1
|
Hinad I, S'hih Y, Mesfioui A, Elhessni A, Ouahidi ML. The Anti-hyperglycemic and Anti-hyperlipidemic Effects of Trigonella foenum-graecum L. Seeds on Fructose-induced Diabetic Wistar Rats. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 80:23. [PMID: 39739074 DOI: 10.1007/s11130-024-01276-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/30/2024] [Indexed: 01/02/2025]
Abstract
Trigonella foenum-graecum L. (fenugreek) seeds are widely used in the preparation of various meals and in traditional health care to treat various disorders and diseases, especially Diabetes mellitus. This study was conducted to investigate the antihyperglycemic and antihyperlipidemic effects of the fenugreek seed extract on fructose-induced diabetic wistar rats. Indeed, 5 groups of rats were formed; the first and second groups were composed of normal rats treated with distilled water and fenugreek seed extract, respectively. The third, fourth, and fifth groups composed of diabetic rats were administered distilled water, 500 mg/kg of fenugreek seed extract, and 25 µg/kg. bw of a standard antidiabetic drug consecutively for 28 days. The repeated ingestion of fenugreek seed generated a significant rise (p < 0.05) of food and water consumption in diabetic rats as compared to the rats treated with distilled water. Furthermore, fenugreek seed extract caused a remarkable elevation of the body weights of diabetic rats in comparison with other groups. Additionally, chronic treatment of rats with fenugreek seed extract improved fasting blood sugar, total cholesterol and triglycerides levels in diabetic rats. Fenugreek seed extract has significant anti-diabetic activity by reducing the fasting blood sugar and ameliorating the lipid parameters of diabetic rats. However, more studies are required to isolate the phytochemical constituents that possess these activities and elucidate their mechanisms of action.
Collapse
Affiliation(s)
- Ibrahim Hinad
- Laboratory of Biology and Health, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco.
| | - Youssef S'hih
- Laboratory of Biology and Health, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Abdelhalem Mesfioui
- Laboratory of Biology and Health, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Aboubaker Elhessni
- Laboratory of Biology and Health, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Moulay Laarbi Ouahidi
- Laboratory of Biology and Health, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| |
Collapse
|
2
|
Neha, Chaudhary S, Tiwari P, Parvez S. Amelioration of Phytanic Acid-Induced Neurotoxicity by Nutraceuticals: Mechanistic Insights. Mol Neurobiol 2024; 61:7303-7318. [PMID: 38374317 DOI: 10.1007/s12035-024-03985-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2024]
Abstract
Phytanic acid (PA) (3,7,11,15-tetramethylhexadecanoic acid) is a methyl-branched fatty acid that enters the body through food consumption, primarily through red meat, dairy products, and fatty marine foods. The metabolic byproduct of phytol is PA, which is then oxidized by the ruminal microbiota and some marine species. The first methyl group at the 3-position prevents the β-oxidation of branched-chain fatty acid (BCFA). Instead, α-oxidation of PA results in the production of pristanic acid (2,10,14-tetramethylpentadecanoic acid) with CO2. This fatty acid (FA) builds up in individuals with certain peroxisomal disorders and is historically linked to neurological impairment. It also causes oxidative stress in synaptosomes, as demonstrated by an increase in the production of reactive oxygen species (ROS), which is a sign of oxidative stress. This review concludes that the nutraceuticals (melatonin, piperine, quercetin, curcumin, resveratrol, epigallocatechin-3-gallate (EGCG), coenzyme Q10, ω-3 FA) can reduce oxidative stress and enhanced the activity of mitochondria. Furthermore, the use of nutraceuticals completely reversed the neurotoxic effects of PA on NO level and membrane potential. Additionally, the review further emphasizes the urgent need for more research into dairy-derived BCFAs and their impact on human health.
Collapse
Affiliation(s)
- Neha
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110 062, India
| | - Shaista Chaudhary
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110 062, India
| | - Prachi Tiwari
- Department of Physiotherapy, School of Nursing Sciences and Allied Health, Jamia Hamdard, New Delhi, 110 062, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110 062, India.
| |
Collapse
|
3
|
Çebi K, Yangılar F. Evaluation of α-glucosidase inhibitor activity and bioactive compounds in purple wheat flour yogurts. Int J Biol Macromol 2024; 280:135373. [PMID: 39299423 DOI: 10.1016/j.ijbiomac.2024.135373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/16/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024]
Abstract
Nowadays, the food industry attaches more importance to studies on using purple components in food formulations due to their bioactive properties. This study evaluated the phenolic compound content, antioxidant activity, physicochemical properties, sensory properties, and α-glucosidase activities in yogurt enriched with purple wheat flour. Yogurts were produced using varying concentrations of purple wheat flour labeled as sample A (1.5 %), sample B (3 %), and sample C (4.5 %). It was observed that incorporating purple wheat flour led to a decrease in pH and an increase in L*, a*, and b* values, as well as the acidity and viscosity of the yogurts. Sample C contained the highest phenolic content (37.6 mg GAE/100 g dry matter) on day 14, along with the highest flavonoid content (14.59 mg CE/100 g) on day 21 when than control yogurt. In addition, sample C had the highest α-glucosidase activity (38.35 %) on day 14 and anthocyanin content (13.55 g/100 g) on day 21. As a result, C yogurt can be consumed as a diabetic product with antidiabetic and antihypertensive properties by reaching optimal α-glycosidase inhibition activity. Furthermore, yogurts containing purple wheat flour received higher sensory scores from panelists.
Collapse
Affiliation(s)
- Kadir Çebi
- Department of Nutrition and Dietetics, Health of Faculty, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Filiz Yangılar
- Department of Nutrition and Dietetics, Health of Faculty, Erzincan Binali Yıldırım University, Erzincan, Turkey.
| |
Collapse
|
4
|
Singletary KW. Potential Benefit of Spices for Glycemic Control. NUTRITION TODAY 2024; 59:182-194. [DOI: 10.1097/nt.0000000000000695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The prevalence of hyperglycemia is increasing worldwide in large part due to the escalating prevalence of obesity. It can occur along with other disorders and diseases, contributing to escalating health costs and accumulating disabilities. Besides dietary approaches and availability of antidiabetic medications, other complementary approaches and adjunct therapies using biologically active botanical phytochemicals have received growing attention for managing type 2 diabetes mellitus. Spices are one source of these bioactive plant constituents, and considerable preclinical studies have investigated their possible health benefits. There also are an increasing number of human clinical trials assessing the ability of spices and their individual plant constituents to improve glucose homeostasis in those with type 2 diabetes mellitus and other dysglycemic conditions. This narrative review provides a summary of the human studies evaluating the effects of select spices on glucose homeostasis and highlights areas for future research.
Collapse
|
5
|
Pradhan M, Hedaoo R, Joseph A, Jain R. Charting Wellness in India: Piloting the iTHRIVE's Functional Nutrition Approach to Improve Glycaemic and Inflammatory Parameters in Prediabetes and Type 2 Diabetes Mellitus. Cureus 2024; 16:e63744. [PMID: 39100011 PMCID: PMC11296214 DOI: 10.7759/cureus.63744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2024] [Indexed: 08/06/2024] Open
Abstract
Introduction Type 2 diabetes mellitus (T2DM) is characterized by elevation of blood glucose levels due to underlying insulin resistance and inflammation. Multiple modifiable risk factors such as unhealthy dietary habits, physical inactivity, obesity, smoking and psychological stress contribute to T2DM. We investigated the efficacy of a comprehensive functional nutrition approach aimed at mitigating T2DM using the iTHRIVE approach which encompassed anti-inflammatory and elimination diets, micronutrient supplements, physical activity, stress management and environmental modifications through a pre-post study design. The research assessed changes in blood glucose and inflammatory markers following the implementation of the functional nutrition program. Methods A prospective pre-post intervention pilot study was conducted at ThriveTribe Wellness Solutions Pvt Ltd. (iTHRIVE), where 50 study participants from urban areas of Pune city, India (n=25 each group) were recruited voluntarily in the age group of 20-60 years. The participants were subjected to 90 days of the iTHRIVE functional nutrition approach which consisted of eliminating certain inflammatory foods and adding a combination of nutritious organic foods, adding dietary supplements like magnesium, vitamin D, alpha lipoic acid, chromium picolinate, berberine and biogymnema, physical activities like resistance training, stress reduction techniques like meditation and deep breathing exercises along with environmental changes. The blood parameters like fasting blood glucose, postprandial blood glucose, glycated haemoglobin (HbA1C), fasting serum insulin, post-prandial serum insulin, high sensitivity C-reactive protein (hs-CRP), erythrocyte sedimentation rate (ESR), vitamin D, body weight and waist circumference were measured before and after the intervention. The changes were statistically analyzed using a paired t-test. Results The mean age of the participants was found to be 43.76±10.58 years. Around 68% of the participants were prediabetic (HbA1c: 5.7-6.4%) and 32% had T2DM (HbA1c ≥6.5%). A significant reduction was observed in the average HbA1c (13.75% reduction, p<0.0001), average post-prandial blood glucose levels (14.51% reduction, p<0.048), average post-prandial serum insulin (34.31% reduction, p<0.017) and average ESR levels (34.51% reduction, p<0.006). The hs-CRP levels were reduced by 6.6%, but not statistically significant. The average body weight of the participants dropped from 78.59±15.18 kg to 75.20±14.20 kg with a mean loss of 2.91 kg (p<0.05) whereas the waist circumference decreased from 37.54±5.09 to 35.97±4.74 inches with an average loss of 1.19 inches (p<0.0004). Conclusions Following the intervention, several health indicators indicated significant improvements. Particularly, there was a significant drop in HbA1c levels, suggesting better long-term blood glucose control. Blood glucose and serum insulin levels after a meal dropped significantly, indicating enhanced insulin sensitivity. There was a decrease in systemic inflammation as evidenced by the decrease in ESR levels. These results imply that the iTHRIVE functional nutrition approach used in this investigation might be beneficial for enhancing glycemic control and insulin sensitivity, along with reducing inflammatory markers in people with prediabetes and T2DM. Larger sample sizes and longer periods of monitoring would be useful in subsequent research to validate and build on these encouraging findings.
Collapse
Affiliation(s)
- Mugdha Pradhan
- Nutrition, ThriveTribe Wellness Solutions Pvt Ltd., Pune, IND
| | - Radhika Hedaoo
- Nutrition, Symbiosis School of Culinary Arts, Symbiosis International (Deemed University), Pune, IND
| | - Anitta Joseph
- Nutrition, ThriveTribe Wellness Solutions Pvt Ltd., Pune, IND
| | - Ria Jain
- Nutrition, ThriveTribe Wellness Solutions Pvt Ltd., Pune, IND
| |
Collapse
|
6
|
Syaifie PH, Ibadillah D, Jauhar MM, Reninta R, Ningsih S, Ramadhan D, Arda AG, Ningrum DWC, Kaswati NMN, Rochman NT, Mardliyati E. Phytochemical Profile, Antioxidant, Enzyme Inhibition, Acute Toxicity, In Silico Molecular Docking and Dynamic Analysis of Apis Mellifera Propolis as Antidiabetic Supplement. Chem Biodivers 2024; 21:e202400433. [PMID: 38584139 DOI: 10.1002/cbdv.202400433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/31/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
This study aims to identify the phytochemical profile of Apis mellifera propolis and explore the potential of its anti-diabetic activity through inhibition of α-amylase (α-AE), α-glucosidase(α-GE), as well as novel antidiabetic compounds of propolis. Apis mellifera propolis extract (AMPE) exhibited elevated polyphenol 33.26±0.17 (mg GAE/g) and flavonoid (15.45±0.13 mg RE/g). It also indicated moderate strong antioxidant activity (IC50 793.09±1.94 μg/ml). This study found that AMPE displayed promising α-AE and α-GE inhibition through in vitro study. Based on LC-MS/MS screening, 18 unique AMPE compounds were identified, with majorly belonging to anthraquinone and flavonoid compounds. Furthermore, in silico study determined that 8 compounds of AMPE exhibited strong binding to α-AE that specifically interacted with its catalytic residue of ASP197. Moreover, 2 compounds exhibit potential inhibition of α-GE, by interacting with crucial amino acids of ARG315, ASP352, and ASP69. Finally, we suggested that 2,7-Dihydroxy-1-(p-hydroxybenzyl)-4-methoxy-9,10-dihydrophenanthrene and 3(3-(3,4-Dihydroxybenzyl)-7-hydroxychroman-4-one as novel inhibitors of α-AE and α-GE. Notably, these compounds were initially discovered from Apis mellifera propolis in this study. The molecular dynamic analysis confirmed their stable binding with both enzymes over 100 ns simulations. The in vivo acute toxicity assay reveals AMPE as a practically non-toxic product with an LD50 value of 16,050 mg/kg. Therefore, this propolis may serve as a promising natural product for diabetes mellitus treatment.
Collapse
Affiliation(s)
- Putri Hawa Syaifie
- Center of Excellece Life Sciences, Nano Center Indonesia, Jl. PUSPIPTEK, South Tangerang, 15314, Banten, Indonesia
| | - Delfritama Ibadillah
- Center of Excellece Life Sciences, Nano Center Indonesia, Jl. PUSPIPTEK, South Tangerang, 15314, Banten, Indonesia
| | - Muhammad Miftah Jauhar
- Center of Excellece Life Sciences, Nano Center Indonesia, Jl. PUSPIPTEK, South Tangerang, 15314, Banten, Indonesia
- Biomedical Engineering, Graduate School of Universitas Gadjah Mada, Sleman, 55281, Yogyakarta, Indonesia
| | - Rikania Reninta
- Research Center for Applied Botany, National Research and Innovation Agency (BRIN), Cibinong, 16911, Indonesia
| | - Sri Ningsih
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong, 16911, Indonesia
| | - Donny Ramadhan
- Center of Excellece Life Sciences, Nano Center Indonesia, Jl. PUSPIPTEK, South Tangerang, 15314, Banten, Indonesia
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong, 16911, Indonesia
| | - Adzani Gaisani Arda
- Center of Excellece Life Sciences, Nano Center Indonesia, Jl. PUSPIPTEK, South Tangerang, 15314, Banten, Indonesia
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, H-4032, Hungary
| | - Dhecella Winy Cintya Ningrum
- Center of Excellece Life Sciences, Nano Center Indonesia, Jl. PUSPIPTEK, South Tangerang, 15314, Banten, Indonesia
| | - Nofa Mardia Ningsih Kaswati
- Center of Excellece Life Sciences, Nano Center Indonesia, Jl. PUSPIPTEK, South Tangerang, 15314, Banten, Indonesia
| | - Nurul Taufiqu Rochman
- Research Center for Advanced Materials, National Research and Innovation Agency (BRIN), South Tangerang, 15314, Indonesia
| | - Etik Mardliyati
- Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), Cibinong, 16911, Indonesia
| |
Collapse
|
7
|
Figueiredo ID, Lima TFO, Carlstrom PF, Assis RP, Brunetti IL, Baviera AM. Lycopene in Combination with Insulin Triggers Antioxidant Defenses and Increases the Expression of Components That Detoxify Advanced Glycation Products in Kidneys of Diabetic Rats. Nutrients 2024; 16:1580. [PMID: 38892513 PMCID: PMC11173891 DOI: 10.3390/nu16111580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Biochemical events provoked by oxidative stress and advanced glycation may be inhibited by combining natural bioactives with classic therapeutic agents, which arise as strategies to mitigate diabetic complications. The aim of this study was to investigate whether lycopene combined with a reduced insulin dose is able to control glycemia and to oppose glycoxidative stress in kidneys of diabetic rats. METHODS Streptozotocin-induced diabetic rats were treated with 45 mg/kg lycopene + 1 U/day insulin for 30 days. The study assessed glycemia, insulin sensitivity, lipid profile and paraoxonase 1 (PON-1) activity in plasma. Superoxide dismutase (SOD) and catalase (CAT) activities and the protein levels of advanced glycation end-product receptor 1 (AGE-R1) and glyoxalase-1 (GLO-1) in the kidneys were also investigated. RESULTS An effective glycemic control was achieved with lycopene plus insulin, which may be attributed to improvements in insulin sensitivity. The combined therapy decreased the dyslipidemia and increased the PON-1 activity. In the kidneys, lycopene plus insulin increased the activities of SOD and CAT and the levels of AGE-R1 and GLO-1, which may be contributing to the antialbuminuric effect. CONCLUSIONS These findings demonstrate that lycopene may aggregate favorable effects to insulin against diabetic complications resulting from glycoxidative stress.
Collapse
Affiliation(s)
- Ingrid Delbone Figueiredo
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara 14800-903, SP, Brazil; (I.D.F.); (T.F.O.L.); (P.F.C.); (R.P.A.); (I.L.B.)
| | - Tayra Ferreira Oliveira Lima
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara 14800-903, SP, Brazil; (I.D.F.); (T.F.O.L.); (P.F.C.); (R.P.A.); (I.L.B.)
| | - Paulo Fernando Carlstrom
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara 14800-903, SP, Brazil; (I.D.F.); (T.F.O.L.); (P.F.C.); (R.P.A.); (I.L.B.)
| | - Renata Pires Assis
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara 14800-903, SP, Brazil; (I.D.F.); (T.F.O.L.); (P.F.C.); (R.P.A.); (I.L.B.)
- Institute of Health Sciences, Paulista University (Unip), Araraquara 14804-300, SP, Brazil
| | - Iguatemy Lourenço Brunetti
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara 14800-903, SP, Brazil; (I.D.F.); (T.F.O.L.); (P.F.C.); (R.P.A.); (I.L.B.)
| | - Amanda Martins Baviera
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara 14800-903, SP, Brazil; (I.D.F.); (T.F.O.L.); (P.F.C.); (R.P.A.); (I.L.B.)
| |
Collapse
|
8
|
Ren J, Dai J, Chen Y, Wang Z, Sha R, Mao J, Mao Y. Hypoglycemic Activity of Rice Resistant-Starch Metabolites: A Mechanistic Network Pharmacology and In Vitro Approach. Metabolites 2024; 14:224. [PMID: 38668351 PMCID: PMC11052319 DOI: 10.3390/metabo14040224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/05/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Rice (Oryza sativa L.) is one of the primary sources of energy and nutrients needed by the body, and rice resistant starch (RRS) has been found to have hypoglycemic effects. However, its biological activity and specific mechanisms still need to be further elucidated. In the present study, 52 RRS differential metabolites were obtained from mouse liver, rat serum, canine feces, and human urine, and 246 potential targets were identified through a literature review and database analysis. A total of 151 common targets were identified by intersecting them with the targets of type 2 diabetes mellitus (T2DM). After network pharmacology analysis, 11 core metabolites were identified, including linolenic acid, chenodeoxycholic acid, ursodeoxycholic acid, deoxycholic acid, lithocholic acid, lithocholylglycine, glycoursodeoxycholic acid, phenylalanine, norepinephrine, cholic acid, and L-glutamic acid, and 16 core targets were identified, including MAPK3, MAPK1, EGFR, ESR1, PRKCA, FYN, LCK, DLG4, ITGB1, IL6, PTPN11, RARA, NR3C1, PTPN6, PPARA, and ITGAV. The core pathways included the neuroactive ligand-receptor interaction, cancer, and arachidonic acid metabolism pathways. The molecular docking results showed that bile acids such as glycoursodeoxycholic acid, chenodeoxycholic acid, ursodeoxycholic acid, lithocholic acid, deoxycholic acid, and cholic acid exhibited strong docking effects with EGFR, ITGAV, ITGB1, MAPK3, NR3C1, α-glucosidase, and α-amylase. In vitro hypoglycemic experiments further suggested that bile acids showed significant inhibitory effects on α-glucosidase and α-amylase, with CDCA and UDCA having the most prominent inhibitory effect. In summary, this study reveals a possible hypoglycemic pathway of RRS metabolites and provides new research perspectives to further explore the therapeutic mechanism of bile acids in T2DM.
Collapse
Affiliation(s)
- Jianing Ren
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; (J.R.); (J.D.); (Y.C.); (Z.W.); (J.M.)
| | - Jing Dai
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; (J.R.); (J.D.); (Y.C.); (Z.W.); (J.M.)
| | - Yue Chen
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; (J.R.); (J.D.); (Y.C.); (Z.W.); (J.M.)
| | - Zhenzhen Wang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; (J.R.); (J.D.); (Y.C.); (Z.W.); (J.M.)
| | - Ruyi Sha
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; (J.R.); (J.D.); (Y.C.); (Z.W.); (J.M.)
| | - Jianwei Mao
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; (J.R.); (J.D.); (Y.C.); (Z.W.); (J.M.)
| | - Yangchen Mao
- School of Medicine, University of Southampton, Southampton SO17 1BJ, UK;
| |
Collapse
|
9
|
Carvalho F, Lahlou RA, Pires P, Salgado M, Silva LR. Natural Functional Beverages as an Approach to Manage Diabetes. Int J Mol Sci 2023; 24:16977. [PMID: 38069300 PMCID: PMC10707707 DOI: 10.3390/ijms242316977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Diabetes mellitus is a chronic disease, commonly associated with unhealthy habits and obesity, and it is becoming a serious health issue worldwide. As a result, new approaches to treat diabetes are required, and a movement towards more natural approaches is emerging. Consuming fruit and vegetables is advised to prevent diabetes since they contain several bioactive compounds. A simple and effective strategy to include them in the diets of diabetic and obese people is through beverages. This review aims to report the anti-diabetic potentials of different vegetable and fruit beverages. These functional beverages demonstrated in vitro potential to inhibit α-glucosidase and α-amylase enzymes and to improve glucose uptake. In vivo, beverage consumption showed a reduction of blood glucose, increase of insulin tolerance, improvement of lipid profile, control of obesity, and reduction of oxidative stress. This suggests the potential of vegetable- and fruit-based functional beverages to be used as a natural innovative therapy for the management of diabetes.
Collapse
Affiliation(s)
- Filomena Carvalho
- CPIRN-UDI/IPG—Centro de Potencial e Inovação em Recursos Naturais, Unidade de Investigação para o Desenvolvimento do Interior do Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal; (F.C.); (R.A.L.); (P.P.); (M.S.)
| | - Radhia Aitfella Lahlou
- CPIRN-UDI/IPG—Centro de Potencial e Inovação em Recursos Naturais, Unidade de Investigação para o Desenvolvimento do Interior do Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal; (F.C.); (R.A.L.); (P.P.); (M.S.)
| | - Paula Pires
- CPIRN-UDI/IPG—Centro de Potencial e Inovação em Recursos Naturais, Unidade de Investigação para o Desenvolvimento do Interior do Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal; (F.C.); (R.A.L.); (P.P.); (M.S.)
| | - Manuel Salgado
- CPIRN-UDI/IPG—Centro de Potencial e Inovação em Recursos Naturais, Unidade de Investigação para o Desenvolvimento do Interior do Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal; (F.C.); (R.A.L.); (P.P.); (M.S.)
| | - Luís R. Silva
- CPIRN-UDI/IPG—Centro de Potencial e Inovação em Recursos Naturais, Unidade de Investigação para o Desenvolvimento do Interior do Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal; (F.C.); (R.A.L.); (P.P.); (M.S.)
- CICS-UBI—Health Sciences Research Center, University of Beira Interior, 6201-506 Covilhã, Portugal
- CIEPQPF—Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, Pólo II—Pinhal de Marrocos, 3030-790 Coimbra, Portugal
| |
Collapse
|
10
|
Cao X, Wang X, Ren Y, Sun Y, Yang Z, Ge J, Ping W. Lonicera caerulea L. polyphenols improve short-chain fatty acid levels by reshaping the microbial structure of fermented feces in vitro. Front Microbiol 2023; 14:1228700. [PMID: 37965545 PMCID: PMC10641692 DOI: 10.3389/fmicb.2023.1228700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/04/2023] [Indexed: 11/16/2023] Open
Abstract
Increasing evidence suggests that the pathogenesis of type 2 diabetes mellitus (T2DM) is closely related to the gut microbiota. Polyphenols have been shown to alleviate T2DM, but the effects of L. caerulea L. polyphenols (LPs) on the gut microbiota and metabolites remain elusive. In this study, the inhibitory effects of fermented L. caerulea L. polyphenols (FLPs) and unfermented L. caerulea L. polyphenols (ULPs) on α-amylase and α-glucosidase and the impact of LP on the gut microbiota and metabolites were investigated. Furthermore, the relationship between the two was revealed through correlation analysis. The results showed that ULP and FLP had the highest inhibitory rates against α-amylase and α-glucosidase at 4 mg ml-1, indicating a strong inhibitory ability. In addition, LP plays a regulatory role in the concentration of short-chain fatty acids (SCFAs) and tends to restore them to their normal levels. LP reversed the dysbiosis of the gut microbiota caused by T2DM, as evidenced by an increase in the abundance of bacterial genera such as Lactobacillus, Blautia, and Bacteroides and a decrease in the abundance of bacterial genera such as Escherichia-Shigella and Streptococcus. Similarly, after LP intervention, the relationships among microbial species became more complex and interconnected. In addition, the correlation between the gut microbiota and metabolites was established through correlation analysis. These further findings clarify the mechanism of action of LP against T2DM and provide a new target for T2DM interventions.
Collapse
Affiliation(s)
- Xinbo Cao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education and Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region and Key Laboratory of Microbiology, College of Heilongjiang Province and School of Life Sciences, Heilongjiang University, Harbin, China
| | - Xuemeng Wang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education and Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region and Key Laboratory of Microbiology, College of Heilongjiang Province and School of Life Sciences, Heilongjiang University, Harbin, China
| | - Yanxin Ren
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education and Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region and Key Laboratory of Microbiology, College of Heilongjiang Province and School of Life Sciences, Heilongjiang University, Harbin, China
| | - Yangcun Sun
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education and Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region and Key Laboratory of Microbiology, College of Heilongjiang Province and School of Life Sciences, Heilongjiang University, Harbin, China
| | - Zhichao Yang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education and Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region and Key Laboratory of Microbiology, College of Heilongjiang Province and School of Life Sciences, Heilongjiang University, Harbin, China
| | - Jingping Ge
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education and Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region and Key Laboratory of Microbiology, College of Heilongjiang Province and School of Life Sciences, Heilongjiang University, Harbin, China
- Hebei Key Laboratory of Agroecological Safety, Hebei University of Environmental Engineering, Qinhuangdao, China
| | - Wenxiang Ping
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education and Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region and Key Laboratory of Microbiology, College of Heilongjiang Province and School of Life Sciences, Heilongjiang University, Harbin, China
- Hebei Key Laboratory of Agroecological Safety, Hebei University of Environmental Engineering, Qinhuangdao, China
| |
Collapse
|
11
|
Iqbal R, Azhar I, Iqbal MN, Hamid I, Zahoor M, Akhtar MF, Mahmood ZA, Ullah R, Alotaibi A. Chemical characterization, antioxidant and antidiabetic activities of a novel polyherbal formulation comprising of Hordeum vulgare, Elettaria cardamomum and Cicer arietinum extracts. Heliyon 2023; 9:e19292. [PMID: 37662785 PMCID: PMC10474433 DOI: 10.1016/j.heliyon.2023.e19292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/02/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023] Open
Abstract
Diabetes mellitus (DM) is the most prevalent endocrine disorder. Numerous individual herbs possess anti-diabetic activity. The seeds of Hordeum vulgare, Elettaria cardamomum and Cicer arietinum are traditionally used to manage DM. The ambition of this work was to formulate the poly-herbal granules (PHGs) comprising of these three functional foods and evaluate their in-vitro antioxidant and antidiabetic potential. The dried seed extracts of Hordeum vulgare, Elettaria cardamomum and Cicer arietinum were used in a ratio of 2.5:1:1 to formulate PHGs by wet granulation method. The ratio of extracts was selected on the basis of traditional phytotherapies popularly used by local Hakeems of Pakistan to achieve glycemic control in diabetic patients resistant to traditional allopathic regime of medicine. The flow properties of developed PHGs were evaluated. The UV-Visible spectroscopic, Fourier Transform Infrared (FTIR) and HPLC-DAD of all seed extracts and PHGs were performed. The in-vitro antioxidant DPPH, FRAP, total antioxidant capacity (TAC) and Nitric Oxide (NO) scavenging assays were carried out on PHGs. The in-vitro antidiabetic activity of PHGs was investigated by alpha-amylase and alpha-glucosidase enzyme inhibition activity. The developed PHGs exhibited excellent flow properties. The UV-Vis spectra of all seed extracts and PHGs demonstrated peak at 278 nm showing the presence of flavonoids and phenols. The FTIR spectra confirmed the existence of flavonoids, and phenols along with amines in seed extracts as well as PHGs. The HPLC-DAD test revealed the existence of gallic acid, ascorbic acid, Quercetin-3-(caffeoyldiglucoside)-7-glucoside, Rosmarinic acid, delphinidin-3,5-diglucosides, Kaempferol-3-feruloylsophoroside-7-glucoside and Phloroglucinol in PHGs. The PHGs exhibited IC50 of 51.23, 58.57, 55.41 and 53.13 μg/mL in DPPH assay, FRAP assay, TAC, Nitric oxide scavenging assays respectively. The PHGs also demonstrated IC50 of 49.97 and 36.16 μg/mL in alpha-amylase and in alpha-glucosidase inhibition assays respectively in dose dependent manner. The developed PHGs exhibited an excellent flow property. These exhibit significant in-vitro antioxidant and antidiabetic profile by virtue of flavonoid and phenolic acid derivatives.
Collapse
Affiliation(s)
- Rabia Iqbal
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, Pakistan
| | - Iqbal Azhar
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, Pakistan
| | | | - Irfan Hamid
- Cadson College of Pharmacy, Kharian, University of the Punjab, Lahore, Pakistan
| | - Muhammad Zahoor
- Department of Biochemistry, University of Malakand, Dir Lower, 18800, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Pakistan
| | - Zafar Alam Mahmood
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, Pakistan
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Amal Alotaibi
- Department of Basic Sciences, College of Medicine, Princess Nourah Bint Abdul rahman University, Riyadh, 11671, Saudi Arabia
| |
Collapse
|
12
|
Golovinskaia O, Wang CK. The hypoglycemic potential of phenolics from functional foods and their mechanisms. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Yang JB, Yang CS, Li J, Su GZ, Tian JY, Wang Y, Liu Y, Wei F, Li Y, Ye F, Ma SC. Dianthrone derivatives from Polygonum multiflorum Thunb: Anti-diabetic activity, structure-activity relationships (SARs), and mode of action. Bioorg Chem 2023; 135:106491. [PMID: 37011521 DOI: 10.1016/j.bioorg.2023.106491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/10/2023] [Accepted: 03/20/2023] [Indexed: 04/04/2023]
Abstract
PTP1B plays an important role as a key negative regulator of tyrosine phosphorylation associated with insulin receptor signaling in the therapy for diabetes and obesity. In this study, the anti-diabetic activity of dianthrone derivatives from Polygonum multiflorum Thunb., as well as the structure-activity relationships, mechanism, and molecular docking were explored. Among these analogs, trans-emodin dianthrone (compound 1) enhances insulin sensitivity by upregulating the insulin signaling pathway in HepG2 cells and displays considerable anti-diabetic activity in db/db mice. By using photoaffinity labeling and mass spectrometry-based proteomics, we discovered that trans-emodin dianthrone (compound 1) may bind to PTP1B allosteric pocket at helix α6/α7, which provides fresh insight into the identification of novel anti-diabetic agents.
Collapse
Affiliation(s)
- Jian-Bo Yang
- National Institutes for Food and Drug Control, Beijing 100050, China; Xinjiang Uygur Autonomous Region Institute for Drug Control, Urumqi 830054, China
| | - Cheng-Shuo Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jiang Li
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China; Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Guo-Zhu Su
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jin-Ying Tian
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China; Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ying Wang
- National Institutes for Food and Drug Control, Beijing 100050, China
| | - Yue Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Feng Wei
- National Institutes for Food and Drug Control, Beijing 100050, China
| | - Yong Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Fei Ye
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China; Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Shuang-Cheng Ma
- National Institutes for Food and Drug Control, Beijing 100050, China.
| |
Collapse
|
14
|
Bahloul B, Castillo-Henríquez L, Jenhani L, Aroua N, Ftouh M, Kalboussi N, Vega-Baudrit J, Mignet N. Nanomedicine-based potential phyto-drug delivery systems for diabetes. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
15
|
Javad Alaeian M, Pourreza S, Yousefi M, Golalipour E, Setayesh L, Zeinali Khosroshahi M, Bagheri R, Ashtary-Larky D, Wong A, Zamani M, Asbaghi O. The effects of guar gum supplementation on glycemic control, body mass and blood pressure in adults: A GRADE-assessed systematic review and meta-analysis of randomized clinical trials. Diabetes Res Clin Pract 2023; 199:110604. [PMID: 36958432 DOI: 10.1016/j.diabres.2023.110604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 11/13/2022] [Accepted: 02/28/2023] [Indexed: 03/25/2023]
Abstract
BACKGROUND This systematic review and meta-analysis sought to evaluate the effects ofguar gum supplementation on glycemic control, blood pressure, and body mass in adults. METHODS Relevant studies were obtained by searching the PubMed, SCOPUS, Embase, and Web of Science databases (from inception to January 2022). Weighted mean differences (WMD) and 95% confidence intervals (CIs) were pooled using a random-effects model. Heterogeneity, sensitivity analysis, and publication bias were reported using standard methods. RESULTS Pooled analysis of 14 randomized controlled trials (RCTs) revealed that guar gum supplementation led to significant reductions in hemoglobin A1c (HbA1c) (WMD: -0.47 mg/dL, 95% CI: -0.75, -0.18, p = 0.001). However, there was no effect on fasting blood sugar (FBS), systolic and diastolic blood pressure, and body mass among adults in comparison with the control group. A subgroup analysis demonstrated that intervention in patients with type 2 diabetes (T2DM), and high supplementation dosages (>15 g/d) significantly decreased FBS concentrations, but not in other subgroups. CONCLUSION Guar gum supplementation may yield a beneficial effect on glycemic control in T2DM patients. However, the extant clinical trials, thus far, are not sufficient enough to form guidelines for clinical practice.
Collapse
Affiliation(s)
| | - Sanaz Pourreza
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohsen Yousefi
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Elnaz Golalipour
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Leila Setayesh
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE.
| | | | - Reza Bagheri
- Department of Exercise Physiology, University of Isfahan, Isfahan, Iran.
| | - Damoon Ashtary-Larky
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Alexei Wong
- Department of Health and Human Performance, Marymount University, Arlington, United States.
| | - Mohammad Zamani
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
| | - Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Mohammadi Zadeh M, Dehghan P, Eslami Z. Effect of date seed ( Phoenix dactylifera) supplementation as functional food on cardiometabolic risk factors, metabolic endotoxaemia and mental health in patients with type 2 diabetes mellitus: a blinded randomised controlled trial protocol. BMJ Open 2023; 13:e066013. [PMID: 36931666 PMCID: PMC10030472 DOI: 10.1136/bmjopen-2022-066013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 02/26/2023] [Indexed: 03/19/2023] Open
Abstract
INTRODUCTION Recently, the improvement of chronic hyperglycaemia-related damage of type 2 diabetes mellitus (T2DM) through functional food consumption has attracted the attention of many clinicians. This study aims to determine the effectiveness of date seed powder (DSP) as a functional food (prebiotic) on the cardiometabolic risk factors, oxidative stress, anti-/inflammatory biomarkers, metabolic endotoxaemia (gut microbiota), adipokines, hypothalamic-pituitary-adrenal axis biomarkers, immune system, anthropometric indices and mental health in patients with T2DM. METHODS This study protocol will be conducted as randomised, triple-blind, placebo-controlled trial with the inclusion of 48 patients with T2DM. The participants will be randomly assigned into two equal groups of intervention (n=24) and placebo (n=24) and receive 5 g/day of DSP or placebo for 8 weeks, respectively. At baseline and post-intervention, fasting blood samples will be collected to assess the serum levels of lipid profile, glycaemic indices, antioxidant and oxidative stress, anti-/inflammatory biomarkers, lipopolysaccharide, 8-hydroxy-guanine, adipokines, hypothalamic-pituitary-adrenal axis biomarkers, immune system and mental health. Data will be analysed using the SPSS software (V.16.0). To compare the quantitative variables, paired and unpaired Student's t-tests and covariance analyses will be used. DISCUSSION In this study, the potential effects of DSP on patients with T2DM will be evaluated for the first time. It is hoped that the results would increase the body of scientific knowledge about DSP supplementation on the cardiometabolic risk factors, oxidative stress, anti-/inflammatory biomarkers, metabolic endotoxaemia, adipokines, hypothalamic-pituitary-adrenal axis biomarkers, immune system, anthropometric indices and mental health in patients with T2DM. ETHICS AND DISSEMINATION The study protocol was approved by the Ethical Committee of the Tabriz University of Medical Sciences, Tabriz, Iran (code: IR.TBZMED.REC.1400.752). TRIAL REGISTRATION NUMBER Iranian Registry of Clinical Trials (www.irct.ir/IRCT20150205020965N10).
Collapse
Affiliation(s)
- Mehdi Mohammadi Zadeh
- Student Research Committee, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Dehghan
- Nutrition Research Center, Department of Biochemistry and Diet Therapy, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Eslami
- Department of Nutrition, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
17
|
Elmi GR, Anum K, Saleem K, Fareed R, Noreen S, Wei H, Chen Y, Chakraborty A, Rehman MU, Liyuan S, Abbas M, Duan Y. Evaluation of clinical trials of ethnomedicine used for the treatment of diabetes: A systematic review. Front Pharmacol 2023; 14:1176618. [PMID: 37089934 PMCID: PMC10119392 DOI: 10.3389/fphar.2023.1176618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/16/2023] [Indexed: 04/25/2023] Open
Abstract
Diabetes mellitus (DM) is a widespread metabolic disorder with a yearly 6.7 million deaths worldwide. Several treatment options are available but with common side effects like weight gain, cardiovascular diseases, neurotoxicity, hepatotoxicity, and nephrotoxicity. Therefore, ethnomedicine is gaining the interest of researchers in the treatment of DM. Ethnomedicine works by preventing intestinal absorption and hepatic production of glucose as well as enhancing glucose uptake in muscles and fatty tissues and increasing insulin secretion. A variety of plants have entered clinical trials but very few have gained approval for use. This current study provides an evaluation of such clinical trials. For this purpose, an extensive literature review was performed from a database using keywords like "ethnomedicine diabetes clinical trial", "clinical trials", "clinical trial in diabetes", "diabetes", "natural products in diabetes", "ethno-pharmacological relevance of natural products in diabetes", etc. Clinical trials of 20 plants and natural products were evaluated based on eligibility criteria. Major limitations associated with these clinical trials were a lack of patient compliance, dose-response relationship, and an evaluation of biomarkers with a small sample size and treatment duration. Measures in terms of strict regulations can be considered to achieve quality clinical trials. A specific goal of this systematic review is to discuss DM treatment through ethnomedicine based on recent clinical trials of the past 7 years.
Collapse
Affiliation(s)
- Gul Rehman Elmi
- Henan Provincial Key Laboratory of Pediatric Hematology, Children’s Genetics and Metabolic Diseases, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
- Department of Pharmacy, IQRA University Islamabad Campus (Chak Shahzad), Islamabad, Pakistan
| | - Kamil Anum
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Kalsoom Saleem
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Rameesha Fareed
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Sobia Noreen
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - Haiyan Wei
- Henan Provincial Key Laboratory of Pediatric Hematology, Children’s Genetics and Metabolic Diseases, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Yongxing Chen
- Henan Provincial Key Laboratory of Pediatric Hematology, Children’s Genetics and Metabolic Diseases, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Avirup Chakraborty
- Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| | - Masood Ur Rehman
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
- *Correspondence: Masood Ur Rehman, Shi Liyuan, ; Muhammad Abbas, ; Yongtao Duan,
| | - Shi Liyuan
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, China
- *Correspondence: Masood Ur Rehman, Shi Liyuan, ; Muhammad Abbas, ; Yongtao Duan,
| | - Muhammad Abbas
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, China
- *Correspondence: Masood Ur Rehman, Shi Liyuan, ; Muhammad Abbas, ; Yongtao Duan,
| | - Yongtao Duan
- Henan Provincial Key Laboratory of Pediatric Hematology, Children’s Genetics and Metabolic Diseases, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Masood Ur Rehman, Shi Liyuan, ; Muhammad Abbas, ; Yongtao Duan,
| |
Collapse
|
18
|
The α-Amylase and α-Glucosidase Inhibition Capacity of Grape Pomace: A Review. FOOD BIOPROCESS TECH 2023; 16:691-703. [PMID: 36062030 PMCID: PMC9427156 DOI: 10.1007/s11947-022-02895-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/20/2022] [Indexed: 11/30/2022]
Abstract
The concept of functional foods is gaining more importance due to its role in maintaining a healthy status and preventing some metabolic diseases. The control of diabetes, in particular type-2 (T2DM), could be considered a big challenge since it involves other factors such as eating habits. From the pharmacological point of view, inhibiting digestive enzymes, such as α-amylase and α-glucosidase, is one of the mechanisms mainly used by synthetic drugs to control this disease; however, several side effects are described. For that reason, using bioactive compounds may appear as an alternative without presenting the complications synthetic drugs available on the market have. The winemaking industry generates tons of waste annually, and grape pomace (GP) is the most important. GP is recognized for its nutritional value and as a source of bioactive compounds that are helpful for human health. This review highlights the importance of GP as a possible source of α-amylase and α-glucosidase inhibitors. Also, it is emphasized the components involved in this bioactivity and the possible interactions among them. Especially, some phenolic compounds and fiber of GP are the main ones responsible for interfering with the human digestive enzymes. Preliminary studies in vitro confirmed this bioactivity; however, further information is required to allow the specific use of GP as a functional ingredient inside the market of products recommended for people with diabetes. Graphical abstract
Collapse
|
19
|
Zhang W, Li Y, Zhang L, Zhang Q, Liu H. Preparation of meal replacement powder based on bacterial cellulose/konjac glucomannan and its influence on sugar metabolism. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
20
|
Fermentation of the Cucurbita ficifolia Fruit Juice: Its Antioxidant Activity and Effects on the Glycemia. BEVERAGES 2022. [DOI: 10.3390/beverages8030055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cucurbita ficifolia is an edible plant whose fruits have hypoglycemic, anti-inflammatory, and antioxidant activities. Fermentation might improve these properties. This research aims to perform and characterize its fermentation in native and induced conditions with Lactobacillus plantarum (Lp) and evaluate its antioxidant activity and effect on glycemia. Fresh juice from mature fruits was characterized. One portion of this juice was spontaneously left to ferment (native fermentation), and the other was inoculated with Lp (controlled fermentation). Fermentation was monitored each 8 h by 56 h to measure microbial growth, pH, acidity, sugars, soluble protein, polyphenols and flavonoids, antioxidant activity, and effects on glycemia. In native fermentation, the growth of total microorganisms increased up to 32 h, decreasing at the end of the process. In Lp fermentation, total microorganisms increased until 16 h to stay constant at the end, with a predominance of Lp. The pH and the sugars decreased in the two fermentations, while polyphenol and flavonoid increased. In spontaneous fermentation, these changes were lesser. Both fermentations, like fresh juice, preserve functional properties (antioxidant, alpha-glucosidase inhibition, and hypoglycemia). The fermentation of this juice with Lp may develop functional beverages, which is significant due to its consumption as an edible fruit with medicinal properties.
Collapse
|
21
|
Tian S, Xue X, Wang X, Chen Z. Preparation of starch-based functional food nano-microcapsule delivery system and its controlled release characteristics. Front Nutr 2022; 9:982370. [PMID: 36046140 PMCID: PMC9421261 DOI: 10.3389/fnut.2022.982370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/29/2022] [Indexed: 11/22/2022] Open
Abstract
Most of the functional substances in food are absorbed in the small intestine, but before entering the small intestine, the strong acid and enzymes in the stomach limit the amount that can reach the small intestine. Therefore, in this paper, to develop a delivery system for functional food ingredients, maintain the biological activity of the ingredients, and deliver them to the target digestive organs, preparation of starch-based functional food nano-microcapsule delivery system and its controlled release characteristics were reviewed. Embedding unstable food active ingredients in starch-based nano-microcapsules can give the core material excellent stability and certain functional effects. Starch-based wall materials refer to a type of natural polymer material that uses starch or its derivatives to coat fat-soluble components with its hydrophobic cavities. The preparation methods of starch-based wall materials mainly include spray drying, extrusion, freeze drying, ultra-high pressure, coagulation, fluidized bed coating, molecular inclusion, chemical, and enzymic methods. The controlled release of functional food can be achieved by preparing starch-based nano-microcapsules to encapsulate the active agents. It has been reported that that compared with traditional embedding agents such as gelatin, acacia gum, and xanthan gum, starch-based functional food nano-microcapsule delivery system had many good properties, including improving antioxidant capacity, bioavailability, probiotics, and concealing bad flavors. From this review, we can learn which method should be chosen to prepare starch-based functional food nano-microcapsule delivery system and understand the mechanism of controlled release.
Collapse
Affiliation(s)
- Shuangqi Tian
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Xing'ao Xue
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Xinwei Wang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Zhicheng Chen
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
22
|
Han B, Zhang L, Hou Y, Zhong J, Hettinga K, Zhou P. Phosphoproteomics reveals that camel and goat milk improve glucose homeostasis in HDF/STZ-induced diabetic rats through activation of hepatic AMPK and GSK3-GYS axis. Food Res Int 2022; 157:111254. [DOI: 10.1016/j.foodres.2022.111254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 12/22/2022]
|
23
|
Bouchard J, Valookaran AF, Aloud BM, Raj P, Malunga LN, Thandapilly SJ, Netticadan T. Impact of oats in the prevention/management of hypertension. Food Chem 2022; 381:132198. [PMID: 35123221 DOI: 10.1016/j.foodchem.2022.132198] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 12/24/2022]
Abstract
Oats are a rich source of a soluble fibre, beta-glucan, phenolic compounds, as well as functional lipid and protein components that could potentially aid in preventing and managing hypertension. Processing techniques commonly used to manufacture oat based foods have been shown to improve its physiological efficacy. Hypertension is a common condition that is a risk factor for cardiovascular disease, a primary cause of mortality worldwide. Though exercise and pharmacological interventions are often used in the management of hypertension, diet is an incredibly important factor. One preclinical study and a handful of clinical studies have shown that oat components/products are effective in lowering blood pressure. However, research in this area is limited and more studies are needed to elucidate the anti-hypertensive potential of oats.
Collapse
Affiliation(s)
- Jenny Bouchard
- Richardson Center for Functional Foods and Nutraceuticals, Winnipeg, MB, Canada; Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada; Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada
| | - Aleena Francis Valookaran
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada; Canadian Centre for Agri-Food Research in Health and Medicine , Winnipeg, MB, Canada
| | | | - Pema Raj
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada; Canadian Centre for Agri-Food Research in Health and Medicine , Winnipeg, MB, Canada
| | - Lovemore Nkhata Malunga
- Richardson Center for Functional Foods and Nutraceuticals, Winnipeg, MB, Canada; Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada; Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada
| | - Sijo Joseph Thandapilly
- Richardson Center for Functional Foods and Nutraceuticals, Winnipeg, MB, Canada; Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada; Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada.
| | - Thomas Netticadan
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada; Canadian Centre for Agri-Food Research in Health and Medicine , Winnipeg, MB, Canada; Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
24
|
AHMAD H, KASHIF S, AFREEN A, SAFDAR M, AHMED Z. Comparative effect of Fenugreek and Cinnamon on management of newly diagnosed cases of Type-2 Diabetes Mellitus. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.47720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Mishra S, Singh VJ, Chawla PA, Chawla V. Neuroprotective Role of Nutritional Supplementation in Athletes. Curr Mol Pharmacol 2021; 15:129-142. [PMID: 34886789 DOI: 10.2174/1874467214666211209144721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/22/2021] [Accepted: 08/31/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Neurodegenerative disorders belong to different classes of progressive/chronic conditions that affect the peripheral/central nervous system. It has been shown through studies that athletes who play sports involving repeated head trauma and sub-concussive impacts are more likely to experience neurological impairments and neurodegenerative disorders in the long run. AIMS The aim of the current narrative review article is to provide a summary of various nutraceuticals that offer promise in the prevention or management of sports-related injuries, especially concussions and mild traumatic brain injuries. METHODS This article reviews the various potential nutraceutical agents and their possible mechanisms in providing a beneficial effect in the injury recovery process. A thorough survey of the literature was carried out in the relevant databases to identify studies published in recent years. In the present article, we have also highlighted the major neurological disorders along with the associated nutraceutical(s) therapy in the management of disorders. RESULTS The exact pathological mechanism behind neurodegenerative conditions is complex as well as idiopathic. However, mitochondrial dysfunction, oxidative stress as well as intracellular calcium overload are some common reasons responsible for the progression of these neurodegenerative disorders. Owing to the multifaceted effects of nutraceuticals (complementary medicine), these supplements have gained importance as neuroprotective. These diet-based approaches inhibit different pathways in a physiological manner without eliciting adverse effects. Food habits and lifestyle of an individual also affect neurodegeneration. CONCLUSION Studies have shown nutraceuticals (such as resveratrol, omega-3-fatty acids) to be efficacious in terms of their neuroprotection against several neurodegenerative disorders and to be used as supplements in the management of traumatic brain injuries. Protection prior to injuries is needed since concussions or sub-concussive impacts may trigger several pathophysiological responses or cascades that can lead to long-term complications associated with CNS. Thus, the use of nutraceuticals as prophylactic treatment for neurological interventions has been proposed.
Collapse
Affiliation(s)
- Supriya Mishra
- Department of Pharmacology, SRM College of Pharmacy, Delhi-NCR. India
| | - Vikram Jeet Singh
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga-142001, Punjab. India
| | - Pooja A Chawla
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga-142001, Punjab. India
| | - Viney Chawla
- Department of Pharmaceutics, University Institute of Pharmaceutical Sciences and Research, Baba Farid University of Health Sciences, Faridkot-151203, Punjab. India
| |
Collapse
|
26
|
Tapadia M, Johnson S, Utikar R, Newsholme P, Carlessi R. Antidiabetic effects and mechanisms of action of γ-conglutin from lupin seeds. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
27
|
K. S. G, John JA. Functional beverages: Special focus on anti‐diabetic potential. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gayathry K. S.
- Department of Food Science and Technology Faculty of Ocean Science and Technology Kerala University of Fisheries and Ocean Studies Kochi India
| | - Jenny Ann John
- Department of Food Science and Technology Faculty of Ocean Science and Technology Kerala University of Fisheries and Ocean Studies Kochi India
| |
Collapse
|
28
|
Jarisarapurin W, Kunchana K, Chularojmontri L, Wattanapitayakul SK. Unripe Carica papaya Protects Methylglyoxal-Invoked Endothelial Cell Inflammation and Apoptosis via the Suppression of Oxidative Stress and Akt/MAPK/NF-κB Signals. Antioxidants (Basel) 2021; 10:antiox10081158. [PMID: 34439407 PMCID: PMC8388906 DOI: 10.3390/antiox10081158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022] Open
Abstract
Methylglyoxal (MGO), a highly reactive dicarbonyl compound, causes endothelial oxidative stress and vascular complications in diabetes. Excessive MGO-induced ROS production triggers eNOS uncoupling, inflammatory responses, and cell death signaling cascades. Our previous study reported that unripe Carica papaya (UCP) had antioxidant activities that prevented H2O2-induced endothelial cell death. Therefore, this study investigated the preventive effect of UCP on MGO-induced endothelial cell damage, inflammation, and apoptosis. The human endothelial cell line (EA.hy926) was pretreated with UCP for 24 h, followed by MGO-induced dicarbonyl stress. Treated cells were evaluated for intracellular ROS/O2•− formation, cell viability, apoptosis, NO releases, and cell signaling through eNOS, iNOS, COX-2, NF-κB, Akt, MAPK (JNK and p38), and AMPK/SIRT1 autophagy pathways. UCP reduced oxidative stress and diminished phosphorylation of Akt, stress-activated MAPK, leading to the decreases in NF-kB-activated iNOS and COX-2 expression. However, UCP had no impact on the autophagy pathway (AMPK and SIRT1). Although UCP pretreatment decreased eNOS phosphorylation, the amount of NO production was not altered. The signaling of eNOS and NO production were decreased after MGO incubation, but these effects were unaffected by UCP pretreatment. In summary, UCP protected endothelial cells against carbonyl stress by the mechanisms related to ROS/O2•− scavenging activities, suppression of inflammatory signaling, and inhibition of JNK/p38/apoptosis pathway. Thus, UCP shows considerable promise for developing novel functional food and nutraceutical products to reduce risks of endothelial inflammation and vascular complications in diabetes.
Collapse
Affiliation(s)
- Wattanased Jarisarapurin
- Department of Pharmacology, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand; (W.J.); (K.K.)
| | - Khwandow Kunchana
- Department of Pharmacology, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand; (W.J.); (K.K.)
| | - Linda Chularojmontri
- Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathum Thani 12121, Thailand;
| | - Suvara K. Wattanapitayakul
- Department of Pharmacology, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand; (W.J.); (K.K.)
- Correspondence: ; Tel.: +66-2649-5385
| |
Collapse
|
29
|
Zhang L, Zhang W, Peng F, Chen H, Shu G. Effects of bacterial cellulose on glucose metabolism in an
in vitro
chyme model and its rheological evaluation. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Le‐Le Zhang
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi’an 710021 China
| | - Wen Zhang
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi’an 710021 China
| | - Fa‐Bo Peng
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi’an 710021 China
| | - He Chen
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi’an 710021 China
| | - Guo‐Wei Shu
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi’an 710021 China
| |
Collapse
|
30
|
Maakelo PK, Bultosa G, Kobue-Lekalake RI, Gwamba J, Sonno K. Effects of watermelon pulp fortification on maize mageu physicochemical and sensory acceptability. Heliyon 2021; 7:e07128. [PMID: 34095595 PMCID: PMC8167226 DOI: 10.1016/j.heliyon.2021.e07128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/07/2021] [Accepted: 05/18/2021] [Indexed: 01/21/2023] Open
Abstract
Mageu is a non-alcoholic fermented gruel processed from cereal grains, mostly maize and is widely consumed in the Southern African region. The refined maize meal used for mageu processing is limited in dietary fiber, B-vitamins, vitamin C, carotenoids, omega-3 fatty acids and minerals because of bran removal during milling. Fortification with plant carotenoid sources may be an effective method to supply potent antioxidants such as lycopene and beta-carotene that help preventing vitamin A deficiency related diseases. The objective of this study was to investigate the effects of three levels of watermelon pulp powder fortifications (5g, 10g, and 15g) on the physicochemical and sensory acceptability of maize mageu. Significant difference (p < 0.05) was found for crude protein, ash, titratable acidity, and total carotenoid contents among the mageu samples. The percentage protein, ash, titratable acidity (TA), vitamin C (mg/100g) and total carotenoids (TC) (μg/g) contents for the mageu samples ranged between 10.60-13.70, 0.53-0.86, 0.08-0.15, 8.81-17.60 and 0.00-51.60, respectively. There was an increase in the protein, ash, TA, vitamin C and TC contents with an increasing level of watermelon pulp fortification. When watermelon pulp fortification increased to 15g, total carotenoids content increased significantly which shows the potential to fortify mageu with lycopene, the major carotenoid in the watermelon pulp, as well beta-carotene a pro-vitamin A carotenoid. Furthermore, the sensory attributes of the mageu sample fortified with 15g watermelon pulp was liked significantly (p < 0.05) more by a consumer panel. The study showed the potential of an acceptable maize mageu fortification with watermelon pulp powder to increase its nutritional and bioactive compounds, particularly lycopene.
Collapse
Affiliation(s)
| | - Geremew Bultosa
- Department of Food Science and Technology, BUAN, P. Bag 0027, Gaborone, Botswana
| | | | - John Gwamba
- Department of Food Science and Technology, BUAN, P. Bag 0027, Gaborone, Botswana
| | - Kethabile Sonno
- Department of Food Science and Technology, BUAN, P. Bag 0027, Gaborone, Botswana
| |
Collapse
|
31
|
Gouda M, El-Din Bekhit A, Tang Y, Huang Y, Huang L, He Y, Li X. Recent innovations of ultrasound green technology in herbal phytochemistry: A review. ULTRASONICS SONOCHEMISTRY 2021; 73:105538. [PMID: 33819867 PMCID: PMC8048006 DOI: 10.1016/j.ultsonch.2021.105538] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/16/2021] [Accepted: 03/20/2021] [Indexed: 05/10/2023]
Abstract
Ultrasound (US) has become one of the most important techniques in green chemistry and emerging technologies. Many research investigations documented the usefulness of US in a wide range of applications in food science, nanotechnology, and complementary medicine, where effective extraction of natural products is important. However, as with all novel technologies, US has advantages and limitations that require clarification for full adaptation at an industrial scale. The present review discusses recent applications of US in herbal phytochemistry with the emphasis on US effects on chemical structures of bioactive compounds extracted from herbs and their bioactivities. The impact of different US processing conditions such as frequency, intensity, duration, temperature, and pressure on the effectiveness of the extraction process and the properties of the extracted materials are also discussed. Different frequencies and intensities of US have demonstrated its potential applications in modifying, determining, and predicting the physicochemical properties of herbs and their extracts. US has important applications in nanotechnology where it supports the fabrication of inexpensive and eco-friendly herbal nanostructures, as well as acoustic-based biosensors for chemical imaging of the herbal tissues. The application of US enhances the rates of chemical processes such as hydrolysis of herbal fibers, which reduces the time and energy consumed without affecting the quality of the final products. Overall, the use of US in herbal science has great potential to create novel chemical constructions and to be used as an innovative diagnostic system in various biomedical, food, and analytical applications.
Collapse
Affiliation(s)
- Mostafa Gouda
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Department of Nutrition & Food Science, National Research Centre, Dokki, Giza, Egypt
| | | | - Yu Tang
- College of Automation, Guangdong Polytechnic Normal University, Guangzhou 510665, China
| | - Yifeng Huang
- College of Civil Engineering and Architecture, East China Jiaotong University, Nanchang 330013, China
| | - Lingxia Huang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Xiaoli Li
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
32
|
Carullo G, Mazzotta S, Vega-Holm M, Iglesias-Guerra F, Vega-Pérez JM, Aiello F, Brizzi A. GPR120/FFAR4 Pharmacology: Focus on Agonists in Type 2 Diabetes Mellitus Drug Discovery. J Med Chem 2021; 64:4312-4332. [PMID: 33843223 PMCID: PMC8154576 DOI: 10.1021/acs.jmedchem.0c01002] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
The G-protein coupled receptors (GPCRs)
activated by free fatty
acids (FFAs) have emerged as new and exciting drug targets, due to
their plausible translation from pharmacology to medicines. This perspective
aims to report recent research about GPR120/FFAR4 and its involvement
in several diseases, including cancer, inflammatory conditions, and
central nervous system disorders. The focus is to highlight the importance
of GPR120 in Type 2 diabetes mellitus (T2DM). GPR120 agonists, useful
in T2DM drug discovery, have been widely explored from a structure–activity
relationship point of view. Since the identification of the first
reported synthetic agonist TUG-891, the research has paved the way
for the development of TUG-based molecules as well as new and different
chemical entities. These molecules might represent the starting point
for the future discovery of GPR120 agonists as antidiabetic drugs.
Collapse
Affiliation(s)
- Gabriele Carullo
- Department of Biotechnology, Chemistry, and Pharmacy, DoE 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Sarah Mazzotta
- Department of Pharmaceutical Sciences, University of Milan, Via Luigi Mangiagalli 25, 20133 Milano, Italy
| | - Margarita Vega-Holm
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, Profesor García González 2, 41012 Seville, Spain
| | - Fernando Iglesias-Guerra
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, Profesor García González 2, 41012 Seville, Spain
| | - José Manuel Vega-Pérez
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, Profesor García González 2, 41012 Seville, Spain
| | - Francesca Aiello
- Department of Pharmacy, Health and Nutritional Sciences, DoE 2018-2022, University of Calabria, Edificio Polifunzionale, 87036 Rende, Cosenza, Italy
| | - Antonella Brizzi
- Department of Biotechnology, Chemistry, and Pharmacy, DoE 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| |
Collapse
|
33
|
Karimian J, Farrokhzad A, Jalili C. The effect of cumin (Cuminum cyminum L.) supplementation on glycemic indices: A systematic review and meta-analysis of randomized controlled trials. Phytother Res 2021; 35:4127-4135. [PMID: 33720457 DOI: 10.1002/ptr.7075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/14/2021] [Accepted: 02/24/2021] [Indexed: 01/07/2023]
Abstract
We aimed to conduct a systematic review and meta-analysis of randomized controlled trials (RCTs) to examine the effect of cumin supplementation on markers of glycemic control in adults. A comprehensive literature search was conducted up from inception to November 2020 on PubMed, Scopus, Web of Sciences, and Cochrane electronic databases. Studies that compared the effect of cumin with placebo on fasting blood sugar (FBS), serum insulin, and homeostasis model assessment-estimated insulin resistance (HOMA-IR) index in adults were considered eligible. Weighted mean difference (WMD) (with 95% confidence intervals) for endpoints were calculated using the random-effects model. Finally, a total of eight RCT studies involving 552 participants were included in the review. The results of the meta-analysis suggest that cumin supplementation did not significantly alter serum FBS (WMD: -17.77 mg/dl; 95% CI: -36.42 to 0.87, p = .06), insulin (WMD: -0.49 Hedges' g; 95% CI: -1.19 to 0.21, p =.16) levels and HOMA-IR (WMD: -0.06; 95% CI: -0.21 to 0.10, p = 0.48) index. These results do not support the use of cumin supplementation for improving glycemic markers in adults. However, further high-quality trials are still needed to confirm these results.
Collapse
Affiliation(s)
- Jahangir Karimian
- Department of General Courses, School of Management and Medical Information Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Cyrus Jalili
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
34
|
Venkatakrishnan K, Chiu HF, Wang CK. Impact of functional foods and nutraceuticals on high blood pressure with a special focus on meta-analysis: review from a public health perspective. Food Funct 2021; 11:2792-2804. [PMID: 32248209 DOI: 10.1039/d0fo00357c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent times many researchers are expressing immense interest in nutraceuticals and functional foods for combating various diseases or abnormal conditions, especially against hypertension (HT). Persistent HT is medically referred to as chronic high blood pressure (BP) and considered to be one of the major risk factors for the deadliest diseases including cardiovascular disease (CVD) and cerebrovascular diseases. Hence HT poses a serious socio-economic burden worldwide, particularly to developing countries. The current treatment strategy for HT includes standard anti-hypertensive drugs, which are associated with many adverse effects and lower drug adherence rates. Therefore, an alternative or complementary natural therapy (functional foods or nutraceuticals or dietary supplements) would be the alternate choice along with a modified lifestyle pattern that might help to manage or combat HT and its related complications. During this review, the author would like to shed light on the basic science behind HT including pathophysiology and the impact of dietary salt on HT and the impact of various functional foods or nutraceuticals against HT in humans (meta-analysis and systemic review). This contribution gives a better idea (public health perspective) for choosing the best functional foods/nutraceuticals for the prevention, management or delaying the onset of HT and its associated conditions along with modified lifestyle patterns and standard anti-hypertensive drugs.
Collapse
Affiliation(s)
- Kamesh Venkatakrishnan
- School of Nutrition, Chung Shan Medical University, 110, Sec. 1, Jianguo North Road, Taichung City-40201, Taiwan, Republic of China.
| | - Hui-Fang Chiu
- Department of Chinese Medicine, Taichung Hospital Ministry of Health and Welfare, Taichung-40301, Taiwan, Republic of China
| | - Chin-Kun Wang
- School of Nutrition, Chung Shan Medical University, 110, Sec. 1, Jianguo North Road, Taichung City-40201, Taiwan, Republic of China.
| |
Collapse
|
35
|
Laela N, Legowo AM, Fulyani F. The effect of kefir-spirulina on glycemic status and antioxidant activity in hyperglycemia rats. POTRAVINARSTVO 2021. [DOI: 10.5219/1445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Diabetes mellitus (DM) is a metabolic disorder characterized by chronic hyperglycemia. It is caused by impaired insulin secretion or by insulin receptor insensitivity. DM and its complications are often related to increases in the level of oxidative stress. Spirulina is a nutrient-dense food that contains an abundance of antioxidant compounds. In combination with kefir, it may serve as both a nutrient-rich diet and an antioxidant agent that can prevent complications of diabetes. This study aims to investigate the nutritional content of kefir-spirulina and its effect on glycemic status and antioxidant activity in streptozotocin-nicotinamide (STZ-NA) induced diabetic rats. A total of 30 male Sprague Dawley rats were divided into five groups: normal control (K1), diabetic control (K2), pioglitazone treatment (K3), kefir combined with 1% spirulina treatment (P1), and kefir combined with 2% spirulina treatment (P2). All rats were induced by STZ-NA, except for the normal control. Before and after the 28 days of intervention, blood samples were taken and analyzed for fasting plasma glucose, postprandial glucose, and SOD activity. The nutritional content, ethanol content, and total antioxidant capacity of kefir-spirulina were also analyzed. The diabetic rats that were fed with kefir-spirulina (P1 and P2) had a significant decrease in both fasting and postprandial plasma glucose (p <0.001) compared to the diabetic control rats. The decrease of plasma glucose in K2 is comparable to the control rats treated with the diabetic drug pioglitazone (K3). The activity of SOD in diabetic rats fed in P1 and P2 were higher (p <0.001) than in untreated diabetic rats (K2). The IC50 of kefir-spirulina was 42 – 43 ppm. It was concluded that kefir combined with spirulina has high nutrition and antioxidant capacity, which is proven to be capable of controlling glycemic status and enhancing antioxidant status in a diabetic rat model.
Collapse
|
36
|
Amirehsani KA, Hu J, Wallace DC, McCoy TP. Herbal/Plant Remedies and Supplements Used by Hispanics/Latinxs for Diabetes: Source of Functional Foods? Sci Diabetes Self Manag Care 2021; 47:94-104. [PMID: 34078206 DOI: 10.1177/0145721720983221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The purpose of this study was to explore the use of herbal/plant remedies and supplements for type 2 diabetes (T2DM) among Hispanics/Latinxs in North Carolina and identify demographic and diabetes-related factors associated with use of these therapies. METHODS Baseline data from a family-based diabetes intervention tailored for Hispanics/Latinxs were analyzed using descriptive statistics, bivariate analyses, and logistic regression. A convenience sample of 186 adults with T2DM and adult family members with and without T2DM was recruited from community-based settings and data obtained from face-to-face interviews conducted in Spanish. RESULTS Most participants were female (73%) with an average age of 45 years old. Among this predominantly immigrant sample (96%), 78% of participants reported being from Mexico. Sixty percent had T2DM, and average A1C was 8.7% for persons with T2DM. Nearly a third reported using 51 different remedies for diabetes management. Most ingested them concurrently with prescribed medications; however, 11.3% reported altering the dose of medications when using herbal/plant remedies or supplements. Most common items were prickly pear cactus, pineapple, celery, aloe vera, parsley, and spinach. Using herbs/plants was positively correlated with age, A1C, and years with T2DM. The odds of using herbs/plants increased 28% for every 1% increase in A1C (adjusted odds ratio = 1.28, P = .003). CONCLUSIONS Asking about herbal/plant remedy and supplement use is important. Although there is limited efficacy and safety studies for some items, multiple reported remedies are functional foods with biologically active ingredients to promote health. Patient education is needed on safe and unsafe items and use with prescribed medications.
Collapse
Affiliation(s)
- Karen A Amirehsani
- From School of Nursing, The University of North Carolina at Greensboro, Greensboro, North Carolina
| | - Jie Hu
- College of Nursing, The Ohio State University, Columbus, Ohio
| | - Debra C Wallace
- From School of Nursing, The University of North Carolina at Greensboro, Greensboro, North Carolina
| | - Thomas P McCoy
- From School of Nursing, The University of North Carolina at Greensboro, Greensboro, North Carolina
| |
Collapse
|
37
|
Ny V, Houška M, Pavela R, Tříska J. Potential benefits of incorporating Astragalus membranaceus into the diet of people undergoing disease treatment: An overview. J Funct Foods 2021. [DOI: 10.1016/j.jff.2020.104339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
38
|
Rajendran M, Ravi Chandran K. Grain Dimension, Nutrition and Nutraceutical Properties of Black and Red Varieties of Rice in India. CURRENT RESEARCH IN NUTRITION AND FOOD SCIENCE JOURNAL 2020. [DOI: 10.12944/crnfsj.8.3.20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Traditional colored rice varieties in India are the source of carbohydrates, phytochemicals and minerals. They facilitate the growth of probiotics in intestine and protect human from many chronic diseases. The present study investigated the nutritional properties such as total sugars, digestible sugars, resistant sugars, hydrolysis index, glycemic index and total proteins of thirteen colored varieties of rice in India. Nutraceutical properties like anti diabetic and prebiotic activity were investigated by standard methods. Chak hao poreiton and mappillai samba grains were 6.3 mm in length. Lowest length of 5.1 mm was recorded in 60 m Kuruvai. Among the rice varieties, mappillai samba has high concentration of digestible starch of 91% and Chak hao poreiton had low concentration of 62%. Resistant starch was 38% in Chak hao poreiton and 8% in mappillai samba. Lowest glycemic index of 52 and 53 were recorded in karuthakar poha and Chak hao poreiton respectively. Anthocyanin extracted from Chak hao poreiton inhibited 24% of human pancreatic α-amylase activity. It significantly increased the probiotic number from 0.15 CFU/mL to 1.95 CFU/mL. The study revealed that the black rice variety, Chak hao poreiton was rich in resistant starch and exhibited low glycemic index. The anthocyanins from Chak hao poreiton possessed significant antidiabetic and prebiotic activity. Molecular docking studies revealed the interaction of anthocyanin with pancreatic α-amylase, β-glucosidase and GLUT1.
Collapse
Affiliation(s)
- Mala Rajendran
- Department of Biotechnology, Mepco Schlenk Engineering College, Sivakasi, Tamil Nadu, India
| | | |
Collapse
|
39
|
Kilari BP, Mudgil P, Azimullah S, Bansal N, Ojha S, Maqsood S. Effect of camel milk protein hydrolysates against hyperglycemia, hyperlipidemia, and associated oxidative stress in streptozotocin (STZ)-induced diabetic rats. J Dairy Sci 2020; 104:1304-1317. [PMID: 33272578 DOI: 10.3168/jds.2020-19412] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022]
Abstract
This study investigated the effect of camel milk protein hydrolysates (CMPH) at 100, 500 and 1,000 mg/kg of body weight (BW) for 8 wk on hyperglycemia, hyperlipidemia, and associated oxidative stress in streptozotocin-induced diabetic rats. Body weights and fasting blood glucose levels were observed after every week until 8 wk, and oral glucose tolerance test (OGTT) levels and biochemical parameters were evaluated after 8 wk in blood and serum samples. Antioxidant enzyme activity and lipid peroxidation in the liver were estimated, and histological examination of the liver and pancreatic tissues was also conducted. Results showed that CMPH at 500 mg/kg of BW [camel milk protein hydrolysate, mid-level dosage (CMPH-M)] exhibited potent hypoglycemic activity, as shown in the reduction in fasting blood glucose and OGTT levels. The hypolipidemic effect of CMPH was indicated by normalization of serum lipid levels. Significant improvement in activity of superoxide dismutase and catalase, and reduced glutathione levels were observed, along with the attenuation of malondialdehyde content in groups fed CMPH, especially CMPH-M, was observed. Decreased levels of liver function enzymes (aspartate aminotransferase and alanine aminotransferase) in the CMPH-M group was also noted. Histology of liver and pancreatic tissue displayed absence of lipid accumulation in hepatocytes and preservation of β-cells in the CMPH-M group compared with the diabetic control group. This is the first study to report anti-hyperglycemic and anti-hyperlipidemic effect of CMPH in an animal model system. This study indicates that CMPH can be suggested for its therapeutic benefits for hyperglycemia and hyperlipidemia, thus validating its use for better management of diabetes and associated comorbidities.
Collapse
Affiliation(s)
- Bhanu Priya Kilari
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates
| | - Priti Mudgil
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates
| | - Sheikh Azimullah
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, 17666, United Arab Emirates
| | - Nidhi Bansal
- ARC Dairy Innovation Hub, School of Agriculture and Food Sciences, The University of Queensland, QLD 4072, Australia
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, 17666, United Arab Emirates.
| | - Sajid Maqsood
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates.
| |
Collapse
|
40
|
Song Y, Yang J, Jing W, Wang Q, Liu Y, Cheng X, Ye F, Tian J, Wei F, Ma S. Systemic elucidation on the potential bioactive compounds and hypoglycemic mechanism of Polygonum multiflorum based on network pharmacology. Chin Med 2020; 15:121. [PMID: 33292335 PMCID: PMC7672844 DOI: 10.1186/s13020-020-00401-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/06/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Diabetes is a complex metabolic disease characterized by hyperglycemia, plaguing the whole world. However, the action mode of multi-component and multi-target for traditional Chinese medicine (TCM) could be a promising treatment of diabetes mellitus. According to the previous research, the TCM of Polygonum multiflorum (PM) showed noteworthy hypoglycemic effect. Up to now, its hypoglycemic active ingredients and mechanism of action are not yet clear. In this study, network pharmacology was employed to elucidate the potential bioactive compounds and hypoglycemic mechanism of PM. METHODS First, the compounds with good pharmacokinetic properties were screened from the self-established library of PM, and the targets of these compounds were predicted and collected through database. Relevant targets of diabetes were summarized by searching database. The intersection targets of compound-targets and disease-targets were obtained soon. Secondly, the interaction net between the compounds and the filtered targets was established. These key targets were enriched and analyzed by protein-protein interactions (PPI) analysis, molecular docking verification. Thirdly, the key genes were used to find the biologic pathway and explain the therapeutic mechanism by genome ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) analysis. Lastly, the part of potential bioactive compounds were under enzyme activity inhibition tests. RESULTS In this study, 29 hypoglycemic components and 63 hypoglycemic targets of PM were filtrated based on online network database. Then the component-target interaction network was constructed and five key components resveratrol, apigenin, kaempferol, quercetin and luteolin were further obtained. Sequential studies turned out, AKT1, EGFR, ESR1, PTGS2, MMP9, MAPK14, and KDR were the common key targets. Docking studies indicated that the bioactive compounds could stably bind the pockets of target proteins. There were 38 metabolic pathways, including regulation of lipolysis in adipocytes, prolactin signaling pathway, TNF signaling pathway, VEGF signaling pathway, FoxO signaling pathway, estrogen signaling pathway, linoleic acid metabolism, Rap1 signaling pathway, arachidonic acid metabolism, and osteoclast differentiation closely connected with the hypoglycemic mechanism of PM. And the enzyme activity inhibition tests showed the bioactive ingredients have great hypoglycemic activity. CONCLUSION In summary, the study used systems pharmacology to elucidate the main hypoglycemic components and mechanism of PM. The work provided a scientific basis for the further hypoglycemic effect research of PM and its monomer components, but also provided a reference for the secondary development of PM.
Collapse
Affiliation(s)
- Yunfei Song
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Jianbo Yang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Wenguang Jing
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Qi Wang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Yue Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xianlong Cheng
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Fei Ye
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jinying Tian
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Feng Wei
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, 100050, China.
| | - Shuangcheng Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, 100050, China.
| |
Collapse
|
41
|
Chiu HF, Venkatakrishnan K, Wang CK. The role of nutraceuticals as a complementary therapy against various neurodegenerative diseases: A mini-review. J Tradit Complement Med 2020; 10:434-439. [PMID: 32953558 PMCID: PMC7484964 DOI: 10.1016/j.jtcme.2020.03.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 02/06/2023] Open
Abstract
In recent times, many scientists have given great attention to nutraceuticals (complementary medicine) as it widely used for promoting health status. In particular for the prevention and treatment of various neurological diseases or disorders without or less adverse effects. The current mini-review was intended to compile all popular (major) nutraceuticals against various neurodegenerative diseases (NDDs) including Parkinson's disease (PD), Alzheimer's disease (AD), Huntington's disease (HD) with special reference to clinical trials. Preliminary reviews indicated that nutraceuticals like curcumin, resveratrol, Epigallocatechin-3-gallate (EGCG), Coenzyme Q10, ω-3 FA (DHA/EPA/ALA), showed better neuroprotective activity against various NDDs in human setting (clinical trial). Hence this contribution will focus only on those popular nutraceuticals with proposed brief mechanisms (antioxidant, anti-inflammatory, mitochondrial homeostasis, autophagy regulation, promote neurogenesis) and its recommendation. This mini-review would aid common people to choose better nutraceuticals to combat various NDDs along with standard neuroprotective agents and modified lifestyle pattern.
Collapse
Key Words
- AD, Alzheimer’s disease
- ATP, Adenosine triphosphate
- BBB, Blood-brain barrier
- Clinical trial
- HD, Huntington’s disease
- HO-1, Heme Oxygenase-1
- JNK, c-Jun N-terminal Kinase
- MAPK, Mitogen-activated protein kinase
- NDDs, neurodegenerative diseases
- NF-κB, Nuclear factor Kappa B
- Neurodegenerative diseases
- Neuroprotective agents
- Nrf2, Nuclear factor-E2-related factor
- Nutraceutical
- PD, Parkinson’s disease
- PI3K, Phosphatidylinositol-3-kinase
- SIRT1, Sirtuin 1
Collapse
Affiliation(s)
- Hui-Fang Chiu
- Department of Chinese Medicine, Taichung Hospital Ministry of Health and Well-being, Taichung, ROC, Taiwan
| | - Kamesh Venkatakrishnan
- School OfNutrition, Chung Shan Medical University, 110, Sec. 1, Jianguo North Road, Taichung City, ROC, Taiwan
| | - Chin-Kun Wang
- School OfNutrition, Chung Shan Medical University, 110, Sec. 1, Jianguo North Road, Taichung City, ROC, Taiwan
| |
Collapse
|
42
|
Oliveira H, Fernandes A, F. Brás N, Mateus N, de Freitas V, Fernandes I. Anthocyanins as Antidiabetic Agents-In Vitro and In Silico Approaches of Preventive and Therapeutic Effects. Molecules 2020; 25:E3813. [PMID: 32825758 PMCID: PMC7504281 DOI: 10.3390/molecules25173813] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022] Open
Abstract
Many efforts have been made in the past two decades into the search for novel natural and less-toxic anti-diabetic agents. Some clinical trials have assigned this ability to anthocyanins, although different factors like the food source, the amount ingested, the matrix effect and the time of consumption (before or after a meal) seem to result in contradictory conclusions. The possible mechanisms involved in these preventive or therapeutic effects will be discussed-giving emphasis to the latest in vitro and in silico approaches. Therapeutic strategies to counteract metabolic alterations related to hyperglycemia and Type 2 Diabetes Mellitus (T2DM) may include: (a) Inhibition of carbohydrate-metabolizing enzymes; (b) reduction of glucose transporters expression or activity; (c) inhibition of glycogenolysis and (d) modulation of gut microbiota by anthocyanin breakdown products. These strategies may be achieved through administration of individual anthocyanins or by functional foods containing complexes of anthocyanin:carbohydrate:protein.
Collapse
Affiliation(s)
| | | | | | | | | | - Iva Fernandes
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (H.O.); (A.F.); (N.F.B.); (N.M.); (V.d.F.)
| |
Collapse
|
43
|
Askarpour M, Alami F, Campbell MS, Venkatakrishnan K, Hadi A, Ghaedi E. Effect of fenugreek supplementation on blood lipids and body weight: A systematic review and meta-analysis of randomized controlled trials. JOURNAL OF ETHNOPHARMACOLOGY 2020; 253:112538. [PMID: 32087319 DOI: 10.1016/j.jep.2019.112538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/29/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fenugreek is a traditional herbal medicine that has been used for centuries to treat hyperglycemia, muscle spasms, gastritis, constipation, edema, and other metabolic disorders. Recently, lipid-lowering effects of fenugreek have been identified. AIM OF THE STUDY The aim of this systematic review and meta-analysis was to determine and clarify the impact of fenugreek supplementation on anthropometric indices and serum lipid levels. MATERIALS AND METHODS We searched PubMed, Scopus, ISI Web of Science, Cochrane Library, and Google Scholar from inception to June 2019 using relevant keywords. All randomized controlled trials (RCTs) investigating the effects of fenugreek on anthropometric indices and plasma lipids in adults were included. A random-effects model was used for quantitative data synthesis. A sensitivity analysis was conducted using the leave-one-out method. RESULTS A meta-analysis of 12 RCTs (14 arms) with 560 participants suggested a significant decrease in plasma concentrations of total cholesterol (WMD = -9.371 mg/dL; 95% CI: -15.419, -3.323, p = 0.002), triglycerides (WMD = -13.776 mg/dL; 95% CI: -26.636, -0.916, p = 0.036), and low density lipoprotein cholesterol (WMD = -6.590 mg/Dl; 95% CI: -13.042, -0.137, p = 0.045), as well as an increase in plasma high density lipoprotein cholesterol (WMD = 3.501 mg/dL; 95% CI: 1.309, 5.692, p = 0.002), while body weight (WMD = 0.223 kg; 95% CI: -0.509, 0.955, p = 0.551) and body mass index (WMD = 0.091 kg/m2; 95% CI: -0.244, 0.426, p = 0.596) were not altered. CONCLUSION Fenugreek supplementation improved lipid parameters in adults. However, to confirm these results, more studies, particularly among hyperlipidemic patients, are needed.
Collapse
Affiliation(s)
- Moein Askarpour
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Farkhondeh Alami
- Student Research Committee, Department of Nutrition, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Marilyn S Campbell
- Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, KY, USA
| | - Kamesh Venkatakrishnan
- School of Nutrition, Chung Shan Medical University, 110, Sec. 1, Jianguo North Road, Taichung City, Taiwan, ROC
| | - Amir Hadi
- Halal Research Center of IRI, FDA, Tehran, Iran.
| | - Ehsan Ghaedi
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran; Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
44
|
Antioxidant and anti-inflammatory activities of an anti-diabetic polysaccharide extracted from Gynostemma pentaphyllum herb. Int J Biol Macromol 2020; 145:484-491. [DOI: 10.1016/j.ijbiomac.2019.12.213] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/16/2019] [Accepted: 12/24/2019] [Indexed: 12/21/2022]
|
45
|
Figueiredo ID, Lima TFO, Inácio MD, Costa MC, Assis RP, Brunetti IL, Baviera AM. Lycopene Improves the Metformin Effects on Glycemic Control and Decreases Biomarkers of Glycoxidative Stress in Diabetic Rats. Diabetes Metab Syndr Obes 2020; 13:3117-3135. [PMID: 32982345 PMCID: PMC7495351 DOI: 10.2147/dmso.s265944] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/07/2020] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Oxidative stress and exacerbated generation of advanced glycation end products (AGEs) participate in the onset of diabetic complications. Lycopene is a potent antioxidant; evidence accounts for its ability to mitigate diabetic disturbances, including the deleterious events of advanced glycation. Therefore, this carotenoid has emerged as a candidate to be used in combination with antidiabetic drugs, such as metformin, attempting to counteract the glycoxidative stress. This study investigated the effects of the treatments with lycopene or metformin, alone or in combination, on glycoxidative stress biomarkers and antioxidant defenses in diabetic rats. METHODS Streptozotocin-induced diabetic rats were treated for 35 days with lycopene (45 mg/kg) or metformin (250 mg/kg), alone or as mixtures in yoghurt. Plasma levels of glucose, triglycerides, cholesterol, thiobarbituric acid reactive substances and protein carbonyl groups (biomarkers of oxidative damage), fluorescent AGEs (biomarkers of advanced glycation), and paraoxonase 1 activity (antioxidant enzyme) were assessed. Changes in the hepatic and renal levels of glycoxidative damage biomarkers and the activities of antioxidant enzymes were investigated. RESULTS The combination of lycopene with metformin maintained the beneficial effects of the isolated treatments, improving the glucose tolerance and lipid profile, lessening biomarkers of oxidative damage, and increasing the paraoxonase 1 activity. Besides, the combined therapy caused further decreases in postprandial glycemia, plasma levels of cholesterol and AGEs, avoided lipid peroxidation (plasma, kidney), and increased antioxidant defenses, mainly the activity of superoxide dismutase (liver, kidney), indicating the maintenance of the lycopene effects. CONCLUSION Lycopene combined with metformin may act synergistically in the control of postprandial glycemia, dyslipidemia and glycoxidative stress, as well as increased antioxidant defenses, arising as a promising therapeutic strategy to mitigate diabetic complications.
Collapse
Affiliation(s)
- Ingrid Delbone Figueiredo
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara, São Paulo, Brazil
| | - Tayra Ferreira Oliveira Lima
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara, São Paulo, Brazil
| | - Maiara Destro Inácio
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara, São Paulo, Brazil
| | - Mariana Campos Costa
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara, São Paulo, Brazil
| | - Renata Pires Assis
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara, São Paulo, Brazil
| | - Iguatemy Lourenço Brunetti
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara, São Paulo, Brazil
| | - Amanda Martins Baviera
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara, São Paulo, Brazil
- Correspondence: Amanda Martins Baviera Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University Rodovia Araraquara Jaú, Km 01 – s/n, Campos Ville, Araraquara, São PauloCEP 14800-903, BrazilTel +55 16 3301 5717Fax +55 16 3322 0073 Email
| |
Collapse
|
46
|
Chiu HF, Venkatakrishnan K, Wang CK. Nutraceuticals and functional foods in the prevention of hypertension induced by excessive intake of dietary salt. DIETARY SUGAR, SALT AND FAT IN HUMAN HEALTH 2020:423-450. [DOI: 10.1016/b978-0-12-816918-6.00020-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|