and hypobromite, have fascinating regulatory roles to protect from oxidative stress and beyond. We describe how taurine could potentially alleviate deuterium stress, primarily through metabolic collaboration among various gut microflora to produce deuterium depleted nutrients and deuterium depleted water, and in this way protect against leaky gut barrier, inflammatory bowel disease, and colon cancer.
Collapse
Affiliation(s)
- Stephanie Seneff
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Anthony M Kyriakopoulos
- Laboratory of Molecular Biology and Immunology, Department of Pharmacy, University of Patras, 26500, Rio-Patras, Greece
| |
Collapse
|
12
|
An R, Zhou X, Zhang J, Lyu C, Wang D. Responses of intestinal microbiota to inulin was initial microbiota context dependent and affected by the supplementation dosage. Food Res Int 2025; 200:115498. [PMID: 39779139 DOI: 10.1016/j.foodres.2024.115498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 11/15/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025]
Abstract
Intestinal microbiota could respond to dietary fibres that are fermented by the gut microbiota, like prebiotics. Nevertheless, the dynamics of intestinal microbial community longitudinally after prebiotics intake, are still largely unknown. The current study unrevealed the successional process of intestinal microbial community after inulin supplementation, and the effect of supplementation dosage thereof, based on analysis of 16S rRNA gene sequences in C57BL/6 mice. We found that independent of supplementation dosage, intake of inulin could affect the intestinal microbial community within a day. Thereafter, the intestinal microbial community kept evolving until the last day of the supplementation (day 14) as a successional process, which was represented by the succession between intermediate and sluggish inulin responders. Remarkably, the successional process was initial microbial community context dependent and affected by the supplementation dosage. Specifically, the supplementation dosage affected the successional speed and the composition of the intermediate and sluggish inulin responders. Decreasing the relative abundance of previously identified intermediate responders, altered the successional process during inulin supplementation. Collectively, independent of supplementation dosage, the response of intestinal microbial community was rapid and the inulin induced temporal dynamics was represented by the succession between the intermediate and sluggish inulin responders. Nevertheless, the inulin induced successional process was initial microbial community context dependent and affected by the supplementation dosage. Findings of the current study would aid in the understanding of intestinal microbes' assembly during inulin supplementation and provide valuable support for dietary recommendations regarding to the use of prebiotics from the intestinal microbiota point of view.
Collapse
Affiliation(s)
- Ran An
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xilong Zhou
- State Key Laboratory of Dairy Biotechnology, Dairy Research Institute, Bright Dairy and Food, Shanghai, China
| | - Jing Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Chenang Lyu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Dapeng Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
13
|
Rowghani K, Patel B, Martinez-Guryn K. Dietary impact on the gut microbiome and epigenome and regulation of gut inflammation. NUTRITION IN THE CONTROL OF INFLAMMATION 2025:369-398. [DOI: 10.1016/b978-0-443-18979-1.00014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
14
|
Costa MADC, da Silva Duarte V, Fraiz GM, Cardoso RR, da Silva A, Martino HSD, Dos Santos D'Almeida CT, Ferreira MSL, Corich V, Hamaker BR, Giacomini A, Bressan J, Barros FARD. Regular Consumption of Black Tea Kombucha Modulates the Gut Microbiota in Individuals with and without Obesity. J Nutr 2024:S0022-3166(24)01239-2. [PMID: 39732435 DOI: 10.1016/j.tjnut.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/22/2024] [Accepted: 12/18/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Kombucha, a fermented beverage obtained from a Symbiotic Culture of Bacteria and Yeast, has shown potential in modulating gut microbiota, although no clinical trials have been done. OBJECTIVES We aimed to evaluate the effects of regular black tea kombucha consumption on intestinal health in individuals with and without obesity. METHODS A pre-post clinical intervention study was conducted lasting 8 wk. Forty-six participants were allocated into 2 groups: normal weight + black tea kombucha (n = 23); and obese + black tea kombucha (n = 23). Blood, urine, and stool samples were collected at baseline (T0) and after 8 wk of intervention (T8). RESULTS A total of 145 phenolic compounds were identified in the kombucha, primarily flavonoids (81%) and phenolic acids (19%). Kombucha favored commensal bacteria such as Bacteroidota and Akkermanciaceae, especially in the obese group. Subdoligranulum, a butyrate producer, also increased in the obese group after kombucha consumption (P = 0.031). Obesity-associated genera Ruminococcus and Dorea were elevated in the obese group at baseline (P < 0.05) and reduced after kombucha consumption, becoming similar to the normal weight group (Ruminococcus: obese T8 × normal weight T8: P = 0.27; Dorea: obese T8 × normal weight T0: P = 0.57; obese T8 × normal weight T8: P = 0.32). Fungal diversity increased, with a greater abundance of Saccharomyces in both groups and reductions in Exophiala and Rhodotorula, particularly in the obese group. Pichia and Dekkera, key microorganisms in kombucha, were identified as biomarkers after the intervention. CONCLUSIONS Regular kombucha consumption positively influenced gut microbiota in both normal and obese groups, with more pronounced effects in the obese group, suggesting that it may be especially beneficial for those individuals. This trial was registered at Brazilian Clinical Trial Registry - ReBEC as UTN code U1111-1263-9550 (https://ensaiosclinicos.gov.br/rg/RBR-9832wsx).
Collapse
Affiliation(s)
- Mirian Aparecida de Campos Costa
- Bioactive Compounds and Carbohydrates (BIOCARB) Research Group, Department of Food Science and Technology, Universidade Federal de Viçosa, Viçosa, MG, Brazil; Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN, United States
| | - Vinícius da Silva Duarte
- Faculty of Chemistry, Biotechnology, and Food Science, The Norwegian University of Life Sciences, Ås, Norway
| | - Gabriela Macedo Fraiz
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, MG, Brazil; Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, Universidad de Navarra, Pamplona, Spain
| | - Rodrigo Rezende Cardoso
- Bioactive Compounds and Carbohydrates (BIOCARB) Research Group, Department of Food Science and Technology, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Alessandra da Silva
- Public Health Epidemiology Graduate Program, Environmental and Health Education Laboratory, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | | | - Carolina Thomaz Dos Santos D'Almeida
- Laboratory of Bioactives, Food and Nutrition Graduate Program, Federal University of State of Rio de Janeiro - UNIRIO, Rio de Janeiro, RJ, Brazil
| | - Mariana Simões Larraz Ferreira
- Laboratory of Bioactives, Food and Nutrition Graduate Program, Federal University of State of Rio de Janeiro - UNIRIO, Rio de Janeiro, RJ, Brazil
| | - Viviana Corich
- Department of Agronomy, Food Natural Resources, Animals, and Environment, Università degli Studi di Padova, Legnaro, Padova, PD, Italy
| | - Bruce R Hamaker
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN, United States
| | - Alessio Giacomini
- Department of Agronomy, Food Natural Resources, Animals, and Environment, Università degli Studi di Padova, Legnaro, Padova, PD, Italy
| | - Josefina Bressan
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Frederico Augusto Ribeiro de Barros
- Bioactive Compounds and Carbohydrates (BIOCARB) Research Group, Department of Food Science and Technology, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
| |
Collapse
|
15
|
Meng X, Xia C, Wu H, Gu Q, Li P. Metabolism of quercitrin in the colon and its beneficial regulatory effects on gut microbiota. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:9255-9264. [PMID: 39043159 DOI: 10.1002/jsfa.13747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/11/2024] [Accepted: 06/30/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND Quercitrin is a dietary flavonoid widely found in plants with various physiological activities. However, whether quercitrin alters gut microbiota in vivo is not well understood. The aim of this study was to investigate metabolism of quercitrin in the colon and its regulation on gut microbiota in mice. RESULTS Herein, 22 flavonoids related to quercitrin metabolism were identified based on ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS). Gas chromatography and 16S rDNA gene sequencing were used to investigate short-chain fatty acid (SCFA) content and diversity of composition of gut microbiota, respectively. The results showed that quercitrin significantly alters the beta-diversity of the gut microbiota, probiotics such as Akkermansia and Lactococcus were significantly increased, and the production of propanoate, isovalerate and hexanoate of the quercitrin group were enhanced significantly. The Spearman's association analysis provided evidence that Gardnerella and Akkermansia have obvious correlations with most of quercitrin metabolites and SCFAs. CONCLUSION Quercitrin and its metabolites in the colon altered the structure of the mice gut microbiota and increased the content of SCFAs. Our experiments provide valuable insights into quercitrin research and application. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xia Meng
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Chenlan Xia
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Hongchen Wu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
16
|
Yu E, Eid J, Cheng A, Lynch B, Bauter M. Lack of genotoxicity and subchronic toxicity in safety assessment studies of Akkermansia muciniphila formulation. Toxicol Rep 2024; 13:101790. [PMID: 39554606 PMCID: PMC11565037 DOI: 10.1016/j.toxrep.2024.101790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/19/2024] Open
Abstract
A powder formulation of viable Akkermansia muciniphila bacteria (AMUC) was evaluated in a 90-day repeated-dose toxicity study in rats and a battery of genotoxicity studies to evaluate AMUC as a food ingredient. All studies followed Organisation for Economic Co-operation and Development protocols (OECD TG 408, 471 473, 474). AMUC was administered to rats via gavage at 0, 500, 1000, and 2000 mg/kg body weight/day (equivalent to 0, 4.1 × 1010, 9.2 × 1010, and 1.64 × 1011 CFU/kg body weight/day). No mortality or treatment-related adverse effects were reported in any endpoints that were attributed to AMUC consumption. No bacterial translocation of viable A. muciniphila from the intestinal tract was found to the liver, mesenteric lymph nodes, or blood. The no-observed-adverse-effect level was concluded to be the highest dose tested (2000 mg/kg body weight/day), approximately 1.64 × 1011 CFU/kg body weight/day. AMUC (nonviable) was not mutagenic when examined in an in vitro bacterial reverse mutation assay and not clastogenic in an in vitro mammalian chromosomal aberration test. Viable AMUC was not genotoxic when evaluated in an in vivo mammalian cell micronucleus assay when administered at up to 1.64 ×1011 CFU/kg body weight/day. These results confirm that AMUC is not toxic under the conditions of these studies.
Collapse
Affiliation(s)
- Esther Yu
- Pendulum Therapeutics, Inc., 933 20th Street, San Francisco, CA 94107, United States
| | - John Eid
- Pendulum Therapeutics, Inc., 933 20th Street, San Francisco, CA 94107, United States
| | - Andrew Cheng
- Pendulum Therapeutics, Inc., 933 20th Street, San Francisco, CA 94107, United States
| | - Barry Lynch
- Intertek Health Sciences Inc., 2233 Argentia Road, Suite 201, Mississauga, ON L5N 2×7, Canada
| | - Mark Bauter
- Product Safety Labs, 2394 US Highway 130, Dayton, NJ 08810, United States
| |
Collapse
|
17
|
Ning Y, Yang A, Liu L, Li Y, Chen Z, Ge P, Zhou D. Survival strategies of Eisenia fetida in antibiotic-contaminated soil based on screening canonical correlation analysis model. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117367. [PMID: 39571259 DOI: 10.1016/j.ecoenv.2024.117367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/08/2024] [Accepted: 11/15/2024] [Indexed: 12/09/2024]
Abstract
Soil pollution from antibiotics has become increasingly severe, posing significant environmental and human health threats. Many soil organisms can survive and sustain their roles in maintaining soil ecosystems, even in polluted conditions. Exploring the life-sustaining mechanisms of these organisms in contaminated environments is scientifically significant. This study used Eisenia fetida as the test organism and antibiotics (oxytetracycline hydrochloride) as exogenous stress substances. Oxidative stress response experiments were conducted using the artificial soil method to examine the response of earthworms to oxidative stress. Additionally, 16S rRNA technology was employed to analyze the succession of microbial community structures inside and outside the earthworms. A screening canonical correlation analysis (SCCA) model was developed to investigate the relationship between microbial communities and earthworm oxidative stress system under oxytetracycline stress, revealing survival strategies in antibiotic-contaminated soil. The results showed that Proteobacteria and Bacteriodetes were the dominant phyla of microbial communities in earthworms under oxytetracycline stress, while Proteobacteria and Firmicutes were dominant bacterial phyla in soil. Bacteriodetes and Firmicutes in earthworms worked synergistically with catalase (CAT) and glutathione peroxidase (GPX) in oxidative stress responses. In soil, Actinobacteria, Verrucomicrobia, and Spirochaeta synergistically resisted oxytetracycline stress alongside peroxidase (POD) and glutathione S-transferase (GST). Earthworm mucus played a crucial role in this synergistic resistance. These findings provide a scientific and experimental basis for assessing the ecological safety risks of antibiotic-contaminated soil.
Collapse
Affiliation(s)
- Yucui Ning
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China.
| | - Aoqi Yang
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China.
| | - Lu Liu
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China.
| | - Yuze Li
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China.
| | - Zhipeng Chen
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China.
| | - Peizhu Ge
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China.
| | - Dongxing Zhou
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
18
|
Abramov VM, Kosarev IV, Machulin AV, Deryusheva EI, Priputnevich TV, Panin AN, Chikileva IO, Abashina TN, Manoyan AM, Ivanova OE, Papazyan TT, Nikonov IN, Suzina NE, Melnikov VG, Khlebnikov VS, Sakulin VK, Samoilenko VA, Gordeev AB, Sukhikh GT, Uversky VN, Karlyshev AV. Consortium of Lactobacillus crispatus 2029 and Ligilactobacillus salivarius 7247 Strains Shows In Vitro Bactericidal Effect on Campylobacter jejuni and, in Combination with Prebiotic, Protects Against Intestinal Barrier Dysfunction. Antibiotics (Basel) 2024; 13:1143. [PMID: 39766533 PMCID: PMC11672454 DOI: 10.3390/antibiotics13121143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives:Campylobacter jejuni (CJ) is the etiological agent of the world's most common intestinal infectious food-borne disease, ranging from mild symptoms to fatal outcomes. The development of innovative synbiotics that inhibit the adhesion and reproduction of multidrug-resistant (MDR) CJ in animals and humans, thereby preserving intestinal homeostasis, is relevant. We have created a synbiotic based on the consortium of Lactobacillus crispatus 2029 (LC2029), Ligilactobacillus salivarius 7247 (LS7247), and a mannan-rich prebiotic (Actigen®). The purpose of this work was to study the in vitro anti-adhesive and antagonistic activities of the created synbiotic against MDR CJ strains, along with its role in preventing intestinal barrier dysfunction, which disrupts intestinal homeostasis. Methods: A complex of microbiological, immunological, and molecular biological methods was used. The ability of the LC2029 and LS7247 consortium to promote intestinal homeostasis in vitro was assessed by the effectiveness of controlling CJ-induced TLR4 activation, secretion of pro-inflammatory cytokines, development of intestinal barrier dysfunction, and production of intestinal alkaline phosphatase (IAP). Results: All MDR CJ strains showed marked adhesion to human Caco-2, pig IPEC-J2, chicken CPCE, and bovine BPCE enterocytes. For the first time, we found that the prebiotic and cell-free culture supernatant (CFS) from the consortium of LC2029 and LS7247 strains exhibit an additive effect in inhibiting the adhesion of MDR strains of CJ to human and animal enterocytes. CFS from the LC2029 and LS7247 consortium increased the permeability of the outer and inner membranes of CJ cells, which led to extracellular leakage of ATP and provided access to the peptidoglycan of the pathogen for the peptidoglycan-degrading bacteriocins nisin and enterolysin A produced by LS7247. The LC2029 and LS7247 consortium showed a bactericidal effect on CJ strains. Co-cultivation of the consortium with CJ strains resulted in a decrease in the viability of the pathogen by 6 log. CFS from the LC2029 and LS7247 consortium prevented the growth of CJ-induced TLR4 mRNA expression in enterocytes. The LC2029 and LS7247 consortium inhibited a CJ-induced increase in IL-8 and TNF-α production in enterocytes, prevented CJ-induced intestinal barrier dysfunction, maintained the transepithelial electrical resistance of the enterocyte monolayers, and prevented an increase in intestinal paracellular permeability and zonulin secretion. CFS from the consortium stimulated IAP mRNA expression in enterocytes. The LC2029 and LS7247 consortium and the prebiotic Actigen represent a new synergistic synbiotic with anti-CJ properties that prevents intestinal barrier dysfunction and preserves intestinal homeostasis. Conclusions: These data highlight the potential of using a synergistic synbiotic as a preventive strategy for creating feed additives and functional nutrition products based on it to combat the prevalence of campylobacteriosis caused by MDR strains in animals and humans.
Collapse
Affiliation(s)
- Vyacheslav M. Abramov
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia; (T.V.P.); (A.B.G.)
| | - Igor V. Kosarev
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia; (T.V.P.); (A.B.G.)
| | - Andrey V. Machulin
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Evgenia I. Deryusheva
- Institute for Biological Instrumentation, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Tatiana V. Priputnevich
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia; (T.V.P.); (A.B.G.)
| | - Alexander N. Panin
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
| | - Irina O. Chikileva
- Blokhin National Research Center of Oncology, Ministry of Health, 115478 Moscow, Russia;
| | - Tatiana N. Abashina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Ashot M. Manoyan
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
| | - Olga E. Ivanova
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
| | | | - Ilia N. Nikonov
- Federal State Budgetary Educational Institution of Higher Education, St. Petersburg State University of Veterinary Medicine, 196084 Saint Petersburg, Russia
| | - Nataliya E. Suzina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Vyacheslav G. Melnikov
- Gabrichevsky Research Institute for Epidemiology and Microbiology, 125212 Moscow, Russia
| | | | - Vadim K. Sakulin
- Institute of Immunological Engineering, 142380 Lyubuchany, Russia
| | - Vladimir A. Samoilenko
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Alexey B. Gordeev
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia; (T.V.P.); (A.B.G.)
| | - Gennady T. Sukhikh
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia; (T.V.P.); (A.B.G.)
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Andrey V. Karlyshev
- Department of Biomolecular Sciences, School of Life Sciences, Chemistry and Pharmacy, Faculty of Health, Science, Social Care and Education, Kingston University London, Kingston upon Thames KT1 2EE, UK;
| |
Collapse
|
19
|
Liu W, Zhang Y, Zheng M, Ye Y, Shi M, Wang X, Cao L, Wang L. Polysaccharides in Medicinal and Food Homologous Plants regulate intestinal flora to improve type 2 diabetes: Systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:156027. [PMID: 39270592 DOI: 10.1016/j.phymed.2024.156027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/19/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Medicinal and food homologous plants (MFHPs) which can improve Type 2 Diabetes Mellitus (T2DM) draw significant attention among the public due to their low toxicity and more safety. Polysaccharides, one of the various active components of MFHPs, are recognized as effective modulators of the intestinal flora. By altering the composition of intestinal flora and affecting their metabolic products, polysaccharides can improve T2DM, making them a central focus of anti-diabetic research. PURPOSE The purpose of this study is to systematically review the mechanism by which polysaccharides from MFHPs (MFHPPs) regulate the composition of intestinal flora and its metabolic products to improve T2DM. METHODS This study follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines and conducts a comprehensive search on the PubMed, Web of Science and Embase databases. All experimental articles published up to March 4, 2024, are included in the search. RESULTS Among the 5733 articles reviewed, 29 were selected, covering 22 different MFHPs. MFHPPs can improve T2DM, particularly in lowering blood glucose levels, with consistent results. MFHPPs can regulate the diversity of intestinal flora in T2DM animal models, primarily affecting four phyla: decreasing Firmicutes and Proteobacteria while increasing Bacteroidetes and Actinobacteriota. At the genus level, the improvement of T2DM by MFHPPs is associated with the modulation of 12 key genera: Allobaculum, Akkermansia, Bifidobacterium, Lactobacillus, Helicobacter, Halomonas, Olsenella, Oscillospira, Shigella, Escherichia-Shigella, Romboutsia and Bacteroides. At the molecular level, MFHPPs primarily act by modulating the intestinal flora to increase short-chain fatty acid levels, promote the secretion of glucagon-like peptide-1, influence the IGF1/PI3K/AKT signaling pathway, or the PI3K/AKT/GSK-3β pathway, to lower blood glucose levels. They may also improve T2DM by working in glucose metabolism through the "microbiota-gut-organ" axis. MFHPPs can also alleviate T2DM by mitigating inflammation and oxidative stress: MFHPPs regulate intestinal flora to reduce lipopolysaccharide "leakage" and enhance intestinal mucosal permeability to tackle the inflammation associated with T2DM; MFHPPs enhance the expression of oxidative stress-related enzymes to alleviate oxidative stress and improve T2DM. Lastly, from a metabolic pathway perspective, MFHPPs are primarily involved in the metabolism of amino acids and their derivatives, carbohydrate metabolism and glutathione metabolism. CONCLUSION MFHPPs can improve T2DM by enhancing the composition of intestinal flora, regulating its metabolic products to promote insulin secretion, inhibiting glucagon-like peptide secretion, facilitating glycogen synthesis, reducing inflammation levels and alleviating oxidative stress. Furthermore, MFHPPs demonstrate potential protective effects on critical organs such as the pancreas, liver, kidneys and heart. Therefore, MFHPPs demonstrate significant clinical potential. However, most studies can only indicate the potential of MFHPPs intervention in improving T2DM through the intestinal flora. The causality between MFHPPs regulating the intestinal flora and T2DM requires further investigation.
Collapse
Affiliation(s)
- Wanting Liu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Yikai Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Mingze Zheng
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Yixiao Ye
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Mujia Shi
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiao Wang
- Xianghu Laboratory, Hangzhou, Zhejiang, 311231, China.
| | - Lingyong Cao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Lei Wang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| |
Collapse
|
20
|
Jin Z, Liu M, Zhao H, Xie J, Yin W, Zheng M, Cai D, Liu H, Liu J. Effects of Zeaxanthin on the Insulin Resistance and Gut Microbiota of High-Fat-Diet-Induced Obese Mice. Foods 2024; 13:3388. [PMID: 39517172 PMCID: PMC11544810 DOI: 10.3390/foods13213388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Obesity-induced insulin resistance (IR) can precipitate metabolic disorders such as diabetes. Zeaxanthin, a crucial member of the carotenoid family, has been found to mitigate the damage caused by obesity. However, reports on the effects of zeaxanthin on obesity-induced IR are lacking. Our objective was to examine the metabolic regulatory impacts of zeaxanthin on mice subjected to a high-fat diet (HFD) that triggered IR and to explore their influence on gut microbiota regulation. This study constructed a mouse model of metabolic dysfunction caused by lipid-rich nutritional patterns to investigate physiological and biochemical indices, liver pathway expression, and the intestinal microbiota. The mechanisms by which zeaxanthin improved both IR and glucose metabolic disorders were elucidated. The results demonstrate that zeaxanthin effectively suppressed obesity. The fasting blood glucose, area under curve of oral glucose tolerance test and insulin tolerance test, and homeostatic model assessment-insulin resistance (HOMA-IR) indices in the HFDZEA group decreased by 14.9%, 25.2%, 28.9%, and 29.8%. Additionally, zeaxanthin improved the lipid metabolism and alleviated damage to the liver and pancreas while also activating the PI3K/Akt pathway, regulating hepatic gluconeogenesis and the glycogen metabolism. The number of OTUs in the HFDZEA group increased by 29.04%. Zeaxanthin improved the structure and profile of the gastrointestinal microbiome and enhanced its diversity, increasing probiotics abundance, decreasing pathogen abundance, and thereby ameliorating the dysbiosis of enteric microbial communities in rodents with obesity resulting from excessive fat consumption. The outcomes of our analysis provide a rational basis for advancing zeaxanthin-based nutritional products.
Collapse
Affiliation(s)
- Zhibo Jin
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Z.J.); (M.L.); (J.X.); (W.Y.); (M.Z.); (D.C.)
- National Engineering Research Center of Wheat and Corn Deep Processing, Changchun 130118, China
| | - Meihong Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Z.J.); (M.L.); (J.X.); (W.Y.); (M.Z.); (D.C.)
- National Engineering Research Center of Wheat and Corn Deep Processing, Changchun 130118, China
| | - Hongyu Zhao
- Key Laboratory of TCM Pharmacology, Jilin Academy of Chinese Medicine Sciences, Changchun 130021, China;
| | - Jiahan Xie
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Z.J.); (M.L.); (J.X.); (W.Y.); (M.Z.); (D.C.)
- National Engineering Research Center of Wheat and Corn Deep Processing, Changchun 130118, China
| | - Wandi Yin
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Z.J.); (M.L.); (J.X.); (W.Y.); (M.Z.); (D.C.)
- National Engineering Research Center of Wheat and Corn Deep Processing, Changchun 130118, China
| | - Mingzhu Zheng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Z.J.); (M.L.); (J.X.); (W.Y.); (M.Z.); (D.C.)
- National Engineering Research Center of Wheat and Corn Deep Processing, Changchun 130118, China
| | - Dan Cai
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Z.J.); (M.L.); (J.X.); (W.Y.); (M.Z.); (D.C.)
- National Engineering Research Center of Wheat and Corn Deep Processing, Changchun 130118, China
| | - Huimin Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Z.J.); (M.L.); (J.X.); (W.Y.); (M.Z.); (D.C.)
| | - Jingsheng Liu
- National Engineering Research Center of Wheat and Corn Deep Processing, Changchun 130118, China
| |
Collapse
|
21
|
Pan L, Yin N, Duan M, Mei Q, Zeng Y. The role of gut microbiome and its metabolites in pancreatitis. mSystems 2024; 9:e0066524. [PMID: 39212377 PMCID: PMC11494936 DOI: 10.1128/msystems.00665-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Gut microbiome plays a vital role in the intestinal ecosystem and has close association with metabolites. Due to the development of metabolomics and microbiomics, recent studies have observed that alteration of either the gut microbiome or metabolites may have effects on the progression of pancreatitis. Several new treatments based on the gut microbiome or metabolites have been studied extensively in recent years. Gut microbes, such as Bifidobacterium, Akkermansia, and Lactobacillus, and metabolites, such as short-chain fatty acids, bile acids, vitamin, hydrogen sulfide, and alcohol, have different effects on pancreatitis. Some preliminary studies about new intervention measures were based on the gut microbiome and metabolites such as diet, prebiotic, herbal medicine, and fecal microbiota transplantation. This review aims to summarize the recent advances about the gut microbiome, metabolites, and pancreatitis in order to determine the potential beneficial role of the gut microbiome and metabolites in pancreatitis.
Collapse
Affiliation(s)
- Letian Pan
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Nuoming Yin
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Mingyu Duan
- Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Qixiang Mei
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yue Zeng
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
22
|
Kamber A, Bulut Albayrak C, Harsa HS. Studies on the Probiotic, Adhesion, and Induction Properties of Artisanal Lactic Acid Bacteria: to Customize a Gastrointestinal Niche to Trigger Anti-obesity Functions. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10357-6. [PMID: 39382740 DOI: 10.1007/s12602-024-10357-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2024] [Indexed: 10/10/2024]
Abstract
The primary goals of this work are to explore the potential of probiotic lactic acid bacteria's (LAB) mucin/mucus layer thickening properties and to identify anti-obesity candidate strains that improve appropriate habitat for use with the Akkermansia group population in the future. The HT-29 cell binding, antimicrobial properties, adhesion to the mucin/mucus layer, growth in the presence of mucin, stability during in vitro gastrointestinal (GI) conditions, biofilm formation, and mucin/mucus thickness increment abilities were all assessed for artisanal LAB strains. Sixteen LAB strains out of 40 were chosen for further analysis based on their ability to withstand GI conditions. Thirteen strains remained viable in simulated intestinal fluid, while most showed high viability in gastric juice simulation. Furthermore, 35.9-65.4% of those 16 bacteria adhered to the mucin layer. Besides, different lactate levels were produced, and Streptococcus thermophilus UIN9 exhibited the highest biofilm development. In the HT-29 cell culture, the highest mucin levels were 333.87 µg/mL with O. AK8 at 50 mM lactate, 313.38 µg/mL with Lactobacillus acidophilus NRRL-B 1910 with initial mucin, and 311.41 µg/mL with Lacticaseibacillus casei NRRL-B 441 with initial mucin and 50 mM lactate. Nine LAB strains have been proposed as anti-obesity candidates, with olive isolates of Lactiplantibacillus plantarum being particularly important due to their ability to avoid mucin sugar consumption. Probiotic LAB's attachment to the colonic mucosa and its ability to stimulate HT-29 cells to secrete mucus are critical mechanisms that may support the development of Akkermansia.
Collapse
Affiliation(s)
- A Kamber
- Food Engineering Department, Izmir Institute of Technology, Engineering Faculty, 35430, Izmir, Türkiye
| | - C Bulut Albayrak
- Food Engineering Department, Aydın Adnan Menderes University, Engineering Faculty, 09100, Aydın, Türkiye
| | - H S Harsa
- Food Engineering Department, Izmir Institute of Technology, Engineering Faculty, 35430, Izmir, Türkiye.
| |
Collapse
|
23
|
Lockwood MB, Sung C, Alvernaz SA, Lee JR, Chin JL, Nayebpour M, Bernabé BP, Tussing-Humphreys LM, Li H, Spaggiari M, Martinino A, Park CG, Chlipala GE, Doorenbos AZ, Green SJ. The Gut Microbiome and Symptom Burden After Kidney Transplantation: An Overview and Research Opportunities. Biol Res Nurs 2024; 26:636-656. [PMID: 38836469 DOI: 10.1177/10998004241256031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Many kidney transplant recipients continue to experience high symptom burden despite restoration of kidney function. High symptom burden is a significant driver of quality of life. In the post-transplant setting, high symptom burden has been linked to negative outcomes including medication non-adherence, allograft rejection, graft loss, and even mortality. Symbiotic bacteria (microbiota) in the human gastrointestinal tract critically interact with the immune, endocrine, and neurological systems to maintain homeostasis of the host. The gut microbiome has been proposed as an underlying mechanism mediating symptoms in several chronic medical conditions including irritable bowel syndrome, chronic fatigue syndrome, fibromyalgia, and psychoneurological disorders via the gut-brain-microbiota axis, a bidirectional signaling pathway between the enteric and central nervous system. Post-transplant exposure to antibiotics, antivirals, and immunosuppressant medications results in significant alterations in gut microbiota community composition and function, which in turn alter these commensal microorganisms' protective effects. This overview will discuss the current state of the science on the effects of the gut microbiome on symptom burden in kidney transplantation and future directions to guide this field of study.
Collapse
Affiliation(s)
- Mark B Lockwood
- Department of Biobehavioral Nursing Science, University of Illinois Chicago College of Nursing, Chicago, IL, USA
| | - Choa Sung
- Post-Doctoral Fellow, Department of Biobehavioral Nursing Science, University of Illinois Chicago College of Nursing, Chicago, IL, USA
| | - Suzanne A Alvernaz
- Graduate Student, Department of Biomedical Engineering, University of Illinois ChicagoColleges of Engineering and Medicine, Chicago, IL, USA
| | - John R Lee
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jennifer L Chin
- Medical Student, Touro College of Osteopathic Medicine, Middletown, NY, USA
| | - Mehdi Nayebpour
- Virginia BioAnalytics LLC, Washington, District of Columbia, USA
| | - Beatriz Peñalver Bernabé
- Graduate Student, Department of Biomedical Engineering, University of Illinois ChicagoColleges of Engineering and Medicine, Chicago, IL, USA
| | - Lisa M Tussing-Humphreys
- Department of Kinesiology and Nutrition, College of Applied Health Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Hongjin Li
- Department of Biobehavioral Nursing Science, University of Illinois Chicago College of Nursing, Chicago, IL, USA
| | - Mario Spaggiari
- Division of Transplantation, Department of Surgery, University of Illinois at Chicago, Chicago, IL, USA
| | - Alessandro Martinino
- Division of Transplantation, Department of Surgery, University of Illinois at Chicago, Chicago, IL, USA
| | - Chang G Park
- Department of Population Health Nursing Science, Office of Research Facilitation, University of Illinois Chicago, Chicago, IL, USA
| | - George E Chlipala
- Research Core Facility, Research Resources Center, University of Illinois Chicago, Chicago, IL, USA
| | - Ardith Z Doorenbos
- Department of Biobehavioral Nursing Science, University of Illinois ChicagoCollege of Nursing, Chicago, IL, USA
| | - Stefan J Green
- Department of Internal Medicine, Division of Infectious Diseases, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
24
|
Etlin S, Rose J, Bielski L, Walter C, Kleinman AS, Mason CE. The human microbiome in space: parallels between Earth-based dysbiosis, implications for long-duration spaceflight, and possible mitigation strategies. Clin Microbiol Rev 2024; 37:e0016322. [PMID: 39136453 PMCID: PMC11391694 DOI: 10.1128/cmr.00163-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
SUMMARYThe human microbiota encompasses the diverse communities of microorganisms that reside in, on, and around various parts of the human body, such as the skin, nasal passages, and gastrointestinal tract. Although research is ongoing, it is well established that the microbiota exert a substantial influence on the body through the production and modification of metabolites and small molecules. Disruptions in the composition of the microbiota-dysbiosis-have also been linked to various negative health outcomes. As humans embark upon longer-duration space missions, it is important to understand how the conditions of space travel impact the microbiota and, consequently, astronaut health. This article will first characterize the main taxa of the human gut microbiota and their associated metabolites, before discussing potential dysbiosis and negative health consequences. It will also detail the microbial changes observed in astronauts during spaceflight, focusing on gut microbiota composition and pathogenic virulence and survival. Analysis will then turn to how astronaut health may be protected from adverse microbial changes via diet, exercise, and antibiotics before concluding with a discussion of the microbiota of spacecraft and microbial culturing methods in space. The implications of this review are critical, particularly with NASA's ongoing implementation of the Moon to Mars Architecture, which will include weeks or months of living in space and new habitats.
Collapse
Affiliation(s)
- Sofia Etlin
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- Department of Biology, Cornell University, Ithaca, New York, USA
- BioAstra Inc., New York, New York, USA
| | - Julianna Rose
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- Department of Biology, Cornell University, Ithaca, New York, USA
- BioAstra Inc., New York, New York, USA
| | - Luca Bielski
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- Department of Biology, Cornell University, Ithaca, New York, USA
| | - Claire Walter
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- Department of Biology, Cornell University, Ithaca, New York, USA
- BioAstra Inc., New York, New York, USA
| | - Ashley S Kleinman
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- BioAstra Inc., New York, New York, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA
- Tri-Institutional Biology and Medicine program, Weill Cornell Medicine, New York, New York, USA
- WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
25
|
Montipó S, Menegussi EB, Fontana RC, Camassola M. Strategies for producing probiotic biomass and postbiotics from Akkermansia muciniphila in submerged cultivations incorporating prebiotic sources. World J Microbiol Biotechnol 2024; 40:314. [PMID: 39249571 DOI: 10.1007/s11274-024-04129-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024]
Abstract
This research propounds an innovative technology focused on sustainability to increase the biomass yield of Akkermansia muciniphila, the next-generation probiotic, using prebiotic sources to replace or reduce animal mucin levels. A series of experimental design approaches were developed aiming to optimize the growth of Akkermansiamuciniphila by incorporating extracts of green leafy vegetables and edible mushroom into the cultivation media. Experiments using kale extract (KE), Brassica oleracea L., associated with lyophilized mushroom extract (LME) of Pleurotus ostreatus were the most promising, highlighting the assays with 0.376% KE and 0.423% LME or 1.05% KE and 0.5% LME, in which 3.5 × 1010 CFU (Colony Forming Units) mL- 1 was achieved - higher than in experiments in optimized synthetic media. Such results enhance the potential of using KE and LME not only as mucin substitutes, but also as a source to increase Akkermansia muciniphila biomass yields and release short-chain fatty acids. The work is relevant to the food and pharmaceutical industries in the preparation of the probiotic ingredient.
Collapse
Affiliation(s)
- Sheila Montipó
- Biotechnology Institute, University of Caxias do Sul, Caxias do Sul, 95070-560, Brazil.
| | | | | | - Marli Camassola
- Biotechnology Institute, University of Caxias do Sul, Caxias do Sul, 95070-560, Brazil
| |
Collapse
|
26
|
Olarinoye ZY, Kim CW, Kim JY, Jang S, Kim I. Differential gene expression in the kidneys of SHR and WKY rats after intravenous administration of Akkermansia muciniphila-derived extracellular vesicles. Sci Rep 2024; 14:20056. [PMID: 39209875 PMCID: PMC11362604 DOI: 10.1038/s41598-024-69757-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Although Akkermansia muciniphila (Am) plays a beneficial role as a probiotic in the treatment of metabolic syndrome, the mechanisms remain elusive. We tested the hypothesis that Am extracellular vesicles (AmEVs) protect against hypertension through modulation of gene expression in the kidneys of spontaneously hypertensive rats (SHRs). Extracellular vesicles purified from anaerobically cultured Am (1.0 × 108 or 1.0 × 109 particles/kg) or vehicles were injected into the tail veins of Wistar-Kyoto rats (WKYs) and SHRs weekly for 4 weeks. Renal cortical tissues isolated from both rat strains were analyzed by trichrome stain and RT-qPCR. AmEVs protect against the development of hypertension in SHRs without a serious adverse reaction. AmEVs increased the expression of vasocontracting Agt and At1ar as well as vasodilating At2r, Mas1 and Nos2 in the kidneys of both strains. These results indicate that AmEVs have a protective effect against hypertension without a serious adverse reaction. Therefore, it is foreseen that AmEVs may be utilized as a novel therapeutic for the treatment of hypertension.
Collapse
Affiliation(s)
- Zainab Yetunde Olarinoye
- Department of Pharmacology, School of Medicine, Kyungpook National University, 680 GukchaeBosang Street, Daegu, 41944, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, 41944, Republic of Korea
- Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Cheong-Wun Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, 680 GukchaeBosang Street, Daegu, 41944, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, 41944, Republic of Korea
- Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Jee Young Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, 680 GukchaeBosang Street, Daegu, 41944, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, 41944, Republic of Korea
- Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Sungmin Jang
- Department of Pharmacology, School of Medicine, Kyungpook National University, 680 GukchaeBosang Street, Daegu, 41944, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, 41944, Republic of Korea
- Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Inkyeom Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, 680 GukchaeBosang Street, Daegu, 41944, Republic of Korea.
- Cardiovascular Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea.
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, 41944, Republic of Korea.
- Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
| |
Collapse
|
27
|
Ren S, Ren C, Zhao Y, Niu H, Xie Y. Comprehensive fecal metabolomics and gut microbiota study of the protective mechanism of herbal pair Polygonum hydropiper-Coptis chinensis in rats with stress-induced gastric mucosal damage. Front Pharmacol 2024; 15:1435166. [PMID: 39193339 PMCID: PMC11347758 DOI: 10.3389/fphar.2024.1435166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
Introduction: Stress-related gastric mucosal lesions (SGMLs) are the most common complication in critical care patients. Previous studies have demonstrated that herbal pair (HP), Polygonum hydropiper-Coptis chinensis (HP P-C) has the anti-SGML effect. However, the underlying mechanism of HP P-C against SGML remains elusive. This study aimed to elucidate how HP P-C extracts exert their protective effects on SGML by examining the role of gut microbiota and metabolites. Methods: SD rats were pretreated with different doses of HP P-C extracts for 6 days, followed by inducing SGML with water-immersion restraint stress (WIRS). After a comprehensive evaluation of serum and gastric tissue indicators in rats, 16S rRNA sequencing and metabolomics analyses were conducted to assess the impact of HP P-C on the fecal microorganisms and metabolites and their correlation. Results: Animal experiment suggested that pretreatment with HP P-C effectively reduced the gastric mucosal lesions, remarkably increased superoxide dismutase (SOD) activity in SGML model rats induced by WIRS. 16S rRNA sequencing analysis showed that HP P-C altered the composition of gut microbiota by raising the abundance of Lactobacillus and Akkermansia. In addition, metabolomics data identified seventeen main differential metabolites related to WIRS-induced gastric mucosal injury, primarily involving in tyrosine metabolism and betalain biosynthesis. HP P-C was found to regulate tyrosine metabolism and betalain biosynthesis by down-regulating the tyramine, L-tyrosine and L-dopa and up -regulating the gentisic acid and dopaquinone. Conclusion: Taken together, this study indicated that HP P-C could effectively protect against WIRS-induced gastric mucosal lesions by modulating intestinal flora and metabolites.
Collapse
Affiliation(s)
- Shouzhong Ren
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, Hainan, China
| | - Chenhui Ren
- School of Life Sciences, Hainan University, Haikou, Hainan, China
| | - Yamei Zhao
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, Hainan, China
| | - Haiyan Niu
- Department of Pathology, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Yiqiang Xie
- College of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
28
|
Zhu Y, Chen B, Zhang X, Akbar MT, Wu T, Zhang Y, Zhi L, Shen Q. Exploration of the Muribaculaceae Family in the Gut Microbiota: Diversity, Metabolism, and Function. Nutrients 2024; 16:2660. [PMID: 39203797 PMCID: PMC11356848 DOI: 10.3390/nu16162660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
The gut microbiota are mainly composed of Bacteroidetes and Firmicutes and are crucial for metabolism and immunity. Muribaculaceae are a family of bacteria within the order Bacteroidetes. Muribaculaceae produce short-chain fatty acids via endogenous (mucin glycans) and exogenous polysaccharides (dietary fibres). The family exhibits a cross-feeding relationship with probiotics, such as Bifidobacterium and Lactobacillus. The alleviating effects of a plant-based diet on inflammatory bowel disease, obesity, and type 2 diabetes are associated with an increased abundance of Muribaculaceae, a potential probiotic bacterial family. This study reviews the current findings related to Muribaculaceae and systematically introduces their diversity, metabolism, and function. Additionally, the mechanisms of Muribaculaceae in the alleviation of chronic diseases and the limitations in this field of research are introduced.
Collapse
Affiliation(s)
- Yiqing Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; (Y.Z.); (B.C.); (X.Z.); (M.T.A.); (T.W.); (Y.Z.); (L.Z.)
| | - Borui Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; (Y.Z.); (B.C.); (X.Z.); (M.T.A.); (T.W.); (Y.Z.); (L.Z.)
| | - Xinyu Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; (Y.Z.); (B.C.); (X.Z.); (M.T.A.); (T.W.); (Y.Z.); (L.Z.)
| | - Muhammad Toheed Akbar
- College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; (Y.Z.); (B.C.); (X.Z.); (M.T.A.); (T.W.); (Y.Z.); (L.Z.)
- Department of Meat Science and Technology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Tong Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; (Y.Z.); (B.C.); (X.Z.); (M.T.A.); (T.W.); (Y.Z.); (L.Z.)
| | - Yiyun Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; (Y.Z.); (B.C.); (X.Z.); (M.T.A.); (T.W.); (Y.Z.); (L.Z.)
| | - Li Zhi
- College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; (Y.Z.); (B.C.); (X.Z.); (M.T.A.); (T.W.); (Y.Z.); (L.Z.)
| | - Qun Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; (Y.Z.); (B.C.); (X.Z.); (M.T.A.); (T.W.); (Y.Z.); (L.Z.)
| |
Collapse
|
29
|
Hoisington AJ, Choy K, Khair S, Dyamenahalli KU, Najarro KM, Wiktor AJ, Frank DN, Burnham EL, McMahan RH, Kovacs EJ. Recent alcohol intake impacts microbiota in adult burn patients. Alcohol 2024; 118:25-35. [PMID: 38604285 PMCID: PMC11179986 DOI: 10.1016/j.alcohol.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/26/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024]
Abstract
Alcohol use is associated with an increased incidence of negative health outcomes in burn patients due to biological mechanisms that include a dysregulated inflammatory response and increased intestinal permeability. This study used phosphatidylethanol (PEth) in blood, a direct biomarker of recent alcohol use, to investigate associations between a recent history of alcohol use and the fecal microbiota, short chain fatty acids, and inflammatory markers in the first week after a burn injury for nineteen participants. Burn patients were grouped according to PEth levels of low or high and differences in the overall fecal microbial community were observed between these cohorts. Two genera that contributed to the differences and had higher relative abundance in the low PEth burn patient group were Akkermansia, a mucin degrading bacteria that improves intestinal barrier function, and Bacteroides, a potentially anti-inflammatory bacteria. There was no statistically significant difference between levels of short chain fatty acids or intestinal permeability across the two groups. To our knowledge, this study represents the first report to evaluate the effects of burn injury and recent alcohol use on early post burn microbiota dysbiosis, inflammatory response, and levels of short chain fatty acids. Future studies in this field are warranted to better understand the factors associated with negative health outcomes and develop interventional trials.
Collapse
Affiliation(s)
- Andrew J Hoisington
- Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC) for Veteran Suicide Prevention, Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO, USA; Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, USA; Department of Systems Engineering and Management, Air Force Institute of Technology, Wright-Patterson Air Force Base, OH, USA
| | - Kevin Choy
- Department of Surgery, Division of GI, Trauma, and Endocrine Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Shanawaj Khair
- Department of Surgery, Division of GI, Trauma, and Endocrine Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Graduate Program in Molecular Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kiran U Dyamenahalli
- Department of Surgery, Division of GI, Trauma, and Endocrine Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kevin M Najarro
- Department of Surgery, Division of GI, Trauma, and Endocrine Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Veterans Health Administration, Eastern Colorado Health Care System, Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO, USA
| | - Arek J Wiktor
- Department of Surgery, Division of GI, Trauma, and Endocrine Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Daniel N Frank
- GI and Liver Innate Immune Program, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; Department of Medicine, Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ellen L Burnham
- Department of Medicine, Division of Infectious Diseases, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; Alcohol Research Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rachel H McMahan
- Department of Surgery, Division of GI, Trauma, and Endocrine Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Veterans Health Administration, Eastern Colorado Health Care System, Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO, USA
| | - Elizabeth J Kovacs
- Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC) for Veteran Suicide Prevention, Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO, USA; Department of Surgery, Division of GI, Trauma, and Endocrine Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Graduate Program in Molecular Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Veterans Health Administration, Eastern Colorado Health Care System, Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO, USA; Alcohol Research Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
30
|
Guo Y, Liu J, Tuo Q, Zhang D, Wanapat M, Xin G. The effect of dietary supplementation of Lycium barbarum leaves on the growth performance, organ indexes and intestinal microflora of rats. Front Vet Sci 2024; 11:1416793. [PMID: 39144075 PMCID: PMC11322056 DOI: 10.3389/fvets.2024.1416793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/11/2024] [Indexed: 08/16/2024] Open
Abstract
This study was conducted to investigate both fruit and different levels of leaf supplementation on the growth performance, organ indices and intestinal microflora of rats. Twenty-five healthy male Sprague-Dawley rats were randomly divided into five groups. The rats in the control (NC) and positive control (PC) groups were fed by gavage a basal diet and a basal diet with 4 g/kg of L. barbarum fruit homogenate, respectively. The test (LD, MD, and HD) groups were fed basal diets with additional 2, 4, and 8 g/kg of L. barbarum leaf homogenate, respectively. The feeding period was 35 d. The result revealed that the rats in the LD group had the highest average weight gain (p < 0.05). The cardiac and renal indexes in the LD and MD groups were significantly higher than in NC group, respectively (p < 0.05). Diversity analysis revealed that adding low concentrations of L. barbarum leaf homogenates markedly reduced the Shannon index of the rats cecum (p < 0.05). The relative abundance of Verrucomicrobiota was higher in the LD group than those in other groups (p < 0.05). The relative abundance of Actinobacteriota was found significantly higher in PC group than others (p < 0.05). The relative abundance of Akkermansia in LD group was the highest (p < 0.05). The relative abundance of Romboutsia in the PC group was considerably higher than that in other groups. The relative abundance of Candidatus_Saccharimonas in the supplementation groups was appreciably lower than those found in other groups. The relative abundance of Alloprevotella was significantly lower in PC, LD, and MD groups than in NC and HD groups (p < 0.05). The relative abundance of Oscillibacter was significantly higher in HD group than in other groups (p < 0.05). Thus, L. barbarum leaf homogenate fed to rats could increase their growth performance, internal organ weights and additionally enhance the relative abundance of beneficial bacteria. Therefore, based on the obtained data in the current study, a dose of L. barbarum leaf homogenate supplemented with 2 g/kg in diet is recommended, however, further studies are required to confirm, especially in animals.
Collapse
Affiliation(s)
- Yindi Guo
- School of Life Science, Ningxia University, Yinchuan, China
- Ningxia Feed Engineering Technology Research Center, Ningxia University, Yinchuan, China
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, China
| | - Jie Liu
- School of Life Science, Ningxia University, Yinchuan, China
- Ningxia Feed Engineering Technology Research Center, Ningxia University, Yinchuan, China
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, China
| | - Qiang Tuo
- Ningxia Feed Engineering Technology Research Center, Ningxia University, Yinchuan, China
- Agricultural College, Ningxia University, Yinchuan, China
| | - Dongtao Zhang
- School of Life Science, Ningxia University, Yinchuan, China
- Ningxia Feed Engineering Technology Research Center, Ningxia University, Yinchuan, China
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, China
| | - Metha Wanapat
- Ningxia Feed Engineering Technology Research Center, Ningxia University, Yinchuan, China
- Khon Kaen Univ, Fac Agr, Trop Feed Resources Res & Dev Ctr TROFREC, Dept Anim Sci, Khon Kaen, Thailand
| | - Guosheng Xin
- School of Life Science, Ningxia University, Yinchuan, China
- Ningxia Feed Engineering Technology Research Center, Ningxia University, Yinchuan, China
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, China
| |
Collapse
|
31
|
Haxhiraj M, White K, Terry C. The Role of Fenugreek in the Management of Type 2 Diabetes. Int J Mol Sci 2024; 25:6987. [PMID: 39000103 PMCID: PMC11240913 DOI: 10.3390/ijms25136987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
The number of people diagnosed with type 2 diabetes is on the increase worldwide. Of growing concern, the prevalence of type 2 diabetes in children and youths is increasing rapidly and mirrors the increasing burden of childhood obesity. There are many risk factors associated with the condition; some are due to lifestyle, but many are beyond our control, such as genetics. There is an urgent need to develop better therapeutics for the prevention and management of this complex condition since current medications often cause unwanted side effects, and poorly managed diabetes can result in the onset of related comorbidities. Naturally derived compounds have gained momentum for preventing and managing several complex conditions, including type 2 diabetes. Here, we provide an update on the benefits and limitations of fenugreek and its components as a therapeutic for type 2 diabetes, including its bioavailability and interaction with the microbiome.
Collapse
Affiliation(s)
- Melina Haxhiraj
- Diabetes Interest Group, The Centre for Health and Life Sciences Research, London Metropolitan University, London N7 8DB, UK
| | - Kenneth White
- Diabetes Interest Group, The Centre for Health and Life Sciences Research, London Metropolitan University, London N7 8DB, UK
| | - Cassandra Terry
- Diabetes Interest Group, The Centre for Health and Life Sciences Research, London Metropolitan University, London N7 8DB, UK
| |
Collapse
|
32
|
Jegatheesan T, Moorthy AS, Eberl HJ. A mathematical model of competition between fiber and mucin degraders in the gut provides a possible explanation for mucus thinning. J Theor Biol 2024; 587:111824. [PMID: 38604595 DOI: 10.1016/j.jtbi.2024.111824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 03/14/2024] [Accepted: 04/06/2024] [Indexed: 04/13/2024]
Abstract
The human gut microbiota relies on complex carbohydrates (glycans) for energy and growth, primarily dietary fiber and host-derived mucins. We introduce a mathematical model of a glycan generalist and a mucin specialist in a two-compartment chemostat model of the human colon. Our objective is to characterize the influence of dietary fiber and mucin supply on the abundance of mucin-degrading species within the gut ecosystem. Current mathematical gut reactor models that include the enzymatic degradation of glycans do not differentiate between glycan types and their degraders. The model we present distinguishes between a generalist that can degrade both dietary fiber and mucin, and a specialist species that can only degrade mucin. The integrity of the colonic mucus barrier is essential for overall human health and well-being, with the mucin specialist Akkermanisa muciniphila being associated with a healthy mucus layer. Competition, particularly between the specialist and generalists like Bacteroides thetaiotaomicron, may lead to mucus layer erosion, especially during periods of dietary fiber deprivation. Our model treats the colon as a gut reactor system, dividing it into two compartments that represent the lumen and the mucus of the gut, resulting in a complex system of ordinary differential equations with a large and uncertain parameter space. To understand the influence of model parameters on long-term behavior, we employ a random forest classifier, a supervised machine learning method. Additionally, a variance-based sensitivity analysis is utilized to determine the sensitivity of steady-state values to changes in model parameter inputs. By constructing this model, we can investigate the underlying mechanisms that control gut microbiota composition and function, free from confounding factors.
Collapse
Affiliation(s)
- Thulasi Jegatheesan
- Department of Mathematics and Statistics, University of Guelph, 50 Stone Rd E, Guelph, N1G 2W1, ON, Canada; Biophysics Interdepartmental Group, University of Guelph, 50 Stone Rd E, Guelph, N1G 2W1, ON, Canada
| | - Arun S Moorthy
- Biophysics Interdepartmental Group, University of Guelph, 50 Stone Rd E, Guelph, N1G 2W1, ON, Canada; Department of Forensic Science, Trent University, 1600 West Bank Drive, Peterborough, K9L 0G2, ON, Canada
| | - Hermann J Eberl
- Department of Mathematics and Statistics, University of Guelph, 50 Stone Rd E, Guelph, N1G 2W1, ON, Canada; Biophysics Interdepartmental Group, University of Guelph, 50 Stone Rd E, Guelph, N1G 2W1, ON, Canada.
| |
Collapse
|
33
|
Charest AM, Reed E, Bozorgzadeh S, Hernandez L, Getsey NV, Smith L, Galperina A, Beauregard HE, Charest HA, Mitchell M, Riley MA. Nisin Inhibition of Gram-Negative Bacteria. Microorganisms 2024; 12:1230. [PMID: 38930612 PMCID: PMC11205666 DOI: 10.3390/microorganisms12061230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Aims: This study investigates the activity of the broad-spectrum bacteriocin nisin against a large panel of Gram-negative bacterial isolates, including relevant plant, animal, and human pathogens. The aim is to generate supportive evidence towards the use/inclusion of bacteriocin-based therapeutics and open avenues for their continued development. Methods and Results: Nisin inhibitory activity was screened against a panel of 575 strains of Gram-negative bacteria, encompassing 17 genera. Nisin inhibition was observed in 309 out of 575 strains, challenging the prevailing belief that nisin lacks effectiveness against Gram-negative bacteria. The genera Acinetobacter, Helicobacter, Erwinia, and Xanthomonas exhibited particularly high nisin sensitivity. Conclusions: The findings of this study highlight the promising potential of nisin as a therapeutic agent for several key Gram-negative plant, animal, and human pathogens. These results challenge the prevailing notion that nisin is less effective or ineffective against Gram-negative pathogens when compared to Gram-positive pathogens and support future pursuits of nisin as a complementary therapy to existing antibiotics. Significance and Impact of Study: This research supports further exploration of nisin as a promising therapeutic agent for numerous human, animal, and plant health applications, offering a complementary tool for infection control in the face of multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Adam M. Charest
- Department of Biology, University of Massachusetts, Amherst, MA 01002, USA; (A.M.C.); (E.R.); (S.B.); (L.H.); (N.V.G.); (L.S.); (A.G.); (H.E.B.); (H.A.C.)
| | - Ethan Reed
- Department of Biology, University of Massachusetts, Amherst, MA 01002, USA; (A.M.C.); (E.R.); (S.B.); (L.H.); (N.V.G.); (L.S.); (A.G.); (H.E.B.); (H.A.C.)
| | - Samantha Bozorgzadeh
- Department of Biology, University of Massachusetts, Amherst, MA 01002, USA; (A.M.C.); (E.R.); (S.B.); (L.H.); (N.V.G.); (L.S.); (A.G.); (H.E.B.); (H.A.C.)
| | - Lorenzo Hernandez
- Department of Biology, University of Massachusetts, Amherst, MA 01002, USA; (A.M.C.); (E.R.); (S.B.); (L.H.); (N.V.G.); (L.S.); (A.G.); (H.E.B.); (H.A.C.)
| | - Natalie V. Getsey
- Department of Biology, University of Massachusetts, Amherst, MA 01002, USA; (A.M.C.); (E.R.); (S.B.); (L.H.); (N.V.G.); (L.S.); (A.G.); (H.E.B.); (H.A.C.)
| | - Liam Smith
- Department of Biology, University of Massachusetts, Amherst, MA 01002, USA; (A.M.C.); (E.R.); (S.B.); (L.H.); (N.V.G.); (L.S.); (A.G.); (H.E.B.); (H.A.C.)
| | - Anastasia Galperina
- Department of Biology, University of Massachusetts, Amherst, MA 01002, USA; (A.M.C.); (E.R.); (S.B.); (L.H.); (N.V.G.); (L.S.); (A.G.); (H.E.B.); (H.A.C.)
| | - Hadley E. Beauregard
- Department of Biology, University of Massachusetts, Amherst, MA 01002, USA; (A.M.C.); (E.R.); (S.B.); (L.H.); (N.V.G.); (L.S.); (A.G.); (H.E.B.); (H.A.C.)
| | - Hailey A. Charest
- Department of Biology, University of Massachusetts, Amherst, MA 01002, USA; (A.M.C.); (E.R.); (S.B.); (L.H.); (N.V.G.); (L.S.); (A.G.); (H.E.B.); (H.A.C.)
| | - Mathew Mitchell
- Organicin Scientific, 240 Thatcher Road, Amherst, MA 01003, USA;
| | - Margaret A. Riley
- Department of Biology, University of Massachusetts, Amherst, MA 01002, USA; (A.M.C.); (E.R.); (S.B.); (L.H.); (N.V.G.); (L.S.); (A.G.); (H.E.B.); (H.A.C.)
- Organicin Scientific, 240 Thatcher Road, Amherst, MA 01003, USA;
| |
Collapse
|
34
|
Kulshreshtha S. Mushroom as Prebiotics: a Sustainable Approach for Healthcare. Probiotics Antimicrob Proteins 2024; 16:699-712. [PMID: 37776487 DOI: 10.1007/s12602-023-10164-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2023] [Indexed: 10/02/2023]
Abstract
Mushrooms are considered as sustainable foods as they require less effort and can be cultivated on different agro-industrial wastes. Besides, these possess many nutraceuticals for providing health benefits along with supplementing nutrition. The mushrooms are also used as prebiotics for their ability to support beneficial microbes in the gut and inhibit the growth of pathogens. Furthermore, these remain undigested in the upper gut and reach the intestine to replenish the gut microbiota. The mushrooms boost health by inhibiting the binding of pathogenic bacteria, by promoting the growth of specific gut microbiota, producing short chain fatty acids, and regulating lipid metabolism and cancer. Research has been initiated in the commercial formulation of various products such as yogurt and symbiotic capsules. This paper sheds light on health-promoting effect, disease controlling, and regulating effect of mushroom prebiotics. This paper also presented a glimpse of commercialization of mushroom prebiotics. In the future, proper standardization of mushroom-based prebiotic formulations will be available to boost human health.
Collapse
Affiliation(s)
- Shweta Kulshreshtha
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India.
| |
Collapse
|
35
|
Nishiyama M, Ishizawa S, Nishi A, Taketomi A, Kono T. Bofutsushosan (Fangfengtongshengsan) improves early stages of NASH via the gut–liver axis in diabetes-induced NASH model mice. PHARMACOLOGICAL RESEARCH - MODERN CHINESE MEDICINE 2024; 11:100440. [DOI: 10.1016/j.prmcm.2024.100440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
36
|
Akinsuyi OS, Xhumari J, Ojeda A, Roesch LFW. Gut permeability among Astronauts during Space missions. LIFE SCIENCES IN SPACE RESEARCH 2024; 41:171-180. [PMID: 38670644 DOI: 10.1016/j.lssr.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/02/2024] [Accepted: 03/13/2024] [Indexed: 04/28/2024]
Abstract
The space environment poses substantial challenges to human physiology, including potential disruptions in gastrointestinal health. Gut permeability has only recently become widely acknowledged for its potential to cause adverse effects on a systemic level, rendering it a critical factor to investigate in the context of spaceflight. Here, we propose that astronauts experience the onset of leaky gut during space missions supported by transcriptomic and metagenomic analysis of human and murine samples. A genetic map contributing to intestinal permeability was constructed from a systematic review of current literature. This was referenced against our re-analysis of three independent transcriptomic datasets which revealed significant changes in gene expression patterns associated with the gut barrier. Specifically, in astronauts during flight, we observed a substantial reduction in the expression genes that are crucial for intestinal barrier function, goblet cell development, gut microbiota modulation, and immune responses. Among rodent spaceflight studies, differential expression of cytokines, chemokines, and genes which regulate mucin production and post-translational modifications suggest a similar dysfunction of intestinal permeability. Metagenomic analysis of feces from two murine studies revealed a notable reduction probiotic, short chain fatty acid-producing bacteria and an increase in the Gram-negative pathogens, including Citrobacter rodentium, Enterobacter cloacea, Klebsiella aerogenes, and Proteus hauseri which promote LPS circulation, a recipe for barrier disruption and systemic inflammatory activation. These findings emphasize the critical need to understand the underlying mechanisms and develop interventions to maintain gastrointestinal health in space.
Collapse
Affiliation(s)
- Oluwamayowa S Akinsuyi
- Institute of Food and Agricultural Sciences, Department of Microbiology and Cell Science, University of Florida, Gainesville 32611, FL, USA
| | - Jessica Xhumari
- Institute of Food and Agricultural Sciences, Department of Microbiology and Cell Science, University of Florida, Gainesville 32611, FL, USA
| | - Amanda Ojeda
- Institute of Food and Agricultural Sciences, Department of Microbiology and Cell Science, University of Florida, Gainesville 32611, FL, USA
| | - Luiz F W Roesch
- Institute of Food and Agricultural Sciences, Department of Microbiology and Cell Science, University of Florida, Gainesville 32611, FL, USA.
| |
Collapse
|
37
|
Young AP, Denovan-Wright EM. JAK1/2 Regulates Synergy Between Interferon Gamma and Lipopolysaccharides in Microglia. J Neuroimmune Pharmacol 2024; 19:14. [PMID: 38642237 DOI: 10.1007/s11481-024-10115-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/01/2024] [Indexed: 04/22/2024]
Abstract
Microglia, the resident immune cells of the brain, regulate neuroinflammation which can lead to secondary neuronal damage and cognitive impairment under pathological conditions. Two of the many molecules that can elicit an inflammatory response from microglia are lipopolysaccharide (LPS), a component of gram-negative bacteria, and interferon gamma (IFNγ), an endogenous pro-inflammatory cytokine. We thoroughly examined the concentration-dependent relationship between LPS from multiple bacterial species and IFNγ in cultured microglia and macrophages. We measured the effects that these immunostimulatory molecules have on pro-inflammatory activity of microglia and used a battery of signaling inhibitors to identify the pathways that contribute to the microglial response. We found that LPS and IFNγ interacted synergistically to induce a pro-inflammatory phenotype in microglia, and that inhibition of JAK1/2 completely blunted the response. We determined that this synergistic action of LPS and IFNγ was likely dependent on JNK and Akt signaling rather than typical pro-inflammatory mediators such as NF-κB. Finally, we demonstrated that LPS derived from Escherichia coli, Klebsiella pneumoniae, and Akkermansia muciniphila can elicit different inflammatory responses from microglia and macrophages, but these responses could be consistently prevented using ruxolitinib, a JAK1/2 inhibitor. Collectively, this work reveals a mechanism by which microglia may become hyperactivated in response to the combination of LPS and IFNγ. Given that elevations in circulating LPS and IFNγ occur in a wide variety of pathological conditions, it is critical to understand the pharmacological interactions between these molecules to develop safe and effective treatments to suppress this process.
Collapse
Affiliation(s)
- Alexander P Young
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada.
| | | |
Collapse
|
38
|
Dedon LR, Yuan H, Chi J, Gu H, Arias AJ, Covault JM, Zhou Y. Baseline gut microbiome and metabolites are correlated with alcohol consumption in a zonisamide clinical trial of heavy drinking alcoholic civilians. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.02.24305199. [PMID: 38633809 PMCID: PMC11023652 DOI: 10.1101/2024.04.02.24305199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Development and severity of alcohol use disorder (AUD) has been linked to variations in gut microbiota and their associated metabolites in both animal and human studies. However, the involvement of the gut microbiome in alcohol consumption of individuals with AUD undergoing treatment remains unclear. To address this, stool samples (n=48) were collected at screening (baseline) and trial completion from a single site of a multi-site double-blind, placebo-controlled trial of Zonisamide in individuals with AUD. Alcohol consumption, gamma-glutamyl transferase (GGT), and phosphatidylethanol (PEth)levels were measured both at baseline and endpoint of 16-week trial period. Fecal microbiome was analyzed via 16S rRNA sequencing and metabolome via untargeted LC-MS. Both sex (p = 0.003) and psychotropic medication usage (p = 0.025) are associated with baseline microbiome composition. The relative abundance of 12 genera at baseline was correlated with percent drinking reduction, baseline and endpoint alcohol consumption, and changes in GGT and PeTH over the course of treatment (p.adj < 0.05). Overall microbiome community structure at baseline differed between high and low responders (67-100% and 0-33% drinking reduction, respectively; p = 0.03). A positive relationship between baseline fecal GABA levels and percent drinking reduction (R=0.43, p < 0.05) was identified by microbiome function prediction and confirmed by ELISA and metabolomics. Predicted microbiome function and metabolomics analysis have found that tryptophan metabolic pathways are over-represented in low responders. These findings highlight importance of baseline microbiome and metabolites in alcohol consumption in AUD patients undergoing zonisamide treatment.
Collapse
|
39
|
Niu H, Zhou M, Zogona D, Xing Z, Wu T, Chen R, Cui D, Liang F, Xu X. Akkermansia muciniphila: a potential candidate for ameliorating metabolic diseases. Front Immunol 2024; 15:1370658. [PMID: 38571945 PMCID: PMC10987721 DOI: 10.3389/fimmu.2024.1370658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/11/2024] [Indexed: 04/05/2024] Open
Abstract
Metabolic diseases are comprehensive disease based on obesity. Numerous cumulative studies have shown a certain correlation between the fluctuating abundance of Akkermansia muciniphila and the occurrence of metabolic diseases. A. muciniphila, a potential probiotic candidate colonized in the human intestinal mucus layer, and its derivatives have various physiological functions, including treating metabolic disorders and maintaining human health. This review systematically explicates the abundance change rules of A. muciniphila in metabolic diseases. It also details the high efficacy and specific molecules mechanism of A. muciniphila and its derivatives in treating obesity, type 2 diabetes mellitus, cardiovascular disease, and non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Huifang Niu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit Vegetable Processing Quality Control (Huazhong Agricultural University), School of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Minfeng Zhou
- Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Daniel Zogona
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit Vegetable Processing Quality Control (Huazhong Agricultural University), School of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zheng Xing
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit Vegetable Processing Quality Control (Huazhong Agricultural University), School of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ting Wu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit Vegetable Processing Quality Control (Huazhong Agricultural University), School of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Rui Chen
- Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dandan Cui
- Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fengxia Liang
- School of Acupuncture and Bone Injury, Hubei University of Chinese Medicine, Wuhan, China
| | - Xiaoyun Xu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit Vegetable Processing Quality Control (Huazhong Agricultural University), School of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
40
|
Bai J, Eldridge R, Houser M, Martin M, Powell C, Sutton KS, Noh HI, Wu Y, Olson T, Konstantinidis KT, Bruner DW. Multi-omics analysis of the gut microbiome and metabolites associated with the psychoneurological symptom cluster in children with cancer receiving chemotherapy. J Transl Med 2024; 22:256. [PMID: 38461265 PMCID: PMC10924342 DOI: 10.1186/s12967-024-05066-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/05/2024] [Indexed: 03/11/2024] Open
Abstract
BACKGROUND Children with cancer receiving chemotherapy commonly report a cluster of psychoneurological symptoms (PNS), including pain, fatigue, anxiety, depression, and cognitive dysfunction. The role of the gut microbiome and its functional metabolites in PNS is rarely studied among children with cancer. This study investigated the associations between the gut microbiome-metabolome pathways and PNS in children with cancer across chemotherapy as compared to healthy children. METHODS A case-control study was conducted. Cancer cases were recruited from Children's Healthcare of Atlanta and healthy controls were recruited via flyers. Participants reported PNS using the Pediatric Patient-Reported Outcomes Measurement Information System. Data for cases were collected pre-cycle two chemotherapy (T0) and post-chemotherapy (T1), whereas data for healthy controls were collected once. Gut microbiome and its metabolites were measured using fecal specimens. Gut microbiome profiling was performed using 16S rRNA V4 sequencing, and metabolome was performed using an untargeted liquid chromatography-mass spectrometry approach. A multi-omics network integration program analyzed microbiome-metabolome pathways of PNS. RESULTS Cases (n = 21) and controls (n = 14) had mean ages of 13.2 and 13.1 years. For cases at T0, PNS were significantly associated with microbial genera (e.g., Ruminococcus, Megasphaera, and Prevotella), which were linked with carnitine shuttle (p = 0.0003), fatty acid metabolism (p = 0.001) and activation (p = 0.001), and tryptophan metabolism (p = 0.008). Megasphaera, clustered with aspartate and asparagine metabolism (p = 0.034), carnitine shuttle (p = 0.002), and tryptophan (p = 0.019), was associated with PNS for cases at T1. Gut bacteria with potential probiotic functions, along with fatty acid metabolism, tryptophan, and carnitine shuttle, were more clustered in cancer cases than the control network and this linkage with PNS needs further studies. CONCLUSIONS Using multi-omics approaches, this study indicated specific microbiome-metabolome pathways linked with PNS in children with cancer across chemotherapy. Due to limitations such as antibiotic use in cancer cases, these findings need to be further confirmed in a larger cohort.
Collapse
Affiliation(s)
- Jinbing Bai
- Nell Hodgson Woodruff School of Nursing, Emory University, 1520 Clifton Road NE, Atlanta, GA, 30322, USA.
- Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| | - Ronald Eldridge
- Nell Hodgson Woodruff School of Nursing, Emory University, 1520 Clifton Road NE, Atlanta, GA, 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Madelyn Houser
- Nell Hodgson Woodruff School of Nursing, Emory University, 1520 Clifton Road NE, Atlanta, GA, 30322, USA
| | - Melissa Martin
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Christie Powell
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Kathryn S Sutton
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- School of Medicine, Emory University, Atlanta, GA, USA
| | - Hye In Noh
- Nell Hodgson Woodruff School of Nursing, Emory University, 1520 Clifton Road NE, Atlanta, GA, 30322, USA
| | - Yuhua Wu
- Nell Hodgson Woodruff School of Nursing, Emory University, 1520 Clifton Road NE, Atlanta, GA, 30322, USA
| | - Thomas Olson
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- School of Medicine, Emory University, Atlanta, GA, USA
| | | | - Deborah W Bruner
- Nell Hodgson Woodruff School of Nursing, Emory University, 1520 Clifton Road NE, Atlanta, GA, 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| |
Collapse
|
41
|
Wu L, Chen L, Li H, Wang Y, Xu K, Chen W, Zhang A, Wang Y, Shi C. Nocardia rubra cell-wall skeleton mitigates whole abdominal irradiation-induced intestinal injury via regulating macrophage function. BURNS & TRAUMA 2024; 12:tkad045. [PMID: 38444637 PMCID: PMC10914217 DOI: 10.1093/burnst/tkad045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/13/2023] [Accepted: 08/16/2023] [Indexed: 03/07/2024]
Abstract
Background Ionizing radiation (IR)-induced intestinal injury is a major side effect and dose-limiting toxicity in patients receiving radiotherapy. There is an urgent need to identify an effective and safe radioprotectant to reduce radiation-induced intestinal injury. Immunoregulation is considered an effective strategy against IR-induced injury. The purpose of this article was to investigate the protective effect of Nocardia rubra cell wall skeleton (Nr-CWS), an immunomodulator, on radiation-induced intestinal damage and to explore its potential mechanism. Methods C57BL/6 J male mice exposed to 12 Gy whole abdominal irradiation (WAI) were examined for survival rate, morphology and function of the intestine and spleen, as well as the gut microbiota, to comprehensively evaluate the therapeutic effects of Nr-CWS on radiation-induced intestinal and splenetic injury. To further elucidate the underlying mechanisms of Nr-CWS-mediated intestinal protection, macrophages were depleted by clodronate liposomes to determine whether Nr-CWS-induced radioprotection is macrophage dependent, and the function of peritoneal macrophages stimulated by Nr-CWS was detected in vitro. Results Our data showed that Nr-CWS promoted the recovery of intestinal barrier function, enhanced leucine-rich repeat-containing G protein-coupled receptor 5+ intestinal stem cell survival and the regeneration of intestinal epithelial cells, maintained intestinal flora homeostasis, protected spleen morphology and function, and improved the outcome of mice exposed to 12 Gy WAI. Mechanistic studies indicated that Nr-CWS recruited macrophages to reduce WAI-induced intestinal damage. Moreover, macrophage depletion by clodronate liposomes blocked Nr-CWS-induced radioprotection. In vitro, we found that Nr-CWS activated the nuclear factor kappa-B signaling pathway and promoted the phagocytosis and migration ability of peritoneal macrophages. Conclusions Our study suggests the therapeutic effect of Nr-CWS on radiation-induced intestinal injury, and provides possible therapeutic strategy and potential preventive and therapeutic drugs to alleviate it.
Collapse
Affiliation(s)
- Lingling Wu
- Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, China
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Long Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Huijuan Li
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Yawei Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Kexin Xu
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), 400038, Chongqing, China
- College of Biological Engineering, Chongqing University 400044, Chongqing, China
| | - Wanchao Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Aihua Zhang
- Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, China
| | - Yu Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Chunmeng Shi
- Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, China
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| |
Collapse
|
42
|
Bertossi F. A Possible Role of Akkermansia muciniphila in the Treatment of Olanzapine-Induced Weight Gain. Cureus 2024; 16:e55733. [PMID: 38463411 PMCID: PMC10921070 DOI: 10.7759/cureus.55733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2024] [Indexed: 03/12/2024] Open
Abstract
Second-generation antipsychotics are mainly used in both acute and long-term treatment of major psychiatric disorders. Although better tolerated than first-generation antipsychotic drugs, they can frequently induce weight gain and metabolic disorders, of these, olanzapine is one of the drugs more likely to induce these side effects. There is consistent evidence of the role of gut microbiota in modulating the gut-brain axis with complex crosstalk with the host involving satiety signaling pathways, food intake behavior, and weight and metabolic regulation. Second-generation antipsychotics induce important gut microbiota modification thus contributing together with the central and peripheral receptors blockade mechanism to weight gain induction and metabolic impairment. These drugs can alter the composition of gut microbiota and induce dysbiosis, often reducing the concentration of Akkermansia muciniphila, a bacterium that is also decreased in patients with diabetes, obesity, metabolic syndrome, or chronic inflammatory diseases. Probiotic administration can be a safe and well-tolerated approach to modulate microbiota and offer an integrative strategy in psychiatric patients suffering antipsychotic side effects. Multiple strain probiotics and Akkermansia muciniphila alone have been administered both in mice models and in clinical populations demonstrating efficacy on antipsychotic-induced metabolic impairment and showing a contribution in reducing induced weight gain. Akkermansia muciniphila can improve several parameters altered by olanzapine administration, such as weight gain, insulin resistance, hyperglycemia, liver function, systemic inflammation, and gut barrier function. Although we do not have jet trials in the psychiatric population, this probiotic may be a complementary approach to treating olanzapine-induced weight gain and metabolic side effects.
Collapse
Affiliation(s)
- Francesca Bertossi
- Department of Mental Health, Azienda Sanitaria Universitaria Giuliano Isontina, Trieste, ITA
| |
Collapse
|
43
|
Xiao J, Chen X, Guo W, Li Y, Liu J. Moderate intensity exercise may protect cardiac function by influencing spleen microbiome composition. iScience 2024; 27:108635. [PMID: 38292426 PMCID: PMC10826308 DOI: 10.1016/j.isci.2023.108635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/15/2023] [Accepted: 12/01/2023] [Indexed: 02/01/2024] Open
Abstract
The beneficial effects of physical exercise on human cardiorespiratory fitness might be through reduced systemic inflammation, but the mechanism remains a controversy. Recent studies have highlighted the importance of spleen microbiomes in immune regulation. Hence, we conducted a study using a high-fat diet and exercise mouse model to investigate the relationships among different exercise intensities, spleen microbiome composition, and cardiac function. The mice spleen contained a diverse array of microbiota. Different intensities of exercise resulted in varying compositions of the spleen microbiome, Treg cell levels, and mouse heart function. Additionally, the abundance of Lactobacillus johnsonii in the mouse spleen exhibited a positive correlation with Treg cell levels, suggesting that Lactobacillus johnsonii may contribute to the production of Treg cells, potentially explaining the protective role of moderate-intensity exercise on cardiac function. In conclusion, our findings provide evidence that moderate-intensity exercise may promote cardiac function protection by influencing the spleen microbiome composition.
Collapse
Affiliation(s)
- Jie Xiao
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan 430071, China
- Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan 430071, China
| | - Xing Chen
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan 430071, China
- Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan 430071, China
| | - Weina Guo
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yang Li
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan 430071, China
- Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan 430071, China
| | - Jinping Liu
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan 430071, China
- Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan 430071, China
| |
Collapse
|
44
|
Ghosh A, Muley A, Ainapure AS, Deshmane AR, Mahajan A. Exploring the Impact of Optimized Probiotic Supplementation Techniques on Diabetic Nephropathy: Mechanisms and Therapeutic Potential. Cureus 2024; 16:e55149. [PMID: 38558739 PMCID: PMC10979819 DOI: 10.7759/cureus.55149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
Worldwide, diabetic nephropathy (DN) is a significant contributor to end-stage renal failure and chronic kidney disease. Probiotic supplementation has recently gained popularity as a potential nutritional therapy in several clinical trials aimed at improving renal function, inflammation, oxidative stress, dyslipidemia, glycemic control, and inflammation. However, they still need to undergo a thorough assessment of DN. It is crucial that the optimal dosage, duration, and combination of probiotic strains administered for the purpose of slowing down the advancement of DN be assessed. Based on the available publications, including relevant randomized controlled trials, systematic reviews, and meta-analysis from 2013-2023 from search engines like MEDLINE (PubMed), Scopus, and Web of Science, a literature review was generated using the keywords "gut microbiota," "gut microbiome," "diabetic kidney disease," "diabetic nephropathy," "probiotic," and "prebiotic." Multiple clinical trials focusing on probiotic administration techniques revealed changes in renal, glucose, and lipid biomarkers. Probiotic supplementation using Bifidobacterium bifidum, Lactobacillus acidophilus, and Streptococcus thermophilus for 12 weeks indicated a reduction in glycosylated hemoglobin, fasting blood glucose, and the microalbuminuria/creatinine ratio. Multispecies as well as single-species probiotic administration containing Lactobacillus, Bifidobacterium, and Streptococcus thermophilus spp. greater than 4*109 colony forming units (CFU)/day for 8-12 weeks in DN patients improves renal metabolic markers and reduces the progression of disease patterns. Optimal supplementation techniques of probiotics in conjunction with prebiotics and synbiotics in DN benefit glycaemic control, renal function, blood lipid profile, inflammation, and oxidative stress. Future randomized controlled trials supplementing specific probiotics coupled with prebiotics and synbiotics, with larger sample sizes and longer follow-up times, will generate more reliable findings for the impact of probiotic supplementation on DN.
Collapse
Affiliation(s)
- Anindita Ghosh
- Nutrition and Dietetics, Symbiosis Institute of Health Sciences, Symbiosis International (Deemed University), Pune, IND
- Beauty Wellness and Nutrition, Symbiosis Skills and Professional University, Pune, IND
| | - Arti Muley
- Nutrition and Dietetics, Symbiosis Institute of Health Sciences, Symbiosis International (Deemed University), Pune, IND
| | - Archana S Ainapure
- Beauty Wellness and Nutrition, Symbiosis Skills and Professional University, Pune, IND
| | - Aditi R Deshmane
- Clinical Nutrition, Indian Institute of Food Science and Technology, Aurangabad, IND
- Nutrition and Dietetics, Symbiosis Institute of Health Sciences, Symbiosis International (Deemed University), Pune, IND
| | - Anu Mahajan
- Nutrition and Dietetics, Symbiosis Institute of Health Sciences, Symbiosis International (Deemed University), Pune, IND
| |
Collapse
|
45
|
Zhi N, Chang X, Wang X, Guo J, Chen J, Gui S. Recent advances in the extraction, purification, structural-property correlations, and antiobesity mechanism of traditional Chinese medicine-derived polysaccharides: a review. Front Nutr 2024; 10:1341583. [PMID: 38299183 PMCID: PMC10828026 DOI: 10.3389/fnut.2023.1341583] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/27/2023] [Indexed: 02/02/2024] Open
Abstract
Traditional Chinese medicine (TCM) has displayed preventive and therapeutic effects on many complex diseases. As natural biological macromolecules, TCM-derived antiobesogenic polysaccharides (TCMPOs) exhibit notable weight-loss effects and are seen to be a viable tactic in the fight against obesity. Current studies demonstrate that the antiobesity activity of TCMPOs is closely related to their structural characteristics, which could be affected by the extraction and purification methods. Therefore, the extraction, purification and structural-property correlations of TCMPOs were discussed. Investigation of the antiobesity mechanism of TCMPOs is also essential for their improved application. Herein, the possible antiobesity mechanisms of TCMPOs are systematically summarized: (1) modulation of appetite and satiety effects, (2) suppression of fat absorption and synthesis, (3) alteration of the gut microbiota and their metabolites, and (4) protection of intestinal barriers. This collated information could provide some insights and offer a new therapeutic approach for the management and prevention of obesity.
Collapse
Affiliation(s)
- Nannan Zhi
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xiangwei Chang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China
| | - Xinrui Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Jian Guo
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, China
| | - Juan Chen
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, China
| | - Shuangying Gui
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China
| |
Collapse
|
46
|
Xu X, Zhang F, Ren J, Zhang H, Jing C, Wei M, Jiang Y, Xie H. Dietary intervention improves metabolic levels in patients with type 2 diabetes through the gut microbiota: a systematic review and meta-analysis. Front Nutr 2024; 10:1243095. [PMID: 38260058 PMCID: PMC10800606 DOI: 10.3389/fnut.2023.1243095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Background Poor dietary structure plays a pivotal role in the development and progression of type 2 diabetes and is closely associated with dysbiosis of the gut microbiota. Thus, the objective of this systematic review was to assess the impact of dietary interventions on improving gut microbiota and metabolic levels in patients with type 2 diabetes. Methods We conducted a systematic review and meta-analysis following the PRISMA 2020 guidelines. Results Twelve studies met the inclusion criteria. In comparison to baseline measurements, the high-fiber diet produced substantial reductions in FBG (mean difference -1.15 mmol/L; 95% CI, -2.24 to -0.05; I2 = 94%; P = 0.04), HbA1c (mean difference -0.99%; 95% CI, -1.93 to -0.03; I2 = 89%; P = 0.04), and total cholesterol (mean difference -0.95 mmol/L; 95% CI, -1.57 to -0.33; I2 = 77%; P = 0.003); the high-fat and low-carbohydrate diet led to a significant reduction in HbA1c (mean difference -0.98; 95% CI, -1.50 to -0.46; I2 = 0%; P = 0.0002). Within the experimental group (intervention diets), total cholesterol (mean difference -0.69 mmol/L; 95% CI, -1.27 to -0.10; I2 = 52%; P = 0.02) and LDL-C (mean difference -0.45 mmol/L; 95% CI, -0.68 to -0.22; I2 = 0%; P < 0.0001) experienced significant reductions in comparison to the control group (recommended diets for type 2 diabetes). However, no statistically significant differences emerged in the case of FBG, HbA1c, HOMA-IR, and HDL-C between the experimental and control groups. The high dietary fiber diet triggered an augmented presence of short-chain fatty acid-producing bacteria in the intestines of individuals with T2DM. In addition, the high-fat and low-carbohydrate diet resulted in a notable decrease in Bacteroides abundance while simultaneously increasing the relative abundance of Eubacterium. Compared to a specific dietary pattern, personalized diets appear to result in the production of a greater variety of beneficial bacteria in the gut, leading to more effective blood glucose control in T2D patients. Conclusion Dietary interventions hold promise for enhancing metabolic profiles in individuals with T2D through modulation of the gut microbiota. Tailored dietary regimens appear to be more effective than standard diets in improving glucose metabolism. However, given the limited and highly heterogeneous nature of the current sample size, further well-designed and controlled intervention studies are warranted in the future.
Collapse
Affiliation(s)
- Xiaoyu Xu
- School of Public Health, Bengbu Medical University, Bengbu, China
| | - Fan Zhang
- School of Public Health, Bengbu Medical University, Bengbu, China
| | - Jiajia Ren
- School of Public Health, Bengbu Medical University, Bengbu, China
| | - Haimeng Zhang
- School of Public Health, Bengbu Medical University, Bengbu, China
| | - Cuiqi Jing
- School of Public Health, Bengbu Medical University, Bengbu, China
| | - Muhong Wei
- Department of Epidemiology and Health Statistics, School of Public Health, Bengbu Medical University, Bengbu, China
| | - Yuhong Jiang
- Department of Epidemiology and Health Statistics, School of Public Health, Bengbu Medical University, Bengbu, China
| | - Hong Xie
- Department of Nutrition and Food Hygiene, School of Public Health, Bengbu Medical University, Bengbu, China
| |
Collapse
|
47
|
Garcia-Gutierrez E, O’Mahony AK, Dos Santos RS, Marroquí L, Cotter PD. Gut microbial metabolic signatures in diabetes mellitus and potential preventive and therapeutic applications. Gut Microbes 2024; 16:2401654. [PMID: 39420751 PMCID: PMC11492678 DOI: 10.1080/19490976.2024.2401654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 07/08/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024] Open
Abstract
Diabetes mellitus can be subdivided into several categories based on origin and clinical characteristics. The most common forms of diabetes are type 1 (T1D), type 2 diabetes (T2D) and gestational diabetes mellitus (GDM). T1D and T2D are chronic diseases affecting around 537 million adults worldwide and it is projected that these numbers will increase by 12% over the next two decades, while GDM affects up to 30% of women during pregnancy, depending on diagnosis methods. These forms of diabetes have varied origins: T1D is an autoimmune disease, while T2D is commonly associated with, but not limited to, certain lifestyle patterns and GDM can result of a combination of genetic predisposition and pregnancy factors. Despite some pathogenic differences among these forms of diabetes, there are some common markers associated with their development. For instance, gut barrier impairment and inflammation associated with an unbalanced gut microbiota and their metabolites may be common factors in diabetes development and progression. Here, we summarize the microbial signatures that have been linked to diabetes, how they are connected to diet and, ultimately, the impact on metabolite profiles resulting from host-gut microbiota-diet interactions. Additionally, we summarize recent advances relating to promising preventive and therapeutic interventions focusing on the targeted modulation of the gut microbiota to alleviate T1D, T2D and GDM.
Collapse
Affiliation(s)
- Enriqueta Garcia-Gutierrez
- Food Biosciences Department, Teagasc Food Research Centre, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
- VistaMilk SFI Research Centre, Fermoy, Co. Cork, Ireland
- Departamento de Ingeniería Agronómica, Instituto de Biotecnología Vegetal, ETSIA-Universidad Politécnica de Cartagena, Cartagena, Spain
| | - A. Kate O’Mahony
- Food Biosciences Department, Teagasc Food Research Centre, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
- School of Microbiology, University College Cork, Co. Cork, Ireland
| | - Reinaldo Sousa Dos Santos
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Marroquí
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Paul D. Cotter
- Food Biosciences Department, Teagasc Food Research Centre, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
- VistaMilk SFI Research Centre, Fermoy, Co. Cork, Ireland
| |
Collapse
|
48
|
Sparfel L, Ratodiarivony S, Boutet-Robinet E, Ellero-Simatos S, Jolivet-Gougeon A. Akkermansia muciniphila and Alcohol-Related Liver Diseases. A Systematic Review. Mol Nutr Food Res 2024; 68:e2300510. [PMID: 38059838 DOI: 10.1002/mnfr.202300510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/03/2023] [Indexed: 12/08/2023]
Abstract
SCOPE Akkermansia muciniphila (A. muciniphila) are Gram negative commensal bacteria, degrading mucin in the intestinal mucosa, modulating intestinal permeability and inflammation in the digestive tract, liver, and blood. Some components can promote the relative abundance of A. muciniphila in the gut microbiota, but lower levels of A. muciniphila are more commonly found in people with obesity, diabetes, metabolic syndromes, or inflammatory digestive diseases. Over-intake of ethanol can also induce a decrease of A. muciniphila, associated with dysregulation of microbial metabolite production, impaired intestinal permeability, induction of chronic inflammation, and production of cytokines. METHODS AND RESULTS Using a PRISMA search strategy, a review is performed on the bacteriological characteristics of A. muciniphila, the factors capable of modulating its relative abundance in the digestive tract and its probiotic use in alcohol-related liver diseases (alcoholic hepatitis, cirrhosis, hepatocellular carcinoma, hepatic transplantation, partial hepatectomy). CONCLUSION Several studies have shown that supplementation with A. muciniphila can improve ethanol-related hepatic pathologies, and highlight the interest in using this bacterial species as a probiotic.
Collapse
Affiliation(s)
- Lydie Sparfel
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, F-35000, France
| | - Sandy Ratodiarivony
- Univ Rennes, Bacterial Regulatory RNAs and Medicine (BRM), UMR_S 1230, Rennes, F-35000, France
| | - Elisa Boutet-Robinet
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300, Toulouse, France
| | - Sandrine Ellero-Simatos
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300, Toulouse, France
| | - Anne Jolivet-Gougeon
- Univ Rennes, Bacterial Regulatory RNAs and Medicine (BRM), UMR_S 1230, Rennes, F-35000, France
- Teaching Hospital, CHU Rennes, 2 rue Henri Le Guilloux 35033, Rennes, F-35000, France
- INSERM, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer), U1241, INSERM 1241, Rennes, F-35000, France
| |
Collapse
|
49
|
Arenas-Gómez CM, Garcia-Gutierrez E, Escobar JS, Cotter PD. Human gut homeostasis and regeneration: the role of the gut microbiota and its metabolites. Crit Rev Microbiol 2023; 49:764-785. [PMID: 36369718 DOI: 10.1080/1040841x.2022.2142088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 08/18/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022]
Abstract
The healthy human gut is a balanced ecosystem where host cells and representatives of the gut microbiota interact and communicate in a bidirectional manner at the gut epithelium. As a result of these interactions, many local and systemic processes necessary for host functionality, and ultimately health, take place. Impairment of the integrity of the gut epithelium diminishes its ability to act as an effective gut barrier, can contribute to conditions associated to inflammation processes and can have other negative consequences. Pathogens and pathobionts have been linked with damage of the integrity of the gut epithelium, but other components of the gut microbiota and some of their metabolites can contribute to its repair and regeneration. Here, we review what is known about the effect of bacterial metabolites on the gut epithelium and, more specifically, on the regulation of repair by intestinal stem cells and the regulation of the immune system in the gut. Additionally, we explore the potential therapeutic use of targeted modulation of the gut microbiota to maintain and improve gut homeostasis as a mean to improve health outcomes.
Collapse
Affiliation(s)
- Claudia Marcela Arenas-Gómez
- Vidarium-Nutrition, Health and Wellness Research Center, Grupo Empresarial Nutresa, Medellin, Colombia
- Dirección Académica, Universidad Nacional de Colombia, Sede de La Paz, La Paz 202017, Colombia
| | - Enriqueta Garcia-Gutierrez
- Teagasc Food Research Centre Moorepark, Fermoy, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- VistaMilk SFI Research Centre, Moorepark, Fermoy, Ireland
| | - Juan S Escobar
- Vidarium-Nutrition, Health and Wellness Research Center, Grupo Empresarial Nutresa, Medellin, Colombia
| | - Paul D Cotter
- Teagasc Food Research Centre Moorepark, Fermoy, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- VistaMilk SFI Research Centre, Moorepark, Fermoy, Ireland
| |
Collapse
|
50
|
Klinsawat W, Uthaipaisanwong P, Jenjaroenpun P, Sripiboon S, Wongsurawat T, Kusonmano K. Microbiome variations among age classes and diets of captive Asian elephants (Elephas maximus) in Thailand using full-length 16S rRNA nanopore sequencing. Sci Rep 2023; 13:17685. [PMID: 37848699 PMCID: PMC10582034 DOI: 10.1038/s41598-023-44981-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/14/2023] [Indexed: 10/19/2023] Open
Abstract
Asian elephant (Elephas maximus) is the national symbol of Thailand and linked to Thai history and culture for centuries. The elephant welfare improvement is one of the major components to achieve sustainable captive management. Microbiome inhabiting digestive tracts have been shown with symbiotic relations to host health. This work provided high-resolution microbiome profiles of 32 captive elephants at a species level by utilizing full-length 16S rRNA gene nanopore sequencing. Eleven common uncultured bacterial species were found across elephants fed with solid food including uncultured bacterium Rikenellaceae RC9 gut group, Kiritimatiellae WCHB1-41, Phascolarctobacterium, Oscillospiraceae NK4A214 group, Christensenellaceae R-7 group, Oribacterium, Oscillospirales UCG-010, Lachnospiraceae, Bacteroidales F082, uncultured rumen Rikenellaceae RC9 gut group, and Lachnospiraceae AC2044 group. We observed microbiome shifts along the age classes of baby (0-2 years), juvenile (2-10 years), and adult (> 10 years). Interestingly, we found distinct microbiome profiles among adult elephants fed with a local palm, Caryota urens, as a supplement. Potential beneficial microbes have been revealed according to the age classes and feed diets. The retrieved microbiome data could be provided as good baseline microbial profiles for monitoring elephant health, suggesting further studies towards dietary selection suitable for each age class and the use of local supplementary diets.
Collapse
Affiliation(s)
- Worata Klinsawat
- Conservation Ecology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Pichahpuk Uthaipaisanwong
- Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Piroon Jenjaroenpun
- Division of Medical Bioinformatics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Supaphen Sripiboon
- Department of Large Animal and Wildlife Clinical Science, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, Thailand
| | - Thidathip Wongsurawat
- Division of Medical Bioinformatics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| | - Kanthida Kusonmano
- Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, Thailand.
- Bioinformatics and Systems Biology Program, Schools of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand.
| |
Collapse
|