1
|
Zhang X, Liu G, Sun X, Wan LS, Zhou Y. A Metal-Free Direct Decarboxylative Fluoroacylation of Indole Carboxylic Acids with Fluorinated Acids. J Org Chem 2024; 89:14591-14595. [PMID: 39323110 DOI: 10.1021/acs.joc.4c01842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
A straightforward preparation of diversified fluorinated indol-3-yl ketones was developed by the direct decarboxylative fluoroacylation of indole carboxylic acids. The reaction could be performed on a gram scale under net conditions. Neither a metal catalyst nor an additive was employed. This methodology featured simple reaction conditions, high efficiency, exclusive selectivity, a broad substrate scope, and easy operation, which allowed it to meet the green chemistry requirement of the modern pharmaceutical industry. Control experiments confirmed that a radical process might be involved in the tandem decarboxylative fluoroacylation sequence.
Collapse
Affiliation(s)
- Xingxing Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Guangyuan Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xing Sun
- Hebei Chemical and Pharmaceutical College, Shijiazhuang 050026, China
| | - Luo-Sheng Wan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yirong Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
2
|
Foyle ÉM, Goodwin RJ, Cox CJT, Smith BR, Colebatch AL, White NG. Expedient Decagram-Scale Synthesis of Robust Organic Cages That Bind Sulfate Strongly and Selectively in Water. J Am Chem Soc 2024; 146:27127-27137. [PMID: 39312466 DOI: 10.1021/jacs.4c09930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Selective anion recognition remains a key challenge in supramolecular chemistry: only a very small number of systems that can function in water are known, and these nearly always preferentially bind hydrophobic anions. In this work, we report three robust hexa-cationic cages that can be prepared on scales up to 14 g in two simple and high-yielding steps from commercially available materials. One of these cages displays unusually strong sulfate binding in water (Ka = 12,000 M-1), and demonstrates high selectivity for this anion over H2PO4-/HPO42- in DMSO/buffer mixtures. These results demonstrate that relatively large, three-dimensional supramolecular hosts can be prepared in high yields and on large scales, and can be highly potent receptors.
Collapse
Affiliation(s)
- Émer M Foyle
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Rosemary J Goodwin
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Cameron J T Cox
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- EaStCHEM School of Chemistry, The University of Edinburgh, Edinburgh EH9 3FJ, Scotland, U.K
| | - Bailee R Smith
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Annie L Colebatch
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Nicholas G White
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
3
|
Liu J, Cui Z, Bi J, He X, Ding Q, Zhu H, Ma C. Photocatalytic fluoroalkylation by ligand-to-metal charge transfer. Front Chem 2024; 12:1481342. [PMID: 39308850 PMCID: PMC11412811 DOI: 10.3389/fchem.2024.1481342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
Trifluoromethyl (CF3) and other fluoroalkyl groups are of great significance in the fields of pharmaceutical chemistry and agricultural chemicals. Fluoroalkyl acids, especially trifluoroacetic acid (TFA) is considered the most ideal fluoroalkylation reagent due to its low cost and easy availability. However, the extremely high oxidation potential requirement of TFA limits its wide application. In recent years, since visible-light-induced fluoroalkylation through the ligand-to-metal charge transfer (LMCT) process can overcome the above limitations, it has become an effective synthetic tool for the construction of fluorinated compounds with complex molecules and structures. In this review, according to the classification of different metal catalysts, we summarize the trifluoromethylation and fluoroalkylation of olefins, heteroaromatics, and terminal alkynes in different metal catalytic systems and their corresponding reaction mechanisms. The photocatalytic fluoroalkylation via LMCT is believed to expedite the development of fluoro-containing drugs, and more novel fluoroalkylation methologies using this strategy will be disclosed.
Collapse
Affiliation(s)
- Jingyi Liu
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Zhenwei Cui
- Chongqing Aoshe Bio-Chemical Co., Ltd., Chongqing, China
| | - Jingjing Bi
- School of Pharmacy, Xinyang Agricultural and Forestry University, Xinyang, Henan, China
| | - Xing He
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Qingjie Ding
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Hong Zhu
- Anesthesiology and Perioperative, Xinxiang Central Hospital, Xinxiang, China
| | - Chunhua Ma
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| |
Collapse
|
4
|
Wang Y, Liu S. Remarkable Enhancement of Antioxidant Activity of the Ovalbumin-EGCG Conjugate through a Novel Preceding Selective Protection Grafting Strategy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:13320-13327. [PMID: 38819406 DOI: 10.1021/acs.jafc.4c01187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Conventional radical grafting of proteins with catechins consumed the most antioxidant-active hydroxyls during grafting, thus failing to effectively retain antioxidant activity in conjugates. In this study, a novel strategy of selective protection of the most reactive hydroxyls before grafting was developed to preserve the most reactive hydroxyls and effectively retain antioxidant activity in conjugates. Selective protection of the most reactive hydroxyls of (-)-epigallocatechin-3-gallate (EGCG) was successfully realized in a yield of 87% applying trimethyl orthopropionate and catalytic calcium triflate at 40 °C. The novel ovalbumin (OVA)-EGCG conjugate with 93% grafting ratio was prepared by radical grafting with the selectively protected EGCG and subsequent deprotection. Substantially enhanced antioxidant performance of the novel OVA-EGCG conjugate in liposomes was unveiled with notably reduced curcumin degradation and leakage. The strategy and approaches developed in this study will be valuable to effectively improve the antioxidant activities of protein-catechin grafting conjugates.
Collapse
Affiliation(s)
- Yumin Wang
- Department of Food Science and Nutrition, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Songbai Liu
- Department of Food Science and Nutrition, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
5
|
Austin C, Purohit AL, Thomsen C, Pinkard BR, Strathmann TJ, Novosselov IV. Hydrothermal Destruction and Defluorination of Trifluoroacetic Acid (TFA). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8076-8085. [PMID: 38661729 DOI: 10.1021/acs.est.3c09404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have received increased attention due to their environmental prevalence and threat to public health. Trifluoroacetic acid (TFA) is an ultrashort-chain PFAS and the simplest perfluorocarboxylic acid (PFCA). While the US EPA does not currently regulate TFA, its chemical similarity to other PFCAs and its simple molecular structure make it a suitable model compound for studying the transformation of PFAS. We show that hydrothermal processing in compressed liquid water transforms TFA at relatively mild conditions (T = 150-250 °C, P < 30 MPa), initially yielding gaseous products, such as CHF3 and CO2, that naturally aspirate from the solution. Alkali amendment (e.g., NaOH) promotes the mineralization of CHF3, yielding dissolved fluoride, formate, and carbonate species as final products. Fluorine and carbon balances are closed using Raman spectroscopy and fluoride ion selective electrode measurements for experiments performed at alkaline conditions, where gas yields are negligible. Qualitative FTIR gas analysis allows for establishing the transformation pathways; however, the F-balance could not be quantitatively closed for experiments without NaOH amendment. The kinetics of TFA transformation under hydrothermal conditions are measured, showing little to no dependency on NaOH concentration, indicating that the thermal decarboxylation is a rate-limiting step. A proposed TFA transformation mechanism motivates additional work to generalize the hydrothermal reaction pathways to other PFCAs.
Collapse
Affiliation(s)
- Conrad Austin
- Mechanical Engineering Department, University of Washington, Seattle, Washington 98195, United States
- Aquagga, Inc., Tacoma, Washington 98402, United States
| | - Anmol L Purohit
- Mechanical Engineering Department, University of Washington, Seattle, Washington 98195, United States
| | - Cody Thomsen
- Mechanical Engineering Department, University of Washington, Seattle, Washington 98195, United States
- Aquagga, Inc., Tacoma, Washington 98402, United States
| | - Brian R Pinkard
- Mechanical Engineering Department, University of Washington, Seattle, Washington 98195, United States
- Aquagga, Inc., Tacoma, Washington 98402, United States
| | - Timothy J Strathmann
- Civil and Environmental Engineering Department, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Igor V Novosselov
- Mechanical Engineering Department, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
6
|
Jang J, Koo J, Oh M, Wi Y, Yu D, Hyeong J, Jang E, Ko H, Rim M, Jeong KU. Self-Assembled and Polymerized Hierarchical Nanostructure Films of Cyanostilbene-Based Reactive AIEgens for Smart Chemosensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307885. [PMID: 38161253 DOI: 10.1002/smll.202307885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/24/2023] [Indexed: 01/03/2024]
Abstract
For the development of acid-responsive advanced fluorescent films with a 2D nanostructure, a pyridyl cyanostilbene-based AIEgen (PCRM) is newly synthesized. The synthesized PCRM exhibits aggregation-induced emission (AIE) and responds reversibly to acid and base stimuli. To fabricate the nanoporous polymer-stabilized film, PCRM and 4-(octyloxy)benzoic acid (8OB) are complexed in a 1:1 ratio through hydrogen bonding. The PCRM-8OB complex with a smectic mesophase is uniaxially oriented at first and photopolymerized with a crosslinker. By subsequently removing 8OB in an alkaline solution, nanopores are generated in the self-assembled and polymerized hierarchical 2D nanostructure film. The prepared nanoporous fluorescent films exhibit not only the reversible response to acid and base stimuli but also mechanical and chemical robustness. Since the nanoporous fluorescent films have different sensitivities to trifluoroacetic acid (TFA) depending on the molecular orientation in the film, advanced acid vapor sensors that can display the risk level according to the concentration of TFA are demonstrated. Reactive AIEgens-based hierarchical nanostructure films with nanopores fabricated by a subsequent process of self-assembly, polymerization, and etching can open a new door for the development of advanced chemosensors.
Collapse
Affiliation(s)
- Junhwa Jang
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Jahyeon Koo
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Mintaek Oh
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Youngjae Wi
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Dongmin Yu
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Jaeseok Hyeong
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Eunji Jang
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Hyeyoon Ko
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Minwoo Rim
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Kwang-Un Jeong
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| |
Collapse
|
7
|
Chen X, Tian J, Wang S, Wang C, Zong L. Toward Bicalutamide Analogues with High Structural Diversity Using Catalytic Asymmetric Oxohydroxylation. J Org Chem 2024; 89:3907-3911. [PMID: 38427963 DOI: 10.1021/acs.joc.3c02735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
A catalytic enantioselective synthesis of bicalutamide derivatives with promising potentials in prostate cancer treatment has been disclosed. The key intermediates, α-hydroxy-β-keto esters, were efficiently constructed through cinchoninium-mediated asymmetric oxohydroxylation of easily accessible alkenes with potassium permanganate. Good yields and high levels of asymmetric induction are achieved. This method provides a new synthetic route to bicalutamide analogues with high structural diversity, which will beneficially support subsequent structure-activity relationship studies and boost prostate cancer drug development.
Collapse
Affiliation(s)
- Xinrui Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Jinxin Tian
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Shuangshuang Wang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Chao Wang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Lili Zong
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
8
|
Fernández-García S, Chantzakou VO, Juliá-Hernández F. Direct Decarboxylation of Trifluoroacetates Enabled by Iron Photocatalysis. Angew Chem Int Ed Engl 2023:e202311984. [PMID: 38088503 DOI: 10.1002/anie.202311984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Indexed: 12/30/2023]
Abstract
Trifluoroacetates are the most abundant and accessible sources of trifluoromethyl groups, which are key components in pharmaceuticals and agrochemicals. The generation of trifluoromethyl reactive radicals from trifluoroacetates requires their decarboxylation, which is hampered by their high oxidation potential. This constitutes a major challenge for redox-based methods, because of the need to pair the redox potentials with trifluoroacetate. Here we report a strategy based on iron photocatalysis to promote the direct photodecarboxylation of trifluoroacetates that displays reactivity features that escape from redox limitations. Our synthetic design has enabled the use of trifluoroacetates for the trifluoromethylation of more easily oxidizable organic substrates, offering new opportunities for late-stage derivatization campaigns using chemical feedstocks, Earth-abundant catalysts, and visible-light.
Collapse
Affiliation(s)
- Sara Fernández-García
- Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - Veronika O Chantzakou
- Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - Francisco Juliá-Hernández
- Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 30100, Murcia, Spain
| |
Collapse
|
9
|
Juliá F. From feedstock to pharmaceuticals. Nat Chem 2023; 15:1657-1658. [PMID: 38036644 DOI: 10.1038/s41557-023-01377-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Affiliation(s)
- Fabio Juliá
- Facultad de Química, Universidad de Murcia, Campus de Espinardo, Murcia, Spain.
| |
Collapse
|
10
|
Kuehl VA, Schmalzer AM, Snyder CJ, Chavez DE. Synthesis, Characterization, and Energetic Properties of Nitrate Ester Acrylate Polymer. ACS OMEGA 2023; 8:38879-38884. [PMID: 37901546 PMCID: PMC10601433 DOI: 10.1021/acsomega.3c02725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/27/2023] [Indexed: 10/31/2023]
Abstract
An energetic nitrate ester acrylate monomer (4) was synthesized in a total yield of 68% and polymerized to form the energetic nitrate ester acrylate polymer (NEAP). Compound 4 is a liquid at room temperature with a melting point of -8.6 °C and NEAP is a solid with a glass-transition temperature of -8.8 °C. Intermediates leading to 4 and NEAP were characterized by high-resolution mass spectrometry, elemental analysis, Fourier transform infrared spectroscopy, and proton and carbon nuclear magnetic resonance spectroscopies (1H and 13C{1H} NMR). Both 4 and NEAP have electrostatic discharge, friction, and impact sensitivities comparable to those of trinitrotoluene, making NEAP a potential candidate for advanced energetic formulations.
Collapse
Affiliation(s)
- Valerie A Kuehl
- Q-5, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Andrew M Schmalzer
- Q-5, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Christopher J Snyder
- Q-5, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - David E Chavez
- Q-5, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
11
|
Srivastava N, Ha HJ. Regioselective ring opening of aziridine for synthesizing azaheterocycle. Front Chem 2023; 11:1280633. [PMID: 37927563 PMCID: PMC10620703 DOI: 10.3389/fchem.2023.1280633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023] Open
Abstract
Aziridine had different regioselective ring openings depending on the functional group of its alkyl substituent. In the case of the alkyl group bearing γ-ketone at the C2 substituent of aziridine, the ring opening by the hydroxy nucleophile from H2O occurred by attacking the aziridine carbon at the C2 position. This reaction proceeded efficiently in the presence of CF3CO2H. Interestingly, the same starting aziridine ring bearing the alkyl substituent at the C2 position with the γ-silylated hydroxy group instead of γ-ketone led to the ring-opening reaction by the same oxygen nucleophile at the unsubstituted C3 position, with the breakage of the bond between aziridine N1 nitrogen and carbon at C3. These reaction products were cyclized to afford substituted pyrrolidine and piperidine rings with representative examples of congeners of pseudoconhydrine and monomorine.
Collapse
Affiliation(s)
| | - Hyun-Joon Ha
- Department of Chemistry, Hankuk University of Foreign Studies, Yongin, Republic of Korea
| |
Collapse
|
12
|
Guo Z, Yu Q, Chen Y, Liu J, Li T, Peng Y, Yi W. Fluorine-Containing Functional Group-Based Energetic Materials. CHEM REC 2023; 23:e202300108. [PMID: 37265346 DOI: 10.1002/tcr.202300108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/19/2023] [Indexed: 06/03/2023]
Abstract
Molecules featuring fluorine-containing functional groups exhibit outstanding properties with high density, low sensitivity, excellent thermal stability, and good energetic performance due to the strong electron-withdrawing ability and high density of fluorine. Hence, they play a pivotal role in the field of energetic materials. In light of current theoretical and experimental reports, this review systematically focuses on three types of energetic materials possessing fluorine-containing functional groups F- and NF2 - substituted trinitromethyl groups (C(NO2 )2 F, C(NO2 )2 NF2 ), trifluoromethyl group (CF3 ), and difluoroamino and pentafluorosulfone groups (NF2 , SF5 ) and investigates the synthetic methods, physicochemical parameters, and energetic properties of each. The incorporation of fluorine-containing functional moieties is critical for the development of novel high energy density materials, and is rapidly being adopted in the design of energetic materials.
Collapse
Affiliation(s)
- Zihao Guo
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Qiong Yu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yucong Chen
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jie Liu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Tao Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yuhuang Peng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Wenbin Yi
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
13
|
Rizzo C, Amata S, Pibiri I, Pace A, Buscemi S, Palumbo Piccionello A. FDA-Approved Fluorinated Heterocyclic Drugs from 2016 to 2022. Int J Mol Sci 2023; 24:ijms24097728. [PMID: 37175436 PMCID: PMC10178595 DOI: 10.3390/ijms24097728] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
The inclusion of fluorine atoms or heterocyclic moiety into drug structures represents a recurrent motif in medicinal chemistry. The combination of these two features is constantly appearing in new molecular entities with various biological activities. This is demonstrated by the increasing number of newly synthesized fluorinated heterocyclic compounds among the Food and Drug Administration FDA-approved drugs. In this review, the biological activity, as well as the synthetic aspects, of 33 recently FDA-approved fluorinated heterocyclic drugs from 2016 to 2022 are highlighted.
Collapse
Affiliation(s)
- Carla Rizzo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy
| | - Sara Amata
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy
| | - Ivana Pibiri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy
| | - Andrea Pace
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy
| | - Silvestre Buscemi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy
| | - Antonio Palumbo Piccionello
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy
| |
Collapse
|
14
|
Yang B, Zhang D, Xia X, Meng X, He Y, Wang B, Han Z, Wang K. Boosting energy density of the aqueous supercapacitors by employing trifluoroacetic acid as a novel high voltage electrolyte. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
15
|
Xu X, Gao D, Wang J, Tang XY, Wang L. The B(C 6F 5) 3·H 2O promoted synthesis of fluoroalkylated 3,3',3''-trisindolylmethanes from fluorocarboxylic acids and indoles. Org Biomol Chem 2023; 21:1478-1486. [PMID: 36655817 DOI: 10.1039/d2ob02241a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Trisindolylmethanes (TIMs) exist in many bioactive natural products and are frequently applied in medicinal chemistry and materials science. Herein, a simple and efficient protocol promoted by B(C6F5)3·H2O for the synthesis of their fluoroalkylated analogues, fluoroalkylated 3,3',3''-TIMs, is reported for the first time. Easily accessible fluorocarboxylic acids are utilized as the fluoroalkyl sources, exhibiting an obvious fluorine effect. This convenient and green process features mild and metal-free conditions, easy scale-up, and an environmentally friendly byproduct.
Collapse
Affiliation(s)
- Xin Xu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Bio-inorganic Chemistry & Materia Medica; School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Dandan Gao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Bio-inorganic Chemistry & Materia Medica; School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Jiahua Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Bio-inorganic Chemistry & Materia Medica; School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Xiang-Ying Tang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Bio-inorganic Chemistry & Materia Medica; School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Long Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Bio-inorganic Chemistry & Materia Medica; School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
16
|
Liang ML, Lacroix M, Tao C, Waters MJ, Rondinelli JM, Halasyamani PS. Noncentrosymmetric γ -Cs 2I 4O 11 Obtained from IO 4 Polyhedral Rearrangements in the Centrosymmetric β -Phase. Inorg Chem 2023; 62:2942-2950. [PMID: 36716235 DOI: 10.1021/acs.inorgchem.2c04450] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We report the synthesis and optical properties of noncentrosymmetric (NCS) γ-Cs2I4O11 that was obtained through IO4 polyhedral rearrangements from centrosymmetric (CS) β-Cs2I4O11. Trifluoroacetic acid (TFA) acts as a structure-directing agent and plays a key role in the synthesis. It is suggested that the function of TFA is to promote rearrangement reactions found in the organic synthesis of stereoisomers. γ-Cs2I4O11 crystallizes in the NCS monoclinic space group P21 (No. 4) and exhibits a strong second-harmonic-generation (SHG) response of 5.0 × KDP (KH2PO4) under 1064 nm laser radiation. Additional SHG experiments indicate that the material is type I phase matchable. First-principles calculations show that SHG intensity mainly comes from its d34, d21, and d23 SHG tensor components. The synthetic strategy of discovering γ-Cs2I4O11 provides a new way for designing novel NCS SHG materials.
Collapse
Affiliation(s)
- Ming-Li Liang
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Matthew Lacroix
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Ce Tao
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Michael J Waters
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - James M Rondinelli
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - P Shiv Halasyamani
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
17
|
Li YN, Zhou MX, Wu JB, Wang Z, Zeng YF. Tandem reduction and trifluoroethylation of quinolines and quinoxalines with trifluoroacetic acid and trimethylamine borane. Org Biomol Chem 2022; 20:9613-9617. [PMID: 36420677 DOI: 10.1039/d2ob01923j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A metal-free tandem reduction and N-trifluoroethylation of quinolines and quinoxalines has been developed. It provided a convenient route to access trifluoroethylated tetrahydroquinolines and tetrahydroquinoxalines. This one-pot method avoids the purification process of the intermediate. Mechanistically, the in situ-generated boryl acetal species reacted with tetrahydroquinolines to generate iminiums followed by reduction to give the target compounds.
Collapse
Affiliation(s)
- Yi-Na Li
- School of Pharmaceutical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Ming-Xi Zhou
- School of Pharmaceutical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Jin-Bo Wu
- School of Pharmaceutical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Zhen Wang
- School of Pharmaceutical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Yao-Fu Zeng
- School of Pharmaceutical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
18
|
Ortiz Villamizar MC, Puerto Galvis CE, Pedraza Rodríguez SA, Zubkov FI, Kouznetsov VV. Synthesis, In Silico and In Vivo Toxicity Assessment of Functionalized Pyridophenanthridinones via Sequential MW-Assisted Intramolecular Friedel-Crafts Alkylation and Direct C-H Arylation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238112. [PMID: 36500206 PMCID: PMC9741109 DOI: 10.3390/molecules27238112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/23/2022]
Abstract
A rapid, efficient, and original synthesis of novel pyrido[3,2,1-de]phenanthridin-6-ones is reported. First, the key cinnamamide intermediates 8a-f were easily prepared from commercial substituted anilines, cinnamic acid, and 2-bromobenzylbromide in a tandem amidation and N-alkylation protocol. Then, these N-aryl-N-(2-bromobenzyl) cinnamamides 8a-f were subjected to a TFA-mediated intramolecular Friedel-Crafts alkylation followed by a Pd-catalyzed direct C-H arylation to obtain a series of potentially bioactive 4-phenyl-4,5-dihydro-6H,8H-pyrido[3,2,1-de]phenanthridin-6-one derivatives 4a-f in good yields. Finally, the toxicological profile of the prepared final compounds, including their corresponding intermediates, was explored through in silico computational methods, while the acute toxicity toward zebrafish embryos (96 hpf-LC50, 50% lethal concentration) was also determined in the present study.
Collapse
Affiliation(s)
- Marlyn C. Ortiz Villamizar
- Laboratorio de Química Orgánica y Biomolecular, CMN, Universidad Industrial de Santander, Parque Tecnológico Guatiguará, Km 2 Vía Refugio, Piedecuesta 681011, Colombia
| | - Carlos E. Puerto Galvis
- Laboratorio de Química Orgánica y Biomolecular, CMN, Universidad Industrial de Santander, Parque Tecnológico Guatiguará, Km 2 Vía Refugio, Piedecuesta 681011, Colombia
| | - Silvia A. Pedraza Rodríguez
- Laboratorio de Química Orgánica y Biomolecular, CMN, Universidad Industrial de Santander, Parque Tecnológico Guatiguará, Km 2 Vía Refugio, Piedecuesta 681011, Colombia
| | - Fedor I. Zubkov
- Department of Organic Chemistry, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
- Correspondence: (F.I.Z.); (V.V.K.); Tel.: +57-7-634-4000 (ext. 1243) (V.V.K.)
| | - Vladimir V. Kouznetsov
- Laboratorio de Química Orgánica y Biomolecular, CMN, Universidad Industrial de Santander, Parque Tecnológico Guatiguará, Km 2 Vía Refugio, Piedecuesta 681011, Colombia
- Correspondence: (F.I.Z.); (V.V.K.); Tel.: +57-7-634-4000 (ext. 1243) (V.V.K.)
| |
Collapse
|
19
|
Kim DH, Jeong Y, Belova L, Roggeman M, Fernández SF, Poma G, Remy S, Verheyen VJ, Schoeters G, van Nuijs ALN, Covaci A. Comprehensive investigation of persistent and mobile chemicals and per- and polyfluoroalkyl substances in urine of flemish adolescents using a suspect screening approach. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:119972. [PMID: 35988679 DOI: 10.1016/j.envpol.2022.119972] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/18/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Persistent and mobile chemicals (PMs) and per- and polyfluoroalkyl substances (PFAS) are groups of chemicals that have received recent global attention due to their potential health effects on the environment and humans. In this study, exposure to a broad range of PMs and PFAS was investigated in Flemish adolescents' urine samples (n = 83) using a suspect screening approach. For this purpose, three sample preparation methods were evaluated, and a basic liquid-liquid extraction was optimized for urine analysis based on the extraction efficiency of PMs (53-80%) and PFAS (>70%). In total, 9 PMs were identified in urine samples at confidence levels (CL) 1-3 and, among them, acetaminophen, 4-aminophenol, 2,2,6,6-tetramethyl-4-piperidone, trifluoroacetic acid (TFAA), sulisobenzone, ethyl sulfate, and 1,2-benzisothiazol-3(2H)-one 1,1-dioxide were confirmed at CL 1 and 2. In addition, the detection and identification of 2,2,6,6-tetramethyl-4-piperidone, 4-aminophenol, TFAA, and m-(2,3-epoxypropoxy)-N,N-bis(2,3-epoxypropyl) aniline (CL 3), has been reported for the first time in human urine in this study. For PFAS, only 2 compounds were identified at CL 4, implying that urine is not a suitable matrix for suspect screening of such compounds. A significant difference between sexes was observed in the detection rate of identified PMs, in particular for acetaminophen, 4-aminophenol, and sulisobenzone. The findings of this study can be used in future human biomonitoring programs, such as by including the newly identified compounds in quantitative methods or monitoring in other human matrices (e.g., serum).
Collapse
Affiliation(s)
- Da-Hye Kim
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| | - Yunsun Jeong
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Lidia Belova
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Maarten Roggeman
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Sandra F Fernández
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020, Valencia, Spain
| | - Giulia Poma
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Sylvie Remy
- Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - Veerle J Verheyen
- Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - Greet Schoeters
- Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - Alexander L N van Nuijs
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Adrian Covaci
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| |
Collapse
|
20
|
Zeng YF, Zhou MX, Li YN, Wu X, Guo Y, Wang Z. Switchable Reductive N-Trifluoroethylation and N-Trifluoroacetylation of Indoles with Trifluoroacetic Acid and Trimethylamine Borane. Org Lett 2022; 24:7440-7445. [PMID: 36173131 DOI: 10.1021/acs.orglett.2c03011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The metal-free reductive N-trifluoroethylation and N-trifluoroacetylation of indoles have been developed. Bench stable and inexpensive trimethylamine borane and trifluoroacetic acid (TFA) were utilized as the reductive and fluorinating reagents, respectively. These transformations were switchable on the basis of altering the loading of trimethylamine borane and TFA. Preliminary experiments indicated indoline was the common intermediate in these two transformations.
Collapse
Affiliation(s)
- Yao-Fu Zeng
- School of Pharmaceutical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Ming-Xi Zhou
- School of Pharmaceutical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yi-Na Li
- School of Pharmaceutical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xin Wu
- School of Pharmaceutical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yu Guo
- School of Pharmaceutical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zhen Wang
- School of Pharmaceutical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
21
|
Ardino C, Sannio F, Pasero C, Botta L, Dreassi E, Docquier JD, D'Agostino I. The impact of counterions in biological activity: case study of antibacterial alkylguanidino ureas. Mol Divers 2022:10.1007/s11030-022-10505-6. [PMID: 36036302 PMCID: PMC9421121 DOI: 10.1007/s11030-022-10505-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 07/23/2022] [Indexed: 11/25/2022]
Abstract
Abstract Trifluoroacetic acid (TFA), due to its strong acidity and low boiling point, is extensively used in protecting groups-based synthetic strategies. Indeed, synthetic compounds bearing basic functions, such as amines or guanidines (commonly found in peptido or peptidomimetic derivatives), developed in the frame of drug discovery programmes, are often isolated as trifluoroacetate (TF-Acetate) salts and their biological activity is assessed as such in in vitro, ex vivo, or in vivo experiments. However, the presence of residual amounts of TFA was reported to potentially affect the accuracy and reproducibility of a broad range of cellular assays (e. g. antimicrobial susceptibility testing, and cytotoxicity assays) limiting the further development of these derivatives. Furthermore, the impact of the counterion on biological activity, including TF-Acetate, is still controversial. Herein, we present a focused case study aiming to evaluate the activity of an antibacterial AlkylGuanidino Urea (AGU) compound obtained as TF-Acetate (1a) and hydrochloride (1b) salt forms to highlight the role of counterions in affecting the biological activity. We also prepared and tested the corresponding free base (1c). The exchange of the counterions applied to polyguanidino compounds represents an unexplored and challenging field, which required significant efforts for the successful optimization of reliable methods of preparation, also reported in this work. In the end, the biological evaluation revealed a quite similar biological profile for the salt derivatives 1a and 1b and a lower potency was found for the free base 1c. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s11030-022-10505-6.
Collapse
Affiliation(s)
- Claudia Ardino
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro, 2, 53100, Siena, Italy
| | - Filomena Sannio
- Dipartimento di Biotecnologie Mediche, University of Siena, Viale Bracci 16, 53100, Siena, Italy
| | - Carolina Pasero
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro, 2, 53100, Siena, Italy
| | - Lorenzo Botta
- Lead Discovery Siena s.r.l., Via Vittorio Alfieri 31, 53019, Castelnuovo Berardenga, Italy.,Department of Biological and Ecological Sciences, University of Tuscia, Largo Università s.n.c., 01100, Viterbo, Italy
| | - Elena Dreassi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro, 2, 53100, Siena, Italy
| | - Jean-Denis Docquier
- Dipartimento di Biotecnologie Mediche, University of Siena, Viale Bracci 16, 53100, Siena, Italy. .,Lead Discovery Siena s.r.l., Via Vittorio Alfieri 31, 53019, Castelnuovo Berardenga, Italy. .,Laboratoire de Bactériologie Moléculaire, Centre d'Ingénierie des Protéines - UR InBioS, University of Liège, Allée du six Août 11, 4000, Liège, Belgium.
| | - Ilaria D'Agostino
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro, 2, 53100, Siena, Italy. .,Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Via de Vestini, 31, 66013, Chieti, Italy.
| |
Collapse
|
22
|
Mokkarat A, Kruanetr S, Sakee U. Facial preparation of trifluoroacetic acid-immobilized amino-functionalized silica magnetite nano-catalysts as a highly efficient and reusable for synthesis of β-enaminones. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132745] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Monclús L, Løseth ME, Dahlberg Persson MJ, Eulaers I, Kleven O, Covaci A, Benskin JP, Awad R, Zubrod JP, Schulz R, Wabakken P, Heggøy O, Øien IJ, Steinsvåg MJ, Jaspers VLB, Nygård T. Legacy and emerging organohalogenated compounds in feathers of Eurasian eagle-owls (Bubo bubo) in Norway: Spatiotemporal variations and associations with dietary proxies (δ 13C and δ 15N). ENVIRONMENTAL RESEARCH 2022; 204:112372. [PMID: 34774833 DOI: 10.1016/j.envres.2021.112372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
The occurrence of organohalogenated compounds (OHCs) in wildlife has received considerable attention over the last decades. Among the matrices used for OHCs biomonitoring, feathers are particularly useful as they can be collected in a minimally or non-invasive manner. In this study, concentrations of various legacy OHCs -polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs) and polybrominated diphenyl ethers (PBDEs)-, as well as emerging OHCs -per- and polyfluoroalkyl substances (PFAS) and organophosphate ester flame retardants (OPEs)- were determined in feathers of 72 Eurasian eagle-owls (Bubo bubo) from Norway, with the goal of studying spatiotemporal variation using a non-invasive approach. Molted feathers were collected at nest sites from northern, central and southern Norway across four summers (2013-2016). Additionally, two museum-archived feathers from 1979 to 1989 were included. Stable carbon (δ13C) and nitrogen isotopes (δ15N) were used as dietary proxies. In total, 11 PFAS (sum range 8.25-215.90 ng g-1), 15 PCBs (4.19-430.01 ng g-1), 6 OCPs (1.48-220.94 ng g-1), 5 PBDEs (0.21-5.32 ng g-1) and 3 OPEs (4.49-222.21 ng g-1) were quantified. While we observed large variation in the values of both stable isotopes, suggesting a diverse diet of the eagle-owls, only δ13C seemed to explain variation in PFAS concentrations. Geographic area and year were influential factors for δ15N and δ13C. Considerable spatial variation was observed in PFAS levels, with the southern area showing higher levels compared to northern and central Norway. For the rest of OHCs, we observed between-year variations; sum concentrations of PCBs, OCPs, PBDEs and OPEs reached a maximum in 2015 and 2016. Concentrations from 1979 to 1989 were within the ranges observed between 2013 and 2016. Overall, our data indicate high levels of legacy and emerging OHCs in a top predator in Norway, further highlighting the risk posed by OHCs to wildlife.
Collapse
Affiliation(s)
- Laura Monclús
- Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7491, Trondheim, Norway.
| | - Mari Engvig Løseth
- Norwegian Geotechnical Institute (NGI), Sognsveien 72, 0855, Oslo, Norway
| | - Marie J Dahlberg Persson
- Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7491, Trondheim, Norway
| | - Igor Eulaers
- Norwegian Polar Institute, FRAM Centre, 9296, Tromsø, Norway
| | - Oddmund Kleven
- Norwegian Institute for Nature Research (NINA), Høgskoleringen 9, 7034, Trondheim, Norway
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Jonathan P Benskin
- Stockholm University, Department of Environmental Science, SE-106 91, Stockholm, Sweden
| | - Raed Awad
- Stockholm University, Department of Environmental Science, SE-106 91, Stockholm, Sweden; IVL Swedish Environmental Research Institute, 10031, Stockholm, Sweden
| | - Jochen P Zubrod
- University of Koblenz-Landau, IES Landau, Fortstrasse 7, 76829, Landau, Germany; Zubrod Environmental Data Science, Friesenstrasse 20, 76829, Landau, Germany
| | - Ralf Schulz
- University of Koblenz-Landau, IES Landau, Fortstrasse 7, 76829, Landau, Germany
| | - Petter Wabakken
- Faculty of Applied Ecology, Agricultural Sciences and Biochemistry, Inland Norway University of Applied Sciences, Evenstad, 2480, Koppang, Norway
| | - Oddvar Heggøy
- BirdLife Norway, Sandgata 30b, 7012, Trondheim, Norway; University Museum of Bergen, University of Bergen, 5020, Bergen, Norway
| | | | - Magnus Johan Steinsvåg
- Department of Environmental Affairs, County Governor of Vestland, 6863, Leikanger, Norway
| | - Veerle L B Jaspers
- Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7491, Trondheim, Norway
| | - Torgeir Nygård
- Norwegian Institute for Nature Research (NINA), Høgskoleringen 9, 7034, Trondheim, Norway
| |
Collapse
|
24
|
Polkovnichenko AV, Lupachev EV, Kvashnin SY, Kulov NN, Voshkin AA. Protic ionic liquid‐2,2,2‐trifluoroacetic acid‐methyl trifluoroacetate mixture distillation process. CAN J CHEM ENG 2022. [DOI: 10.1002/cjce.24369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Egor V. Lupachev
- Kurnakov Institute of General and Inorganic Chemistry RAS Moscow Russia
| | | | - Nikolai N. Kulov
- Kurnakov Institute of General and Inorganic Chemistry RAS Moscow Russia
| | - Andrey A. Voshkin
- Kurnakov Institute of General and Inorganic Chemistry RAS Moscow Russia
| |
Collapse
|
25
|
Mphahlele MJ, Onwu EE, Agbo EN, Maluleka MM, More GK, Choong YS. Synthesis, in vitro and in silico enzyme (COX-1/2 & LOX-5), free radical scavenging and cytotoxicity profiling of the 2,4-dicarbo substituted quinazoline 3-oxides. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02811-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Fluorinated MOF-808 with various modulators to fabricate high-performance hybrid membranes with enhanced hydrophobicity for organic-organic pervaporation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118315] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
27
|
Zhao Z, Liu L, Min L, Zhang W, Wang Y. A Facile Method to Realize Oxygen Reduction at the Hydrogen Evolution Cathode of an Electrolytic Cell for Energy-Efficient Electrooxidation. MATERIALS 2021; 14:ma14112841. [PMID: 34073284 PMCID: PMC8198103 DOI: 10.3390/ma14112841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 11/16/2022]
Abstract
Electrochemical oxidation, widely used in green production and pollution abatement, is often accompanied by the hydrogen evolution reaction (HER), which results in a high consumption of electricity and is a potential explosion hazard. To solve this problem, we report here a method for converting the original HER cathode into one that enables the oxygen reduction reaction (ORR) without having to build new electrolysis cells or be concerned about electrolyte leakage from the O2 gas electrode. The viability of this method is demonstrated using the electrolytic production of ammonium persulfate (APS) as an example. The original carbon black electrode for the HER is converted to an ORR electrode by first undergoing in situ anodization and then contacting O2 or air bubbled from the bottom of the electrode. With this sole change, APS production can achieve an electric energy saving of up to 20.3%. Considering the ease and low cost of this modification, such significant electricity savings make this method very promising in the upgrade of electrochemical oxidation processes, with wide potential applications.
Collapse
|
28
|
Kadagathur M, Shaikh AS, Jadhav GS, Sigalapalli DK, Shankaraiah N, Tangellamudi ND. Cyclodesulfurization: An Enabling Protocol for Synthesis of Various Heterocycles. ChemistrySelect 2021. [DOI: 10.1002/slct.202100201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Manasa Kadagathur
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Arbaz Sujat Shaikh
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Govinda Shivaji Jadhav
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Dilep Kumar Sigalapalli
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Neelima D. Tangellamudi
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| |
Collapse
|
29
|
Environmentally friendly superabsorbent fibers based on electrospun cellulose nanofibers extracted from wheat straw. Carbohydr Polym 2021; 251:117087. [PMID: 33142628 DOI: 10.1016/j.carbpol.2020.117087] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/18/2020] [Accepted: 09/08/2020] [Indexed: 11/21/2022]
Abstract
Superabsorbent polymers currently used in health and agricultural sectors are based on petroleum-based materials which led to serious concerns in the society. Here, superabsorbent fibers (SAFs) based on electrospun cellulose nanofibers (ECNFs) were prepared. Firstly, cellulose was removed from wheat straw, pre-treated with the TEMPO-mediated oxidation and subsequently dissolved into Trifluoroacetic acid for production of ECNFs through the electrospinning approach. The maximum swelling ratios of 225 g/g and 208 g/g in distilled water and 0.9 wt% NaCl solution were measured for ESAFs composed of oxidized ECNFs containing 15 % poly (sodium acrylate), respectively. The ESAFs were characterized using Fourier transform infrared spectroscopy and field emission scanning electron microscopy analysis. The FESEM showed that ESAFs formed high strength three-dimensional architecture networks. Also, the results showed that the ionic sensitivity of this ECNFs were low. The prepared ESAFs are attractive renewable alternatives for different applications, contributing to a reduction of plastic microspheres.
Collapse
|
30
|
Chinnam AK, Staples RJ, Shreeve JM. HFOX-1-Amino-1-hydrazino-2,2-Dinitroethylene as a Precursor to Trifluoromethyl, Dinitro, or Trinitro-Based Energetic 1,2,4-Triazoles. Org Lett 2021; 23:76-80. [PMID: 33326241 DOI: 10.1021/acs.orglett.0c03736] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The chemical reactivity of 1-amino-1-hydrazino-2,2-dinitroethylene with a carboxylic acid for the construction of structurally interesting energetic triazoles and their energetic salts is reported. All new compounds were fully characterized by elemental analysis, infrared spectroscopy, nuclear magnetic resonance spectroscopy, and differential scanning calorimetry. Crystal analysis, good detonation properties, and low sensitivities of these trifluoromethyl and dinitro- or trinitro-based triazoles suggest their role as potential candidates for insensitive high-energy-density materials.
Collapse
Affiliation(s)
- Ajay Kumar Chinnam
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, United States
| | - Richard J Staples
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jean'ne M Shreeve
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, United States
| |
Collapse
|
31
|
Murray BJ, Marsh TGF, Yufit DS, Fox MA, Harsanyi A, Boulton LT, Sandford G. HFO‐1234yf as a CF
3
‐Building Block: Synthesis and Chemistry of CF
3
‐Ynones. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ben J. Murray
- Department of Chemistry Durham University South Road DH1 3LE Durham U.K
| | | | - Dmitri S. Yufit
- Department of Chemistry Durham University South Road DH1 3LE Durham U.K
| | - Mark A. Fox
- Department of Chemistry Durham University South Road DH1 3LE Durham U.K
| | - Antal Harsanyi
- Medicines Research Centre GlaxoSmithKline R&D Ltd Gunnels Wood Road SG1 2NY Stevenage Hertfordshire U.K
| | - Lee T. Boulton
- Medicines Research Centre GlaxoSmithKline R&D Ltd Gunnels Wood Road SG1 2NY Stevenage Hertfordshire U.K
| | - Graham Sandford
- Department of Chemistry Durham University South Road DH1 3LE Durham U.K
| |
Collapse
|
32
|
Rice CA, Troth EV, Russell AC, Kyle DE. Discovery of Anti-Amoebic Inhibitors from Screening the MMV Pandemic Response Box on Balamuthia mandrillaris, Naegleria fowleri, and Acanthamoeba castellanii. Pathogens 2020; 9:E476. [PMID: 32560115 PMCID: PMC7344389 DOI: 10.3390/pathogens9060476] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 02/06/2023] Open
Abstract
Pathogenic free-living amoebae, Balamuthia mandrillaris, Naegleria fowleri, and several Acanthamoeba species are the etiological agents of severe brain diseases, with case mortality rates > 90%. A number of constraints including misdiagnosis and partially effective treatments lead to these high fatality rates. The unmet medical need is for rapidly acting, highly potent new drugs to reduce these alarming mortality rates. Herein, we report the discovery of new drugs as potential anti-amoebic agents. We used the CellTiter-Glo 2.0 high-throughput screening methods to screen the Medicines for Malaria Ventures (MMV) Pandemic Response Box in a search for new active chemical scaffolds. Initially, we screened the library as a single-point assay at 10 and 1 µM. From these data, we reconfirmed hits by conducting quantitative dose-response assays and identified 12 hits against B. mandrillaris, 29 against N. fowleri, and 14 against A. castellanii ranging from nanomolar to low micromolar potency. We further describe 11 novel molecules with activity against B. mandrillaris, 22 against N. fowleri, and 9 against A. castellanii. These structures serve as a starting point for medicinal chemistry studies and demonstrate the utility of phenotypic screening for drug discovery to treat diseases caused by free-living amoebae.
Collapse
Affiliation(s)
- Christopher A. Rice
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
- Center for Tropical and Emerging Global Diseases, Athens, GA 30602, USA; (E.V.T.); (A.C.R.)
| | - Emma V. Troth
- Center for Tropical and Emerging Global Diseases, Athens, GA 30602, USA; (E.V.T.); (A.C.R.)
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - A. Cassiopeia Russell
- Center for Tropical and Emerging Global Diseases, Athens, GA 30602, USA; (E.V.T.); (A.C.R.)
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Dennis E. Kyle
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
- Center for Tropical and Emerging Global Diseases, Athens, GA 30602, USA; (E.V.T.); (A.C.R.)
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
33
|
Caron S. Where Does the Fluorine Come From? A Review on the Challenges Associated with the Synthesis of Organofluorine Compounds. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00030] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Stéphane Caron
- Chemical Research & Development, Pfizer Worldwide Research & Development, MS 8220-2432, Eastern Point Rd, Groton, Connecticut 06340, United States
| |
Collapse
|
34
|
Application of a mechanically responsive, inflammatory macrophage-targeted dual-sensitive hydrogel drug carrier for atherosclerosis. Colloids Surf B Biointerfaces 2020; 186:110718. [DOI: 10.1016/j.colsurfb.2019.110718] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/26/2019] [Accepted: 12/08/2019] [Indexed: 01/01/2023]
|
35
|
Teng G, Zhang X, Zhang C, Chen L, Sun W, Qiu T, Zhang J. Lappaconitine trifluoroacetate contained polyvinyl alcohol nanofibrous membranes: Characterization, biological activities and transdermal application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 108:110515. [PMID: 31924037 DOI: 10.1016/j.msec.2019.110515] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 11/25/2022]
Abstract
Lappaconitine (LA), a potent analgesic drug extracted from the root of natural aconitum species, has been clinically used for years because of its effectiveness and non-addictive properties. However, it is mainly limited in oral and intravenous administration in the form of Lappaconitine Hydrobromide (LAH). In this work, Lappaconitine trifluoroacetate (LAF), a new derivative of LA, was successfully obtained by introducing organofluorine group to LA. This new compound had a lower toxicity (LD50 of 21.14 mg·kg-1), improved analgesic effect and longer half-life (T1/2 of 2.24 h) when compared with LAH. Moreover, in vitro transdermal permeation (Jss of 206.82 μg·cm-2·h-1) of LAF was 30.54% higher than that of LAH, means that LAF can be conveniently used for transdermal drug delivery (TDD). Therefore, drug membranes with PVA solution (10 wt%) containing LAF in various amounts were fabricated by electrospinning. The in vitro release tests confirmed that up to 81.43% of LAF in the PVA/LAF nanofibrous membranes could be released in 72 h, accompanied by significant analgesic effect when compared with the blank control group. In conclusion, the prepared LAF-loaded membrane is a novel formulation for the treatment of chronic and long-term pain.
Collapse
Affiliation(s)
- Guixiang Teng
- College of Life Science, Northwest Normal University, Lanzhou 730070, PR China; Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Northwest Normal University, Lanzhou 730070, PR China.
| | - Xifeng Zhang
- College of Life Science, Northwest Normal University, Lanzhou 730070, PR China; Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Northwest Normal University, Lanzhou 730070, PR China; The College of Agriculture and Biotechnology, Hexi University, Zhangye, Gansu 734000, PR China
| | - Chun Zhang
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, PR China
| | - Lele Chen
- College of Life Science, Northwest Normal University, Lanzhou 730070, PR China; Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Northwest Normal University, Lanzhou 730070, PR China
| | - Wenxiu Sun
- College of Life Science, Northwest Normal University, Lanzhou 730070, PR China; College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, PR China
| | - Ting Qiu
- College of Life Science, Northwest Normal University, Lanzhou 730070, PR China
| | - Ji Zhang
- College of Life Science, Northwest Normal University, Lanzhou 730070, PR China; Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Northwest Normal University, Lanzhou 730070, PR China.
| |
Collapse
|
36
|
Onomura O, Yamamoto K, Toguchi H, Harada T, Kuriyama M. Oxidative C-C Bond Cleavage of N-Protected Cyclic Amines by HNO3-TFA System. HETEROCYCLES 2020. [DOI: 10.3987/com-19-s(f)31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
37
|
Murray BJ, Ball ED, Harsanyi A, Sandford G. 2,3,3,3-Tetrafluoropropene (HFO-1234yf) as a CF3
-Building Block: Synthesis of Enol Ethers and Vinyl Sulfides. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901445] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ben J. Murray
- Department of Chemistry; Durham University; South Road DH1 3LE Durham UK
| | - Ellis D. Ball
- Department of Chemistry; Durham University; South Road DH1 3LE Durham UK
| | - Antal Harsanyi
- Medicines Research Centre; GlaxoSmithKline R&D Ltd; Gunnels Wood Road SG1 2NY Stevenage Hertfordshire UK
| | - Graham Sandford
- Department of Chemistry; Durham University; South Road DH1 3LE Durham UK
| |
Collapse
|
38
|
Development of a multistep reaction cascade for the synthesis of a sacubitril precursor in continuous flow. J Flow Chem 2019. [DOI: 10.1007/s41981-019-00058-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
AbstractThe active pharmaceutical ingredient sacubitril acts as a neprilysin inhibitor in the body and is administered to patients suffering from high blood pressure and chronic heart failure. In this paper, we report the development of a three-step setup for the synthesis of an advanced sacubitril precursor in continuous flow. The key transformation of our cascade is a Suzuki-Miyaura coupling facilitated by a heterogeneous palladium catalyst. Its implementation in a packed-bed reactor and the application of continuous flow methodologies allow intensification of the cross-coupling reaction compared to batch processing. The subsequent steps for the synthesis of the target molecule involve Boc-deprotection as well as N-succinylation, which have been optimized using the statistical “Design of Experiments” (DoE) approach. In this way, the individual as well as interactive effects of selected parameters on the output of the reactions could be investigated very efficiently. The consecutive performance of the three reaction steps using an integrated setup enabled the synthesis of a late-stage sacubitril precursor in continuous flow with 81% overall yield.
Collapse
|
39
|
Fatahi H, Jafarzadeh M, Pourmanouchehri Z. Synthesis of α‐Aminonitriles and 5‐Substituted 1 H‐Tetrazoles Using an Efficient Nanocatalyst of Fe 3O 4@SiO 2–APTES‐supported Trifluoroacetic Acid. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3582] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Hosna Fatahi
- Faculty of ChemistryRazi University Kermanshah 67149‐67346 Iran
| | | | | |
Collapse
|
40
|
Computational investigation of catalytic effects of CX 3COOH (X = F,Cl,H) on the three-component cyclocondensation reaction. J Mol Model 2019; 25:173. [PMID: 31129725 DOI: 10.1007/s00894-019-4059-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/30/2019] [Indexed: 01/19/2023]
Abstract
The mechanism of acetic acid (AA), trifluoroacetic acid (TFA), and trichloroacetic acid (TCA) catalyzed three-component cyclocondensation reaction to (4S,6S)-4,6-diphenyl-1,3,5-triazinane-2-thione was determined via density functional calculations. Based on the potential energy surface diagram, TCA was found to be a reasonable catalyst [energy span (δG) is 2 kcal mol-1 less than TFA and AA] for the reaction. An energetic span model implies that TFA and AA show the same catalytic performance. The impact of the presence of halogen atoms in TFA and TCA catalysts is quantified via energy barriers. Graphical Abstract Ranking catalytic efficiency of OTC triazinane-2-thione formation Graphical Abstract contains poor quality and small text inside the artwork. Please do not re-use the file that we have rejected or attempt to increase its resolution and re-save. It is originally poor, therefore, increasing the resolution will not solve the quality problem. We suggest that you provide us the original format. We prefer replacement figures containing vector/editable objects rather than embedded images. Preferred file formats are eps, ai, tiff and pdf.It is attached as tiff format.
Collapse
|
41
|
Monteiro LS, Paiva-Martins F, Oliveira S, Machado I, Costa M. An efficient one-pot synthesis of polyphenolic amino acids and evaluation of their radical-scavenging activity. Bioorg Chem 2019; 89:102983. [PMID: 31102692 DOI: 10.1016/j.bioorg.2019.102983] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/11/2019] [Accepted: 05/10/2019] [Indexed: 12/24/2022]
Abstract
A simple and efficient procedure for the synthesis of N-acyl 4-hydroxy, 4-hydroxy-3-methoxy and 3,4-dihydroxy phenylglycine amides by a strategy based on the multicomponent Ugi reaction is proposed. Hydroxybenzaldehyde derivatives were reacted with 4-methoxybenzylamine, cyclohexyl isocyanide and benzoic acid or 2-naphthylacetic acid to give Ugi adducts that were treated with trifluoroacetic acid yielding N-acyl hydroxyphenylglycine amides in good yields. The same procedure using as acid component protocatechuic acid or hydrocaffeic acid gave N-catechoyl 3,4-dihydroxyphenylglycine amides. The use of N-benzyloxycarbonylglycine as acid component allowed the preparation of a 3,4-dihydroxyphenylglycyl dipeptide derivative. Radical-scavenging activity studies of the polyphenolic amino acid derivatives showed a sharp increase in activity with the increase in number of hydroxyl or catechol groups present. Cyclic voltammetry experiments established a correlation between oxidation peak potentials and the radical-scavenging activity.
Collapse
Affiliation(s)
- Luís S Monteiro
- Chemistry Centre, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Fátima Paiva-Martins
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Science, University of Porto, Rua do Campo Alegre 687, Porto, Portugal
| | - Sandra Oliveira
- Chemistry Centre, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Science, University of Porto, Rua do Campo Alegre 687, Porto, Portugal
| | - Inês Machado
- Chemistry Centre, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Marlene Costa
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Science, University of Porto, Rua do Campo Alegre 687, Porto, Portugal
| |
Collapse
|
42
|
Nan J, Hu Y, Chen P, Ma Y. Metal-Free Synthesis of 2-Fluoroalkylated Quinolines Using Polyfluoroalkanoic Acids as Direct Fluorine Sources. Org Lett 2019; 21:1984-1988. [DOI: 10.1021/acs.orglett.9b00039] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jiang Nan
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Yan Hu
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Pu Chen
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Yangmin Ma
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| |
Collapse
|
43
|
Chen Y, You Y, Weng Z. Syntheses of 2-(2,2,2-trifluoroethylidene)/(2,2-difluoroethyl)-1,3-dicarbonyl compounds and their fungicidal activities. Org Chem Front 2019. [DOI: 10.1039/c8qo01118d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A Knoevenagel-type reaction of 1,3-diketone substrates with trifluoroacetic/difluoroacetic anhydride for the synthesis of 2-(2,2,2-trifluoroethylidene)/(2,2-difluoroethyl)-1,3-dicarbonyl compounds has been developed.
Collapse
Affiliation(s)
- Yueji Chen
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
- Fuzhou
- 350108
| | - Yi You
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
- Fuzhou
- 350108
| | - Zhiqiang Weng
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
- Fuzhou
- 350108
| |
Collapse
|
44
|
Schiano Moriello A, López Chinarro S, Novo Fernández O, Eras J, Amodeo P, Canela-Garayoa R, Vitale RM, Di Marzo V, De Petrocellis L. Elongation of the Hydrophobic Chain as a Molecular Switch: Discovery of Capsaicin Derivatives and Endogenous Lipids as Potent Transient Receptor Potential Vanilloid Channel 2 Antagonists. J Med Chem 2018; 61:8255-8281. [DOI: 10.1021/acs.jmedchem.8b00734] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Aniello Schiano Moriello
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy
- Epitech Group SpA, Saccolongo, Padova, Italy
| | - Silvia López Chinarro
- Departament de Química, Universitat de Lleida-Agrotecnio, Avda. Alcalde Rovira Roure, 191, E-25198 Lleida, Spain
| | - Olalla Novo Fernández
- Departament de Química, Universitat de Lleida-Agrotecnio, Avda. Alcalde Rovira Roure, 191, E-25198 Lleida, Spain
| | - Jordi Eras
- Departament de Química, Universitat de Lleida-Agrotecnio, Avda. Alcalde Rovira Roure, 191, E-25198 Lleida, Spain
| | - Pietro Amodeo
- Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy
| | - Ramon Canela-Garayoa
- Departament de Química, Universitat de Lleida-Agrotecnio, Avda. Alcalde Rovira Roure, 191, E-25198 Lleida, Spain
| | - Rosa Maria Vitale
- Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy
- Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Quebec City G1V 0A6, Canada
| | - Luciano De Petrocellis
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy
- Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy
| |
Collapse
|
45
|
Chen H, Yao Y, Zhao Z, Wang Y, Wang Q, Ren C, Wang B, Sun H, Alder AC, Kannan K. Multimedia Distribution and Transfer of Per- and Polyfluoroalkyl Substances (PFASs) Surrounding Two Fluorochemical Manufacturing Facilities in Fuxin, China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:8263-8271. [PMID: 29947229 DOI: 10.1021/acs.est.8b00544] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Industrial facilities can be point sources of per- and polyfluoroalkyl substances (PFASs) emission to the surrounding environment. In this study, 25 neutral and ionizable PFASs were analyzed in 94 multimedia samples including air, rain, outdoor settled dust, soil, plant leaves, river water, surface sediment, and shallow groundwater from two fluorochemical manufacturing parks (FMPs) in Fuxin, China, to elucidate the multimedia distribution and transfer pattern of PFASs from a point source. The concentrations of individual PFASs in air, outdoor settled dust, and surface river water decreased exponentially as the distance increases from the FMPs, whereas the concentrations of short-chain (C2-C4) perfluoroalkyl carboxylic acids (PFCAs) remained high (3000 ng/L) in the surface water 38 km away. At FMPs, air concentrations of fluorotelomer alcohols and iodides were found dominant with levels of up to 7900 pg/m3 and 920 pg/m3, respectively. Trifluoroacetic acid was directly released from FMPs and occurred in all the environmental matrices at levels 1-2 orders of magnitude higher than other PFCAs. Higher air-water concentration ratios of short-chain PFCAs (C2-C4) suggested their transfer tendency from air to water. Both short-chain (C2) and long-chain (>C6) PFCAs have greater sediment-water distribution coefficients and deposit dust-air coefficients, which have great influences on the long-range transport potential of different analogues.
Collapse
Affiliation(s)
- Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering , Nankai University , Tianjin 300071 , China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering , Nankai University , Tianjin 300071 , China
| | - Zhen Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering , Nankai University , Tianjin 300071 , China
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering , Nankai University , Tianjin 300071 , China
| | - Qi Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering , Nankai University , Tianjin 300071 , China
| | - Chao Ren
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering , Nankai University , Tianjin 300071 , China
| | - Bin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering , Nankai University , Tianjin 300071 , China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering , Nankai University , Tianjin 300071 , China
| | - Alfredo C Alder
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering , Nankai University , Tianjin 300071 , China
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, and Department of Environmental Health Sciences, School of Public Health , State University of New York at Albany , Albany , New York 12201 , United States
| |
Collapse
|
46
|
Mphahlele MJ, Parbhoo N. Synthesis, Evaluation of Cytotoxicity and Molecular Docking Studies of the 7-Acetamido Substituted 2-Aryl-5-bromo-3-trifluoroacetylindoles as Potential Inhibitors of Tubulin Polymerization. Pharmaceuticals (Basel) 2018; 11:ph11020059. [PMID: 29891753 PMCID: PMC6027433 DOI: 10.3390/ph11020059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 05/22/2018] [Accepted: 05/25/2018] [Indexed: 02/07/2023] Open
Abstract
The 3-trifluoroacetyl⁻substituted 7-acetamido-2-aryl-5-bromoindoles 5a⁻h were prepared and evaluated for potential antigrowth effect in vitro against human lung cancer (A549) and cervical cancer (HeLa) cells and for the potential to inhibit tubulin polymerization. The corresponding intermediates, namely, the 3-unsubstituted 7-acetyl-2-aryl-5-bromoindole 2a⁻d and 7-acetamido-2-aryl-5-bromoindole 4a⁻d were included in the assays in order to correlate both structural variations and cytotoxicity. No cytotoxicity was observed for compounds 2a⁻d and their 3-trifluoroacetyl⁻substituted derivatives 5a⁻d against both cell lines. The 7-acetamido derivatives 4⁻d exhibited modest cytotoxicity against both cell lines. All of the 3-trifluoroacetyl⁻substituted 7-acetamido-2-aryl-5-bromoindoles 5e⁻h were found to be more active against both cell lines when compared to the chemotherapeutic drug, Melphalan. The most active compound, 5g, induced programmed cell death (apoptosis) in a caspase-dependent manner for both A549 and HeLa cells. Compounds 5e⁻h were found to significantly inhibit tubulin polymerization against indole-3-carbinol and colchicine as reference standards. Molecular docking of 5g into the colchicine-binding site suggests that the compounds bind to tubulin by different type of interactions including pi-alkyl, amide-pi stacked and alkyl interactions as well as hydrogen bonding with the protein residues to elicit anticancer activity.
Collapse
Affiliation(s)
- Malose J Mphahlele
- Department of Chemistry, College of Science, Engineering and Technology, University of South Africa, Private Bag X06, Florida 1710, South Africa.
| | - Nishal Parbhoo
- Department of Life & Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X06, Florida 1710, South Africa.
| |
Collapse
|
47
|
Wang Z, Yuan Z, Han X, Weng Z. Aluminium Chloride-Mediated Synthesis of 1-Chloro-2,2,2-Trifluoroethylidene-Substituted Pyrrolidones. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800275] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zeng Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry; Fuzhou University; Fujian 350108 People's Republic of China
| | - Zihang Yuan
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry; Fuzhou University; Fujian 350108 People's Republic of China
| | - Xiaoyan Han
- Testing and Analysis Center; Soochow University; Suzhou 215123 People's Republic of China
| | - Zhiqiang Weng
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry; Fuzhou University; Fujian 350108 People's Republic of China
| |
Collapse
|
48
|
Yang B, Yu D, Xu XH, Qing FL. Visible-Light Photoredox Decarboxylation of Perfluoroarene Iodine(III) Trifluoroacetates for C–H Trifluoromethylation of (Hetero)arenes. ACS Catal 2018. [DOI: 10.1021/acscatal.7b03990] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Bin Yang
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Donghai Yu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China
| | - Xiu-Hua Xu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Feng-Ling Qing
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China
| |
Collapse
|
49
|
Synthesis and Evaluation of N-(3-Trifluoroacetyl-indol-7-yl) Acetamides for Potential In Vitro Antiplasmodial Properties. Molecules 2017; 22:molecules22071099. [PMID: 28671598 PMCID: PMC6152062 DOI: 10.3390/molecules22071099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 06/21/2017] [Accepted: 06/28/2017] [Indexed: 11/17/2022] Open
Abstract
A series of novel N-((2,5-diaryl-3-trifluoroacetyl)-1H-indol-7-yl)acetamides has been prepared via a successive and one-pot reaction sequence involving initial trifluoroacetic acid-mediated Beckmann rearrangement of the oximes derived from the 1-(2,5-diaryl-1H-indol-7-yl)ethanones, followed by trifluoroacetylation of the incipient N-(2,5-diaryl-1H-indol-7-yl)-acetamides with trifluoroacetic anhydride. The prepared compounds were evaluated for potential in vitro antiplasmodial properties. Preliminary results from antiplasmodial activity against the chloroquine-sensitive 3D7 strain of Plasmodium falciparum revealed that a combination of 2-(4-flurophenyl)- and 5-(4-fluorophenyl) or 2-(4-flurophenyl)- and 4-fluorostyryl groups in compounds 3(a,f) and 4(a,g), for example, is required for biological activity for both series of compounds. Their possible mode of action against the plasmodial parasite is explained theoretically through molecular docking of the most active compounds against the parasite lactate dehydrogenase (pLDH). These compounds were docked at the entrance of NAD+ in pLDH presumably hindering entry of lactate to cause the observed inhibition effect of pLDH. The four compounds were found to exhibit low toxicity against monkey kidney Vero cells at the highest concentrations tested.
Collapse
|
50
|
Efficient and scalable synthesis of 3-(polyfluoroacyl)pyruvaldehydes dimethyl acetals: A novel functionalized fluorinated building-block. J Fluor Chem 2017. [DOI: 10.1016/j.jfluchem.2017.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|