1
|
Datta D, Ghosh S, Kumar S, Gangola S, Majumdar B, Saha R, Mazumdar SP, Singh SV, Kar G. Microbial biosurfactants: Multifarious applications in sustainable agriculture. Microbiol Res 2024; 279:127551. [PMID: 38016380 DOI: 10.1016/j.micres.2023.127551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/02/2023] [Accepted: 11/14/2023] [Indexed: 11/30/2023]
Abstract
Agriculture in the 21st century faces grave challenges to meet the unprecedented food demand of the burgeoning population as well as reduce the ecological footprint for achieving sustainable development goals. The extensive use of harsh synthetic surfactants in pesticides and the agrochemical industry has substantial adverse impacts on the soil and environment due to their toxic and non-biodegradable nature. Biosurfactants derived from plant, animal, and microbial sources can be an eco-friendly alternative to chemical surfactants. Microbes producing biosurfactants play a noteworthy role in biofilm formation, plant pathogen elimination, biodegradation, bioremediation, improving nutrient bioavailability, and can thrive well under stressful environments. Microbial biosurfactants are well suited for heavy metal and organic contaminants remediation in agricultural soil due to their low toxicity, high activity at fluctuating temperatures, biodegradability, and stability over a wide array of environmental conditions. This green technology will improve the agricultural soil quality by increasing the soil flushing efficiency, mobilization, and solubilization of nutrients by forming metal-biosurfactant complexes, and through the dissemination of complex nutrients. Such characteristics help it to play a pivotal role in environmental sustainability in the foreseeable future, which is required to increase the viability of biosurfactants for extensive commercial uses, making them accessible, affordable, and economically sustainable.
Collapse
Affiliation(s)
- Debarati Datta
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, Kolkata 700 121, India
| | - Sourav Ghosh
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, Kolkata 700 121, India.
| | - Saurabh Kumar
- ICAR-Research Complex for Eastern Region, Patna 800014, Bihar, India
| | - Saurabh Gangola
- Graphic Era Hill University, Bhimtal 263 156, Uttarakhand, India
| | - Bijan Majumdar
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, Kolkata 700 121, India
| | - Ritesh Saha
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, Kolkata 700 121, India
| | - Sonali Paul Mazumdar
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, Kolkata 700 121, India
| | - Shiv Vendra Singh
- College of Agriculture, Rani Lakshmi Bai Central Agricultural University, Jhansi 238004, Uttar Pradesh, India
| | - Gouranga Kar
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, Kolkata 700 121, India
| |
Collapse
|
2
|
Sarkodie EK, Jiang L, Li K, Guo Z, Yang J, Shi J, Peng Y, Wu X, Huang S, Deng Y, Jiang H, Liu H, Liu X. The influence of cysteine in transformation of Cd fractionation and microbial community structure and functional profile in contaminated paddy soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167535. [PMID: 37802356 DOI: 10.1016/j.scitotenv.2023.167535] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/19/2023] [Accepted: 09/30/2023] [Indexed: 10/10/2023]
Abstract
Remediating cadmium (Cd) contaminated paddy soil is vital for agroecology, food safety, and human health. Soil washing is more feasible to reduce remediation method due to its high efficiency. However, green, low-cost and more efficient washing agents are still required. In this study, we investigated the ability of cysteine as a washing agent for soil washing to remove Cd from contaminated paddy soil. Through a batch experiment, we evaluated the removal efficiency of cysteine as a washing agent by comparing their removal rate with that of a microbial inoculant and sulphuric acid as other washing agents. The transformation of Cd fractionation and microbial community structure and functional profile in paddy soils after cysteine leaching was studied by using sequential extraction and high-throughput sequencing. Results showed that cysteine had better efficiency in the removal of Cd from paddy soil in comparison to sulphuric acid and the microbial inoculant, and could achieve a maximum removal rate of 97 % Cd in paddy soil. Cysteine decreased the proportion of Cd in the exchangeable fraction, carbonate bound fraction, iron and manganese bound fraction, and organic matter bound fraction and was best for the removal of the residual fraction, which contributed to its higher Cd removal ability. Considering the economic benefits of the reagents used, cysteine was shown to be economically feasible for use as a leaching agent. In addition, cysteine could significantly increase the relative abundance of Thermochromatium, Sideroxydans, Streptacidiphilus, and Frankia which promoted the nitrogen and sulfur metabolism in the paddy soil. In summary, this study revealed that cysteine was readily available, cheap, non-toxic, highly efficient, and even has fertilizing properties, making it eco-friendly and ideal for remediation of Cd-contaminated paddy soils. Besides, the health of paddy soils would also benefit from cysteine's promotion of microbial nitrogen and sulfur metabolism.
Collapse
Affiliation(s)
- Emmanuel Konadu Sarkodie
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Luhua Jiang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China.
| | - Kewei Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Ziwen Guo
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Jiejie Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Jiaxin Shi
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Yulong Peng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Xinhong Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Shanshan Huang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Yan Deng
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Huidan Jiang
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Hongwei Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| |
Collapse
|
3
|
Sun Y, Lei A. Ca 2+-Facilitated Adhesion of Bacteria on the Na-Montmorillonite Surface. ACS OMEGA 2023; 8:3385-3395. [PMID: 36713719 PMCID: PMC9878658 DOI: 10.1021/acsomega.2c07260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/16/2022] [Indexed: 06/18/2023]
Abstract
The adhesion of bacteria on clay surfaces strongly affected their migration and distribution in soil and water. Bacterial adhesion experiments on the Na-montmorillonite (Na-MMT) surface were conducted to determine the role of Na-MMT in the bacterial adhesion process and to prove the validity of the isotherm and kinetic theory for the bacterial surface adhesion in the presence of Ca2+ ions. Batch adhesion experiments with bacteria on the Na-MMT surface were carried out with varying time frames, temperatures, bacterial concentrations, and Ca2+ ion concentrations. The adhesion capacity of Na-MMT significantly correlated with the Ca2+ ion concentration, temperature, time frame, and bacterial concentration when Ca2+ ions were present. The adhesion morphology of the bacteria onto the Na-MMT surface, observed through the zeta-potential and atomic force microscopy (AFM), additionally demonstrated that the bacterial adhesion onto the Na-MMT surface was dominated by the nonelectrostatic force.
Collapse
Affiliation(s)
- Yongshuai Sun
- College
of Water Resources & Civil Engineering, China Agricultural University, Beijing100083, China
| | - Anping Lei
- China
Highway Engineering Consultants Corporation, Beijing100089, China
| |
Collapse
|
4
|
Efficient Inorganic/Organic Acid Leaching for the Remediation of Protogenetic Lead-Contaminated Soil. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12083995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this study, inorganic acid and organic acid were used to leach and remediate superheavy, lead-contaminated protogenetic soil with a lead pollution level of 8043 mg∙kg−1. Among the compounds studied, HCl and citric acid (CA) presented the best effects, respectively. Under the optimal experimental conditions, the remediation efficiency of 0.05 mol∙L−1 CA reached 53.6%, while that of 0.2 mol∙L−1 HCl was 70.3%. According to the lead morphology analysis, CA and HCl have certain removal ability to different fractions of lead. Among them, the removal rates of acid-soluble lead in soil by HCl and CA are 93% and 83%, and the soil mobility factor (MF) value decreased from 34.4% to 7.74 % and 12.3%, respectively, indicating that the harm of lead in soil was greatly reduced. Meanwhile, the leaching mechanisms of CA and HCl were studied. The pH values of the soil after leaching with HCl and CA were 3.88 and 6.97, respectively, showing that HCl leaching has caused serious acidification of the soil, while the process of CA leaching is more mild. CA has a relatively high remediation efficiency at such a low concentration, especially for the highly active acid-soluble fraction lead when maintaining the neutrality of the leached soil. Hence, CA is more suitable for the remediation of lead-contaminated soil.
Collapse
|
5
|
Gholami A, Khoshdast H, Hassanzadeh A. Applying hybrid genetic and artificial bee colony algorithms to simulate a bio-treatment of synthetic dye-polluted wastewater using a rhamnolipid biosurfactant. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 299:113666. [PMID: 34526285 DOI: 10.1016/j.jenvman.2021.113666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 08/28/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
The present work aims at optimization and advanced simulation of removal efficiency of dye material from a synthetic wastewater using a locally generated rhamnolipid (RL) biosurfactant. For this purpose, bio-treatment of dye polluted synthetic wastewater was experimentally, kinetically, and statistically investigated by the ion flotation process in the presence of the RL. The removal rate of methylene blue (MB) as the dye material was assessed by the ultraviolet (UV)-visible absorbance measurements. The impact of operating variables including RL concentration (as a dye collector, 5-50 ppm), methyl isobutyl carbinol (MIBC) dosage (as a frother, 10-70 ppm), solution pH (2-12) and aeration rate (1-5 l/min) were assessed through one-way analysis of variance (ANOVA) and Anderson-Darling as the normality analysis strategy. The process was simulated using two artificial neural network (ANN) optimization algorithms, i.e., genetic algorithm (GA) and artificial bee colony (ABC) as a novel approach. The statistical results indicated that the dye removal process was significantly influenced by all operating variables (pvalue<0.05) while their relative intensity followed the order of aeration rate > solution pH > RL concentration > MIBC dosage. Anderson-Darling approach disclosed that the all factors were perfectly followed the normal trend with A2 less than unity and p-value of greater than 0.05 at 95% confidence level. Main effect plots revealed that except MIBC dosage with nonlinear trend, the rest of factors had an ascending influence on the removal efficiency. The process was optimized by interpreting the interaction effect among various variables to reach the maximum dye bioflotation. The maximum removal of 97 ± 0.13% was achieved at pH 12, airflow rate of 5 l/min, MIBC and rhamnolipid concentrations of 30 and 40 ppm, respectively with a flotation kinetic rate of 0.015 sec-1. Finally, the intelligent simulation results showed that the process could be modelled using an artificial bee colony algorithm of 4-7-1 structure with 99% and 98.8% accuracies in the training and testing steps, respectively. Further, we found that the artificial bee colony algorithm was superior to the genetic algorithm in terms of complexity analysis.
Collapse
Affiliation(s)
- Alireza Gholami
- Department of Mineral Processing, Faculty of Engineering, Tarbiat Modares University, 14115111, Tehran, Iran
| | - Hamid Khoshdast
- Department of Mining Engineering, Higher Education Complex of Zarand, 7761156391, Zarand, Iran.
| | - Ahmad Hassanzadeh
- Department of Geoscience and Petroleum, Faculty of Engineering Science, Norwegian University of Science and Technology, NO-7491, Trondheim, Norway.
| |
Collapse
|
6
|
Han C, Wang M, Ren Y, Zhang L, Ji Y, Zhu W, Song Y, He J. Characterization of pruned tea branch biochar and the mechanisms underlying its adsorption for cadmium in aqueous solution. RSC Adv 2021; 11:26832-26843. [PMID: 35480003 PMCID: PMC9037675 DOI: 10.1039/d1ra04235a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/23/2021] [Indexed: 12/25/2022] Open
Abstract
In the present study, discarded pruned tea branch was used to prepare a new biochar, and the physicochemical properties and adsorption characteristics were investigated by characterization and batch experiments. With increasing pyrolysis temperature from 400 to 800 °C, the yield, specific surface area, and acidic functional groups had significant differences. The optimum adsorption conditions were determined as pH = 6 and dosage of 2 g L-1. The pseudo-second-order kinetic and Langmuir isothermal model could fit well to the adsorption data, which showed that the adsorption process was dominated by monolayer chemical adsorption. The highest adsorption property (74.04 mg g-1) was obtained by the pyrolysis of tea branch biochar (TBB) at 700 °C owing to the adsorption mechanisms, including surface complexation, precipitation, metal ion exchange, and Cd2+-π interaction. After five cycles of desorption, biochar still showed superior adsorption (80%). Hence, the TBB acted as a regenerable adsorbent for treating Cd2+-containing wastewater.
Collapse
Affiliation(s)
- Chuan Han
- School of Environmental and Safety Engineering, Changzhou University Changzhou 213164 PR China +86 519 86330086 +86 519 86330086
| | - Miaofei Wang
- School of Environmental and Safety Engineering, Changzhou University Changzhou 213164 PR China +86 519 86330086 +86 519 86330086
| | - Yanfang Ren
- School of Environmental and Safety Engineering, Changzhou University Changzhou 213164 PR China +86 519 86330086 +86 519 86330086
- Jiangsu Petrochemical Safety and Environmental Engineering Research Center Changzhou 213164 PR China
| | - Liming Zhang
- School of Environmental and Safety Engineering, Changzhou University Changzhou 213164 PR China +86 519 86330086 +86 519 86330086
| | - Yu Ji
- School of Environmental and Safety Engineering, Changzhou University Changzhou 213164 PR China +86 519 86330086 +86 519 86330086
| | - Wenjia Zhu
- School of Environmental and Safety Engineering, Changzhou University Changzhou 213164 PR China +86 519 86330086 +86 519 86330086
| | - Yaping Song
- School of Environmental and Safety Engineering, Changzhou University Changzhou 213164 PR China +86 519 86330086 +86 519 86330086
| | - Junyu He
- School of Environmental and Safety Engineering, Changzhou University Changzhou 213164 PR China +86 519 86330086 +86 519 86330086
- Jiangsu Petrochemical Safety and Environmental Engineering Research Center Changzhou 213164 PR China
| |
Collapse
|
7
|
Hari O, Upadhyay SK. Rhamnolipid–Metal
Ions (
Cr
VI
and
Pb
II
) Complexes: Spectrophotometric, Conductometric, and Surface Tension Measurement Studies. J SURFACTANTS DETERG 2020. [DOI: 10.1002/jsde.12481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Om Hari
- Department of Applied Sciences Dr. Ambedkar Institute of Technology for Handicapped Awadhpuri, Kanpur Uttar Pradesh 208024 India
| | - Santosh K. Upadhyay
- Department of Applied Sciences Dr. Ambedkar Institute of Technology for Handicapped Awadhpuri, Kanpur Uttar Pradesh 208024 India
| |
Collapse
|
8
|
Comparative Study of Cationic Dye Adsorption Using Industrial Latex Sludge with Sulfonate and Pyrolysis Treatment. SUSTAINABILITY 2020. [DOI: 10.3390/su122310048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Industrial latex sludge as raw material was made into sulfonated latex sludge (SLS) and latex sludge active carbon (LSC) adsorbents by sulfonate and pyrolysis treatment to remove textile dye cationic blue X-GRRL from aqueous solution. The adsorption properties of SLS and LSC for X-GRRL were studied and compared by investigating the experimental parameters such as adsorbents dosage, pH, contact time and initial concentration. The kinetics of adsorption on SLS and LSC followed the pseudo-second-order kinetic model well. The adsorption isotherm and thermodynamic studies were further used to evaluate and compare the adsorption process of X-GRRL on SLS and LSC. The maximum adsorption capacities were 1219.6 mg/g for SLS and 476.2 mg/g for LSC according to the Langmuir model, respectively. These findings not only provide a sustainable strategy to turn industrial solid waste latex sludge into useful material for environment remediation, but also develop an efficient adsorbent for the treatment of dye wastewater.
Collapse
|
9
|
Fulke AB, Kotian A, Giripunje MD. Marine Microbial Response to Heavy Metals: Mechanism, Implications and Future Prospect. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 105:182-197. [PMID: 32596744 DOI: 10.1007/s00128-020-02923-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/21/2020] [Indexed: 06/11/2023]
Abstract
Growing levels of pollution in marine environment has been a matter of serious concern in recent years. Increased levels of heavy metals due to improper waste disposal has led to serious repercussions. This has increased occurrences of heavy metals in marine fauna. Marine microbes are large influencers of nutrient cycling and productivity in oceans. Marine bacteria show altered metabolism as a strategy against metal induced stress. Understanding these strategies used to avoid toxic effects of heavy metals can help in devising novel biotechnological applications for ocean clean-up. Using biological tools for remediation has advantages as it does not involve harmful chemicals and it shows greater flexibility to environmental fluctuations. This review provides a comprehensive insight on marine microbial response to heavy metals and sheds light on existing knowledge about and paves for new avenues in research for bioremediation strategies.
Collapse
Affiliation(s)
- Abhay B Fulke
- Microbiology Division, CSIR-National Institute of Oceanography (CSIR-NIO), Regional Centre, Lokhandwala Road, Four Bungalows, Andheri (West), Mumbai, Maharashtra, 400053, India.
| | - Atul Kotian
- Microbiology Division, CSIR-National Institute of Oceanography (CSIR-NIO), Regional Centre, Lokhandwala Road, Four Bungalows, Andheri (West), Mumbai, Maharashtra, 400053, India
| | | |
Collapse
|
10
|
Bogusz A, Oleszczuk P, Dobrowolski R. Adsorption and desorption of heavy metals by the sewage sludge and biochar-amended soil. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:1663-1674. [PMID: 29116577 PMCID: PMC6751146 DOI: 10.1007/s10653-017-0036-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/13/2017] [Indexed: 05/24/2023]
Abstract
The goal of the study was to evaluate the application of biochar (BC) to the sewage sludge (SL) on the adsorption and desorption capacity of Cd(II), Cu(II), Ni(II) and Zn(II). The effect of biochar contribution in the sewage sludge (2.5, 5 and 10%) was investigated. The isotherms data were fitted to the Langmiur (LM), Freundlich (FM) and Temkin (TM) models. The best fitting for kinetic study was obtained for the pseudo-second-order equation. The best fitting of the experimental data was observed for the LM in the case of SL and BC, and for the FM in the case of SL- and SL/BC-amended soil. SL was characterized by even four-order higher sorption capacity than BC. The addition of the BC to the SL and next to the soil increased the adsorption capacity of the soil and the SL-amended soil. In the case of all investigated potentially toxic elements (PTEs), the highest adsorption capacity was achieved for SL-amended soil in comparison with the control soil. In the case of other experimental variants, the adsorption capacity of metal ions was as follows: 2.5% BC > 5.0% BC > 10% BC. The negative correlation between hydrated radius of metal ions and the kinetics of sorption was observed. However, the desorption of PTEs from BC/SL-amended soil was significantly lower than for SL-amended soil (except of Cd) and non-amended soil. It can be concluded that the addition of the biochar enhanced the immobilization of PTEs and reduced their bioavailability and mobility in the soil amended by the sewage sludge.
Collapse
Affiliation(s)
- Aleksandra Bogusz
- Department of Environmental Chemistry, Faculty of Chemistry, Maria Sklodowska-Curie University, pl. M. Curie-Skłodowskiej 3, 20-031, Lublin, Poland
| | - Patryk Oleszczuk
- Department of Environmental Chemistry, Faculty of Chemistry, Maria Sklodowska-Curie University, pl. M. Curie-Skłodowskiej 3, 20-031, Lublin, Poland.
| | - Ryszard Dobrowolski
- Department of Analytical Chemistry, Faculty of Chemistry, Maria Skłodowska-Curie University, Maria Curie-Skłodowska Square 3, 20-031, Lublin, Poland
| |
Collapse
|
11
|
Boveiri Shami R, Shojaei V, Khoshdast H. Efficient cadmium removal from aqueous solutions using a sample coal waste activated by rhamnolipid biosurfactant. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 231:1182-1192. [PMID: 30602243 DOI: 10.1016/j.jenvman.2018.03.126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/16/2018] [Accepted: 03/29/2018] [Indexed: 06/09/2023]
Abstract
A sample coal waste activated by rhamnolipid biosurfactants was used as an efficient adsorbent for the adsorption of cadmium from aqueous solution. The effects of three factors, namely, initial solution pH (3-11), absorbent to cadmium ratio (12.5-162.5) and contact time (3-31 h), on cadmium removal were studied and optimized using a central composite type response surface methodology. The two factors that play a key role in the adsorption process are pH and absorbent dosage. Optimum adsorption conditions achieved at pH 9, absorbent to cadmium ratio of 125 and equilibrium contact time of 10 h, resulted in more than 99% cadmium removal. Kinetic studies revealed that a maximum removal can be achieved before 10 min of adsorption process following a pseudo-second order model. The selectivity study in bimetal aqueous systems using copper, lead and zinc metals showed the adsorption order of Cu2+ > Cd2+ > Zn2+ > Pb2+. The cadmium adsorption on activated coal waste was also found to follows the Temkin isotherm model with a correlation coefficient of 92.43%.
Collapse
Affiliation(s)
- Rahim Boveiri Shami
- Department of Mining Engineering, Higher Education Complex of Zarand, Zarand, Iran
| | - Vahideh Shojaei
- Department of Mining Engineering, Higher Education Complex of Zarand, Zarand, Iran.
| | - Hamid Khoshdast
- Department of Mining Engineering, Higher Education Complex of Zarand, Zarand, Iran.
| |
Collapse
|
12
|
Preparation and characterization of homoionic montmorillonite modified with ionic liquid: Application in dye adsorption. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.08.080] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Cieśla J, Koczańska M, Bieganowski A. An Interaction of Rhamnolipids with Cu 2+ Ions. Molecules 2018; 23:molecules23020488. [PMID: 29473852 PMCID: PMC6017734 DOI: 10.3390/molecules23020488] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/19/2018] [Accepted: 02/21/2018] [Indexed: 11/16/2022] Open
Abstract
This study was focused on the description of interaction between Cu2+ ions and the 1:1 mono- and dirhamnolipid mixtures in the premicellar and aggregated state in water and 20 mM KCl solution at pH 5.5 and 6.0. The critical micelle concentration of biosurfactants was determined conductometrically and by the pH measurements. Hydrodynamic diameter and electrophoretic mobility were determined in micellar solutions using dynamic light scattering and laser Doppler electrophoresis, respectively. The copper immobilization by rhamnolipids, methylglycinediacetic acid (MGDA), and ethylenediaminetetraacetic acid (EDTA) was estimated potentiometrically for the Cu2+ to chelating agent molar ratio from 16:100 to 200:100. The degree of ion binding and the complex stability constant were calculated at a 1:1 metal to chelant molar ratio. The aggregates of rhamnolipids (diameter of 43-89 nm) were negatively charged. Biosurfactants revealed the best chelating activities in premicellar solutions. For all chelants studied the degree of metal binding decreased with the increasing concentration of the systems. The presence of K⁺ lowered Cu2+ binding by rhamnolipids, but did not modify the complex stability significantly. Immobilization of Cu2+ by biosurfactants did not cause such an increase of acidification as that observed in MGDA and EDTA solutions. Rhamnolipids, even in the aggregated form, can be an alternative for the classic chelating agents.
Collapse
Affiliation(s)
- Jolanta Cieśla
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland.
| | - Magdalena Koczańska
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland.
| | - Andrzej Bieganowski
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland.
| |
Collapse
|
14
|
Miao S, Yuan X, Liang Y, Wang H, Leng L, Wu Z, Jiang L, Li Y, Mo D, Zeng G. In situ surface transfer process of Cry1Ac protein on SiO 2: The effect of biosurfactants for desorption. JOURNAL OF HAZARDOUS MATERIALS 2018; 341:150-158. [PMID: 28777960 DOI: 10.1016/j.jhazmat.2017.07.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 07/09/2017] [Accepted: 07/22/2017] [Indexed: 06/07/2023]
Abstract
Genetically modified Bacillus thuringiensis (Bt) crops, which have been widely used in agricultural transgenic plants, express insecticidal Cry proteins and release the toxin into soils. Taking into consideration the environmental risk of Cry proteins, biosurfactant-rhamnolipids were applied to desorb Cry proteins from soil environment, which has not been elucidated before. Quartz crystal microbalance with dissipation (QCM-D) was used in this article to investigate the adsorption and desorption behaviors of Cry1Ac on SiO2 surface (model soil). Results showed that patch-controlled electrostatic attraction (PCEA) governed Cry1Ac adsorption to SiO2, and the solution pH or ionic strength can affect PCEA. The adsorption kinetics could be fitted by the pseudo-second-order model, and the adsorption isotherm was fitted to Langmuir model with correlation coefficients higher than 0.999. The desorption characteristics of Cry1Ac from SiO2 were assessed in the presence of mono-rhamnolipid, di-rhamnolipid or complex-rhamnolipid. Mono-rhamnolipid exhibited the most significant positive effect on desorption performance. With a complete removal of Cry1Ac reached when mono-rhamnolipid concentration was up to 50mgL-1. Additionally, the desorption was enhanced at alkaline pH range, and Cry1Ac can be completely and rapidly desorbed by rhamnolipids from SiO2 at ionic strength of 5×10-2M.
Collapse
Affiliation(s)
- Shuzhou Miao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Xingzhong Yuan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Yunshan Liang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, PR China; Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha, 410128, PR China
| | - Hou Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Lijian Leng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Zhibin Wu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Longbo Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Yifu Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Dan Mo
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
15
|
Santos DKF, Resende AHM, de Almeida DG, Soares da Silva RDCF, Rufino RD, Luna JM, Banat IM, Sarubbo LA. Candida lipolytica UCP0988 Biosurfactant: Potential as a Bioremediation Agent and in Formulating a Commercial Related Product. Front Microbiol 2017; 8:767. [PMID: 28507538 PMCID: PMC5410559 DOI: 10.3389/fmicb.2017.00767] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 04/13/2017] [Indexed: 11/13/2022] Open
Abstract
The aim of the present study was to investigate the potential application of the biosurfactant from Candida lipolytica grown in low-cost substrates, which has previously been produced and characterized under optimized conditions as an adjunct material to enhance the remediation processes of hydrophobic pollutants and heavy metals generated by the oil industry and propose the formulation of a safe and stable remediation agent. In tests carried out with seawater, the crude biosurfactant demonstrated 80% oil spreading efficiency. The dispersion rate was 50% for the biosurfactant at a concentration twice that of the CMC. The biosurfactant removed 70% of motor oil from contaminated cotton cloth in detergency tests. The crude biosurfactant also removed 30-40% of Cu and Pb from standard sand, while the isolated biosurfactant removed ~30% of the heavy metals. The conductivity of solutions containing Cd and Pb was sharply reduced after biosurfactants' addition. A product was prepared through adding 0.2% potassium sorbate as preservative and tested over 120 days. The formulated biosurfactant was analyzed for emulsification and surface tension under different pH values, temperatures, and salt concentrations and tested for toxicity against the fish Poecilia vivipara. The results showed that the formulation had no toxicity and did not cause significant changes in the tensoactive capacity of the biomolecule while maintaining activity demonstrating suitability for potential future commercial product formulation.
Collapse
Affiliation(s)
- Danyelle K F Santos
- Northeast Biotechnology Network, Federal Rural University of PernambucoRecife, Brazil
| | - Ana H M Resende
- Northeast Biotechnology Network, Federal Rural University of PernambucoRecife, Brazil
| | - Darne G de Almeida
- Northeast Biotechnology Network, Federal Rural University of PernambucoRecife, Brazil.,Center of Sciences and Technology, Catholic University of PernambucoRecife, Brazil.,Advanced Institute of Technology and InnovationRecife, Brazil
| | - Rita de Cássia F Soares da Silva
- Northeast Biotechnology Network, Federal Rural University of PernambucoRecife, Brazil.,Center of Sciences and Technology, Catholic University of PernambucoRecife, Brazil.,Advanced Institute of Technology and InnovationRecife, Brazil
| | - Raquel D Rufino
- Center of Sciences and Technology, Catholic University of PernambucoRecife, Brazil.,Advanced Institute of Technology and InnovationRecife, Brazil
| | - Juliana M Luna
- Center of Sciences and Technology, Catholic University of PernambucoRecife, Brazil.,Advanced Institute of Technology and InnovationRecife, Brazil
| | - Ibrahim M Banat
- Advanced Institute of Technology and InnovationRecife, Brazil.,Faculty of Life and Health Sciences, School of Biomedical Sciences, University of UlsterUlster, UK
| | - Leonie A Sarubbo
- Center of Sciences and Technology, Catholic University of PernambucoRecife, Brazil.,Advanced Institute of Technology and InnovationRecife, Brazil
| |
Collapse
|
16
|
|
17
|
Bai L, McClements DJ. Formation and stabilization of nanoemulsions using biosurfactants: Rhamnolipids. J Colloid Interface Sci 2016; 479:71-79. [PMID: 27372634 DOI: 10.1016/j.jcis.2016.06.047] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/20/2016] [Accepted: 06/20/2016] [Indexed: 01/22/2023]
Abstract
Nanoemulsions are used in the food, cosmetics, personal care and pharmaceutical industries to provide desirable optical, textural, stability, and delivery characteristics. In many industrial applications, it is desirable to formulate nanoemulsions using natural ingredients so as to develop label-friendly products. Rhamnolipids are biosurfactants isolated from certain microorganisms using fermentation processes. They are glycolipids that have a polar head consisting of rhamnose units and a non-polar tail consisting of a hydrocarbon chain. In this study, the interfacial characteristics of this natural surfactant at medium chain triglyceride (MCT) oil-water interfaces were characterized, and its ability to form nanoemulsions was compared to that of another natural surfactant (quillaja saponins). The influence of rhamnolipid concentration, homogenization pressure, and oil type on the mean droplet diameter of emulsions produced by microfluidization was determined. Rhamnolipids were highly effective at forming small droplets (d32<0.15μm) at low surfactant-to-oil ratios (SOR<1:10) for MCT oil. Rhamnolipids could also be used to form small droplets using long chain triglyceride oils, such as corn and fish oil. Rhamnolipid-coated droplets were stable to aggregation over a range of pH values (5-9), salt concentrations (<100mM NaCl) and temperatures (20-90°C). However, droplet aggregation was observed at highly acidic (pH 2-4) and high ionic strength (200-500mM NaCl) conditions. These effects were attributed to a reduction in electrostatic repulsion at low pH and high salt levels. Rhamnolipid-coated droplets had a high negative charge at neutral pH that decreased in magnitude with decreasing pH. These results indicate that rhamnolipids are effective natural surfactants that may be able to replace synthetic surfactants in certain commercial applications.
Collapse
Affiliation(s)
- Long Bai
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, PR China; Biopolymers and Colloids Laboratory, Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - David Julian McClements
- Biopolymers and Colloids Laboratory, Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
18
|
Shah A, Shahzad S, Munir A, Nadagouda MN, Khan GS, Shams DF, Dionysiou DD, Rana UA. Micelles as Soil and Water Decontamination Agents. Chem Rev 2016; 116:6042-74. [PMID: 27136750 DOI: 10.1021/acs.chemrev.6b00132] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Contaminated soil and water pose a serious threat to human health and ecosystem. For the treatment of industrial effluents or minimizing their detrimental effects, preventive and remedial approaches must be adopted prior to the occurrence of any severe environmental, health, or safety hazard. Conventional treatment methods of wastewater are insufficient, complicated, and expensive. Therefore, a method that could use environmentally friendly surfactants for the simultaneous removal of both organic and inorganic contaminants from wastewater is deemed a smart approach. Surfactants containing potential donor ligands can coordinate with metal ions, and thus such compounds can be used for the removal of toxic metals and organometallic compounds from aqueous systems. Surfactants form host-guest complexes with the hydrophobic contaminants of water and soil by a mechanism involving the encapsulation of hydrophobes into the self-assembled aggregates (micelles) of surfactants. However, because undefined amounts of surfactants may be released into the aqueous systems, attention must be paid to their own environmental risks as well. Moreover, surfactant remediation methods must be carefully analyzed in the laboratory before field implementation. The use of biosurfactants is the best choice for the removal of water toxins as such surfactants are associated with the characteristics of biodegradability, versatility, recovery, and reuse. This Review is focused on the currently employed surfactant-based soil and wastewater treatment technologies owing to their critical role in the implementation of certain solutions for controlling pollution level, which is necessary to protect human health and ensure the quality standard of the aquatic environment.
Collapse
Affiliation(s)
- Afzal Shah
- Department of Chemistry, Quaid-i-Azam University , Islamabad 45320, Pakistan
| | - Suniya Shahzad
- Department of Chemistry, Quaid-i-Azam University , Islamabad 45320, Pakistan
| | - Azeema Munir
- Department of Chemistry, Quaid-i-Azam University , Islamabad 45320, Pakistan
| | - Mallikarjuna N Nadagouda
- Department of Mechanical and Materials Engineering, Wright State University , Dayton, Ohio 45324, United States
| | - Gul Shahzada Khan
- Department of Chemistry, Shaheed Benazir Bhutto University , Sheringal, Dir (Upper), 18000 Khyber Pakhtunkhwa, Pakistan
| | - Dilawar Farhan Shams
- Department of Environmental Sciences, Abdul Wali Khan University Mardan , 23200 Khyber Pakhtunkhwa, Pakistan
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Biomedical, Chemical and Environmental Engineering, University of Cincinnati , Cincinnati, Ohio 45221-0012, United States
| | - Usman Ali Rana
- Sustainable Energy Technologies Center, College of Engineering, King Saud University , PO Box 800, Riyadh 11421, Saudi Arabia
| |
Collapse
|
19
|
Biosurfactants: Multifunctional Biomolecules of the 21st Century. Int J Mol Sci 2016; 17:401. [PMID: 26999123 PMCID: PMC4813256 DOI: 10.3390/ijms17030401] [Citation(s) in RCA: 396] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/03/2016] [Accepted: 03/11/2016] [Indexed: 01/11/2023] Open
Abstract
In the era of global industrialisation, the exploration of natural resources has served as a source of experimentation for science and advanced technologies, giving rise to the manufacturing of products with high aggregate value in the world market, such as biosurfactants. Biosurfactants are amphiphilic microbial molecules with hydrophilic and hydrophobic moieties that partition at liquid/liquid, liquid/gas or liquid/solid interfaces. Such characteristics allow these biomolecules to play a key role in emulsification, foam formation, detergency and dispersal, which are desirable qualities in different industries. Biosurfactant production is considered one of the key technologies for development in the 21st century. Besides exerting a strong positive impact on the main global problems, biosurfactant production has considerable importance to the implantation of sustainable industrial processes, such as the use of renewable resources and "green" products. Biodegradability and low toxicity have led to the intensification of scientific studies on a wide range of industrial applications for biosurfactants in the field of bioremediation as well as the petroleum, food processing, health, chemical, agricultural and cosmetic industries. In this paper, we offer an extensive review regarding knowledge accumulated over the years and advances achieved in the incorporation of biomolecules in different industries.
Collapse
|
20
|
Colin VL, Castro MF, Amoroso MJ, Villegas LB. Production of bioemulsifiers by Amycolatopsis tucumanensis DSM 45259 and their potential application in remediation technologies for soils contaminated with hexavalent chromium. JOURNAL OF HAZARDOUS MATERIALS 2013; 261:577-583. [PMID: 23994656 DOI: 10.1016/j.jhazmat.2013.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 07/22/2013] [Accepted: 08/01/2013] [Indexed: 06/02/2023]
Abstract
In recent years, increasing interest has been shown in the use of bioemulsifiers as washing agents that can enhance desorption of soil-bound metals. However, high production costs derived from the use of expensive substrates for formulation of the fermentation media represent the main challenge for full, large-scale implementation of bioemulsifiers. This work reports on a first study of bioemulsifier production by the actinobacterium Amycolatopsis tucumanensis DSM 45259 using different carbon and nitrogen sources. Preliminary results on the potential use of these compounds as washing agents for soils contaminated with Cu(II) and Cr(VI) are also presented. The best specific production was detected using glycerol and urea as carbon and nitrogen substrates, respectively. However, with all of the substrates used during the batch assay, the bioemulsifiers showed high levels of stability at extreme conditions of pH, temperature, and salt concentration. Under the current assay conditions, the bioemulsifiers were not effective in removing Cu(II) from soil. However, they were able to mediate Cr(VI) recovery, with the removal percentage doubled compared to that seen when using deionized water. These findings appear promising for the development of remediation technologies for hexavalent chromium compounds based upon direct use of these microbial emulsifiers.
Collapse
Affiliation(s)
- Verónica Leticia Colin
- Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pje. Caseros, 4000 Tucumán, Argentina; Universidad de San Pablo-Tucumán, Argentina.
| | | | | | | |
Collapse
|
21
|
Aşçi Y, Açikel U, Açikel YS. Equilibrium, hysteresis and kinetics of cadmium desorption from sodium-feldspar using rhamnolipid biosurfactant. ENVIRONMENTAL TECHNOLOGY 2012; 33:1857-68. [PMID: 23240179 DOI: 10.1080/09593330.2011.650219] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
In this study, the sorption/desorption equilibruim and the desorption kinetics of Cd by rhamnolipid biosurfactant from Na-feldspar as a soil component were investigated. The linear, Langmuir and Freundlich isotherms adequately fitted the equilibrium sorption data with regression coefficients ranging from 0.9836 - 0.9879. However, both the sorption/desorption equilibria were well characterized by the Freundlich model. The extent of hysteresis was quantified based on the differences obtained from sorption and desorption isotherms regarding the quantity of Cd(II) sorbed, the Freundlich exponent, concentration-dependent metal distribution coefficients, and the irreversibility index based on the metal distribution coefficient. The kinetics of desorption of Cd from Na-feldspar was investigated using 77 mM rhamnolipid and at pH 6.8. The first-order, an empirical first-order desorption model (two-coefficient), Lagergren-pseudo-first-order, pseudo-second-order, Elovich and modified Freundlich models were used to describe the kinetic data to estimate the rate constants. To determine the rate-controlling step, the intra-particle diffusion model was also applied to the desorption process. The desorption kinetics of Cd(II) on Na-feldspar was represented better by the pseudo-second-order, Elovich and modified Freundlich equations with correlation coefficients ranging from 0.9941- 0.9982 than by first-order equations. The rate-controlling stage was suggested to be mainly the surface reaction mechanism.
Collapse
Affiliation(s)
- Yeliz Aşçi
- Department of Chemical Engineering, Eskişehir Osmangazi University, Eskişehir, Turkey
| | | | | |
Collapse
|
22
|
Yang Z, Zhang S, Liao Y, Li Q, Wu B, Wu R. Remediation of Heavy Metal Contamination in Calcareous Soil by Washing with Reagents: A Column Washing. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.proenv.2012.10.106] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Wan J, Chai L, Lu X, Lin Y, Zhang S. Remediation of hexachlorobenzene contaminated soils by rhamnolipid enhanced soil washing coupled with activated carbon selective adsorption. JOURNAL OF HAZARDOUS MATERIALS 2011; 189:458-464. [PMID: 21397398 DOI: 10.1016/j.jhazmat.2011.02.055] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 02/16/2011] [Accepted: 02/17/2011] [Indexed: 05/30/2023]
Abstract
The present study investigates the selective adsorption of hexachlorobenzene (HCB) from rhamnolipid solution by a powdered activated carbon (PAC). A combined soil washing-PAC adsorption technique is further evaluated on the removal of HCB from two soils, a spiked kaolin and a contaminated real soil. PAC at a dosage of 10 g L(-1) could achieve a HCB removal of 80-99% with initial HCB and rhamnolipid concentrations of 1 mg L(-1) and 3.3-25 g L(-1), respectively. The corresponding adsorptive loss of rhamnolipid was 8-19%. Successive soil washing-PAC adsorption tests (new soil sample was subjected to washing for each cycle) showed encouraging leaching and adsorption performances for HCB. When 25 g L(-1) rhamnolipid solution was applied, HCB leaching from soils was 55-71% for three cycles of washing, and HCB removal by PAC was nearly 90%. An overall 86% and 88% removal of HCB were obtained for kaolin and real soil, respectively, by using the combined process to wash one soil sample for twice. Our investigation suggests that coupling AC adsorption with biosurfactant-enhanced soil washing is a promising alternative to remove hydrophobic organic compounds from soils.
Collapse
Affiliation(s)
- Jinzhong Wan
- Environmental Science Research Institute, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | | | | | | | | |
Collapse
|
24
|
Pacwa-Płociniczak M, Płaza GA, Piotrowska-Seget Z, Cameotra SS. Environmental applications of biosurfactants: recent advances. Int J Mol Sci 2011; 12:633-54. [PMID: 21340005 PMCID: PMC3039971 DOI: 10.3390/ijms12010633] [Citation(s) in RCA: 383] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 12/08/2010] [Accepted: 01/10/2011] [Indexed: 11/16/2022] Open
Abstract
Increasing public awareness of environmental pollution influences the search and development of technologies that help in clean up of organic and inorganic contaminants such as hydrocarbons and metals. An alternative and eco-friendly method of remediation technology of environments contaminated with these pollutants is the use of biosurfactants and biosurfactant-producing microorganisms. The diversity of biosurfactants makes them an attractive group of compounds for potential use in a wide variety of industrial and biotechnological applications. The purpose of this review is to provide a comprehensive overview of advances in the applications of biosurfactants and biosurfactant-producing microorganisms in hydrocarbon and metal remediation technologies.
Collapse
Affiliation(s)
- Magdalena Pacwa-Płociniczak
- Department of Microbiology, Silesian University, Jagiellońska 28 street, 40-032 Katowice, Poland; E-Mails: (M.P.-P.); (Z.P.-S.)
| | - Grażyna A. Płaza
- Department of Environmental Microbiology, Institute for Ecology of Industrial Areas, Kossutha 6 street, 40-844 Katowice, Poland
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +48-322546031(246); Fax: +48-322541717
| | - Zofia Piotrowska-Seget
- Department of Microbiology, Silesian University, Jagiellońska 28 street, 40-032 Katowice, Poland; E-Mails: (M.P.-P.); (Z.P.-S.)
| | | |
Collapse
|
25
|
El-Said GF, Draz SEO. Physicochemical and geochemical characteristics of raw marine sediment used in fluoride removal. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2010; 45:1601-1615. [PMID: 20721801 DOI: 10.1080/10934529.2010.506117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The study was directed to use raw marine sediment in the removal of fluoride. The sediment was mainly composed of calcite, magnesium-calcite and aragonite. The effect of the initial fluoride concentration, pH and the contact time was studied at room temperature to determine the adsorption capacity of the sediment. The optimum adsorption capacity was observed at pH values of 5 and 6.2. The adsorption process was fast and the equilibrium was reached within 60 min. For fluoride solutions of 10 and 15 mg/L, 100% removal was obtained onto 0.1 g of raw marine sediment. Pseudo-first-order, pseudo-second-order, Elovich and intra-particle diffusion equations were used to deduce the kinetic data. The adsorption mechanism was rather complex process, and the intra-particle diffusion was not the only rate-controlling step. The equilibrium data were tested using thirteen isotherm models (Langmuir, Freundlich, Tempkin, Dubinin-Radushkevich, Erunauer-Emmett-Teller, Flory-Huggins, Non-ideal competitive adsorption, Generalized, Redlich Peterson, Khan, Sips, Koble Corrigan and Toth isotherm equations). Five different error functions were applied. For the sorption of fluoride process, the calculated activation energy and the free energy were of 0.707 and -14.491 kJ /mol, respectively.
Collapse
Affiliation(s)
- Ghada F El-Said
- Marine Pollution Department, Environmental Division, National Institute of Oceanography and Fisheries, El-Anfushy, Alexandria, Egypt.
| | | |
Collapse
|
26
|
Replacing synthetic with microbial surfactants as collectors in the treatment of aqueous effluent produced by acid mine drainage, using the dissolved air flotation technique. Appl Biochem Biotechnol 2010; 163:540-6. [PMID: 20714828 DOI: 10.1007/s12010-010-9060-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 08/09/2010] [Indexed: 10/19/2022]
Abstract
Dissolved air flotation (DAF) is a well-established separation process employing micro bubbles as a carrier phase. The application of this technique in the treatment of acid mine drainage, using three yeast biosurfactants as alternative collectors, is hereby analyzed. Batch studies were carried out in a 50-cm high acrylic column with an external diameter of 2.5 cm. High percentages (above 94%) of heavy metals Fe(III) and Mn(II) were removed by the biosurfactants isolated from Candida lipolytica and Candida sphaerica and the values were found to be similar to those obtained with the use of the synthetic sodium oleate surfactant. The DAF operation with both surfactant and biosurfactants, achieved acceptable turbidity values, in accordance with Brazilian standard limits. The best ones were obtained by the biosurfactant from C. lipolytica, which reached 4.8 NTU. The results obtained with a laboratory synthetic effluent were also satisfactory. The biosurfactants removed almost the same percentages of iron, while the removal percentages of manganese were slightly higher compared with those obtained in the acid mine drainage effluent. They showed that the use of low-cost biosurfactants as collectors in the DAF process is a promising technology for the mining industries.
Collapse
|
27
|
Cadmium effects on transcriptional expression of rhlB/rhlC genes and congener distribution of monorhamnolipid and dirhamnolipid in Pseudomonas aeruginosa IGB83. Appl Microbiol Biotechnol 2010; 88:953-63. [DOI: 10.1007/s00253-010-2808-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 07/09/2010] [Accepted: 07/30/2010] [Indexed: 10/19/2022]
|
28
|
Aşçi Y, Nurbaş M, Sağ Açikel Y. Investigation of sorption/desorption equilibria of heavy metal ions on/from quartz using rhamnolipid biosurfactant. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2010; 91:724-731. [PMID: 19850403 DOI: 10.1016/j.jenvman.2009.09.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 09/14/2009] [Accepted: 09/21/2009] [Indexed: 05/28/2023]
Abstract
In the present study, the sorption characteristics of Cd(II) and Zn(II) ions on quartz, a representative soil-component, and the desorption of these metal ions from quartz using rhamnolipid biosurfactant were investigated. In the first part of the studies, the effects of initial metal ion concentration and pH on sorption of Cd(II) and Zn(II) ions by a fixed amount of quartz (1.5g) were studied in laboratory batch mode. The equilibrium sorption capacity for Cd(II) and Zn(II) ions was measured and the best correlation between experimental and model predicted equilibrium uptake was obtained using the Freundlich model. Although investigations on the desorption of heavy metal ions from the main soil-components are crucial to better understand the mobility and bioavailability of metals in the environment, studies on the description of desorption equilibrium were performed rarely. In the second part, the desorption of Cd(II) and Zn(II) from quartz using rhamnolipid biosurfactant was investigated as a function of pH, rhamnolipid concentration, and the amounts of sorbed Cd(II) and Zn(II) ions by quartz. The Freundlich model was also well fitted to the obtained desorption isotherms. Several indexes were calculated based on the differences of the quantity of Cd-Zn sorbed and desorbed. A desorption hysteresis (irreversibility) index based on the Freundlich exponent, concentration-dependent metal distribution coefficients, and the irreversibility index based on the metal distribution coefficient were used to quantify hysteretic behavior observed in the systems.
Collapse
Affiliation(s)
- Yeliz Aşçi
- Eskişehir Osmangazi University, Department of Chemical Engineering, Turkey
| | | | | |
Collapse
|
29
|
Wang Y, Tang X, Chen Y, Zhan L, Li Z, Tang Q. Adsorption behavior and mechanism of Cd(II) on loess soil from China. JOURNAL OF HAZARDOUS MATERIALS 2009; 172:30-37. [PMID: 19631455 DOI: 10.1016/j.jhazmat.2009.06.121] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 06/17/2009] [Accepted: 06/22/2009] [Indexed: 05/28/2023]
Abstract
Cadmium is a toxic heavy metal that has caused serious public health problems. It is necessary to find a cost effective method to deal with wastewater containing Cd(II). Loess soils in China have proven to be a potential adsorbent for Cd(II) removal from wastewater. The adsorption capacity of loess towards Cd(II) has been determined to be about 9.37 mg g(-1). Slurry concentration, initial solution pH, reaction time and temperature have also been found to significantly influence the efficiency of Cd(II) removal. The adsorption isotherms and kinetics of loess soil from China can be best-fit with the Langmuir model and pseudo-second order kinetics model, respectively. The thermodynamic analysis revealed that the adsorption process was spontaneous, endothermic and the system disorder increased with duration. The natural organic matter in loess soil is mainly responsible for Cd(II) removal at pH < 4.2, while clay minerals contribute to a further gradual adsorption process. Chemical precipitation dominates the adsorption stage at pH > 8.97. Further studies using X-ray diffraction, Fourier transform infrared spectra of Cd(II) laden loess soil and Cd(II) species distribution have confirmed the adsorption mechanism.
Collapse
Affiliation(s)
- Yan Wang
- MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Department of Civil Engineering, Zhejiang University, Yuhangtang Road 388, Hangzhou 310058, PR China
| | | | | | | | | | | |
Collapse
|
30
|
Wu P, Wu W, Li S, Xing N, Zhu N, Li P, Wu J, Yang C, Dang Z. Removal of Cd2+ from aqueous solution by adsorption using Fe-montmorillonite. JOURNAL OF HAZARDOUS MATERIALS 2009; 169:824-830. [PMID: 19443105 DOI: 10.1016/j.jhazmat.2009.04.022] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 04/03/2009] [Accepted: 04/07/2009] [Indexed: 05/27/2023]
Abstract
Fe-montmorillonite (Fe-Mont.) is obtained by exchanging the original interlayer cations of montmorillonite by poly-hydroxyl ferric. In this paper, Fe-Mont. was synthesized by using Ca-montmorillonite (Ca-Mont.) directly under ultrasonic treatment with the aim to enhance the ability of removal of heavy metal ions from wastewater. The modified materials were characterized by X-ray diffraction (XRD) and Fourier transform infrared (FT-IR). Batch equilibrium experiments of Cd(II) ions (Cd(2+)) adsorption on the Fe-Mont. were performed. Effects of the initial pH of the solution and contact time on the adsorption of Cd(2+) were studied. Four types of adsorption isotherms were applied to describe the adsorption isotherms of Cd(2+) by Fe-Mont. The relationship between adsorbing capacity (q(e)) and equilibrium mass concentration (C(e)) is in accordance with the isothermal adsorption equation of Langmuir. Three kinetic models, including pseudo-first-order, pseudo-second-order and the Elovich equation model, were used to analyze the Cd(2+) adsorption process. The pseudo-second-order chemical reaction kinetics provide the best correlation of the experimental data, therefore the adsorption dynamics follows the laws of pseudo-second-order kinetics.
Collapse
Affiliation(s)
- Pingxiao Wu
- College of Environmental Science and Engineering, South China University of Technology, Guangzhou 510640, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|