1
|
Ayuso-Yuste MC, Cruz Calero FJ, Ramos García M, Nicolás Barroso N, Ramos Alguijo MB, Rodríguez Gómez MJ, Calvo Magro P. Characterization and Classification of Berry (Aronia, Haskap, and Goji) Fruits with High Bioactive Value Grown in Spain. Foods 2024; 13:4122. [PMID: 39767063 PMCID: PMC11675623 DOI: 10.3390/foods13244122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Aronia, haskap, and goji berries are characterized by their high content of bioactive compounds and their beneficial health properties as well as their resistance to harsh agronomic conditions. In this work, cultivars of these species growing in a mountainous region of central-western Spain were characterized by analyzing physicochemical parameters and bioactive compounds. Goji fruits showed the highest total soluble solid content and the lowest acidity values. The sugar profile suggested that goji cultivars will have a higher sweetness due to higher fructose and glucose content. However, aronia cultivars will be the least sweet due to their high sorbitol content. The total organic acid content was much higher in aronia and haskap than in goji fruits, and the profile varied according to species. The total phenolic content was significantly higher in aronia fruits. A total of 15 phenolic compounds were detected, with anthocyanins being predominant in aronia and haskap berries; however, they were not detected in goji fruits. Nevertheless, carotenoid compounds were found in goji berries and not detected in aronia and haskap fruits. Aronia fruits showed the highest antioxidant capacity compared to haskap and goji fruits. The PCA analysis classified the samples to determine which parameters have the greatest influence.
Collapse
Affiliation(s)
- María Concepción Ayuso-Yuste
- Agricultural Engineering School, Universidad de Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain; (M.C.A.-Y.); (F.J.C.C.)
| | - Francisco Javier Cruz Calero
- Agricultural Engineering School, Universidad de Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain; (M.C.A.-Y.); (F.J.C.C.)
| | - María Ramos García
- Centro de Agricultura Ecológica y de Montaña, Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX), Avda. España, nº 43, Plasencia, 10600 Cáceres, Spain; (M.R.G.); (N.N.B.)
| | - Noelia Nicolás Barroso
- Centro de Agricultura Ecológica y de Montaña, Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX), Avda. España, nº 43, Plasencia, 10600 Cáceres, Spain; (M.R.G.); (N.N.B.)
| | - María Belén Ramos Alguijo
- Instituto Tecnológico Agroalimentario de Extremadura, Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX), Avda. Adolfo Suárez, s/n, 06007 Badajoz, Spain; (M.B.R.A.); (P.C.M.)
| | - María José Rodríguez Gómez
- Instituto Tecnológico Agroalimentario de Extremadura, Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX), Avda. Adolfo Suárez, s/n, 06007 Badajoz, Spain; (M.B.R.A.); (P.C.M.)
| | - Patricia Calvo Magro
- Instituto Tecnológico Agroalimentario de Extremadura, Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX), Avda. Adolfo Suárez, s/n, 06007 Badajoz, Spain; (M.B.R.A.); (P.C.M.)
| |
Collapse
|
2
|
Zhong H, Hussain M, Hussain K, Wang L, Abdullah, Qayum A, S Hamed Y, Guan R. Nanoliposomes a future based delivery vehicle of cyanidin-3-O-glucoside against major chronic disease. Crit Rev Food Sci Nutr 2024:1-18. [PMID: 39097751 DOI: 10.1080/10408398.2024.2384646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
BACKGROUND Cyanidin-3-O-glucoside (C3G), is an anthocyanin mainly found in berries, and can also be produced by microorganisms. It has been traditionally used as a natural coloring agent for decades. Recently, it has been investigated for its high antioxidant activity and anti-cancer attributes. C3G has low bioavailability and is sensitive to oxidation and gastric pH; therefore, it is encapsulated in nanoliposomes to enhance its bio-availability, targeted delivery- and efficacy against chronic disease. SCOPE AND APPROACH In this review, the role of C3G nanoliposomes against major chronic diseases has been discussed. The focus was on research findings and the mechanism of action to affect the proliferation of cancer, neuro disease and cardiovascular problems. It also discussed the formulation of nanoliposomes, their role in nutraceutical delivery and enhancement in C3G bioavailability. KEY FINDINGS AND CONCLUSIONS Data suggested that nanoliposomes safeguard C3G, enhance bioavailability, and ensure safe, adequate and targeted delivery. It can reduce the impact of cancer and inflammation by inhibiting the ß-catenin/O6-methylguanine-DNA methyltransferase (MGMT) pathway and upregulating miR-214-5p. Formation of C3G nanoliposomes significantly enhances the nutraceutical efficacy of C3G against major chronic disease therefore, C3G nanoliposomes might be a future-based nutraceutical to treat major chronic diseases, including cancer, neuro problems and CVD, but challenges remain in finding correct dose and techniques to maximize its efficacy.
Collapse
Affiliation(s)
- Hao Zhong
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Muhammad Hussain
- Moganshan Institute ZJUT, Kangqian District, Deqing, China
- Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Hangzhou, China
| | - Kifayat Hussain
- Departments of Animal Nutrition, Institute of Animal and Dairy Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Lingmiao Wang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Abdullah
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Abdul Qayum
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yahya S Hamed
- Department of Food Technology, Faculty of Agriculture, Suez Canal University, Ismailia, Egypt
| | - Rongfa Guan
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Moganshan Institute ZJUT, Kangqian District, Deqing, China
- Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Hangzhou, China
| |
Collapse
|
3
|
Basara O, Gorzelany J. Assessment of Selected Chemical and Morphological Properties of Lonicera var. kamtschatica and Lonicera var. emphyllocalyx Treated with Gaseous Ozone. Molecules 2024; 29:3616. [PMID: 39125021 PMCID: PMC11313916 DOI: 10.3390/molecules29153616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Lonicera caerulea L. fruits are a rich source of vitamins, organic acids, and phenolic compounds, which are characterised by their health-promoting properties. The content of bioactive compounds in this fruit may vary depending on the cultivar and the harvest date. This study analysed the effect of applying 5 ppm gaseous ozone for 1, 3, and 5 min on the chemical properties of L. kamtschatica varieties and newly created clones of L. emphyllocalyx for three years of cultivation. The fruits harvested from L. emphyllocalyx, depending on the year of harvest, had significantly larger size and weight compared to L. kamtschatica. On average, the acidity of the L. emphyllocalyx clones was 6% higher than other tested varieties. The average content of ascorbic acid was highest in L. emphyllocalyx clone '21-17'-57.80 mg·100 g-1; the year of harvest will significantly affect the content of vitamin C, reaching the highest level in 2022-53.92 mg·100 g-1. The total content of polyphenols was significantly dependent on the year of cultivation; reaching, on average, 54.8% more in 2022 compared to the rest of the years. The total antioxidant value using the FRAP, DPPH, and ABTS methods varied depending on the variety; exposure to ozone significantly increased the antioxidant value in each case. On the basis of the study, both botanical varieties can be used in food processing. Gaseous ozone exposure can significantly influence chemical composition, increasing the health-promoting value of fruit.
Collapse
Affiliation(s)
- Oskar Basara
- Department of Food and Agriculture Production Engineering, University of Rzeszów, St. Zelwerowicza 4, 35-601 Rzeszow, Poland;
- Doctoral School, University of Rzeszów, St. Rejtana 16C, 35-959 Rzeszow, Poland
| | - Józef Gorzelany
- Department of Food and Agriculture Production Engineering, University of Rzeszów, St. Zelwerowicza 4, 35-601 Rzeszow, Poland;
| |
Collapse
|
4
|
Michalska-Ciechanowska A, Brzezowska J, Nowicka P, Tkacz K, Turkiewicz IP, Hendrysiak A, Oszmiański J, Andlauer W. Advantages of Spray Drying over Freeze Drying: A Comparative Analysis of Lonicera caerulea L. Juice Powders-Matrix Diversity and Bioactive Response. Molecules 2024; 29:3586. [PMID: 39124991 PMCID: PMC11313881 DOI: 10.3390/molecules29153586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
The study investigated the impact of Lonicera caerulea L. juice matrix modification and drying techniques on powder characteristics. The evaluation encompassed phenolics (514.7-4388.7 mg/100 g dry matter), iridoids (up to 337.5 mg/100 g dry matter), antioxidant and antiglycation capacity, as well as anti-ageing properties of powders produced using maltodextrin, inulin, trehalose, and palatinose with a pioneering role as a carrier. Spray drying proved to be competitive with freeze drying for powder quality. Carrier application influenced the fruit powder properties. Trehalose protected the phenolics in the juice extract products, whereas maltodextrin showed protective effect in the juice powders. The concentrations of iridoids were influenced by the matrix type and drying technique. Antiglycation capacity was more affected by the carrier type in juice powders than in extract products. However, with carrier addition, the latter showed approximately 12-fold higher selectivity for acetylcholinesterase than other samples. Understanding the interplay between matrix composition, drying techniques, and powder properties provides insights for the development of plant-based products with tailored attributes, including potential health-linked properties.
Collapse
Affiliation(s)
- Anna Michalska-Ciechanowska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (J.B.); (P.N.); (K.T.); (I.P.T.); (A.H.); (J.O.)
| | - Jessica Brzezowska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (J.B.); (P.N.); (K.T.); (I.P.T.); (A.H.); (J.O.)
| | - Paulina Nowicka
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (J.B.); (P.N.); (K.T.); (I.P.T.); (A.H.); (J.O.)
| | - Karolina Tkacz
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (J.B.); (P.N.); (K.T.); (I.P.T.); (A.H.); (J.O.)
| | - Igor Piotr Turkiewicz
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (J.B.); (P.N.); (K.T.); (I.P.T.); (A.H.); (J.O.)
| | - Aleksandra Hendrysiak
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (J.B.); (P.N.); (K.T.); (I.P.T.); (A.H.); (J.O.)
| | - Jan Oszmiański
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (J.B.); (P.N.); (K.T.); (I.P.T.); (A.H.); (J.O.)
| | - Wilfried Andlauer
- Institute of Life Technologies, School of Engineering, University of Applied Sciences and Arts Western Switzerland (HES-SO Valais Wallis), Rue de l’Industrie 19, 1950 Sion, Switzerland
| |
Collapse
|
5
|
Li C, Kang JH, Jung KI, Park MH, Kim M. Effects of Haskap ( Lonicera caerulea L.) Extracts against Oxidative Stress and Inflammation in RAW 264.7 Cells. Prev Nutr Food Sci 2024; 29:146-153. [PMID: 38974596 PMCID: PMC11223930 DOI: 10.3746/pnf.2024.29.2.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/04/2024] [Accepted: 04/17/2024] [Indexed: 07/09/2024] Open
Abstract
This study aimed to evaluate the antioxidant and anti-inflammatory activities of Lonicera caerulea L. ethanol extract (LCEE) and water extract (LCWE) in vitro. We primarily evaluated the improvement effect of LCWE and LCEE on hydrogen peroxide (H2O2)-induced oxidative damage and lipopolysaccharide (LPS)-induced inflammatory damage in RAW 264.7 cells by detecting oxidation-related indicators and inflammatory factors, respectively. Cellular studies showed that LCWE and LCEE increased superoxide dismutase and catalase antioxidant enzyme levels and decreased malondialdehyde and nitric oxide peroxide levels in H2O2-induced RAW 264.7 cells. Moreover, LCWE and LCEE decreased the secretion of inflammatory factors [e.g., interleukin (IL)-6, IL-1β, and tumor necrosis factor-α] in LPS-induced RAW 264.7 cells. In conclusion, LCWE and LCEE demonstrated excellent antioxidant and anti-inflammatory effects in vitro. However, LCWE was superior to LCEE, which may be related to its chemical composition and requires further research.
Collapse
Affiliation(s)
- Chong Li
- Department of Food and Nutrition, College of Health and Welfare, Silla University, Busan 46958, Korea
- Collaborative Innovation Center for Child Nutrition and Health Development, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing 400067, China
| | - Jeong Hyeon Kang
- Department of Food and Nutrition, College of Health and Welfare, Silla University, Busan 46958, Korea
| | - Kyung Im Jung
- Department of Food and Nutrition, College of Health and Welfare, Silla University, Busan 46958, Korea
| | - Mi Hwa Park
- Department of Food and Nutrition, College of Health and Welfare, Silla University, Busan 46958, Korea
| | - Mihyang Kim
- Department of Food and Nutrition, College of Health and Welfare, Silla University, Busan 46958, Korea
| |
Collapse
|
6
|
Dharmawansa KVS, Stadnyk AW, Rupasinghe HPV. Dietary Supplementation of Haskap Berry ( Lonicera caerulea L.) Anthocyanins and Probiotics Attenuate Dextran Sulfate Sodium-Induced Colitis: Evidence from an Experimental Animal Model. Foods 2024; 13:1987. [PMID: 38998493 PMCID: PMC11241346 DOI: 10.3390/foods13131987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/10/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Haskap berry (Lonicera caerulea L.) is a rich dietary source of anthocyanins with potent anti-inflammatory properties. In this study, isolated haskap berry anthocyanins were encapsulated in maltodextrin and inulin (3:1) by freeze-drying to improve stability and bioavailability. The structural properties of microcapsules, encapsulation yield, efficiency, recovery, and powder retention were evaluated. The microcapsules that exhibited the highest encapsulation efficiency (60%) and anthocyanin recovery (89%) were used in the dextran sulfate sodium (DSS)-induced acute colitis in mice. Thirty-five BALB/c male mice of seven weeks old were divided into seven dietary supplementation groups (n = 5) to receive either free anthocyanins, encapsulated anthocyanins (6.2 mg/day), or probiotics (1 × 109 CFU/day) alone or as combinations of anthocyanin and probiotics. As observed by clinical data, free anthocyanin and probiotic supplementation significantly reduced the severity of colitis. The supplementary diets suppressed the DSS-induced elevation of serum inflammatory (interleukin (IL)-6 and tumor necrosis factor) and apoptosis markers (B-cell lymphoma 2 and Bcl-2-associated X protein) in mice colon tissues. The free anthocyanins and probiotics significantly reduced the serum IL-6 levels. In conclusion, the dietary supplementation of haskap berry anthocyanins and probiotics protects against DSS-induced colitis possibly by attenuating mucosal inflammation, and this combination has the potential as a health-promoting dietary supplement and nutraceutical.
Collapse
Affiliation(s)
- K V Surangi Dharmawansa
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Andrew W Stadnyk
- Departments of Microbiology & Immunology and Pediatrics, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - H P Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
7
|
Bora L, Lombrea A, Batrina SL, Buda VO, Esanu OM, Pasca O, Dehelean CA, Dinu S, Diaconeasa Z, Danciu C. A Systematic Review of Cardio-Metabolic Properties of Lonicera caerulea L. Antioxidants (Basel) 2024; 13:694. [PMID: 38929133 PMCID: PMC11201247 DOI: 10.3390/antiox13060694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/26/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
In the light of growing concerns faced by Western societies due to aging, natality decline, and epidemic of cardio-metabolic diseases, both preventable and treatable, new and effective strategical interventions are urgently needed in order to decrease their socio-economical encumbrance. The recent focus of research has been redirected towards investigating the potential of haskap (Lonicera caerulea L.) as a novel functional food or superfruit. Therefore, our present review aims to highlight the latest scientific proofs regarding the potential of Lonicera caerulea L. (LC), a perennial fruit-bearing plant rich in polyphenols, in reversing cardio-metabolic dysfunctions. In this regard, a systematic search on two databases (PubMed and Google Scholar) from 1 January 2016 to 1 December 2023 was performed, the keyword combination being Lonicera caerulea L. AND the searched pharmacological action, with the inclusion criteria consisting of in extenso original articles, written in English. The health-enhancing characteristics of haskap berries have been examined through in vitro and in vivo studies from the 35 included original papers. Positive effects regarding cardiovascular diseases and metabolic syndrome have been assigned to the antioxidant activity, hypolipidemic and hypoglycemic effects, as well as to the hepatoprotective and vasoprotective potential. Latest advances regarding LCF mechanisms of action are detailed within this review as well. All these cutting-edge data suggest that this vegetal product would be a good candidate for further clinical studies.
Collapse
Affiliation(s)
- Larisa Bora
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (L.B.); (A.L.); (C.D.)
- Research and Processing Center for Medicinal and Aromatic Plants, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Adelina Lombrea
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (L.B.); (A.L.); (C.D.)
- Research and Processing Center for Medicinal and Aromatic Plants, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Stefan Laurentiu Batrina
- Department of Crop Science, Faculty of Agriculture, University of Life Sciences “King Mihai I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania
| | - Valentina Oana Buda
- Research and Processing Center for Medicinal and Aromatic Plants, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
- Discipline of Clinical Pharmacy, Communication in Pharmacy, Pharmaceutical Care, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Oana-Maria Esanu
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (O.-M.E.); (O.P.)
| | - Oana Pasca
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (O.-M.E.); (O.P.)
| | - Cristina Adriana Dehelean
- Research and Processing Center for Medicinal and Aromatic Plants, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Stefania Dinu
- Department of Pedodontics, Faculty of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 9 No., Revolutiei Bv., 300041 Timisoara, Romania;
- Pediatric Dentistry Research Center, Faculty of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 9 No., Revolutiei Bv., 300041 Timisoara, Romania
| | - Zorita Diaconeasa
- Department of Food Science and Technology, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine, Calea Manastur, 3-5, 400372 Cluj-Napoca, Romania;
| | - Corina Danciu
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (L.B.); (A.L.); (C.D.)
- Research and Processing Center for Medicinal and Aromatic Plants, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| |
Collapse
|
8
|
Wang B, Tang X, Mao B, Zhang Q, Tian F, Zhao J, Chen W, Cui S. Effects of in vitro fecal fermentation on the metabolism and antioxidant properties of cyanidin-3-O-glucoside. Food Chem 2024; 431:137132. [PMID: 37598654 DOI: 10.1016/j.foodchem.2023.137132] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/22/2023]
Abstract
Anthocyanins' potential health benefits have garnered significant interest. However, due to low bioavailability, the gut microbiota-associated metabolites are suspected to mediate their bioactivity. In this study, cyanidin-3-glucoside (C3G) was fermented with fecal inoculum to simulate colonic microbiota interaction in vitro. The metabolites and antioxidant properties of pre- (P-C3G) and post-fermentation (F-C3G) were determined. Fermentation significantly increased contents of five metabolites (cyanidin, protocatechuic acid, phloroglucinaldehyde, 4-hydroxybenzoic acid and 4-hydroxyphenylacetic acid). Additionally, F-C3G demonstrated superior radicals scavenging than P-C3G, as well as to alleviate H2O2-induced damage in HepG2 cell via increasing superoxide dismutase by 43.26% and catalase by 39.83%, reducing malonaldehyde by 16.40% and cellular ROS production, and activating Nrf2 pathway. Moreover, F-C3G significantly extended the survival rate by 20.67% of Caenorhabditis elegans under heat stress by antioxidation in vivo. This study suggested that anthocyanins metabolism by gut microbiota produce specific metabolites, which potentially exerts protection.
Collapse
Affiliation(s)
- Bulei Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Xin Tang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Bingyong Mao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Shumao Cui
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| |
Collapse
|
9
|
Xia T, Su S, Guo K, Wang L, Tang Z, Huo J, Song H. Characterization of key aroma-active compounds in blue honeysuckle (Lonicera caerulea L.) berries by sensory-directed analysis. Food Chem 2023; 429:136821. [PMID: 37478599 DOI: 10.1016/j.foodchem.2023.136821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 07/23/2023]
Abstract
Blue honeysuckle (Lonicera caerulea L.) berries are nutritionally rich and unique in flavor. However, its aroma compounds have not been known well. In this study, the key aroma-active compounds in 8 different varieties of blue honeysuckle berries were studied by sensory-directed analysis. Sensory evaluation suggested that the aroma profile of blue honeysuckle berry was fruity, floral, grassy, sweet, and sour. A total of 68 aroma compounds were detected by two-dimensional comprehensive gas chromatography-olfactometry-mass spectrometry analysis (GC × GC-O-MS). Then, aroma extraction dilution analysis (AEDA) and odor activity value (OAV) showed that 12 compounds were indicated to be the major aroma contributors. According to the principal component analysis (PCA) results, eight varieties were divided into three categories for their differences on alcohols and terpenoids content. Finally, the aroma recombination and omission experiments determined that linalool, hexanal, eucalyptol, octanal, nonanal, and ethyl 2-methylbutyrate were the key aroma-active compounds in blue honeysuckle berries.
Collapse
Affiliation(s)
- Tianze Xia
- Laboratory of Molecular Sensory Science, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Shang Su
- Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Kunlun Guo
- Laboratory of Molecular Sensory Science, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Lijin Wang
- Laboratory of Molecular Sensory Science, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China.
| | - Zhongqiu Tang
- Forestry and Agricultural Academy of the Greater Khingan Mountains, Jiagedaqi 165000, China
| | - Junwei Huo
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150006, China
| | - Huanlu Song
- Laboratory of Molecular Sensory Science, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
10
|
Yu M, Li S, Zhan Y, Huang Z, Lv J, Liu Y, Quan X, Xiong J, Qin D, Huo J, Zhu C. Evaluation of the Harvest Dates for Three Major Cultivars of Blue Honeysuckle ( Lonicera caerulea L.) in China. PLANTS (BASEL, SWITZERLAND) 2023; 12:3758. [PMID: 37960114 PMCID: PMC10649999 DOI: 10.3390/plants12213758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/20/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023]
Abstract
Blue honeysuckle (Lonicera caerulea L.) is an emerging fruit crop; however, determining its proper harvest time in commercial cultivation remains challenging due to its rapid fruit development characteristics. In this study, we investigated 17 agronomic traits of three blue honeysuckle cultivars harvested on 5 successive dates within their respective harvest windows. 'Lanjingling', 'Wulan', and 'Berel' showed solid-acid ratios (SS:TA) ranging from 10.00 to 16.01, 8.13 to 10.23, and 5.77 to 7.11, respectively; anthocyanin contents ranged from 233.85 to 276.83 mg/100 g, 236.38 to 312.23 mg/100 g, and 235.71 to 334.98 mg/100 g, respectively; vitamin C contents ranged from 88.43 to 99.68 mg/100 g, 108.13 to 191.23 mg/100 g, and 89.71 to 120.40 mg/100 g, respectively; phenolic contents ranged from 25.22 to 37.59 mg/g, 25.40 to 36.52 mg/g, and 37.66 to 50.00 mg/g, respectively. The results revealed the SS:TA value consistently increased with delayed harvesting and were significantly negatively correlated with fruit firmness, total acidity, shelf life, and respiration intensity, suggesting it is an ideal maturity indicator for blue honeysuckle berries. The factor analysis suggests that the suitable harvest date for 'Lanjingling' could be either 47 days after flowering (DAF) with an SS:TA value of approximately 10.0, characterized by high firmness, extended shelf life, and elevated levels of anthocyanins and phenolics; or 67 DAF (SS:TA ≈ 16.0), characterized by high vitamin C content and sweetness, and larger size and weight. For 'Wulan', it suggests the suitable harvest date is either 54 DAF (SS:TA ≈ 9.0), yielding fruit with high levels of anthocyanins and vitamin C; or 62 DAF (SS:TA > 10.0), yielding fruit with high sweetness and large size and weight. For 'Berel', it is suggested to be either 52 DAF (SS:TA ≈ 6.5), resulting in fruit with high levels of anthocyanins and vitamin C; or 62 DAF (SS:TA > 7.0), resulting in balanced levels of the fruit quality traits.
Collapse
Affiliation(s)
- Min Yu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, National Development and Reform Commission, Harbin 150030, China
| | - Songlin Li
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Ying Zhan
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Institute of Agricultural Science and Technology, Bureau of Agriculture and Rural Affairs of Xiaochang County, Xiaogan 100125, China
| | - Zhiqiang Huang
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Jinjiao Lv
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Yu Liu
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Xin Quan
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Jinyu Xiong
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Dong Qin
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, National Development and Reform Commission, Harbin 150030, China
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| | - Junwei Huo
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, National Development and Reform Commission, Harbin 150030, China
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| | - Chenqiao Zhu
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, National Development and Reform Commission, Harbin 150030, China
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| |
Collapse
|
11
|
Guo L, Qiao J, Zhang L, Yan W, Zhang M, Lu Y, Wang Y, Ma H, Liu Y, Zhang Y, Li J, Qin D, Huo J. Critical review on anthocyanins in blue honeysuckle (Lonicera caerulea L.) and their function. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108090. [PMID: 37847973 DOI: 10.1016/j.plaphy.2023.108090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/27/2023] [Accepted: 10/11/2023] [Indexed: 10/19/2023]
Abstract
Blue honeysuckle (Lonicera caerulea L.) is an emerging commercial fruit in the world, has been known for its multiple anthocyanins in the berries, cyanidin-3-glucoside (C3G) is a major anthocyanin in berries and it makes up 76-92% of the total anthocyanins content, with high antioxidant capacity, and widely used in food products. In this review, recent studies related to anthocyanins in blue honeysuckle were sorted out, including the current status of research on anthocyanins in blue honeysuckle berries, especially C3G, qualitative and quantitative analysis of anthocyanins in berries, extraction and purification methods of anthocyanins from blue honeysuckle, in addition, biological effects of blue honeysuckle, and recommended utilization. Blue honeysuckle contains polyphenols, flavonoids, anthocyanins, minerals, and multiple bioactive compounds, it has been extensively reported to have significant antioxidant, cardioprotective, anti-inflammatory, neuroprotective, anticancer, and anti-diabetic functions, and has been used in a variety of food products as raw materials.
Collapse
Affiliation(s)
- Liangchuan Guo
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, National Development and Reform Commission, Harbin, 150030, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, 150030, China
| | - Jinli Qiao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, National Development and Reform Commission, Harbin, 150030, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, 150030, China
| | - Lijun Zhang
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, National Development and Reform Commission, Harbin, 150030, China; Heilongjiang Green Food Science Research Institute, 150023, China
| | - Weijiao Yan
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, National Development and Reform Commission, Harbin, 150030, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, 150030, China
| | - Meihui Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Yongchuan Lu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Yutong Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Hexi Ma
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Yan Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Yue Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Jichuan Li
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Dong Qin
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, National Development and Reform Commission, Harbin, 150030, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, 150030, China.
| | - Junwei Huo
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, National Development and Reform Commission, Harbin, 150030, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, 150030, China.
| |
Collapse
|
12
|
Piekarska J, Madej JP, Gorczykowski M, Szczypka M. The Effects of Honeysuckle ( Lonicera caerulea L.) Berry Iridoid-Anthocyanin Extract on the Intestinal and Muscle Histopathology in Mice during Experimental Trichinellosis. Molecules 2023; 28:7067. [PMID: 37894546 PMCID: PMC10608903 DOI: 10.3390/molecules28207067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
The aim of the study was to determine the effect of iridoid-anthocyanin extract from honeysuckle (Lonicera caerulea L.) (LC) berries on histopathological changes in the intestines and muscles during experimental trichinellosis in mice. The LC extract was administered to uninfected mice (LC group) and Trichinella-spiralis-infected mice (T+LC) orally at a dose of 2 g/kg bw, six times at 24 h intervals, from day 3 prior to infection to day 3 post-infection (dpi). Jejunum samples were collected on 5, 7, 14, and 21 dpi, and their histological assessment involved the villus height to crypt depth ratio (VH/CD), goblet cell (GC) number, and morphological changes. In the T. spiralis-infected muscles, the extent of inflammatory infiltration on the 14th and 21st dpi was assessed. LC in the infected mice restored the VH/CD ratio to control values on 14 dpi. A beneficial effect of the LC extract on the villus height was also observed 14 dpi in the LC and T+LC groups. No differences in the extent of inflammatory infiltration in the muscles between the T+LC and T groups were observed. In conclusion, the iridoid-anthocyanin extract from honeysuckle berry contributed to alleviating the symptoms of the intestinal phase of T. spiralis infection.
Collapse
Affiliation(s)
- Jolanta Piekarska
- Division of Parasitology, Department of Internal Medicine and Clinic of Horses, Dogs and Cats, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Norwida 31, 50-375 Wroclaw, Poland;
| | - Jan P. Madej
- Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Norwida 31, 50-375 Wroclaw, Poland;
| | - Michał Gorczykowski
- Division of Parasitology, Department of Internal Medicine and Clinic of Horses, Dogs and Cats, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Norwida 31, 50-375 Wroclaw, Poland;
| | - Marianna Szczypka
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Norwida 31, 50-375 Wroclaw, Poland;
| |
Collapse
|
13
|
Waszkiewicz M, Sokół-Łętowska A, Pałczyńska A, Kucharska AZ. Fruit Smoothies Enriched in a Honeysuckle Berry Extract-An Innovative Product with Health-Promoting Properties. Foods 2023; 12:3667. [PMID: 37835320 PMCID: PMC10572983 DOI: 10.3390/foods12193667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Smoothies are claimed to be an effective way of promoting fruit and vegetable consumption. They are a rich source of bioactive compounds and provide numerous health benefits. Strawberries and apples are among the most popular smoothie ingredients. Additionally, chokeberry presents antibacterial, antiviral and anti-inflammatory properties. Another interesting fruit with a wide range of health benefits is the honeysuckle berry. In this study, a dry extract from the mentioned fruit was combined to produce a smoothie enriched in bioactive compounds of unique health-promoting properties. The smoothies were rich in anthocyanins, flavonols, phenolic acids, flavan-3-ols and iridoids. Smoothies with higher concentrations of a polyphenol-iridoid honeysuckle berry extract (0.50%) were the products of a greater content of bioactive compounds and higher antioxidant activity compared to those with no extract or a lower amount (0.25%). However, the sensory evaluation showed that, according to customers, the least attractive smoothies are those with the greatest amounts of the honeysuckle berry extract. Therefore, the correct balance between taste and bioactivity should be sought in order to obtain an innovative product showing characteristics of functional food.
Collapse
Affiliation(s)
- Marta Waszkiewicz
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland
| | | | | | | |
Collapse
|
14
|
Chotechuang N, Di Gianvincenzo P, Chen CG, Nardi AN, Padró D, Boonla C, Ortore MG, D' Abramo M, Moya SE. A study of cyanidin/alginate complexation: Influence of pH in assembly and chiral properties. Carbohydr Polym 2023; 315:120957. [PMID: 37230610 DOI: 10.1016/j.carbpol.2023.120957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/19/2023] [Accepted: 04/23/2023] [Indexed: 05/27/2023]
Abstract
Cyanidin 3-O-glucoside (CND) is a frequently-used anthocyanin that has excellent antioxidant properties but a limited bioavailability in bloodstream. Complexation of CND with alginate can improve its therapeutic outcome. Here we have studied the complexation of CND with alginate under a range of pH values from 2.5 to 5. CND is positively charged at low pH, and becomes neutral, and then negatively charged as pH increases. CND/alginate complexation was studied by dynamic light scattering, transmission electron microscopy, small angle X-ray scattering, STEM, UV-Vis spectroscopy and circular dichroism (CD). CND/alginate complexes at pH 4.0 and 5.0 form chiral fibres with a fractal structure. At these pH values, CD spectra show very intense bands, which are inverted compared with free CND. Complexation at lower pH results in disordered polymer structures and CD spectra show the same features as for CND in solution. Molecular dynamics simulations suggest the formation of parallel CND dimers through complexation with alginate at pH 3.0, while at pH 4.0 CND dimers form in a cross like arrangement.
Collapse
Affiliation(s)
- Nattida Chotechuang
- Department of Food Technology, Faculty of Science, Chulalongkorn University, 10330 Bangkok, Thailand; Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramon 182 C, 20014 Donostia-San Sebastian, Spain
| | - Paolo Di Gianvincenzo
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramon 182 C, 20014 Donostia-San Sebastian, Spain
| | - Cheng Giuseppe Chen
- Chemistry Department, "La Sapienza" University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| | | | - Daniel Padró
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramon 182 C, 20014 Donostia-San Sebastian, Spain
| | - Chanchai Boonla
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, 10330 Bangkok, Thailand
| | - Maria Grazia Ortore
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, I-60130 Ancona, Italy
| | - Marco D' Abramo
- Chemistry Department, "La Sapienza" University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| | - Sergio E Moya
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramon 182 C, 20014 Donostia-San Sebastian, Spain.
| |
Collapse
|
15
|
Mohammadalinejhad S, Almonaitytė A, Jensen IJ, Kurek M, Lerfall J. Alginate microbeads incorporated with anthocyanins from purple corn (Zea mays L.) using electrostatic extrusion: Microencapsulation optimization, characterization, and stability studies. Int J Biol Macromol 2023; 246:125684. [PMID: 37406909 DOI: 10.1016/j.ijbiomac.2023.125684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/12/2023] [Accepted: 07/02/2023] [Indexed: 07/07/2023]
Abstract
Microencapsulation of purple corn anthocyanins was carried out via an electrostatic extruder using alginate as a wall material. The influence of alginate concentration (1-2 %), extract concentration (20-30 %), and extrusion voltage (3-5 kV) on encapsulation efficiency and mean particle size was evaluated using response surface methodology. Optimal conditions were obtained to produce two different extract-loaded microbeads. Microbeads with the highest encapsulation efficiency (EE) and minimum particle size were achieved at 1 % alginate, 20 % extract, and 5 kV extrusion voltage (EEC3G = 70.26 %, EETPC = 91.59 %, particle size = 1.29 mm). In comparison, the microbeads with the efficient entrapment and maximum particle size were obtained at 1 % alginate, 26 % extract, and 3 kV (EEC3G = 81.15 %, EETPC = 91.01 %, particle size = 1.87 mm). Brunauer-Emmett-Teller (BET) surface area, pore size, and pore volume decreased after the inclusion of extract, with the lowest values reported for the smallest microbeads containing the extract. Scanning electron microscopy confirmed the results obtained by BET method and demonstrated fewer cracks and lower shrinkage of encapsulated samples. Fourier-transform infrared results proved the presence of anthocyanins and further possible interactions between phenolics and alginate. Stability studies revealed the color maintenance of anthocyanins-loaded microbeads during 4 weeks of storage at 4 °C and 8 °C. Moreover, the small and large particles showed a 7.6 and 3.4-fold reduction in degradation rate at 4 °C compared to their unencapsulated counterparts. Anthocyanins-loaded alginate microbeads retained over 80 % of cyanidin-3-glucoside at 4 °C and 8 °C, suggesting a promising potential of optimized microbeads for intelligent packaging applications.
Collapse
Affiliation(s)
- Samira Mohammadalinejhad
- Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, 7491 Trondheim, Norway.
| | - Augustė Almonaitytė
- Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Ida-Johanne Jensen
- Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Marcin Kurek
- Department of Technique and Food Product Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Jørgen Lerfall
- Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
16
|
Lee HL, Kim JM, Go MJ, Kim TY, Joo SG, Kim JH, Lee HS, Kim HJ, Heo HJ. Protective Effect of Lonicera japonica on PM 2.5-Induced Pulmonary Damage in BALB/c Mice via the TGF-β and NF-κB Pathway. Antioxidants (Basel) 2023; 12:antiox12040968. [PMID: 37107342 PMCID: PMC10135714 DOI: 10.3390/antiox12040968] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
This study aimed to assess the protective effect of an extract of Lonicera japonica against particulate-matter (PM)2.5-induced pulmonary inflammation and fibrosis. The compounds with physiological activity were identified as shanzhiside, secologanoside, loganic acid, chlorogenic acid, secologanic acid, secoxyloganin, quercetin pentoside, and dicaffeoyl quinic acids (DCQA), including 3,4-DCQA, 3,5-DCQA, 4,5-DCQA, and 1,4-DCQA using ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MSE). The extract of Lonicera japonica reduced cell death, reactive oxygen species (ROS) production, and inflammation in A549 cells. The extract of Lonicera japonica decreased serum T cells, including CD4+ T cells, CD8+ T cells, and total T helper 2 (Th2) cells, and immunoglobulins, including immunoglobulin G (IgG) and immunoglobulin E (IgE), in PM2.5-induced BALB/c mice. The extract of Lonicera japonica protected the pulmonary antioxidant system by regulating superoxide dismutase (SOD) activity, reduced glutathione (GSH) contents, and malondialdehyde (MDA) levels. In addition, it ameliorated mitochondrial function by regulating the production of ROS, mitochondrial membrane potential (MMP), and ATP contents. Moreover, the extract of Lonicera japonica exhibited a protective activity of apoptosis, fibrosis, and matrix metalloproteinases (MMPs) via TGF-β and NF-κB signaling pathways in lung tissues. This study suggests that the extract of Lonicera japonica might be a potential material to improve PM2.5-induced pulmonary inflammation, apoptosis, and fibrosis.
Collapse
Affiliation(s)
- Hyo Lim Lee
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jong Min Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Min Ji Go
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Tae Yoon Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Seung Gyum Joo
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ju Hui Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Han Su Lee
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hyun-Jin Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ho Jin Heo
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
17
|
Negreanu-Pirjol BS, Oprea OC, Negreanu-Pirjol T, Roncea FN, Prelipcean AM, Craciunescu O, Iosageanu A, Artem V, Ranca A, Motelica L, Lepadatu AC, Cosma M, Popoviciu DR. Health Benefits of Antioxidant Bioactive Compounds in the Fruits and Leaves of Lonicera caerulea L. and Aronia melanocarpa (Michx.) Elliot. Antioxidants (Basel) 2023; 12:antiox12040951. [PMID: 37107325 PMCID: PMC10136089 DOI: 10.3390/antiox12040951] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/13/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Lonicera caerulaea L. and Aronia melanocarpa (Michx.) Elliot fruits are frequently used for their health benefits as they are rich in bioactive compounds. They are recognized as a source of natural and valuable phytonutrients, which makes them a superfood. L. caerulea presents antioxidant activity three to five times higher than other berries which are more commonly consumed, such as blackberries or strawberries. In addition, their ascorbic acid level is the highest among fruits. The species A. melanocarpa is considered one of the richest known sources of antioxidants, surpassing currants, cranberries, blueberries, elderberries, and gooseberries, and contains one of the highest amounts of sorbitol. The non-edible leaves of genus Aronia became more extensively analyzed as a byproduct or waste material due to their high polyphenol, flavonoid, and phenolic acid content, along with a small amount of anthocyanins, which are used as ingredients in nutraceuticals, herbal teas, bio-cosmetics, cosmeceuticals, food and by the pharmaceutical industry. These plants are a rich source of vitamins, tocopherols, folic acid, and carotenoids. However, they remain outside of mainstream fruit consumption, being well known only to a small audience. This review aims to shed light on L. caerulaea and A. melanocarpa and their bioactive compounds as healthy superfoods with antioxidant, anti-inflammatory, antitumor, antimicrobial, and anti-diabetic effects, and hepato-, cardio-, and neuro-protective potential. In this view, we hope to promote their cultivation and processing, increase their commercial availability, and also highlight the ability of these species to be used as potential nutraceutical sources, helpful for human health.
Collapse
Affiliation(s)
- Bogdan-Stefan Negreanu-Pirjol
- Faculty of Pharmacy, Ovidius University of Constanta, Capitan Aviator Al. Serbanescu Street no. 6, Campus, Corp C, 900470 Constanta, Romania
| | - Ovidiu Cristian Oprea
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu no. 1-7, 011061 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei no. 313, 060042 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei no. 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| | - Ticuta Negreanu-Pirjol
- Faculty of Pharmacy, Ovidius University of Constanta, Capitan Aviator Al. Serbanescu Street no. 6, Campus, Corp C, 900470 Constanta, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| | - Florentina Nicoleta Roncea
- Faculty of Pharmacy, Ovidius University of Constanta, Capitan Aviator Al. Serbanescu Street no. 6, Campus, Corp C, 900470 Constanta, Romania
| | - Ana-Maria Prelipcean
- National Institute of R&D for Biological Sciences, Splaiul Independentei no. 296, 060031 Bucharest, Romania
| | - Oana Craciunescu
- National Institute of R&D for Biological Sciences, Splaiul Independentei no. 296, 060031 Bucharest, Romania
| | - Andreea Iosageanu
- National Institute of R&D for Biological Sciences, Splaiul Independentei no. 296, 060031 Bucharest, Romania
| | - Victoria Artem
- Research-Development Station for Viticulture and Winemaking of Murfatlar, Calea Bucuresti no. 2, Constanta County, 905100 Murfatlar, Romania
| | - Aurora Ranca
- Research-Development Station for Viticulture and Winemaking of Murfatlar, Calea Bucuresti no. 2, Constanta County, 905100 Murfatlar, Romania
| | - Ludmila Motelica
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei no. 313, 060042 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei no. 313, 060042 Bucharest, Romania
| | - Anca-Cristina Lepadatu
- Faculty of Natural Sciences and Agricultural Sciences, Ovidius University of Constanta, University Alley no.1, Campus, Corp B, 900470 Constanta, Romania
| | - Madalina Cosma
- Research-Development Station for Viticulture and Winemaking of Murfatlar, Calea Bucuresti no. 2, Constanta County, 905100 Murfatlar, Romania
| | - Dan Razvan Popoviciu
- Faculty of Natural Sciences and Agricultural Sciences, Ovidius University of Constanta, University Alley no.1, Campus, Corp B, 900470 Constanta, Romania
| |
Collapse
|
18
|
Ren Y, Pei F, Cao X, Zhang W, Du R, Ge J, Ping W. Purification of exopolysaccharides from Lactobacillus rhamnosus and changes in their characteristics by regulating quorum sensing genes via polyphenols. Int J Biol Macromol 2023; 240:124414. [PMID: 37059280 DOI: 10.1016/j.ijbiomac.2023.124414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/24/2023] [Accepted: 04/07/2023] [Indexed: 04/16/2023]
Abstract
To explore the effect of Lonicera caerulea fruit polyphenols (LCP) on caries-causing bacteria, strain RYX-01 with high production of biofilm and exopolysaccharides (EPS) was isolated from the oral cavity of caries patients and was identified as Lactobacillus rhamnosus by 16S rDNA analysis and morphology. The characteristics of EPS produced by RYX-01 (EPS-CK) and those produced by adding L. caerulea fruit polyphenols (EPS-LCP) were compared to reveal whether LCP reduced the cariogenicity of RYX-01 by influencing the structure and composition of EPS. The results showed that LCP could increase the content of galactose in EPS and destroy the original aggregation state of EPS-CK but had no significant effect on the molecular weight and functional group composition of EPS (p > 0.05). At the same time, LCP could inhibit the growth of RYX-01, reduce EPS and biofilm formation and inhibit the expression of quorum sensing (QS, luxS)- and biofilm formation (wzb)-related genes. Therefore, LCP could change the surface morphology, content and composition of RYX-01 EPS and reduce the cariogenic effect of EPS and biofilm. In conclusion, LCP can be used as a potential plaque biofilm inhibitor and QS inhibitor in drugs and functional foods.
Collapse
Affiliation(s)
- Yanxin Ren
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Fangyi Pei
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; Office of Academic Research, Qiqihar Medical University, Qiqihar 161000, China
| | - Xinbo Cao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Wen Zhang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Renpeng Du
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; Hebei University of Environmental Engineering, Hebei Key Laboratory of Agroecological Safety, Qinhuangdao 066102, China
| | - Jingping Ge
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; Hebei University of Environmental Engineering, Hebei Key Laboratory of Agroecological Safety, Qinhuangdao 066102, China.
| | - Wenxiang Ping
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; Hebei University of Environmental Engineering, Hebei Key Laboratory of Agroecological Safety, Qinhuangdao 066102, China
| |
Collapse
|
19
|
Guo L, Qiao J, Gong C, Wei J, Li J, Zhang L, Qin D, Huo J. C3G quantified method verification and quantified in blue honeysuckle (Lonicera caerulea L.) using HPLC–DAD. Heliyon 2023; 9:e14685. [PMID: 37035373 PMCID: PMC10073751 DOI: 10.1016/j.heliyon.2023.e14685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/09/2023] [Accepted: 03/15/2023] [Indexed: 03/28/2023] Open
Abstract
Blue honeysuckle is a source of anthocyanins with great potential as a food colorant, and a healthy and functional food material, and contains much cyanidin 3-glucoside (C3G), which has many benefits for human health. A rapid, reliable, accurate quantification method of anthocyanin content in different varieties of blue honeysuckle is critical to help in breeding and selecting excellent varieties which are used in the food processing industry and healthcare industry. Our objective was to verify the modified quantification method of C3G and quantified C3G content in three blue honeysuckle varieties of 'Berel', 'Lanjingling' and 'Wulan' using the modified HPLC method by Agilent 1200 system and CAPCELL PAK C18 column (150 mmⅹ4.6 mm, I. D., 5 μm, Japan), with detection at 530 nm, the solvent flow rate was 1 mL/min, the temperature of the column chamber is 35 °C. The results indicated that the modified method was validated in terms of linearity (R2 = 0.999), precision (RSD = 0.61%), stability (RSD = 5.23%), and recovery with a good level, and C3G can be quickly quantified in blue honeysuckle. In addition, 'Wulan' contains the highest C3G level compared with 'Lanjingling' and 'Berel'.
Collapse
|
20
|
Mzoughi M, Demircan E, Turan OY, Firatligil E, Ozcelik B. Valorization of plum (Prunus domestica) peels: microwave-assisted extraction, encapsulation and storage stability of its phenolic extract. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01893-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
21
|
Zhou Y, Li J, Li Z, Ma Q, Wang L. Extraction of anthocyanins from haskap using cold plasma-assisted enzyme. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2186-2195. [PMID: 36418203 DOI: 10.1002/jsfa.12349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 09/28/2022] [Accepted: 11/24/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Haskap berries (Lonicera caerulea L.) are rich in anthocyanins. Cold plasma-assisted enzyme method (CPEM) is an innovative method for green extraction of anthocyanins, which was optimized by an artificial neural network-genetic algorithm (ANN-GA) to maximize the yield. In this study, seven factors were screened using by Plackett-Burman design based on single-factor experiments and optimized by ANN-GA. RESULTS The results showed that the maximum total anthocyanin content (TAC, 42.45 ± 0.25 g cyanidin-3-glucoside equivalent (C3G) kg-1 dry weight, DW) was obtained under optimal pretreatment power of 192 W, pretreatment time of 29 s and liquid-to-solid ratio of 39 mL g-1 . Cleavage and porosity appeared on the surface of the treated sample. The active ingredients and antioxidant capacity of the CPEM extracts were identified by ultra-performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). Compared with other extraction technologies, CPEM presents the advantages of shortening the extraction time, reducing the solvent volume, and significantly increasing active ingredients and antioxidant activity. CONCLUSION The ANN-GA has better predictive and higher accuracy than the response surface methodology (RSM) model and is more suitable for optimizing the CPEM by greatly improving the process yield and the utilization of biomass, thus contributing to the sustainability of the agri-food chain. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yajun Zhou
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Jiangfei Li
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Zongping Li
- National Drinking Water Quality Supervision and Inspection Center, Baishan, China
| | - Qingshu Ma
- National Drinking Water Quality Supervision and Inspection Center, Baishan, China
| | - Lu Wang
- College of Food Science and Engineering, Jilin University, Changchun, China
| |
Collapse
|
22
|
Evaluation of the Chemical Composition of Selected Varieties of L. caerulea var. kamtschatica and L. caerulea var. emphyllocalyx. Molecules 2023; 28:molecules28062525. [PMID: 36985495 PMCID: PMC10057922 DOI: 10.3390/molecules28062525] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Lonicera caerulea fruits are a rich source of vitamins, organic acids, and phenolic compounds, which are characterised by their health-promoting properties. The content of bioactive compounds in this fruit may vary depending on the cultivar and the harvest date. The fruits of the L. caerulea var. kamtschatica cultivars ‘Duet’ and ‘Aurora’ and the L. caerulea var. emphyllocalyx cultivars ‘Lori’, ‘Colin’ and ‘Willa’ were used in this study. L. emphyllocalyx fruit, especially the cultivar ‘Willa’, was characterised as having a higher acidity by an average of 29.96% compared to L. kamtschatica. The average ascorbic acid content of the L. kamtschatica fruit was 53.5 mg·100 g−1 f.w., while L. emphyllocalyx fruit had an average content that was 14.14% lower. The antioxidant activity (determined by DPPH, FRAP, and ABTS) varied according to the cultivar and the species of fruit analysed. The total polyphenol content differed significantly depending on the cultivar analysed; fruits of the L. emphyllocalyx cultivar ‘Willa’ were characterised by the lowest content of total polyphenols—416.94 mg GAE·100 g−1 f.w.—while the highest content of total polyphenols—747.85 GAE·100 g−1 f.w.—was found in the fruits of the L. emphyllocalyx cultivar ‘Lori’. Lonicera caerulea fruits contained 26 different phenolic compounds in their compositions, of which the highest content was characterised by cyanidin 3-O-glucoside (average: 347.37 mg·100 g−1). On the basis of this study, it appears that both L. kamtschatica fruits and L. emphyllocalyx fruits, especially of the cultivars ‘Lori’ and ‘Willa’, can be used in food processing.
Collapse
|
23
|
Li Y, Yu T, Wang Z, Li Q, Rao L, Zhao L, Wang Y, Liao X. The influence mechanism of pH and hydrothermal processing on the interaction between cyanidin-3-O-glucoside and starch. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
24
|
Zannou O, Oussou KF, Chabi IB, Awad NMH, Aïssi MV, Goksen G, Mortas M, Oz F, Proestos C, Kayodé APP. Nanoencapsulation of Cyanidin 3- O-Glucoside: Purpose, Technique, Bioavailability, and Stability. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:617. [PMID: 36770579 PMCID: PMC9921781 DOI: 10.3390/nano13030617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
The current growing attractiveness of natural dyes around the world is a consequence of the increasing rejection of synthetic dyes whose use is increasingly criticized. The great interest in natural pigments from herbal origin such as cyanidin 3-O-glucoside (C3G) is due to their biological properties and their health benefits. However, the chemical instability of C3G during processing and storage and its low bioavailability limits its food application. Nanoencapsulation technology using appropriate nanocarriers is revolutionizing the use of anthocyanin, including C3G. Owing to the chemical stability and functional benefits that this new nanotechnology provides to the latter, its industrial application is now extending to the pharmaceutical and cosmetic fields. This review focuses on the various nanoencapsulation techniques used and the chemical and biological benefits induced to C3G.
Collapse
Affiliation(s)
- Oscar Zannou
- Department of Food Engineering, Faculty of Engineering, Ondokuz Mayis University, 55139 Samsun, Turkey
- Laboratory of Human Nutrition and Valorization of Food Bio-Ingredients, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou 01 BP 526, Benin
| | - Kouame F. Oussou
- Department of Food Engineering, Faculty of Agriculture, Çukurova University, 01330 Adana, Turkey
| | - Ifagbémi B. Chabi
- Laboratory of Human Nutrition and Valorization of Food Bio-Ingredients, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou 01 BP 526, Benin
| | - Nour M. H. Awad
- Department of Food Engineering, Faculty of Engineering, Ondokuz Mayis University, 55139 Samsun, Turkey
| | - Midimahu V. Aïssi
- School of Sciences and Techniques for the Conservation and Processing of Agricultural Products, National University of Agriculture, Sakété 00 BP 144, Benin
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey
| | - Mustafa Mortas
- Department of Food Engineering, Faculty of Engineering, Ondokuz Mayis University, 55139 Samsun, Turkey
| | - Fatih Oz
- Department of Food Engineering, Agriculture Faculty, Atatürk University, 25240 Erzurum, Turkey
| | - Charalampos Proestos
- Food Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece
| | - Adéchola P. P. Kayodé
- Laboratory of Human Nutrition and Valorization of Food Bio-Ingredients, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou 01 BP 526, Benin
| |
Collapse
|
25
|
Garg S, Leisso R, Kim SH, Mayhew E, Song M, Jarrett B, Kuo WY. Market potential and value-added opportunities of cold-hardy berries and small fruits in the Intermountain West, USA. J Food Sci 2023; 88:860-876. [PMID: 36576134 DOI: 10.1111/1750-3841.16426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 11/17/2022] [Accepted: 12/01/2022] [Indexed: 12/29/2022]
Abstract
Novel cold-hardy berries and small fruits represent an opportunity for growers in the Intermountain West, USA, as the harsh environment is not suited for other common berries and small fruits. This study analyzed the fresh market and value-added potential of haskap berries (Lonicera caerulea), saskatoon berries (Amelenchier alnifolia), and dwarf sour cherry (DSC) fruit (Prunus x kerrasis) by instrumental and consumer studies. Fresh and 2-week stored haskap (cv. Aurora), saskatoon (Lee 3), and DSC (Romeo) were measured for fruit weight, flesh firmness, bulk titratable acidity, pH, and soluble solid content. Participants (n = 115) in at-home sensory tests scored these fruits for overall liking (OL, 9-point hedonic scale), purchase intent (PI, 5-point scale), and willingness-to-pay (WTP, 5-point scale). Ten participants further shared insight on these fruits in focus groups. Instrumental testing found a significant decrease in flesh firmness for 2-week stored haskap, but the consumers' OL was still comparable to fresh haskap. The fresh and 2-week stored haskap received significantly higher OL, PI, and WTP scores (7.7 ± 1.0, 3.8 ± 1.0, and $3.7 ± 1.0; 7.7 ± 1.2, 3.8 ± 1.1, and $3.7 ± 1.0, respectively) compared to saskatoon (6.1 ± 1.8, 2.8 ± 1.1, and $3.0 ± 0.9, respectively) and DSC (5.6 ± 2.2, 2.5 ± 1.2, and $3.1 ± 1.0, respectively) (α = 0.05). The focus groups indicated that participants want to support local produce. The participants expressed interest in fresh unprocessed haskap berries, but preferred saskatoon and DSC in different value-added formats. Hence, this study concluded that there is an untapped fresh-market potential for haskap berries and there are value-added opportunities to extend the sale season and improve the palatability of saskatoon and DSC. PRACTICAL APPLICATION: This research has examined consumer perception of three species of novel small fruits by determining fresh-market potential and linking this to the opportunity for value-added product development. For haskap berries, the study not only indicated fresh market potential, but for the cultivar Aurora, consumer liking was not meaningfully altered by 2 weeks of cold storage. These results are meaningful because they will assist growers in the Intermountain West with market planning, including the possibility of formulating products that utilize these novel crops. This study provides growers the opportunity to diversify their income stream by utilizing local produce.
Collapse
Affiliation(s)
- Sumedha Garg
- Sustainable Food Systems Program, Department of Health and Human Development, Montana State University, Bozeman, Montana, USA
| | - Rachel Leisso
- United States Department of Agriculture - Agricultural Research Service, Postharvest Fruit Research Laboratory, Hood River, Oregon, USA
| | - Sun-Hwa Kim
- Hospitality Management, Department of Health and Human Development, Montana State University, Bozeman, Montana, USA
| | - Emily Mayhew
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, USA
| | - Mei Song
- Nature's Fynd, Bozeman, Montana, USA
| | - Bridgid Jarrett
- Department of Research Centers, Western Agricultural Research Center, Montana State University, Corvallis, Montana, USA
| | - Wan-Yuan Kuo
- Sustainable Food Systems Program, Department of Health and Human Development, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
26
|
Liu R, Jin Y, Liu B, Zhang Q, Li X, Cai D, Tian L, Jiang X, Zhang W, Sun J, Bai W. Untargeted Lipidomics Revealed the Protective Effects of Cyanidin-3- O-glucoside on Bisphenol A-Induced Liver Lipid Metabolism Disorder in Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1077-1090. [PMID: 36597173 DOI: 10.1021/acs.jafc.2c06849] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Bisphenol A (BPA) is an estrogenic endocrine disruptor that induces metabolic disorders. Cyanidin-3-O-glucoside (C3G) has multiple functional activities and is the most abundant anthocyanin belonging to the flavonoid subgroup. This study aimed to investigate the protective effect of C3G on BPA-induced liver lipid metabolism disorder and explore its mechanism via lipidomics analysis. The results showed that C3G supplementation significantly ameliorated the serum levels of low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, total cholesterol, triacylglycerols (TG), and alanine and aspartate aminotransferase (ALT and AST). Furthermore, liver lipidomics indicated that C3G effectively facilitated the recovery of differential lipid metabolites, including TGs, phosphatidylethanolamines, phosphatidylcholines, lysophosphatidylcholines, phosphatidylinositol, cholesteryl esters, and phosphatidylserine, and reversed the levels of hepatic lipid synthesis-related genes. Our results suggest that C3G has an effective regulatory effect on BPA-induced disorders of lipid metabolism.
Collapse
Affiliation(s)
- Ruijing Liu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, P. R. China
- Key Laboratory for Bio-Based Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Yulong Jin
- Key Laboratory for Bio-Based Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Boping Liu
- Key Laboratory for Bio-Based Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Qing Zhang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, P. R. China
| | - Xusheng Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, P. R. China
| | - Dongbao Cai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, P. R. China
| | - Lingmin Tian
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, P. R. China
| | - Xinwei Jiang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, P. R. China
| | - Wenbao Zhang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, P. R. China
| | - Jianxia Sun
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, P. R. China
| |
Collapse
|
27
|
Ding Y, Hou R, Yu J, Xing C, Zhuang C, Qu Z. Dietary Phytochemicals as Potential Chemopreventive Agents against Tobacco-Induced Lung Carcinogenesis. Nutrients 2023; 15:491. [PMID: 36771198 PMCID: PMC9920588 DOI: 10.3390/nu15030491] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/23/2022] [Accepted: 01/14/2023] [Indexed: 01/19/2023] Open
Abstract
Lung cancer is the second most common cancer in the world. Cigarette smoking is strongly connected with lung cancer. Benzo[a]pyrene (BaP) and 4-(N-methyl-N-nitrosamine)-1-(3-pyridyl)-butanone (NNK) are the main carcinogens in cigarette smoking. Evidence has supported the correlation between these two carcinogens and lung cancer. Epidemiology analysis suggests that lung cancer can be effectively prevented through daily diet adjustments. This review aims to summarize the studies published in the past 20 years exploring dietary phytochemicals using Google Scholar, PubMed, and Web of Science databases. Dietary phytochemicals mainly include medicinal plants, beverages, fruits, vegetables, spices, etc. Moreover, the perspectives on the challenges and future directions of dietary phytochemicals for lung cancer chemoprevention will be provided. Taken together, treatment based on the consumption of dietary phytochemicals for lung cancer chemoprevention will produce more positive outcomes in the future and offer the possibility of reducing cancer risk in society.
Collapse
Affiliation(s)
- Yan Ding
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
| | - Ruilin Hou
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
| | - Jianqiang Yu
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
| | - Chengguo Xing
- Department of Medicinal Chemistry, University of Florida, 1345 Center Drive, Gainesville, FL 32610, USA
| | - Chunlin Zhuang
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Zhuo Qu
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
| |
Collapse
|
28
|
Molecular Mechanism of Cyanidin-3- O-Glucoside Disassembling Aβ Fibril In Silico. Nutrients 2022; 15:nu15010109. [PMID: 36615767 PMCID: PMC9824066 DOI: 10.3390/nu15010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/18/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
The deposition of β-amyloid (Aβ) in the brain leads to neurotoxic effects and subsequent Alzheimer's disease (AD). While AD is becoming more and more prevalent in modern society, therapeutic efforts targeting Aβ could be a promising solution. Currently, two natural products are reported to disintegrate preformed Aβ fibril in vitro. Meanwhile, the chemical driving force behind this phenomenon remains unknown. Taking cyanidin-3-O-glucoside (Cy-3G) as an example, here we studied its interaction with different Aβ polymorphs in silico. Negative charges on different Aβ polymorphs draw the interaction with the flavylium cation on Cy-3G. Our results show that Aβ in a single peptide form in solution exposed more hydrophobic solvent accessible surface area than its fibril structure (per protomer), and Cy-3G interacts more intensively with the single peptide form than fibril as indicated by more hydrogen bonding formed and more amino acid residues involved in their hydrophobic interactions. Thus, the single Aβ peptide aggregation into fibril and fibril dissociation into single peptide equilibrium could be disturbed by the preferential binding of Cy-3G to the monomeric Aβ peptide, which leads to the disassembly of the pathogenic Aβ fibril. This study offers a novel perspective of Cy-3G alleviated AD syndrome beyond its dogmatic antioxidant activity.
Collapse
|
29
|
Yang M, Lu X, Xu J, Liu X, Zhang W, Guan R, Zhong H. Cellular uptake, transport mechanism and anti-inflammatory effect of cyanidin-3-glucoside nanoliposomes in Caco-2/RAW 264.7 co-culture model. Front Nutr 2022; 9:995391. [PMID: 36225868 PMCID: PMC9549275 DOI: 10.3389/fnut.2022.995391] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/08/2022] [Indexed: 12/05/2022] Open
Abstract
Cyanidin-3-glucoside (C3G), which is the widest and richest anthocyanin (ACN) found in the edible fruit and vegetables, has been illustrated to perform a wide range of bioactivities. Nanoliposomes can inhibit C3G degradation and enhance the absorption rate of C3G as tools for conveying materials to particular locations. This experiment aims to study the absorption, transport and anti-inflammatory effects of C3G nanoliposomes in Caco-2/RAW 264.7 co-culture model, which symbolizes an intestinal inflammation system. The results indicated that the uptake and transport of C3G nanoliposomes by Caco-2/RAW 264.7 co-culture model were concentration-dependent as well as affected by temperature (37 and 4°C) and endocytic inhibitors, which revealed C3G nanoliposomes penetrate cells via endocytosis. Moreover, compared with C3G, C3G nanoliposomes significantly decreased pro-inflammatory cytokine expression (tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-8), suggesting a stronger anti-inflammatory potential. Conclusively, the uptake of C3G nanoliposomes by Caco-2/RAW 264.7 co-culture model is mainly involved in macropinocytosis and endocytosis mediated by carrier protein (clathrin). C3G nanoliposomes may play a better role in the treatment of LPS-induced intestinal inflammation diseases.
Collapse
|
30
|
Ponder A, Najman K, Aninowski M, Leszczyńska J, Głowacka A, Bielarska AM, Lasinskas M, Hallmann E. Polyphenols Content, Antioxidant Properties and Allergenic Potency of Organic and Conventional Blue Honeysuckle Berries. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27186083. [PMID: 36144816 PMCID: PMC9502526 DOI: 10.3390/molecules27186083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 11/19/2022]
Abstract
Blue honeysuckle berries are a rich source of polyphenols with strong antioxidant properties. The purpose of this research was to determine the effect of organic and conventional cultivation on the polyphenols, antioxidant and allergenic potency of blue honeysuckle berry cultivars: ‘No 30’, ‘Jolanta’ and ‘Indygo’ in two growing seasons. Identification of individual polyphenols was performed using the HPLC method; the total polyphenols content and antioxidant activity were determined by spectrophotometric methods. The determination of allergic potency was tested by ELISA. In the second year of the study the total polyphenols were significantly higher in organic blue honeysuckle than in the conventional blue honeysuckle. In both growing seasons, the ‘Indygo’ cv. was characterized by the highest concentration of all bioactive compounds 3241.9 mg and 3787.2 mg per 100 g−1 D.W. A strong correlation was found between the polyphenol content and the antioxidant activity for organic fruit in both years, as well as for allergenic potency. Contrary to the best bioactive properties was ‘Indigo’ cv., with the highest allergenic potency (108.9 and 139.2 ng g−1 D.W.). The lowest content of specific allergens was found in the ‘No 30’ cv. Since honeysuckle is still a new cultivated plant, information about its allergenic potency is insufficient.
Collapse
Affiliation(s)
- Alicja Ponder
- Department of Functional and Organic Food, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Katarzyna Najman
- Department of Functional and Organic Food, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Mateusz Aninowski
- Institute of Natural Products and Cosmetics, Lodz University of Technology, Stefanowskiego 2/22, 90-924 Łódź, Poland
| | - Joanna Leszczyńska
- Institute of Natural Products and Cosmetics, Lodz University of Technology, Stefanowskiego 2/22, 90-924 Łódź, Poland
| | - Agnieszka Głowacka
- Cultivar Testing, Nursery and Gene Bank Resources Department, The National Institute of Horticulture Research, Konstytucji 3, 96-100 Skierniewice, Poland
| | - Agnieszka Monika Bielarska
- Warsaw Department of Burns, Plastic and Reconstructive Surgery, Military Institute of Medicine, Szaserów 128, 04-141 Warsaw, Poland
| | - Marius Lasinskas
- Agriculture Academy, Department of Agrobiology and Food Sciences, Vytautas Magnus University, Donelaicio St. 58, 44248 Kaunas, Lithuania
| | - Ewelina Hallmann
- Department of Functional and Organic Food, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland
- Agriculture Academy, Bioeconomy Research Institute, Vytautas Magnus University, K. Donelaičio Str. 58, 44248 Kanuas, Lithuania
- Correspondence: ; Tel.: +48-225-937-036
| |
Collapse
|
31
|
Anthocyanin Encapsulated Nanoparticles as a Pulmonary Delivery System. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1422929. [PMID: 36124088 PMCID: PMC9482540 DOI: 10.1155/2022/1422929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/20/2022] [Indexed: 11/18/2022]
Abstract
Anthocyanins are known for their therapeutic efficacy for many human diseases, including cancer. After ingestion, anthocyanins degrade due to oxidation and enzymatic breakdown, resulting in reduced therapeutic efficacy. Direct delivery to target tissues and entrapment of anthocyanins increases their stability, bioavailability, and therapeutic efficacy. The objective of the present study was to develop a direct delivery system of anthocyanins into pulmonary tissues via encapsulated nanocarriers. A cyanidin-3-O-glucoside (C3G)-rich anthocyanin extract was prepared from well-ripened haskap (Lonicera caerulea L.) berries (HB) and encapsulated in three different polymeric nanocarrier systems: polyethylene glycol-poly(lactide-co-glycolide), maltodextrin, and carboxymethyl chitosan (CMC). The anthocyanin encapsulation efficiency was significantly higher in CMC (10%) than in the other two polymers. The cytotoxicity and cytoprotective effect of HB anthocyanin-encapsulated CMC (HB-CMC, 4 μg of C3G equivalent anthocyanin in 2 mg/mL nanoparticle) and anthocyanin-free CMC (E-CMC, 2 mg/mL) were tested for cytotoxicity using human normal lung epithelial BEAS-2B cells. The CMC nanoparticles were not cytotoxic for BEAS-2B cells. The HB-CMC nanoparticles reduced carcinogen-induced oxidative stress in BEAS-2B cells and restored the expression of superoxide dismutase and glutathione peroxidase enzymes. The HB-CMC nanoparticles also reduced carcinogen-induced DNA single-strand breaks and alkaline-labile sites but not the double-strand breaks. The E-CMC, HB-CMC (28 μg C3G equivalent/mouse/day for six days), or the same dose of free HB anthocyanin was administered to A/JCr mice through a nose-only passive inhalation device. C3G and its metabolites, cyanidin, peonidin-3-O-glucoside, and cyanidin-3-O-glucuronide, were detected by UPLC/ESI/Q-TOF-MS in the lungs of mice after one hour of exposure. Therefore, the CMC could be a promising noncytotoxic candidate to encapsulate HB anthocyanin. Direct delivery of anthocyanin to lung tissues enhances tissue retention, slows phase 2 metabolism, and improves therapeutic efficacy.
Collapse
|
32
|
Dadan M, Grobelna A, Kalisz S, Witrowa-Rajchert D. The impact of ultrasound-assisted thawing on the bioactive components in juices obtained from blue honeysuckle (Lonicera caerulea L.). ULTRASONICS SONOCHEMISTRY 2022; 89:106156. [PMID: 36084570 PMCID: PMC9465023 DOI: 10.1016/j.ultsonch.2022.106156] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/12/2022] [Accepted: 08/31/2022] [Indexed: 06/07/2023]
Abstract
Ultrasound (US) assisted thawing of blue honeysuckle berry was utilized in order to reduce the losses of bioactive components (ascorbic acid, anthocyanins, phenolic acids, iridoids, proanthocyanins) and increase the extraction efficiency during juice processing. It was analysed whether it was more beneficial to apply US (alone or with enzymatic treatment) to the frozen state, until reaching the cryoscopic temperature or thawed state. Both the US and enzymatic treatment significantly increased the extraction efficiency, extract content, acidity and the content of iridoids and chlorogenic acid in juices, especially if the US was applied to 50 °C. It was probably due to a higher extractivity by the greater damage of the tissue and detexturation. Enzymatic treatment due to long heating contributed to a higher degradation of anthocyanins, ascorbic acid and proanthocyanidins, which are more heat-sensitive. The results of the study mainly indicated the possibility of including ultrasound-assisted thawing in the fruit processing before pressing the juices. This may replace costly enzymatic treatment.
Collapse
Affiliation(s)
- Magdalena Dadan
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland.
| | - Anna Grobelna
- Division of Fruit, Vegetable and Cereal Technology, Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland.
| | - Stanisław Kalisz
- Division of Fruit, Vegetable and Cereal Technology, Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland.
| | - Dorota Witrowa-Rajchert
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland.
| |
Collapse
|
33
|
Wang L, Wang X, Luo F, Li Y. Effect of ultrasound on
cyanidin‐3‐O
‐glucoside and β‐lactoglobulin binding interaction and functional properties. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.16037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lijie Wang
- College of Food and Health, Jinzhou Medical University No. 5 Renmin Street Jinzhou 121001 China
| | - Xiaohan Wang
- College of Food and Health, Jinzhou Medical University No. 5 Renmin Street Jinzhou 121001 China
| | - Feng Luo
- College of Food and Health, Jinzhou Medical University No. 5 Renmin Street Jinzhou 121001 China
| | - Yuefei Li
- College of Food and Health, Jinzhou Medical University No. 5 Renmin Street Jinzhou 121001 China
| |
Collapse
|
34
|
Wu CF, Wu CY, Lin CF, Liu YW, Lin TC, Liao HJ, Chang GR. The anticancer effects of cyanidin 3-O-glucoside combined with 5-fluorouracil on lung large-cell carcinoma in nude mice. Biomed Pharmacother 2022; 151:113128. [PMID: 35609368 DOI: 10.1016/j.biopha.2022.113128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022] Open
Abstract
The haskap (Lonicera caerulea L., Caprifoliaceae) berry has been widely used in traditional medicine in Kuril Islands, Russia, Japan, and China. Cyanidin-3-O-glucoside (C3G) is the most abundant anthocyanin in haskap berries, and C3G induces antiproliferative pharmacological activity in various cancer cells. However, no study has investigated its anti-lung large-cell carcinoma (LCC) pharmacological role. Therefore, this study determined whether C3G alone or C3G combined with 5-fluorouracil (5-FU) inhibits human lung LCC. We determined the tumor growth, apoptosis, inflammation, and metastasis in the H661 lung LCC lines xenografted into BALB/c nude mice. The mice were administered saline (control), 5-FU, C3G, or both C3G and 5-FU. Relative to the control mice, those treated with C3G alone or both C3G and 5-FU exhibited impaired tumor growth; increased tumor apoptosis; decreased inflammatory cytokine levels (e.g., IL-1β, TNF-α, C-reactive protein, and IL-6); decreased inflammation-related factors, including cyclooxygenase-2 protein and nuclear factor-κB (NF-κB) mRNA; increased inhibition of NF-κB kinase α mRNA; and downregulated metastasis-related factors, such as transforming growth factor-β, CD44, epidermal growth factor receptor, and vascular endothelial growth factor. In addition, C3G alone or combined with 5-FU affected the expression of the tumor microenvironment-related factors Ki67, CD45, PDL1, and CD73. Compared with the mice treated with 5-FU or C3G alone, those treated with both C3G and 5-FU exhibited significantly impaired tumor growth, decreased tumor sizes, and increased tumor inhibition. This in vivo study demonstrated that C3G alone or combined with 5-FU may impair the growth of lung LCC and inhibit tumorigenesis. The findings indicate that C3G alone or C3G combined with 5-FU may be beneficial for treating human lung LCC.
Collapse
Affiliation(s)
- Ching-Feng Wu
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Chang Gung Memorial Hospital, Linkou, 5 Fuxing Street, Guishan District, Taoyuan 33305, Taiwan; Department of Medicine, College of Medicine, Chang Gung University, Guishan, 259 Wenhua 1st Road, Taoyuan 33302, Taiwan.
| | - Ching-Yang Wu
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Chang Gung Memorial Hospital, Linkou, 5 Fuxing Street, Guishan District, Taoyuan 33305, Taiwan; Department of Medicine, College of Medicine, Chang Gung University, Guishan, 259 Wenhua 1st Road, Taoyuan 33302, Taiwan.
| | - Chuen-Fu Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, 1 Shuefu Road, Neipu, Pingtung 912301, Taiwan.
| | - Yi-Wen Liu
- Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, 300 Syuefu Road, Chiayi 60004, Taiwan.
| | - Tzu-Chun Lin
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan.
| | - Huei-Jyuan Liao
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan.
| | - Geng-Ruei Chang
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan.
| |
Collapse
|
35
|
Naugžemys D, Patamsytė J, Žilinskaitė S, Hoshino Y, Skridaila A, Žvingila D. Genetic Structure of Native Blue Honeysuckle Populations in the Western and Eastern Eurasian Ranges. PLANTS 2022; 11:plants11111480. [PMID: 35684253 PMCID: PMC9182990 DOI: 10.3390/plants11111480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 11/23/2022]
Abstract
Blue honeysuckle (Lonicera caerulea L.) is a promising berry crop producing edible early-ripening berries with a valuable chemical composition. We evaluated the genetic diversity of native L. caerulea populations from the western (Baltic states) and eastern (the Russian Far East and Japan) edges of the Eurasian range using inter-simple sequence repeat (ISSR) and chloroplast DNA (psbA-trnH and trnL-trnF) markers. The genetic relationships of populations and genotypes were analyzed using principal coordinate and cluster analyses (neighbor joining and Bayesian clustering). Sampling was carried out in two disjunct areas of this circumpolar species and the analyses showed clustering of individuals and populations according to geographic origin. The analysis of genetic structure based on ISSR markers showed that the studied populations of L. caerulea were highly differentiated. However, sequence analysis of two chloroplast DNA (cpDNA) regions revealed no phylogeographic structure among the populations. We also found that the eastern populations of blue honeysuckle had significantly greater genetic diversity parameters than the populations from the Baltic region. This finding correlates with the endangered status of blue honeysuckle in the Baltic states.
Collapse
Affiliation(s)
- Donatas Naugžemys
- Botanical Garden, University of Vilnius, Kairėnų Str. 43, 10239 Vilnius, Lithuania; (D.N.); (S.Ž.); (A.S.)
| | - Jolanta Patamsytė
- Institute of Biosciences, Life Sciences Center, University of Vilnius, Saulėtekio Av. 7, 10257 Vilnius, Lithuania;
| | - Silva Žilinskaitė
- Botanical Garden, University of Vilnius, Kairėnų Str. 43, 10239 Vilnius, Lithuania; (D.N.); (S.Ž.); (A.S.)
| | - Yoichiro Hoshino
- Field Science Center for Northern Biosphere, Hokkaido University, Sapporo 060-0811, Japan;
| | - Audrius Skridaila
- Botanical Garden, University of Vilnius, Kairėnų Str. 43, 10239 Vilnius, Lithuania; (D.N.); (S.Ž.); (A.S.)
| | - Donatas Žvingila
- Institute of Biosciences, Life Sciences Center, University of Vilnius, Saulėtekio Av. 7, 10257 Vilnius, Lithuania;
- Correspondence:
| |
Collapse
|
36
|
Willems MET, Blacker SD. Anthocyanin-Rich Supplementation: Emerging Evidence of Strong Potential for Sport and Exercise Nutrition. Front Nutr 2022; 9:864323. [PMID: 35433792 PMCID: PMC9009509 DOI: 10.3389/fnut.2022.864323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
Dark-colored fruits, especially berries, have abundant presence of the polyphenol anthocyanin which have been show to provide health benefits. Studies with the berry blackcurrant have provided notable observations with application for athletes and physically active individuals. Alterations in exercise-induced substrate oxidation, exercise performance of repeated high-intensity running and cycling time-trial and cardiovascular function at rest and during exercise were observed with intake of New Zealand blackcurrant. The dynamic plasma bioavailability of the blackcurrant anthocyanins and the anthocyanin-derived metabolites must have changed cell function to provide meaningful in-vivo physiological effects. This perspective will reflect on the research studies for obtaining the applied in-vivo effects by intake of anthocyanin-rich supplementation, the issue of individual responses, and the emerging strong potential of anthocyanins for sport and exercise nutrition. Future work with repeated intake of known amount and type of anthocyanins, gut microbiota handling of anthocyanins, and coinciding measurements of plasma anthocyanin and anthocyanin-derived metabolites and in-vivo cell function will be required to inform our understanding for the unique potential of anthocyanins as a nutritional ergogenic aid for delivering meaningful effects for a wide range of athletes and physically active individuals.
Collapse
|
37
|
Piekarska J, Szczypka M, Gorczykowski M, Sokół-Łętowska A, Kucharska AZ. Evaluation of Immunotropic Activity of Iridoid-Anthocyanin Extract of Honeysuckle Berries (Lonicera caerulea L.) in the Course of Experimental Trichinellosis in Mice. Molecules 2022; 27:molecules27061949. [PMID: 35335313 PMCID: PMC8954930 DOI: 10.3390/molecules27061949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 02/04/2023] Open
Abstract
Our experiment determined the immunotropic activity of a natural, iridoid-anthocyanin extract from honeysuckle berry (Lonicera caerulea L.) (LC). The extract was administered to mice infected with Trichinella spiralis, orally at a dose of 2 g/kg bw, six times at 24 h intervals (from day 3 prior to the infection to day 3 post-infection (dpi) with T. spiralis. At 5, 7, 14, and 21 dpi, samples of blood, spleen, and mesenteric lymph nodes (MLN) were collected, and isolated lymphocytes were analyzed by flow cytometry. The splenocyte proliferation was estimated with MTT testing, and the intensity of intestinal and muscle infection was also studied. LC stimulated the local immune system by inducing lymphocyte proliferation in the spleen 7 dpi and altered the percentage and absolute count of B (CD19+) and T (CD3+, CD8+) cells 7, 14, and 21 dpi in the peripheral blood. LC extract affected the dynamics of expulsion of adult Trichinella from the intestines and prolonged the intestinal phase of the infection but did not change the number of larvae in the muscles. These results suggest that Lonicera caerulea L. fruit extract modulates murine cellular immune response during intestinal phase of T. spiralis infection but shows no antiparasitic activity.
Collapse
Affiliation(s)
- Jolanta Piekarska
- Division of Parasitology, Department of Internal Medicine and Clinic of Horses, Dogs and Cats, Wrocław University of Environmental and Life Sciences, Norwida 31, 50-375 Wrocław, Poland;
- Correspondence:
| | - Marianna Szczypka
- Department of Pharmacology and Toxicology, Wrocław University of Environmental and Life Sciences, Norwida 31, 50-375 Wrocław, Poland;
| | - Michał Gorczykowski
- Division of Parasitology, Department of Internal Medicine and Clinic of Horses, Dogs and Cats, Wrocław University of Environmental and Life Sciences, Norwida 31, 50-375 Wrocław, Poland;
| | - Anna Sokół-Łętowska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland; (A.S.-Ł.); (A.Z.K.)
| | - Alicja Z. Kucharska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland; (A.S.-Ł.); (A.Z.K.)
| |
Collapse
|
38
|
Phenolic Compounds, Vitamins C and E and Antioxidant Activity of Edible Honeysuckle Berries ( Lonicera caerulea L. var. kamtschatica Pojark) in Relation to Their Origin. Antioxidants (Basel) 2022; 11:antiox11020433. [PMID: 35204315 PMCID: PMC8869307 DOI: 10.3390/antiox11020433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/11/2022] [Accepted: 02/17/2022] [Indexed: 02/05/2023] Open
Abstract
Honeysuckles are frost tolerant plants providing early-ripening fruits with health-promoting properties which have been used in traditional medicine in China. This study evaluates the impact of the climatic conditions of two areas on the chemical composition and antioxidant activity (AOA; by DPPH-2,2-diphenyl-1-picrylhydrazyl and photochemiluminescence assays) of eight cultivars of honeysuckle berries (Lonicera caerulea L. var. kamtschatica Pojark) of various ripening times. Expectedly, chemical composition and AOA values varied depending on the cultivars, locality and selected methods. Berries from Lednice (the area with more sunshine) showed higher average contents of total monomeric anthocyanins (TMAC; pH differential absorbance method), vitamins C and E and total phenolics (high-performance liquid chromatography). In contrast, berries from Žabčice (the area with more rain) performed higher average contents of total phenolics and flavonoids (UV/VIS spectroscopic analyses). Interestingly, fundamental amounts of chlorogenic acid were determined irrespective of the locality. Regarding TMAC and vitamin C content, early ripening Amphora from both areas has been assessed as the best cultivar; concerning the content of phenolic compounds, Fialka from both areas and Amphora from Lednice is considered as the most valuable. The obtained results may facilitate the selection of the most valuable cultivars for both producers and consumers.
Collapse
|
39
|
Howatson G, Snaith GC, Kimble R, Cowper G, Keane KM. Improved Endurance Running Performance Following Haskap Berry ( Lonicera caerulea L.) Ingestion. Nutrients 2022; 14:780. [PMID: 35215430 PMCID: PMC8877138 DOI: 10.3390/nu14040780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Food high in (poly)phenolic compounds, such as anthocyanins, have the potential to improve exercise recovery and exercise performance. Haskap berries are rich in anthocyanins, but no research has examined the potential to improve human performance. The aim of this study was to determine the influence of Haskap berry on parameters of endurance running performance. METHODS Using a double-blind, placebo controlled, independent groups design, 30 male recreational runners (mean ± SD age, 33 ± 7 years; stature, 178.2 ± 7.2 cm; mass, 77.7 ± 10.6 kg; V˙O2peak, 52.2 ± 6.6 mL/kg/min) volunteered to participate. Following familiarisation, volunteers visited the laboratory twice (separated by seven days) to assess submaximal, maximal and 5 km time trial running performance. After the first visit, volunteers were randomly assigned to consume either the Haskap berry intervention or an isocaloric placebo control. RESULTS There were modest changes in heart rate and V˙O2 at submaximal intensities (p < 0.05). Time to exhaustion during the V˙O2peak test was longer in the Haskap group by 20 s (p = 0.031). Additionally, 5 km time trial performance was improved in the Haskap group by ~21 s (p = 0.016), which equated to a 0.25 km/h increase in mean running speed compared to the placebo control; this represented a >2% improvement in running performance. CONCLUSIONS The application of this newly identified functional food to athletes has the capacity to improve endurance running performance.
Collapse
Affiliation(s)
- Glyn Howatson
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (G.C.S.); (G.C.); (K.M.K.)
- Water Research Group, School of Environmental Sciences and Development, Northwest University, Potchefstroom 2531, South Africa
| | - Gemma C. Snaith
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (G.C.S.); (G.C.); (K.M.K.)
| | - Rachel Kimble
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
| | - Gavin Cowper
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (G.C.S.); (G.C.); (K.M.K.)
| | - Karen M. Keane
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (G.C.S.); (G.C.); (K.M.K.)
- School of Science and Computing, Galway-Mayo Institute of Technology, H91 T8NW Galway, Ireland
| |
Collapse
|
40
|
Liu X, Xie Y, Li C, Xue F. Comparative studies on physicochemical properties of gluten‐ And glutenin‐based films functionalized by polyphenols. Cereal Chem 2022. [DOI: 10.1002/cche.10525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xinye Liu
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing China
- School of Science RMIT University Melbourne Australia
| | - Yuran Xie
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing China
| | - Chen Li
- College of Food Science and Light Industry Nanjing Tech University Nanjing China
| | - Feng Xue
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing China
| |
Collapse
|
41
|
Shishir MRI, Suo H, Liu X, Kang Q, Xiao J, Wang M, Chen F, Cheng KW. Development and evaluation of a novel nanofibersolosome for enhancing the stability, in vitro bioaccessibility, and colonic delivery of cyanidin-3-O-glucoside. Food Res Int 2021; 149:110712. [PMID: 34600700 DOI: 10.1016/j.foodres.2021.110712] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/31/2021] [Accepted: 09/08/2021] [Indexed: 02/05/2023]
Abstract
The development of colon-specific carrier systems using polysaccharides for oral delivery of nutraceuticals is of great importance for the treatment and/or prevention of inflammatory bowel diseases. In this study, self-assembly with the assistance of vortexing and pulsed-ultrasonication was employed to develop a Fibersol®-2 (a digestion-resistant polysaccharide) and lipoid S75 based novel nanocarrier (denoted as nanofibersolosome) for the colonic delivery of cyanidin-3-O-glucoside (C3G). A series of nanofibersolosome formulations (CFS-0.5-4, 0.5-4 represent the ratios of Fibersol®-2:lipoid S75) were developed and their performance was compared with Fibersol®-2-free reference lipid formulation (CFS-0). The nanofibersolosomes (<150 nm) were spherical and unilamellar with high negative surface charge (-38 to -51 mV) and good encapsulation efficiency (EE > 90%). They performed much better than CFS-0 in retaining their physical properties during freeze drying, preventing particle aggregation, and retaining C3G during storage (4 and 25 ℃) and thermal treatments (40, 60, and 80 ℃). They also exhibited significantly higher stability during simulated gastrointestinal digestion than CFS-0. These desirable features of the nanofibersolosomes (especially CFS-0.5 and CFS-1) led to the efficient delivery of higher concentrations of C3G to the colon than CFS-0. Moreover, gastrointestinal-digested and colonic-fermented nanofibersolosome samples exhibited significantly higher DPPH radical scavenging activity and stronger promoting effect on short-chain fatty acid generation than CFS-0. These in vitro findings indicate that the novel nanofibersolosome possesses great potential for the colonic delivery of C3G and likely other hydrophilic labile phytochemicals that merits further evaluation in in vivo models.
Collapse
Affiliation(s)
- Mohammad Rezaul Islam Shishir
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Hao Suo
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Xiaobing Liu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Qingzheng Kang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Jianbo Xiao
- Institute of Food Safety and Nutrition, Jiangsu University, Zhenjiang 212013, China; Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Vigo, Spain
| | - Mingfu Wang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Feng Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Ka-Wing Cheng
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
42
|
Cheng Z, Si X, Tan H, Zang Z, Tian J, Shu C, Sun X, Li Z, Jiang Q, Meng X, Chen Y, Li B, Wang Y. Cyanidin-3- O-glucoside and its phenolic metabolites ameliorate intestinal diseases via modulating intestinal mucosal immune system: potential mechanisms and therapeutic strategies. Crit Rev Food Sci Nutr 2021; 63:1629-1647. [PMID: 34420433 DOI: 10.1080/10408398.2021.1966381] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The incidence of the intestinal disease is globally increasing, and the intestinal mucosa immune system is an important defense line. A potential environmental cause to regulate gut health is diet. Cyanidin-3-O-glucoside is a natural plant bioactive substance that has shown rising evidence of improving intestinal disease and keeping gut homeostasis. This review summarized the intestinal protective effect of Cyanidin-3-O-glucoside in vivo and in vitro and discussed the potential mechanisms by regulating the intestinal mucosal immune system. Cyanidin-3-O-glucoside and phenolic metabolites inhibited the presence and progression of intestinal diseases and explained from the aspects of repairing the intestinal wall, inhibiting inflammatory reaction, and regulating the gut microbiota. Although the animal and clinical studies are inadequate, based on the accumulated evidence, we propose that the interaction of Cyanidin-3-O-glucoside with the intestinal mucosal immune system is at the core of most mechanisms by which affect host gut diseases. This review puts forward the potential mechanism of action and targeted treatment strategies.
Collapse
Affiliation(s)
- Zhen Cheng
- College of Food Science, Shenyang Agricultural University, Liaoning, P. R. China.,National R&D Professional Center For Berry Processing, Shenyang Agricultural University, Liaoning, P. R. China
| | - Xu Si
- College of Food Science, Shenyang Agricultural University, Liaoning, P. R. China.,National R&D Professional Center For Berry Processing, Shenyang Agricultural University, Liaoning, P. R. China
| | - Hui Tan
- College of Food Science, Shenyang Agricultural University, Liaoning, P. R. China.,National R&D Professional Center For Berry Processing, Shenyang Agricultural University, Liaoning, P. R. China
| | - Zhihuan Zang
- College of Food Science, Shenyang Agricultural University, Liaoning, P. R. China.,National R&D Professional Center For Berry Processing, Shenyang Agricultural University, Liaoning, P. R. China
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, Liaoning, P. R. China.,National R&D Professional Center For Berry Processing, Shenyang Agricultural University, Liaoning, P. R. China
| | - Chi Shu
- College of Food Science, Shenyang Agricultural University, Liaoning, P. R. China.,National R&D Professional Center For Berry Processing, Shenyang Agricultural University, Liaoning, P. R. China
| | - Xiyun Sun
- College of Food Science, Shenyang Agricultural University, Liaoning, P. R. China.,National R&D Professional Center For Berry Processing, Shenyang Agricultural University, Liaoning, P. R. China
| | - Zhiying Li
- College of Food Science, Shenyang Agricultural University, Liaoning, P. R. China.,National R&D Professional Center For Berry Processing, Shenyang Agricultural University, Liaoning, P. R. China
| | - Qiao Jiang
- College of Food Science, Shenyang Agricultural University, Liaoning, P. R. China.,National R&D Professional Center For Berry Processing, Shenyang Agricultural University, Liaoning, P. R. China
| | - Xianjun Meng
- College of Food Science, Shenyang Agricultural University, Liaoning, P. R. China.,National R&D Professional Center For Berry Processing, Shenyang Agricultural University, Liaoning, P. R. China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Peoples Republic of China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Liaoning, P. R. China.,National R&D Professional Center For Berry Processing, Shenyang Agricultural University, Liaoning, P. R. China
| | - Yuehua Wang
- College of Food Science, Shenyang Agricultural University, Liaoning, P. R. China.,National R&D Professional Center For Berry Processing, Shenyang Agricultural University, Liaoning, P. R. China
| |
Collapse
|
43
|
Dayar E, Cebova M, Lietava J, Panghyova E, Pechanova O. Antioxidant Effect of Lonicera caerulea L. in the Cardiovascular System of Obese Zucker Rats. Antioxidants (Basel) 2021; 10:antiox10081199. [PMID: 34439452 PMCID: PMC8388907 DOI: 10.3390/antiox10081199] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/17/2021] [Accepted: 07/22/2021] [Indexed: 11/16/2022] Open
Abstract
Lonicera caerulea L. (Loni) represents a promising source of beneficial polyphenols with therapeutical potential in cardiovascular diseases. We aimed to study the effects of Loni and coenzyme Q10 (CoQ10) on selected cardiometabolic parameters and NO/ROS balance in obese Zucker rats. Male Zucker rats were divided into the control group and groups treated with CoQ10 (30 mg/kg/day) or Loni (5 g/kg/day) for 6 weeks. Blood pressure, body weight, heart weight, and plasma lipid profile were determined. NOS activity and protein expressions of eNOS, SOD, NADPH oxidase, and NF-kappa B were measured in the heart and aorta. Neither body weight nor blood pressure were significantly changed after six weeks of Loni or CoQ10 treatment. Both Loni and CoQ10 decreased the plasma LDL level. Moreover, Loni decreased the total cholesterol level. The total NOS activity did not change in the heart after the treatments. However, in the aorta, Loni treatment increased NOS activity and protein expression of SOD and decreased expressions of NADPH oxidase and NF-kappa B compared to both the control and CoQ10 groups. There were no changes in the eNOS protein expression within the groups. In conclusion, it seems that the antioxidant effect of Loni was responsible for both the decrease of plasma LDL and the total cholesterol levels and the increase of vascular NOS activity.
Collapse
Affiliation(s)
- Ezgi Dayar
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (E.D.); (M.C.); (J.L.)
| | - Martina Cebova
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (E.D.); (M.C.); (J.L.)
| | - Jan Lietava
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (E.D.); (M.C.); (J.L.)
- 1st Department of Internal Medicine, Medical Faculty of Comenius University, 811 07 Bratislava, Slovakia
| | - Elena Panghyova
- Research Institute of Nutrition, 821 08 Bratislava, Slovakia;
| | - Olga Pechanova
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (E.D.); (M.C.); (J.L.)
- Correspondence: ; Tel.: +421-(911)-938-910
| |
Collapse
|
44
|
Plants Secondary Metabolites as Blood Glucose-Lowering Molecules. Molecules 2021; 26:molecules26144333. [PMID: 34299610 PMCID: PMC8307461 DOI: 10.3390/molecules26144333] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023] Open
Abstract
Recently, significant advances in modern medicine and therapeutic agents have been achieved. However, the search for effective antidiabetic drugs is continuous and challenging. Over the past decades, there has been an increasing body of literature related to the effects of secondary metabolites from botanical sources on diabetes. Plants-derived metabolites including alkaloids, phenols, anthocyanins, flavonoids, stilbenoids, saponins, tannins, polysaccharides, coumarins, and terpenes can target cellular and molecular mechanisms involved in carbohydrate metabolism. In addition, they can grant protection to pancreatic beta cells from damage, repairing abnormal insulin signaling, minimizing oxidative stress and inflammation, activating AMP-activated protein kinase (AMPK), and inhibiting carbohydrate digestion and absorption. Studies have highlighted many bioactive naturally occurring plants' secondary metabolites as candidates against diabetes. This review summarizes the current knowledge compiled from the latest studies published during the past decade on the mechanism-based action of plants-derived secondary metabolites that can target various metabolic pathways in humans against diabetes. It is worth mentioning that the compiled data in this review will provide a guide for researchers in the field, to develop candidates into environment-friendly effective, yet safe antidiabetics.
Collapse
|
45
|
Szołtysik M, Kucharska AZ, Dąbrowska A, Zięba T, Bobak Ł, Chrzanowska J. Effect of Two Combined Functional Additives on Yoghurt Properties. Foods 2021; 10:1159. [PMID: 34064052 PMCID: PMC8224028 DOI: 10.3390/foods10061159] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/11/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of the research was the analysis of yoghurts enriched with blue honeysuckle berries dry polyphenolic extract and new preparation of resistant starch. The additives were introduced individually at concentration 0.1% (w/v) and in mixture at final concentration of 0.1 and 0.2% of both components. Yogurt microflora, pH, and its physicochemical and antioxidant properties were examined over 14 days of storage under refrigerated conditions. Studies showed that both substances can be successfully used in yoghurt production. Yoghurt microflora es. S. thermophilus and Lb. delbrueckii subsp. bulgaricus counts appeared to be higher in samples supplemented with these additives comparing to control yoghurt by 3-8%. More stimulating effect on their growth, especially on S. thermophilus, revealed resistant starch. Addition of this polysaccharide improved also the rheological properties of yogurts, which showed higher viscosity than samples produced without it. Addition of honeysuckle berries preparation significantly influenced the yogurts' color, giving them deep purple color, and their antioxidant potential. During storage, contents of anthocyanin and iridoid compounds were decreasing, but antioxidant activity in the products remained stable.
Collapse
Affiliation(s)
- Marek Szołtysik
- Department of Functional Food Products Development, Wrocław University of Environmental and Life Sciences, Chełmońskiego Str. 37, 51-640 Wrocław, Poland; (A.D.); (Ł.B.); (J.C.)
| | - Alicja Z. Kucharska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Sciences, Chełmońskiego Str. 37, 51-640 Wrocław, Poland;
| | - Anna Dąbrowska
- Department of Functional Food Products Development, Wrocław University of Environmental and Life Sciences, Chełmońskiego Str. 37, 51-640 Wrocław, Poland; (A.D.); (Ł.B.); (J.C.)
| | - Tomasz Zięba
- Department of Food Storage and Technology, Wrocław University of Environmental and Life Sciences, Chełmońskiego Str. 37, 51-640 Wrocław, Poland;
| | - Łukasz Bobak
- Department of Functional Food Products Development, Wrocław University of Environmental and Life Sciences, Chełmońskiego Str. 37, 51-640 Wrocław, Poland; (A.D.); (Ł.B.); (J.C.)
| | - Józefa Chrzanowska
- Department of Functional Food Products Development, Wrocław University of Environmental and Life Sciences, Chełmońskiego Str. 37, 51-640 Wrocław, Poland; (A.D.); (Ł.B.); (J.C.)
| |
Collapse
|
46
|
Bioactive Compounds, Antioxidant, and Antibacterial Properties of Lonicera caerulea Berries: Evaluation of 11 Cultivars. PLANTS 2021; 10:plants10040624. [PMID: 33806020 PMCID: PMC8064488 DOI: 10.3390/plants10040624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/10/2021] [Accepted: 03/22/2021] [Indexed: 12/04/2022]
Abstract
The aim of the study was to evaluate 11 cultivars of blue honeysuckle (Lonicera caerulea L.) for bioactive compounds, antioxidant capacity, and the antibacterial activity of berries. Total phenolic contents (TPCs) and total anthocyanin contents (TACs) were established by using ethanolic extracts. For contents of organic acids and saccharides, aqueous extracts were used, and vitamin C was determined by using oxalic acid solution. DPPH• radical scavenging capacity was evaluated by using ethanolic extracts; antibacterial activity was assessed by using both ethanolic and aqueous extracts. The TPC varied from 364.02 ± 0.41 mg/100 g in ‘Vostorg’ to 784.5 ± 0.3 mg/100 g in ‘Obilnaja’, and TAC ranged from 277.8 ± 1.1 mg/100 g in ‘Čelnočnaja’ to 394.1 ± 8.4 mg/100 g in ‘Nimfa’. Anthocyanins comprised 53.8% of total phenolic contents on average. Among organic acids, citric acid was predominant, averaging 769.41 ± 5.34 mg/100 g, with malic and quinic acids amounting to 289.90 ± 2.64 and 45.00 ± 0.37 mg/100 g on average, respectively. Contents of vitamin C were 34.26 ± 0.25 mg/100 g on average. Organic acids were most effective in the inhibition of both Gram-positive and Gram-negative bacteria tested. In conclusion, berries of L. caerulea are beneficial not only for fresh consumption, but also as a raw material or ingredients of foods with high health-promoting value.
Collapse
|
47
|
Rahman S, Mathew S, Nair P, Ramadan WS, Vazhappilly CG. Health benefits of cyanidin-3-glucoside as a potent modulator of Nrf2-mediated oxidative stress. Inflammopharmacology 2021; 29:907-923. [PMID: 33740221 DOI: 10.1007/s10787-021-00799-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/06/2021] [Indexed: 02/07/2023]
Abstract
Berries are natural sources of anthocyanins, especially cyanidin-3-glucoside (C3G), and exhibit significant antioxidant, antidiabetic, anti-inflammatory, and cytoprotective effects against various oxidative stress-induced disorders. C3G and its metabolites possess higher absorption and bioavailability, and interaction with gut microbiota may enhance their health benefits. Various in vitro studies have shown the reactive oxygen species (ROS)-mitigating potential of C3G. However, in in vivo models, C3G exerts its cytoprotective properties by regulating the nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant-responsive element (ARE) pathway. Despite existing reports stating various health benefits of C3G, its antioxidant potential by modulating the Nrf2 pathway remains less identified. This review discusses the Nrf2-mediated antioxidant response of C3G in modulating oxidative stress against DNA damage, apoptosis, carcinogen toxicity, and inflammatory conditions. Furthermore, we have reviewed the recent clinical trial data to establish cross talk between a berry-rich diet and disease prevention.
Collapse
Affiliation(s)
- Sofia Rahman
- School of Natural Sciences and Mathematics, The University of Texas at Dallas, Richardson, USA
| | - Shimy Mathew
- Department of Biotechnology, American University of Ras Al Khaimah, Ras Al Khaimah, 10021, UAE
| | - Pooja Nair
- Department of Biotechnology, American University of Ras Al Khaimah, Ras Al Khaimah, 10021, UAE
| | - Wafaa S Ramadan
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE.,College of Medicine, University of Sharjah, Sharjah, UAE
| | - Cijo George Vazhappilly
- Department of Biotechnology, American University of Ras Al Khaimah, Ras Al Khaimah, 10021, UAE.
| |
Collapse
|
48
|
Ajeeshkumar KK, Aneesh PA, Raju N, Suseela M, Ravishankar CN, Benjakul S. Advancements in liposome technology: Preparation techniques and applications in food, functional foods, and bioactive delivery: A review. Compr Rev Food Sci Food Saf 2021; 20:1280-1306. [PMID: 33665991 DOI: 10.1111/1541-4337.12725] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/28/2020] [Accepted: 01/22/2021] [Indexed: 12/19/2022]
Abstract
Liposomes play a significant role in encapsulation of various bioactive compounds (BACs), including functional food ingredients to improve the stability of core. This technology can be used for promoting an effective application in functional food and nutraceuticals. Incorporation of traditional and emerging methods for the developments of liposome for loading BACs resulted in viable and stable liposome formulations for industrial applications. Thus, the advance technologies such as supercritical fluidic methods, microfluidization, ultrasonication with traditional methods are revisited. Liposomes loaded with plant and animal BACs have been introduced for functional food and nutraceutical applications. In general, application of liposome systems improves stability, delivery, and bioavailability of BACs in functional food systems and nutraceuticals. This review covers the current techniques and methodologies developed and practiced in liposomal preparation and application in functional foods.
Collapse
Affiliation(s)
| | | | - Navaneethan Raju
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Mathew Suseela
- ICAR - Central Institute of Fisheries Technology, Cochin, Kerala, 682029, India
| | | | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
49
|
Chen S, Zhou H, Zhang G, Dong Q, Wang Z, Wang H, Hu N. Characterization, antioxidant, and neuroprotective effects of anthocyanins from Nitraria tangutorum Bobr. fruit. Food Chem 2021; 353:129435. [PMID: 33714113 DOI: 10.1016/j.foodchem.2021.129435] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/21/2021] [Accepted: 02/19/2021] [Indexed: 12/13/2022]
Abstract
An anthocyanin-rich extract was obtained from Nitraria tangutorum Bobr. fruit, namely ANF, and its composition, antioxidant and neuroprotective effects were studied. Nine anthocyanins were identified from the ANF using UPLC-Triple-TOF/MS analysis, and cyanidin-3-[2''-(6'''-coumaroyl)-glucosyl]-glucoside (C3G) is the most abundant anthocyanin (87.06%). ANF exhibited high ferric reducing antioxidant power (FRAP) and ABTS radical scavenging activity. The online HPLC-DPPH screening revealed that C3G contributed the highest antioxidant capacity. ANF showed potential neuroprotective effects by relieving d-Galactose-induced memory deficits, reducing overexpression of receptor for advanced glycation end products (RAGE) and amyloid-beta42 (Aβ42) in the hippocampus of rats. Besides, ANF could inhibit oxidative stress by reducing the levels of reactive oxygen species (ROS) and malondialdehyde (MDA) in the hippocampus, while elevating amounts of total superoxide dismutase (T-SOD) and glutathione (GSH) in the serum of rats. Thus, ANF has great potential in the development of food and health products related to antioxidant and neuroprotective effects.
Collapse
Affiliation(s)
- Shasha Chen
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810008, PR China
| | - Haonan Zhou
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810008, PR China
| | - Gong Zhang
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810008, PR China
| | - Qi Dong
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810008, PR China; Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Xining 810001, PR China
| | - Zhenhua Wang
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810008, PR China
| | - Honglun Wang
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810008, PR China; Huzhou Plateau Biological Resource Centre of Innovation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Huzhou 313000, PR China; Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Xining 810001, PR China
| | - Na Hu
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810008, PR China; Huzhou Plateau Biological Resource Centre of Innovation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Huzhou 313000, PR China; Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Xining 810001, PR China.
| |
Collapse
|
50
|
Shan X, Lv ZY, Yin MJ, Chen J, Wang J, Wu QN. The Protective Effect of Cyanidin-3-Glucoside on Myocardial Ischemia-Reperfusion Injury through Ferroptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8880141. [PMID: 33628391 PMCID: PMC7884153 DOI: 10.1155/2021/8880141] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 12/15/2022]
Abstract
This study was conducted to estimate the protective effect of Cyanidin-3-glucoside (C3G) on myocardial ischemia-reperfusion (IR) injury and to explore its mechanism. The rats were subjected to left anterior descending ligation and perfusion surgery. In vitro experiments were performed on H9c2 cells using the oxygen-glucose deprivation/reoxygenation (OGD/R) model. The results showed the administration of C3G reduced the infarction area, mitigated pathological alterations, inhibited ST segment elevation, and attenuated oxidative stress and ferroptosis-related protein expression. C3G also suppressed the expressions of USP19, Beclin1, NCOA4, and LC3II/LC3I. In addition, treatment with C3G relieved oxidative stress, downregulated LC3II/LC3I, reduced autophagosome number, downregulated TfR1 expression, and upregulated the expressions of FTH1 and GPX4 in OGD/R-induced H9c2 cells. C3G could inhibit the protein levels of USP19 and LC3II. C3G promoted K11-linked ubiquitination of Beclin1. Further evidence that C3G reduced ferroptosis and ameliorated myocardial I/R injury was demonstrated with the ferroptosis promoter RSL3. Taken together, C3G could be a potential agent to protect myocardium from myocardial I/R injury.
Collapse
Affiliation(s)
- Xin Shan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023 Jiangsu, China
- Hanlin College, Nanjing University of Chinese Medicine, Taizhou, 225300 Jiangsu, China
| | - Zhi-Yang Lv
- Hanlin College, Nanjing University of Chinese Medicine, Taizhou, 225300 Jiangsu, China
| | - Meng-Jiao Yin
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023 Jiangsu, China
| | - Jing Chen
- Hanlin College, Nanjing University of Chinese Medicine, Taizhou, 225300 Jiangsu, China
| | - Jie Wang
- Hanlin College, Nanjing University of Chinese Medicine, Taizhou, 225300 Jiangsu, China
| | - Qi-Nan Wu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023 Jiangsu, China
| |
Collapse
|