1
|
Chen T, He S, Zhang J, Wang H, Jia Y, Liu Y, Xie M, Cheng G. Effects of Ultra-High-Pressure Treatment on Chemical Composition and Biological Activities of Free, Esterified and Bound Phenolics from Phyllanthus emblica L. Fruits. Molecules 2024; 29:3181. [PMID: 38999132 PMCID: PMC11243165 DOI: 10.3390/molecules29133181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/23/2024] [Accepted: 06/29/2024] [Indexed: 07/14/2024] Open
Abstract
Phyllanthus emblica L. fruits (PEFs) were processed by ultra-pressure (UHP) treatment and then extracted by the ultrasonic-assisted extraction method. The influence of UHP on the phenolic composition, enzyme inhibitory activity and antioxidant activity of the free, esterified, and bound phenolic fractions from PEFs were compared. UHP pretreatment of PEFs significantly increased the total phenolic and flavonoid contents (p < 0.05). A total of 24 chemical compositions were characterized in normal and UHP-treated PEFs by UHPLC-ESI-HRMS/MS. Compared with normal PEFs, these three different phenolic fractions had stronger antioxidant activities and inhibitory effects on the intracellular reactive oxygen species (ROS) production in H2O2-induced HepG2 cells (p < 0.05). The ROS inhibition might be due to an up-regulation of the expressions of superoxide dismutase (SOD) and glutathione (GSH) activities. In addition, these three different phenolic fractions also significantly inhibited the activities of metabolic enzymes, including α-glucosidase, α-amylase and pancreatic lipase. This work may provide some insights into the potential economics and applications of PEFs in food and nutraceutical industries.
Collapse
Affiliation(s)
- Taiming Chen
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (T.C.); (J.Z.); (H.W.); (Y.J.); (Y.L.)
| | - Shuyue He
- Linyi Technician Institute, Linyi 276005, China;
| | - Jing Zhang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (T.C.); (J.Z.); (H.W.); (Y.J.); (Y.L.)
| | - Huangxin Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (T.C.); (J.Z.); (H.W.); (Y.J.); (Y.L.)
| | - Yiqing Jia
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (T.C.); (J.Z.); (H.W.); (Y.J.); (Y.L.)
| | - Yaping Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (T.C.); (J.Z.); (H.W.); (Y.J.); (Y.L.)
| | - Mingjun Xie
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Guiguang Cheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (T.C.); (J.Z.); (H.W.); (Y.J.); (Y.L.)
| |
Collapse
|
2
|
Regolo L, Giampieri F, Battino M, Armas Diaz Y, Mezzetti B, Elexpuru-Zabaleta M, Mazas C, Tutusaus K, Mazzoni L. From by-products to new application opportunities: the enhancement of the leaves deriving from the fruit plants for new potential healthy products. Front Nutr 2024; 11:1083759. [PMID: 38895662 PMCID: PMC11184148 DOI: 10.3389/fnut.2024.1083759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 05/03/2024] [Indexed: 06/21/2024] Open
Abstract
In the last decades, the world population and demand for any kind of product have grown exponentially. The rhythm of production to satisfy the request of the population has become unsustainable and the concept of the linear economy, introduced after the Industrial Revolution, has been replaced by a new economic approach, the circular economy. In this new economic model, the concept of "the end of life" is substituted by the concept of restoration, providing a new life to many industrial wastes. Leaves are a by-product of several agricultural cultivations. In recent years, the scientific interest regarding leaf biochemical composition grew, recording that plant leaves may be considered an alternative source of bioactive substances. Plant leaves' main bioactive compounds are similar to those in fruits, i.e., phenolic acids and esters, flavonols, anthocyanins, and procyanidins. Bioactive compounds can positively influence human health; in fact, it is no coincidence that the leaves were used by our ancestors as a natural remedy for various pathological conditions. Therefore, leaves can be exploited to manufacture many products in food (e.g., being incorporated in food formulations as natural antioxidants, or used to create edible coatings or films for food packaging), cosmetic and pharmaceutical industries (e.g., promising ingredients in anti-aging cosmetics such as oils, serums, dermatological creams, bath gels, and other products). This review focuses on the leaves' main bioactive compounds and their beneficial health effects, indicating their applications until today to enhance them as a harvesting by-product and highlight their possible reuse for new potential healthy products.
Collapse
Affiliation(s)
- Lucia Regolo
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali – Università Politecnica delle Marche, Ancona, Italy
| | - Francesca Giampieri
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Maurizio Battino
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Product Processing, Jiangsu University, Zhenjiang, China
| | - Yasmany Armas Diaz
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Bruno Mezzetti
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali – Università Politecnica delle Marche, Ancona, Italy
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
| | - Maria Elexpuru-Zabaleta
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
| | - Cristina Mazas
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
- Universidad Internacional Iberoamericana, Campeche, Mexico
| | - Kilian Tutusaus
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
- Research Center for Foods, Nutritional Biochemistry and Health, Universidade Internacional do Cuanza, Cuito, Angola
| | - Luca Mazzoni
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali – Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
3
|
Bourdas DI, Travlos AK, Souglis A, Stavropoulou G, Zacharakis E, Gofas DC, Bakirtzoglou P. Effects of a Singular Dose of Mangiferin-Quercetin Supplementation on Basketball Performance: A Double-Blind Crossover Study of High-Level Male Players. Nutrients 2024; 16:170. [PMID: 38201999 PMCID: PMC10781150 DOI: 10.3390/nu16010170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/26/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
Pre-exercise mangiferin-quercetin may enhance athletic performance. This study investigated the effect of mangiferin-quercetin supplementation on high-level male basketball players during a basketball exercise simulation test (BEST) comprising 24 circuits of 30 s activities with various movement distances. The participants were divided into two groups (EXP = 19 and CON = 19) and given a placebo one hour before the BEST (PRE-condition). The following week, the EXP group received mangiferin-quercetin (84 mg/140 mg), while the CON group received a placebo (POST-condition) before the BEST in a double-blind, cross-over design. The mean heart rate (HR) and circuit and sprint times (CT and ST) during the BEST were measured, along with the capillary blood lactate levels (La-), the subjective rating of muscle soreness (RPMS), and the perceived exertion (RPE) during a resting state prior to and following the BEST. The results showed significant interactions for the mean CT (p = 0.013) and RPE (p = 0.004); a marginal interaction for La- (p = 0.054); and non-significant interactions for the mean HR, mean ST, and RPMS. Moreover, the EXP group had significantly lower values in the POST condition for the mean CT (18.17 ± 2.08 s) and RPE (12.42 ± 1.02) compared to the PRE condition (20.33 ± 1.96 s and 13.47 ± 1.22, respectively) and the POST condition of the CON group (20.31 ± 2.10 s and 13.32 ± 1.16, respectively) (p < 0.05). These findings highlight the potential of pre-game mangiferin-quercetin supplementation to enhance intermittent high-intensity efforts in sports such as basketball.
Collapse
Affiliation(s)
- Dimitrios I. Bourdas
- Section of Sport Medicine & Biology of Exercise, School of Physical Education and Sports Science, National and Kapodistrian University of Athens, 41 Ethnikis Antistasis, 17237 Daphne, Greece; (D.I.B.); (A.S.); (E.Z.)
| | - Antonios K. Travlos
- Department of Sports Organization and Management, Faculty of Human Movement and Quality of Life Sciences, University of Peloponnese, Efstathiou and Stamatikis Valioti & Plataion Avenue, 23100 Sparta, Greece;
| | - Athanasios Souglis
- Section of Sport Medicine & Biology of Exercise, School of Physical Education and Sports Science, National and Kapodistrian University of Athens, 41 Ethnikis Antistasis, 17237 Daphne, Greece; (D.I.B.); (A.S.); (E.Z.)
| | - Georgia Stavropoulou
- School of Philosophy and Education, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece;
| | - Emmanouil Zacharakis
- Section of Sport Medicine & Biology of Exercise, School of Physical Education and Sports Science, National and Kapodistrian University of Athens, 41 Ethnikis Antistasis, 17237 Daphne, Greece; (D.I.B.); (A.S.); (E.Z.)
| | - Dimitrios C. Gofas
- Arsakeia-Tositseia Schools, Philekpaideftiki Etaireia, Mitilinis 26, 11256 Athens, Greece;
| | - Panteleimon Bakirtzoglou
- Faculty of Sport Sciences & Physical Education, Metropolitan College, Eleftheriou Venizelou 14, 54624 Thessaloniki, Greece
| |
Collapse
|
4
|
Soesanto S, Hepziba ER, Yasnill, Widyarman AS. The Antibacterial and Antibiofilm Effect of Amoxicillin and Mangifera indica L. Leaves Extract on Oral Pathogens. Contemp Clin Dent 2023; 14:145-151. [PMID: 37547439 PMCID: PMC10399797 DOI: 10.4103/ccd.ccd_399_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/06/2023] [Accepted: 02/21/2023] [Indexed: 08/08/2023] Open
Abstract
Objective This study aimed to determine the antibacterial and antibiofilm effects of amoxicillin combined with extract of Mangifera indica L. leaves against Staphylococcus aureus and Porphyromonas gingivalis. Materials and Methods This was an experimental laboratory in vitro study with a posttest-only control group design. An antibacterial test using the plate count method and an antibiofilm test using the microtiter plate biofilm assay method were conducted. The research samples comprised extract of M. indica L. leaves with a concentration of 100%; amoxicillin and extract concentrations of 3.125%, 6.25%, 12.5%, 25%, 50%, and 100%; and amoxicillin. Dimethyl sulfoxide served as a negative control and co-amoxiclav served as a positive control. Results The combination of amoxicillin and the extract exhibited an antibacterial effect against S. aureus at a concentration of 12.5% and higher and more effective than co-amoxiclac P. gingivalis at a concentration of 3.125% and higher. In the antibiofilm test, the combination of amoxicillin and the extract at a concentration of 25% after 1 h of incubation and a concentration of 6.25% after 3 h of incubation inhibited S. aureus. The inhibition of S. aureus biofilms at a concentration of 100% after 24 h of incubation was as effective as that of co-amoxiclav. The extract at a concentration of 25% over the entire incubation period showed more potent inhibition against the P. gingivalis biofilm than co-amoxiclav. Conclusions The ethanolic extract of M. indica L. leaves and the combination of amoxicillin and the extract have the potential to inhibit the growth and formation of S. aureus and P. gingivalis biofilms.
Collapse
Affiliation(s)
- Sheila Soesanto
- Department of Pharmacology, Faculty of Dentistry, Universitas Trisakti, Jakarta, Indonesia
| | | | - Yasnill
- Undergraduate Student, Faculty of Dentistry, Universitas Trisakti, Jakarta, Indonesia
| | - Armelia Sari Widyarman
- Department of Microbiology, Faculty of Dentistry, Universitas Trisakti, Jakarta, Indonesia
| |
Collapse
|
5
|
Zarasvand SA, Mullins AP, Arjmandi B, Haley-Zitlin V. Antidiabetic properties of mango in animal models and humans: A systematic review. Nutr Res 2023; 111:73-89. [PMID: 36841190 DOI: 10.1016/j.nutres.2023.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 11/25/2022] [Accepted: 01/21/2023] [Indexed: 01/30/2023]
Abstract
Mango has long been an attractive source of nutrition and pharmacological therapeutics. The mango plant (Mangifera indica L.) contains bioactive compounds that may have antidiabetic properties. This systematic review investigated the evidence for antidiabetic properties of the different parts of the mango plant in managing type 2 diabetes mellitus in animal models and humans. The electronic databases PubMed, FSTA, Web of Science, CINAHL, MEDLINE, and Cochrane Library were systematically searched to identify articles with clear objectives and methodologies available in the English language with publication date limits up to December 2020. Twenty-eight of 1001 animal and human studies met the inclusion criteria that investigated antidiabetic properties of mango from leaf (31%), flesh (38%), seed-kernel (7%), peel (14%), stem-bark (7%), and by-product (3%). Results support the glucose-lowering properties of mango in both animals and human. Proposed antidiabetic mechanisms of action include inhibition of α-amylase and α-glucosidase, improved antioxidant status, improved insulin sensitivity, facilitated glucose uptake, and gene regulation of glucose transporter type 4, insulin receptor substrate 1, and phosphoinositide 3-kinase. The animal and randomized control trial findings suggest that mango may be beneficial as an antidiabetic agent. Although these studies hold promise, additional observational studies and randomized control trials are required because human studies are significantly fewer in number, use mango flesh almost exclusively, and had modest blood glucose effects. Additional research gaps include identifying the mechanisms of action for the different components of the mango plant.
Collapse
Affiliation(s)
| | - Amy P Mullins
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA; Department of Family and Consumer Sciences-Leon County Extension Services, University of Florida Institute of Food and Agricultural Sciences, Tallahassee, FL 32301, USA.
| | - Bahram Arjmandi
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA.
| | - Vivian Haley-Zitlin
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634-0316, USA.
| |
Collapse
|
6
|
Zhang X, Li M, Zhen L, Wang Y, Wang Y, Qin Y, Zhang Z, Zhao T, Cao J, Liu Y, Cheng G. Ultra-High Hydrostatic Pressure Pretreatment on White Que Zui Tea: Chemical Constituents, Antioxidant, Cytoprotective, and Anti-Inflammatory Activities. Foods 2023; 12:628. [PMID: 36766156 PMCID: PMC9914134 DOI: 10.3390/foods12030628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/14/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Herbal tea has numerous biological activities and exhibits broad benefits for human health. In China, the flower buds of Lyonia ovalifolia are traditionally processed as herbal tea, namely White Que Zui tea (WQT). This study was aimed to evaluate the effect of ultra-high hydrostatic pressure (UHHP) pretreatment on the chemical constituents and biological activities of free, esterified, and insoluble-bound phenolic fractions from WQT. A total of 327 chemical constituents were identified by a quasi-targeted metabolomics analysis. UHHP pretreatment extremely inhibited reactive oxygen species (ROS) production and cell apoptosis in H2O2-induced HepG2 cells, and it increased the activities of intracellular antioxidant enzymes (SOD and CAT) and GSH content in different phenolic fractions from WQT. In addition, after UHHP pretreatment, the anti-inflammatory effects of different phenolic fractions from WQT were improved by inhibiting the production of nitric oxide (NO) and pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β) in LPS-induced RAW264.7 cells. Thus, the UHHP method might be a potential pretreatment strategy for improving the bioavailability of phytochemicals from natural plants.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- The Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Mengcheng Li
- The Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650000, China
| | - Li Zhen
- The Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yudan Wang
- The Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yifen Wang
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650000, China
| | - Yuyue Qin
- The Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhihong Zhang
- The Faculty of Food and Bioengineering, Jiangsu University, Zhenjiang 212013, China
| | - Tianrui Zhao
- The Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Jianxin Cao
- The Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yaping Liu
- The Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Guiguang Cheng
- The Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
7
|
Miller N, Joubert E. Critical Assessment of In Vitro Screening of α-Glucosidase Inhibitors from Plants with Acarbose as a Reference Standard. PLANTA MEDICA 2022; 88:1078-1091. [PMID: 34662924 DOI: 10.1055/a-1557-7379] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Postprandial hyperglycemia is treated with the oral antidiabetic drug acarbose, an intestinal α-glucosidase inhibitor. Side effects of acarbose motivated a growing number of screening studies to identify novel α-glucosidase inhibitors derived from plant extracts and other natural sources. As "gold standard", acarbose is frequently included as the reference standard to assess the potency of these candidate α-glucosidase inhibitors, with many outperforming acarbose by several orders of magnitude. The results are subsequently used to identify suitable compounds/products with strong potential for in vivo efficacy. However, most α-glucosidase inhibitor screening studies use enzyme preparations obtained from nonmammalian sources (typically Saccharomyces cerevisiae), despite strong evidence that inhibition data obtained using nonmammalian α-glucosidase may hold limited value in terms of identifying α-glucosidase inhibitors with actual in vivo hypoglycemic potential. The aim was to critically discuss the screening of novel α-glucosidase inhibitors from plant sources, emphasizing inconsistencies and pitfalls, specifically where acarbose was included as the reference standard. An assessment of the available literature emphasized the cruciality of stating the biological source of α-glucosidase in such screening studies to allow for unambiguous and rational interpretation of the data. The review also highlights the lack of a universally adopted screening assay for novel α-glucosidase inhibitors and the commercial availability of a standardized preparation of mammalian α-glucosidase.
Collapse
Affiliation(s)
- Neil Miller
- Department of Food Science, Stellenbosch University, South Africa
- Plant Bioactives Group, Post-Harvest & Agro-Processing Technologies, Agricultural Research Council (ARC) Infruitec-Nietvoorbij, Stellenbosch, South Africa
| | - Elizabeth Joubert
- Department of Food Science, Stellenbosch University, South Africa
- Plant Bioactives Group, Post-Harvest & Agro-Processing Technologies, Agricultural Research Council (ARC) Infruitec-Nietvoorbij, Stellenbosch, South Africa
| |
Collapse
|
8
|
Zhang YQ, Zhang M, Wang ZL, Qiao X, Ye M. Advances in plant-derived C-glycosides: Phytochemistry, bioactivities, and biotechnological production. Biotechnol Adv 2022; 60:108030. [PMID: 36031083 DOI: 10.1016/j.biotechadv.2022.108030] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/01/2022] [Accepted: 08/22/2022] [Indexed: 02/06/2023]
Abstract
C-glycosides represent a large group of natural products with a C-C bond between the aglycone and the sugar moiety. They exhibit great structural diversity, wide natural distribution, and significant biological activities. By the end of 2021, at least 754 C-glycosides and their derivatives have been isolated and characterized from plants. Thus far, 66 functional C-glycosyltransferases (CGTs) have been discovered from plants, and provide green and efficient approaches to synthesize C-glycosides. Herein, advances in plant-derived C-glycosides are comprehensively summarized from aspects of structural diversity and identification, bioactivities, and biotechnological production. New strategies to discover novel C-glycosides and CGTs, as well as the applications of biotechnological methods to produce C-glycosides in the future are also discussed.
Collapse
Affiliation(s)
- Ya-Qun Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Meng Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Zi-Long Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China; Peking University-Yunnan Baiyao International Medical Research Center, 38 Xueyuan Road, Beijing 100191, China.
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China; Peking University-Yunnan Baiyao International Medical Research Center, 38 Xueyuan Road, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| |
Collapse
|
9
|
Usai R, Majoni S, Rwere F. Natural products for the treatment and management of diabetes mellitus in Zimbabwe-a review. Front Pharmacol 2022; 13:980819. [PMID: 36091798 PMCID: PMC9449367 DOI: 10.3389/fphar.2022.980819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/02/2022] [Indexed: 12/19/2022] Open
Abstract
Use of medicinal plants and herbs in the treatment and management of diseases, including diabetes mellitus and its complications remains an integral part of African tradition. In Zimbabwe, nearly one million people are living with diabetes mellitus. The prevalence of diabetes mellitus in Zimbabwe is increasing every year due to lifestyle changes, and has accelerated the use of traditional medicines for its treatment and management in urban areas. In addition, the high cost of modern medicine has led many people in rural parts of Zimbabwe to rely on herbal plant medicine for the treatment of diabetes mellitus and its complications. This review highlights a number of studies carried out to evaluate the antidiabetic properties of indigenous plants found in Zimbabwe with the goal of treating diabetes mellitus. Further, we discuss the mechanism of action of various plant extracts in the treatment and management of diabetes mellitus. Together, this review article can open pathways leading to discovery of new plant derived medicines and regularization of use of crude plant remedies to treat diabetes mellitus by the Zimbabwean government and others across Africa.
Collapse
Affiliation(s)
- Remigio Usai
- Department of Chemistry, Marquette University, Milwaukee, WI, United States
| | - Stephen Majoni
- Department of Chemical and Forensic Sciences, Botswana International University of Science and Technology, Palapye, Botswana
| | - Freeborn Rwere
- Department Anesthesiology, Perioperative, and Pain Medicine, School of Medicine, Stanford University, Stanford, CA, United States
- Department of Chemistry, School of Natural Sciences and Mathematics, Chinhoyi University of Technology, Chinhoyi, Zimbabwe
- *Correspondence: Freeborn Rwere,
| |
Collapse
|
10
|
Zhang J, Wang YD, Xue QW, Zhao TR, Khan A, Wang YF, Liu YP, Cao JX, Cheng GG. The effect of ultra-high pretreatment on free, esterified and insoluble-bound phenolics from mango leaves and their antioxidant and cytoprotective activities. Food Chem 2022; 368:130864. [PMID: 34438172 DOI: 10.1016/j.foodchem.2021.130864] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/28/2021] [Accepted: 08/11/2021] [Indexed: 01/06/2023]
Abstract
Ultra-high pressure (UHP) is a novel non-thermal pretreatment method in food processing for improving the extraction yield of polyphenols and functional properties. The present work investigated the phenolic profiles, antioxidant activities, and cytoprotective effects of the free, esterified, and insoluble-bound phenolic fractions from mango leaves before and after ultra-high pressure (UHP) treatment. UHPLC-Q-Orbitrap-MS/MS analysis resulted in the identification of 42 phenolic compounds in the different phenolic forms. UHP pretreatment could significantly influence the contents of total phenols, total flavonoids and individual compounds in the different phenolic fractions (p < 0.05). After UHP pretreatment, these phenolic fractions exhibited greater antioxidant activity, and inhibited reactive oxygen species production and cell apoptosis (p < 0.05). Meanwhile, IBP were the most potential antioxidative and cytoprotective ingredients. Therefore, UHP pretreated mango leaves with enhanced bioactivity could be used as biological agents in the health food industry to improve its application and economic values.
Collapse
Affiliation(s)
- Jing Zhang
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming 650500, People's Republic of China
| | - Yu-Dan Wang
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming 650500, People's Republic of China; National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, People's Republic of China
| | - Qing-Wang Xue
- Department of Chemistry, Liaocheng University, Liaocheng 252059, China
| | - Tian-Rui Zhao
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming 650500, People's Republic of China
| | - Afsar Khan
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Yi-Fen Wang
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650000, People's Republic of China
| | - Ya-Ping Liu
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming 650500, People's Republic of China
| | - Jian-Xin Cao
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming 650500, People's Republic of China
| | - Gui-Guang Cheng
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming 650500, People's Republic of China.
| |
Collapse
|
11
|
Bioactivity-Guided Isolation of Phytochemicals from Vaccinium dunalianum Wight and Their Antioxidant and Enzyme Inhibitory Activities. Molecules 2021; 26:molecules26072075. [PMID: 33916551 PMCID: PMC8038501 DOI: 10.3390/molecules26072075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 01/08/2023] Open
Abstract
Vaccinium dunalianum Wight, usually processed as a traditional folk tea beverage, is widely distributed in the southwest of China. The present study aimed to investigate the antioxidant, α-glucosidase and pancreatic lipase inhibitory activities of V.dunalianum extract and isolate the bioactive components. In this study, the crude extract (CE) from the buds of V. dunalianum was prepared by the ultrasound-assisted extraction method in 70% methanol and then purified with macroporous resin D101 to obtain the purified extract (PM). Five fractions (Fr. A–E) were further obtained by MPLC column (RP-C18). Bioactivity assays revealed that Fr. B with 40% methanol and Fr. D with 80% methanol had better antioxidant with 0.48 ± 0.03 and 0.62 ± 0.01 nM Trolox equivalent (TE)/mg extract for DPPH, 0.87 ± 0.02 and 1.58 ± 0.02 nM TE/mg extract for FRAP, 14.42 ± 0.41 and 19.25 ± 0.23 nM TE/mg extract for ABTS, and enzyme inhibitory effects with IC50 values of 95.21 ± 2.21 and 74.55 ± 3.85 for α-glucosidase, and 142.53 ± 11.45 and 128.76 ± 13.85 µg/mL for pancreatic lipase. Multivariate analysis indicated that the TPC and TFC were positively related to the antioxidant activities. Further phytochemical purification led to the isolation of ten compounds (1–10). 6-O-Caffeoylarbutin (7) showed significant inhibitory effects on α-glucosidase and pancreatic lipase enzymes with values of 38.38 ± 1.84 and 97.56 ± 7.53 µg/mL, and had the highest antioxidant capacity compared to the other compounds.
Collapse
|
12
|
Hasanah U, Miki K, Nitoda T, Kanzaki H. Aerobic bioconversion of C-glycoside mangiferin into its aglycone norathyriol by an isolated mouse intestinal bacterium. Biosci Biotechnol Biochem 2021; 85:989-997. [PMID: 33710320 DOI: 10.1093/bbb/zbaa121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/22/2020] [Indexed: 12/23/2022]
Abstract
Norathyriol is an aglycone of a xanthonoid C-glycoside mangiferin that possesses different bioactive properties useful for humans compared to mangiferin. Mangiferin is more readily available in nature than norathyriol; thus, efficient mangiferin conversion into norathyriol is desirable. There are a few reports regarding mangiferin C-deglycosylation because of the C-C bond resistance toward acid, alkaline, and enzyme hydrolysis. In this study, we isolated a mangiferin-deglycosylating bacterium strain KM7-1 from the mouse intestine. 16S rDNA sequencing indicated that KM7-1 belongs to the Bacillus genus. Compared to the taxonomically similar bacteria, the growth characteristic of facultative anaerobic and thermophilic resembled, yet only Bacillus sp. KM7-1 was able to convert mangiferin into norathyriol. Resting cells of Bacillus sp. KM7-1 obtained from aerobic cultivation at 50 °C showed high norathyriol formation from 1 m m of mangiferin. Norathyriol formation can be conducted either under aerobic or anaerobic conditions, and the reaction depended on time and bacterial amount.
Collapse
Affiliation(s)
- Uswatun Hasanah
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Kasumi Miki
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Teruhiko Nitoda
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Hiroshi Kanzaki
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| |
Collapse
|
13
|
Kumar M, Saurabh V, Tomar M, Hasan M, Changan S, Sasi M, Maheshwari C, Prajapati U, Singh S, Prajapat RK, Dhumal S, Punia S, Amarowicz R, Mekhemar M. Mango ( Mangifera indica L.) Leaves: Nutritional Composition, Phytochemical Profile, and Health-Promoting Bioactivities. Antioxidants (Basel) 2021; 10:299. [PMID: 33669341 PMCID: PMC7920260 DOI: 10.3390/antiox10020299] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 01/18/2023] Open
Abstract
Mangifera indica L. belongs to the family of Anacardiaceae and is an important fruit from South and Southeast Asia. India, China, Thailand, Indonesia, Pakistan, Mexico, Brazil, Bangladesh, Nigeria, and the Philippines are among the top mango producer countries. Leaves of the mango plant have been studied for their health benefits, which are attributed to a plethora of phytochemicals such as mangiferin, followed by phenolic acids, benzophenones, and other antioxidants such as flavonoids, ascorbic acid, carotenoids, and tocopherols. The extracts from mango leaves (MLs) have been studied for their biological activities, including anti-cancer, anti-diabetic, anti-oxidant, anti-microbial, anti-obesity, lipid-lowering, hepato-protection, and anti-diarrheal. In the present review, we have elaborated on the nutritional and phytochemical profile of the MLs. Further, various bioactivities of the ML extracts are also critically discussed. Considering the phytochemical profile and beneficial effects of the MLs, they can be used as a potential ingredient for the development of functional foods and pharmaceutical drugs. However, more detailed clinical trials still needed to be conducted for establishing the actual efficacy of the ML extracts.
Collapse
Affiliation(s)
- Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR—Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - Vivek Saurabh
- Division of Food Science and Postharvest Technology, ICAR—Indian Agricultural Research Institute, New Delhi 110012, India; (V.S.); (U.P.)
| | - Maharishi Tomar
- ICAR—Indian Grassland and Fodder Research Institute, Jhansi 284003, India;
| | - Muzaffar Hasan
- Agro Produce Processing Division, ICAR—Central Institute of Agricultural Engineering, Bhopal 462038, India;
| | - Sushil Changan
- Division of Crop Physiology, Biochemistry and Post-Harvest Technology, ICAR-Central Potato Research Institute, Shimla 171001, India;
| | - Minnu Sasi
- Division of Biochemistry, ICAR—Indian Agricultural Research Institute, New Delhi 110012, India;
| | - Chirag Maheshwari
- Department of Agriculture Energy and Power, ICAR—Central Institute of Agricultural Engineering, Bhopal 462038, India;
| | - Uma Prajapati
- Division of Food Science and Postharvest Technology, ICAR—Indian Agricultural Research Institute, New Delhi 110012, India; (V.S.); (U.P.)
| | - Surinder Singh
- Dr. S.S. Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh 160014, India;
| | - Rakesh Kumar Prajapat
- School of Agriculture, Suresh Gyan Vihar University, Jaipur 302017, Rajasthan, India;
| | - Sangram Dhumal
- Division of Horticulture, RCSM College of Agriculture, Kolhapur 416004, Maharashtra, India;
| | - Sneh Punia
- Department of Food, Nutrition, & packaging Sciences, Clemson University, Clemson, SC 29634, USA;
| | - Ryszard Amarowicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Tuwima 10, Poland;
| | - Mohamed Mekhemar
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrecht’s University, 24105 Kiel, Germany
| |
Collapse
|
14
|
Liu B, Chen N, Chen YX, Shen JJ, Xu Y, Ji YB. A new benzophenone with biological activities purified from Aspergillus fumigatus SWZ01. Nat Prod Res 2020; 35:5710-5719. [PMID: 32998585 DOI: 10.1080/14786419.2020.1825427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Strain SZW01 was isolated from sea sediment collected from Shenzhen in Guangdong province, China, and was later identified as Aspergillus fumigatus by16S rDNA sequence analysis. Various chromatographic processes led to the isolation and purification of three compounds from the fermentation culture of SZW01, including a new compound, 2,6'-dihydroxy-2,4'dimethoxy-8'-methyl-6-methoxy-acyl-ethyl-diphenylmethanone (1), and two known compounds: fumigaclavine C (2) and alternarosin A (3), as characterised by UV, IR, 1 D, 2 D-NMR and MS data. The antioxidant and α-glucosidase inhibitory activities of these compounds were evaluated. The result illustrated that compound 1 exhibited a moderate antioxidant activity and stronger α-glucosidase inhibitory activity than acarbose.
Collapse
Affiliation(s)
- Bing Liu
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin, China.,Postdoctoral Center of Chinese Pharmacy, Harbin University of Commerce, Harbin, China.,Postdoctoral workstation, Institute of Pharmacology, Harbin University of Commerce, Harbin, China
| | - Ning Chen
- Postdoctoral Center of Chinese Pharmacy, Harbin University of Commerce, Harbin, China.,National Center for Anti-cancer Natural Medicine Engineering, Harbin, China
| | - Ying-Xiang Chen
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin, China.,National Center for Anti-cancer Natural Medicine Engineering, Harbin, China
| | - Jie-Jing Shen
- National Center for Anti-cancer Natural Medicine Engineering, Harbin, China
| | - Ying Xu
- Postdoctoral Center of Chinese Pharmacy, Harbin University of Commerce, Harbin, China.,National Center for Anti-cancer Natural Medicine Engineering, Harbin, China
| | - Yu-Bin Ji
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin, China.,National Center for Anti-cancer Natural Medicine Engineering, Harbin, China
| |
Collapse
|
15
|
Gerardo-Lugo SS, Tovar-Pedraza JM, Maharachchikumbura SSN, Apodaca-Sánchez MA, Correia KC, Sauceda-Acosta CP, Camacho-Tapia M, Hyde KD, Marraiki N, Elgorban AM, Beltrán-Peña H. Characterization of Neopestalotiopsis Species Associated with Mango Grey Leaf Spot Disease in Sinaloa, Mexico. Pathogens 2020; 9:pathogens9100788. [PMID: 32992887 PMCID: PMC7600531 DOI: 10.3390/pathogens9100788] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 11/24/2022] Open
Abstract
Mango is one of the most popular and nutritious fruits in the world and Mexico is the world’s largest exporter. There are many diseases that directly affect fruit yield and quality. During the period 2016–2017, leaves with grey leaf spots were collected from 28 commercial mango orchards distributed in two main production areas in Sinaloa State of Mexico, and 50 Neopestalotiopsis isolates were obtained. Fungal identification of 20 representative isolates was performed using morphological characterization and phylogenetic analysis based on the internal transcribed spacer (ITS) region of ribosomal DNA, part of the translation elongation factor 1-alpha (TEF) and the β-tubulin (TUB) genes. Phylogenetic analysis indicated that the 20 isolates from this study formed four consistent groups, however, overall tree topologies do not consistently provide a stable and sufficient resolution. Therefore, even though morphological and phylogenetic separation is evident, these isolates were not assigned to any new taxa and were tentatively placed into four clades (clades A–D). Pathogenicity tests on detached mango leaves of cv. Kent showed that the 20 isolates that belong to the four Neopestalotiopsis clades from this study and induce lesions on mango leaves. This is the first report of species of Neopestalotiopsis causing mango grey leaf spot disease in Mexico.
Collapse
Affiliation(s)
- Saida S. Gerardo-Lugo
- Facultad de Agronomía, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa 80090, Mexico;
| | - Juan M. Tovar-Pedraza
- Laboratorio de Fitopatología, Coordinación Culiacán, Centro de Investigación en Alimentación y Desarrollo, Culiacán, Sinaloa 80110, Mexico;
| | - Sajeewa S. N. Maharachchikumbura
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
- Correspondence: (S.S.N.M.); (H.B.-P.); Tel.: +86-185-837-766-09 (S.S.N.M.); +52-687-161-0074 (H.B.-P.)
| | - Miguel A. Apodaca-Sánchez
- Departamento de Ciencias Naturales y Exactas, Unidad Regional Los Mochis, Universidad Autónoma de Occidente, Los Mochis, Sinaloa 81223, Mexico;
| | - Kamila C. Correia
- Centro de Ciências Agrárias e da Biodiversidade, Universidade Federal do Cariri, Crato, Ceará 63.133-610, Brazil;
| | - Carlos P. Sauceda-Acosta
- Facultad de Agricultura del Valle del Fuerte, Universidad Autónoma de Sinaloa, Ahome, Sinaloa 81110, Mexico;
| | - Moisés Camacho-Tapia
- Laboratorio Nacional de Investigación y Servicio Agroalimentario y Forestal, Universidad Autónoma Chapingo, Texcoco 56230, Estado de México, Mexico;
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand;
| | - Najat Marraiki
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (N.M.); (A.M.E.)
| | - Abdallah M. Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (N.M.); (A.M.E.)
| | - Hugo Beltrán-Peña
- Departamento de Ciencias Naturales y Exactas, Unidad Regional Los Mochis, Universidad Autónoma de Occidente, Los Mochis, Sinaloa 81223, Mexico;
- Facultad de Agricultura del Valle del Fuerte, Universidad Autónoma de Sinaloa, Ahome, Sinaloa 81110, Mexico;
- Correspondence: (S.S.N.M.); (H.B.-P.); Tel.: +86-185-837-766-09 (S.S.N.M.); +52-687-161-0074 (H.B.-P.)
| |
Collapse
|
16
|
Mugaranja KP, Kulal A. Alpha glucosidase inhibition activity of phenolic fraction from Simarouba glauca: An in-vitro, in-silico and kinetic study. Heliyon 2020; 6:e04392. [PMID: 32671273 PMCID: PMC7350133 DOI: 10.1016/j.heliyon.2020.e04392] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/31/2020] [Accepted: 07/01/2020] [Indexed: 01/18/2023] Open
Abstract
A phenolic rich fraction purified from Simarouba glauca leaves was effective in alpha glucosidase inhibition. The purified fraction named 'fraction-14' had shown significant inhibition of yeast alpha glucosidase enzyme activity (IC50 = 2.4 ± 0.4 μg/mL) when compared to anti-diabetic drug acarbose (IC50 = 2450 ± 24 μg/mL). The purified fraction also had reasonable DPPH (IC50 = 14.4 ± 0.1 μg/mL) and ABTS (IC50 = 7.6 ± 0.5 μg/mL) free radical scavenging activity when compared to the standard ascorbic acid. The LC-MS analysis of bioactive 'fraction-14' revealed four compounds, eclalbasaponin-v (1), cyanidin-3-O-(2'galloyl)-galactoside (2), kaempferol-3-O-glucoside (3) and kaempferol-3-O-pentoside (4) for the first time in S. glauca in this study. The kinetic study of the 'fraction-14' indicates a mixed type of inhibition on the alpha glucosidase enzyme with K i , 6.2 μg/mL. Docking studies showed promising binding energy for the compounds 2 (-7.769 kJ/mol), 3 (-7.04 kJ/mol) and 4 (-7.127 kJ/mol) against yeast alpha glucosidase which was better than acarbose (-6.867 kJ/mol). In conclusion, the phenolic rich fraction from S. glauca possessing good in-vitro antioxidant property and alpha glucosidase enzyme inhibition potential along with mixed inhibition kinetics. Also, better binding energy of compounds (1, 2 & 3) appears to contain potential lead-molecule for antidiabetic therapy.
Collapse
Affiliation(s)
- Kirana P. Mugaranja
- Biological Sciences Division, Poornaprajna Institute of Scientific Research, Bidalur Post, Devanahalli, Bangalore Rural, 562110, India
- Manipal Academy of Higher Education, Manipal, 576104, India
| | - Ananda Kulal
- Biological Sciences Division, Poornaprajna Institute of Scientific Research, Bidalur Post, Devanahalli, Bangalore Rural, 562110, India
- Corresponding author.
| |
Collapse
|
17
|
Zhu PF, Zhao YL, Dai Z, Qin XJ, Yuan HL, Jin Q, Wang YF, Liu YP, Luo XD. Phenolic Amides with Immunomodulatory Activity from the Nonpolysaccharide Fraction of Lycium barbarum Fruits. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3079-3087. [PMID: 32059104 DOI: 10.1021/acs.jafc.9b07499] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The fruits of Lycium barbarum have a long history as an edible and medicinal food in Asian regions and have multiple consumption methods; the polysaccharides (LBPs) are commonly considered as their major immunological constituents. The current study revealed that the total phenolic amide moieties from L. barbarum fruits showed greater potential immunomodulatory activity in vivo than did LBPs. Through subsequent investigation on the immunological bioactive phenolic amides, three new phenolic amides, lyciumamides L-N (1-3), as well as 12 analogues, were obtained from the total phenolic amide fraction. Extensive spectroscopic methods were used to elucidate the new structures. Compounds 4-6 and 15 significantly promoted LPS-stimulated B splenocyte, while compounds 4-6 displayed accelerative effects on the proliferation of Con A-stimulated T lymphocytes at a concentration of 20.0 μg/mL. These data indicated that extracts from L. barbarum fruits enriched with phenolic amides could be developed as a nutritional dietary supplement for immunocompromised individuals.
Collapse
Affiliation(s)
- Pei-Feng Zhu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yun-Li Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Zhi Dai
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Xu-Jie Qin
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Hai-Lian Yuan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Qiong Jin
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yi-Fen Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Ya-Ping Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
- Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming 650500, People's Republic of China
| | - Xiao-Dong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| |
Collapse
|
18
|
Gelabert-Rebato M, Martin-Rincon M, Galvan-Alvarez V, Gallego-Selles A, Martinez-Canton M, Vega-Morales T, Wiebe JC, Fernandez-Del Castillo C, Castilla-Hernandez E, Diaz-Tiberio O, Calbet JAL. A Single Dose of The Mango Leaf Extract Zynamite ® in Combination with Quercetin Enhances Peak Power Output During Repeated Sprint Exercise in Men and Women. Nutrients 2019; 11:E2592. [PMID: 31661850 PMCID: PMC6893764 DOI: 10.3390/nu11112592] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 02/06/2023] Open
Abstract
The mango leaf extract rich in mangiferin Zynamite® improves exercise performance when combined with luteolin or quercetin ingested at least 48 h prior to exercise. To determine whether a single dose of Zynamite® administered 1 h before exercise increases repeated-sprint performance, 20 men and 20 women who were physically active were randomly assigned to three treatments following a double-blind cross-over counterbalanced design. Treatment A, 140 mg of Zynamite®, 140 mg of quercetin, 147.7 mg of maltodextrin, and 420 mg of sunflower lecithin; Treatment B, 140 mg of Zynamite®, 140 mg of quercetin, and 2126 mg of maltodextrin and Treatment C, 2548 mg of maltodextrin (placebo). Subjects performed three Wingate tests interspaced by 4 min and a final 15 s sprint after ischemia. Treatments A and B improved peak power output during the first three Wingates by 2.8% and 3.8%, respectively (treatment x sprint interaction, p = 0.01). Vastus Lateralis oxygenation (NIRS) was reduced, indicating higher O2 extraction (treatment × sprint interaction, p = 0.01). Improved O2 extraction was observed in the sprints after ischemia (p = 0.008; placebo vs. mean of treatments A and B). Blood lactate concentration was 5.9% lower after the ingestion of Zynamite® with quercetin in men (treatment by sex interaction, p = 0.049). There was a higher Vastus Lateralis O2 extraction during 60 s ischemia with polyphenols (treatment effect, p = 0.03), due to the greater muscle VO2 in men (p = 0.001). In conclusion, a single dose of Zynamite® combined with quercetin one hour before exercise improves repeated-sprint performance and muscle O2 extraction and mitochondrial O2. consumption during ischemia. No advantage was obtained from the addition of phospholipids.
Collapse
Affiliation(s)
- Miriam Gelabert-Rebato
- Department of Physical Education and Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017 Las Palmas de Gran Canaria, Spain.
- Nektium Pharma, Agüimes, 35118 Las Palmas de Gran Canaria, Spain.
| | - Marcos Martin-Rincon
- Department of Physical Education and Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017 Las Palmas de Gran Canaria, Spain.
| | - Victor Galvan-Alvarez
- Department of Physical Education and Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017 Las Palmas de Gran Canaria, Spain.
| | - Angel Gallego-Selles
- Department of Physical Education and Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017 Las Palmas de Gran Canaria, Spain.
| | - Miriam Martinez-Canton
- Department of Physical Education and Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017 Las Palmas de Gran Canaria, Spain.
| | | | - Julia C Wiebe
- Nektium Pharma, Agüimes, 35118 Las Palmas de Gran Canaria, Spain.
| | - Constanza Fernandez-Del Castillo
- Department of Physical Education and Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017 Las Palmas de Gran Canaria, Spain.
| | - Elizabeth Castilla-Hernandez
- Department of Physical Education and Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017 Las Palmas de Gran Canaria, Spain.
| | - Oriana Diaz-Tiberio
- Department of Physical Education and Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017 Las Palmas de Gran Canaria, Spain.
| | - Jose A L Calbet
- Department of Physical Education and Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017 Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
19
|
Wang WX, Cheng GG, Li ZH, Ai HL, He J, Li J, Feng T, Liu JK. Curtachalasins, immunosuppressive agents from the endophytic fungus Xylaria cf. curta. Org Biomol Chem 2019; 17:7985-7994. [DOI: 10.1039/c9ob01552c] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Eleven new cytochalasins were isolated from Xylaria cf. curta. Their selective immunosuppressive properties provide new clues for drug development of immunosuppressants.
Collapse
Affiliation(s)
- Wen-Xuan Wang
- School of Pharmaceutical Sciences
- South-Central University for Nationalities
- Wuhan
- PR China
| | - Gui-Guang Cheng
- Yunnan Institute of Food Safety
- Kunming University of Science and Technology
- Kunming 650500
- PR China
| | - Zheng-Hui Li
- School of Pharmaceutical Sciences
- South-Central University for Nationalities
- Wuhan
- PR China
| | - Hong-Lian Ai
- School of Pharmaceutical Sciences
- South-Central University for Nationalities
- Wuhan
- PR China
| | - Juan He
- School of Pharmaceutical Sciences
- South-Central University for Nationalities
- Wuhan
- PR China
| | - Jing Li
- School of Pharmaceutical Sciences
- South-Central University for Nationalities
- Wuhan
- PR China
| | - Tao Feng
- School of Pharmaceutical Sciences
- South-Central University for Nationalities
- Wuhan
- PR China
| | - Ji-Kai Liu
- School of Pharmaceutical Sciences
- South-Central University for Nationalities
- Wuhan
- PR China
| |
Collapse
|