1
|
Khongkliang P, Nuchdang S, Rattanaphra D, Kingkam W, Mahathanabodee S, Boonnorat J, Kadier A, Aryanti PTP, Phalakornkule C. Efficiency enhancement of electrocoagulation, ion-exchange resin and reverse osmosis (RO) membrane filtration by prior organic precipitation for treatment of anaerobically-treated palm oil mill effluent. CHEMOSPHERE 2024; 363:142899. [PMID: 39029711 DOI: 10.1016/j.chemosphere.2024.142899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/01/2024] [Accepted: 07/17/2024] [Indexed: 07/21/2024]
Abstract
Anaerobically-treated palm oil mill effluent (POME) still has unacceptable properties for water recycling and reuse, with an unpleasant appearance due to the brownish color caused by tannins and phenolic compounds. This study proposes an approach for treating anaerobically-treated POME for water recycling by combining organic precipitation, electrocoagulation (EC), and ion-exchange resin, followed by reverse osmosis (RO) membrane filtration in series. The results indicated that the organic precipitation enhanced the efficiency of EC treatment in reducing the concentrations of tannins, color, and chemical oxygen demand (COD) of the anaerobically-treated POME effluent, with reductions of 95.73%, 96.31%, and 93.96% for tannin, color, and COD, respectively. Moreover, organic precipitation affected the effectiveness of Ca2+ and Mg2+ ion removal using ion exchange resin and RO membrane filtration. Without prior organic precipitation, the ion-exchange resin process required a longer contact time, and the RO membrane filtration treatment was hardly effective in removing total dissolved solids (TDS). The combined process gave a water quality that meets the criteria set by the Thailand Ministry of Industry for industrial boiler use (COD 88 mg/L, TDS <0.001 mg/L, water hardness <5 mg-CaCO3/L, and pH 6.9).
Collapse
Affiliation(s)
- Peerawat Khongkliang
- The Joint Graduate School of Energy and Environment, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand; Research Center for Circular Products and Energy, KMUTNB, Bangkok, 10800, Thailand.
| | - Sasikarn Nuchdang
- Nuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology, Nakorn Nayok, 26120, Thailand
| | - Dussadee Rattanaphra
- Nuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology, Nakorn Nayok, 26120, Thailand
| | - Wilasinee Kingkam
- Nuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology, Nakorn Nayok, 26120, Thailand
| | - Sithipong Mahathanabodee
- Department of Production Engineering, Faculty of Engineering, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand
| | - Jarungwit Boonnorat
- Department of Environmental Engineering, Faculty of Engineering, Rajamangala University of Technology Thanyaburi (RMUTT), Pathum Thani, 12110, Thailand
| | - Abudukeremu Kadier
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences (CAS), Urumqi, 830011, Xinjiang, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Putu Teta Prihartini Aryanti
- Chemical Engineering Department, Faculty of Engineering, Universitas Jenderal Achmad Yani, Cibeber Cimahi - West Java, Indonesia.
| | - Chantaraporn Phalakornkule
- The Joint Graduate School of Energy and Environment, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand; Research Center for Circular Products and Energy, KMUTNB, Bangkok, 10800, Thailand; Department of Chemical Engineering, Faculty of Engineering, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand.
| |
Collapse
|
2
|
Tabash I, Elnakar H, Khan MF. Optimization of iron electrocoagulation parameters for enhanced turbidity and chemical oxygen demand removal from laundry greywater. Sci Rep 2024; 14:16468. [PMID: 39013981 PMCID: PMC11252410 DOI: 10.1038/s41598-024-67425-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/11/2024] [Indexed: 07/18/2024] Open
Abstract
This study explores the optimization of iron electrocoagulation for treating laundry greywater, which accounts for up to 38% of domestic greywater. Characterized by high concentrations of surfactants, detergents, and suspended solids, laundry greywater presents complex challenges for treatment processes, posing significant environmental and health risks. Utilizing response surface methodology (RSM), this research developed a second-order polynomial regression model focused on key operational parameters such as the area-to-volume ratio (A/V), current density, electrolysis time, and settling time. Optimal treatment conditions were identified: an A/V ratio of 30 m2/m3, a current density of 10 mA/cm2, an electrolysis duration of 50 min, and a settlement period of 12 h. Under these conditions, exceptional treatment outcomes were achieved, with turbidity removal reaching 94.26% and COD removal at 99.64%. The model exhibited high effectiveness for turbidity removal, with an R2 value of 94.16%, and moderate effectiveness for COD removal, with an R2 value of 75.90%. The interaction between the A/V ratio and electrolysis time particularly underscored their critical role in electrocoagulation system design. Moreover, these results highlight the potential for optimizing electrocoagulation parameters to adapt to daily fluctuations in greywater production and meet specific household reuse needs, such as toilet flushing. This tailored approach aims to maximize contaminant separation and coagulant efficiency, balance energy use and operational costs, and contribute to sustainable water management.
Collapse
Affiliation(s)
- Ibrahim Tabash
- Department of Civil and Environmental Engineering, King Fahd University of Petroleum & Minerals, 31261, Dhahran, Saudi Arabia
| | - Haitham Elnakar
- Department of Civil and Environmental Engineering, King Fahd University of Petroleum & Minerals, 31261, Dhahran, Saudi Arabia.
- Interdisciplinary Research Center for Construction and Building Materials, King Fahd University of Petroleum & Minerals, 31261, Dhahran, Saudi Arabia.
| | - Muhammad Faizan Khan
- Interdisciplinary Research Center for Construction and Building Materials, King Fahd University of Petroleum & Minerals, 31261, Dhahran, Saudi Arabia
- Department of Bioengineering, King Fahd University of Petroleum & Minerals, 31261, Dhahran, Saudi Arabia
| |
Collapse
|
3
|
Chowdhury S, Uddin ME, Noyon MAR, Mondol MMH, Maafa IM, Yousef A. Fabrication and performance analysis of keratin based-graphene oxide nanocomposite to remove dye from tannery wastewater. Heliyon 2024; 10:e23421. [PMID: 38187276 PMCID: PMC10770456 DOI: 10.1016/j.heliyon.2023.e23421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/20/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024] Open
Abstract
In recent years, nanomaterials and composites have become increasingly significant as adsorbents in the removal of dyes and phenolic contaminants from wastewater. This study presents the development and application of a keratin-based graphene oxide nanocomposite, distinguished by its enhanced biocompatibility, cost-effectiveness, and strong affinity for organic compounds, making it highly effective in reducing dyes within tannery effluent. The nanocomposite was prepared via solution casting method, with dispersibility, chemical bonding, and morphology analyzed by UV-Vis spectroscopy, FTIR, and SEM, respectively. Furthermore, investigations of the influence of several factors, such as contact time, pH, and adsorbent dosage on the optimization of the process were conducted. An observation indicated a reduction of approximately 98.8 % in dye content within 20 min, achieved through the use of an adsorbent dosage of 1.5 g/L, with the solution pH maintained at 5. Subsequently, adsorption kinetics and isotherm modelling were analyzed. The results revealed that the adsorption process follows the pseudo-second-order kinetics and Freundlich isotherm models. Hence, the adsorption could be explained as chemisorption with a multilayer adsorption mechanism. Notably, a substantial reduction in parameters such as Biological Oxygen Demand (BOD) and Chemical Oxygen Demand (COD) was also achieved up to 62 % and 79 %, respectively. Therefore, the developed adsorbent could be suggested as a viable candidate for eliminating dyes from the wastewater, especially from the tannery effluent.
Collapse
Affiliation(s)
- Shazneen Chowdhury
- Department of Leather Engineering, Faculty of Mechanical Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh
| | - Md Elias Uddin
- Department of Leather Engineering, Faculty of Mechanical Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh
| | - Md Ashikur Rahaman Noyon
- Department of Leather Engineering, Faculty of Mechanical Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh
| | - Md Mahmudul Hassan Mondol
- Department of Chemical Engineering, Faculty of Mechanical Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh
| | - Ibrahim M. Maafa
- Department of Chemical Engineering, Faculty of Engineering, Jazan University, Jazan 11451, Saudi Arabia
| | - Ayman Yousef
- Department of Chemical Engineering, Faculty of Engineering, Jazan University, Jazan 11451, Saudi Arabia
- Department of Mathematics and Physics Engineering, Faculty of Engineering at Mataria, Helwan University, Cairo 11718, Egypt
| |
Collapse
|
4
|
Jafari E, Malayeri MR, Brückner H, Weimer T, Krebs P. Innovative spiral electrode configuration for enhancement of electrocoagulation-flotation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119085. [PMID: 37757685 DOI: 10.1016/j.jenvman.2023.119085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/09/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023]
Abstract
The performance of electrocoagulation-flotation (ECF) process can profoundly be affected by the reactor design and electrode configuration. These may, in turn, influence the removal efficiency, flow hydrodynamic, floc formation, and flotation/settling characteristics. The present work aimed at developing a new spiral electrode configuration to enhance the ECF process. To do so, the impacts of parameters such as energy consumption, removal efficiency of the contaminants from industrial wastewater with a composition of turbidity, emulsified oil, and heavy metals (Si, Zn, Pb, Ni, Cu, Cr, and Cd), as well as stirring speed and foaming have been investigated. Comparison was also made between the experimental results of the new electrode configuration with the conventional rectangular cell with plate electrode configuration with the same volume and electrode surface area. The findings revealed that energy consumption of the spiral electrode configuration within the operating times of 10, 20, 30, 32, 48, and 70 min, was approximately 20% lower compared to that of the conventional ECF. Moreover, the maximum and minimum removal efficiency of 97% and 60% were obtained for turbidity and TOC for the stirring speed of 500 rpm and Reynolds number of 10,035, respectively. Finally, the formed gas bubbles tilted toward the center due to the enhanced flow hydrodynamic which resulted in substantial reduction of foam formation.
Collapse
Affiliation(s)
- Ehsan Jafari
- Institute of Urban and Industrial Water Management, Technische Universität Dresden, Germany
| | - M Reza Malayeri
- Department of Chemical Engineering, Shiraz University, Iran.
| | - Heike Brückner
- Institute of Urban and Industrial Water Management, Technische Universität Dresden, Germany
| | - Thomas Weimer
- Department of Research and Development, Spiraltec GmbH, Germany
| | - Peter Krebs
- Institute of Urban and Industrial Water Management, Technische Universität Dresden, Germany
| |
Collapse
|
5
|
Shahedi A, Darban AK, Jamshidi-Zanjani A, Homaee M. An overview of the application of electrocoagulation for mine wastewater treatment. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:522. [PMID: 36988769 DOI: 10.1007/s10661-023-11044-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 02/20/2023] [Indexed: 06/19/2023]
Abstract
One of the challenges of the twenty-first century is related to the discharge and disposal of mine effluents and wastewater resulting from mine dewatering, precipitation, and surface runoff in mines, especially acidic effluents that contain a variety of toxic and heavy metals and are the main sources of surface and groundwater pollution. Various physical, chemical, and biological methods have been developed and used to treat mine effluents. All proposed methods have their own disadvantages that make their use challenging. One of the new methods used for wastewater treatment is the electrical coagulation process, which has attracted the attention of researchers in recent years due to its advantages such as simplicity, environmental friendliness, and low cost. The present review focused on the applications of electrocoagulation for mine wastewater treatment as well as metals recovery. In addition, the main mechanisms, advantages, and weaknesses of electrocoagulation were reviewed.
Collapse
Affiliation(s)
- Ahmad Shahedi
- Department of Mining, Faculty of Engineering, Tarbiat Modares University, Tehran, Iran
| | - Ahmad Khodadadi Darban
- Department of Mining, Faculty of Engineering, Tarbiat Modares University, Tehran, Iran.
- Agrohydrology Research Group, Tarbiat Modares University, Tehran, Iran.
| | - Ahmad Jamshidi-Zanjani
- Department of Mining, Faculty of Engineering, Tarbiat Modares University, Tehran, Iran
- Agrohydrology Research Group, Tarbiat Modares University, Tehran, Iran
| | - Mehdi Homaee
- Department of Mining, Faculty of Engineering, Tarbiat Modares University, Tehran, Iran
- Agrohydrology Research Group, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
6
|
Development of electrocoagulation process for wastewater treatment: optimization by response surface methodology. Heliyon 2022; 8:e09383. [PMID: 35592662 PMCID: PMC9111894 DOI: 10.1016/j.heliyon.2022.e09383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/28/2022] [Accepted: 05/04/2022] [Indexed: 02/06/2023] Open
Abstract
Electrocoagulation (EC) is a process used by supply of electric current with sacrificial electrodes for the removal of pollutant from wastewater. The study was experimentally investigated taking into account various factors such as pH (3–7.5), current (0.03–0.09 A), distance between the electrodes (1–2 cm), electrolytic concentration (1–3 g/L), and electrolysis time (20–60 min) which is impact on the % removal efficiency of color, chemical oxygen demand (COD), turbidity and determination of energy consumption used for aluminum (Al) electrode used. The surface response design process based on the central composite design (CCD) has been used to optimize different operational parameters for treatment of hospital wastewater using EC process. The % color, COD and turbidity removal, and energy consumption under different conditions were predicted with the aid of a quadratic model, as were the significance and their interaction with independent variables assessed by analysis of variance (ANOVA). The optimal conditions were obtained through mathematical and statistical methods to reach maximum % color, COD, and turbidity removal with minimum energy consumption. The results showed that the maximum removal of color (92.30%), COD (95.28%), and turbidity (83.33%) were achieved at pH–7.5, current–0.09A, electrolytic concentration–3g/L, distance between electrodes–2 cm and reaction time 60 min. This means that, the process of EC can remove pollutants from various types of wastewaters and industrial effluent under the various operating parameters. EC effective technology used to treat wastewater generated from hospital. Al was used as an electrode for hospital wastewater treatment using EC process. EC can eliminate pollutants from wastewater under various operating parameters. CCD used to optimize operational parameters for treatment of hospital wastewater.
Collapse
|
7
|
Akarsu C, Bilici Z, Dizge N. Treatment of vegetable oil wastewater by a conventional activated sludge process coupled with electrocoagulation process. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10692. [PMID: 35187750 DOI: 10.1002/wer.10692] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/14/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
The present work aims to study chemical oxygen demand (COD), oil-grease, and color removal from vegetable oil wastewater by combined electrocoagulation and activated sludge processes. For this purpose, the sample was pretreated using electrocoagulation by various optimization parameters such as electrode type (Al-Al and Fe-Fe), current density (100-400 A/m2 ), pH (2-8), and electrolysis time (15-180 min). The results showed that 89.3% of COD, 100% of oil-grease, and 66.2% of color were removed by electrocoagulation under the conditions of 300-A/m2 current density, pH 2, and 180-min reaction time with Al-Al electrode pairs. Then, the effluent of electrocoagulation was treated by an activated sludge process. The results depicted that the activated sludge process was also effective for vegetable oil wastewater treatment and it enhanced 98.9% COD and 79.2% color removal efficiency. The effluent of the combined process was very clear, and its quality exceeded the direct discharge standard of the water pollution control regulation. The laboratory-scale test results indicate that the combined electrocoagulation and activated sludge process is feasible for the treatment of vegetable oil wastewater. PRACTITIONER POINTS: Vegetable oil wastewater was treated by combination of electrocoagulation and activated sludge processes. The combined electrocoagulation and activated sludge processes supplied 99.9% COD, 100% oil-grease, and 93.0% color removal efficiency. The laboratory-scale test results indicate that the combined EC-SBR processes were feasible for the treatment of vegetable oil wastewater.
Collapse
Affiliation(s)
- Ceyhun Akarsu
- Department of Environmental Engineering, Engineering Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
- Department of Environmental Engineering, Engineering Faculty, Mersin University, Mersin, Turkey
| | - Zeynep Bilici
- Department of Environmental Engineering, Engineering Faculty, Mersin University, Mersin, Turkey
| | - Nadir Dizge
- Department of Environmental Engineering, Engineering Faculty, Mersin University, Mersin, Turkey
| |
Collapse
|
8
|
Zhang H, Wu B, Li X, Zhang X, Wang Y. Electrocoagulation treatment of shale gas drilling wastewater: Performance and statistical optimization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148436. [PMID: 34214819 DOI: 10.1016/j.scitotenv.2021.148436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/31/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Shale gas drilling wastewater is a challenging waste stream generated in gas industries. It is a mixture of different organic and inorganic compounds. Treatment of this complex wastewater relies on a suitable technology for the removal of small suspended particles and dissolved elements. This study employed electrocoagulation (EC) as an efficient method for shale gas drilling wastewater pretreatment. The optimum operating conditions for turbidity, TOC, and Ca2+ removal were determined using a response surface methodology (RSM). The chloride (Cl-) removal and residual iron of effluent in the EC process were also tested and evaluated. Based on the analysis of variance (ANOVA), the coefficient of determination (R2) was calculated and found to be above 0.86 for all the responses. The maximum removal efficiencies were found to be around 98.3%, 78.5%, and 56.5% for turbidity, TOC, and Ca2+ removal under the optimum conditions, respectively. In order to treat drilling wastewater by EC process both efficiently and economically, the following operating parameters are recommended: 318 A/m2 for current density, 20 min for reaction time and 4.4 for initial pH. A total operation cost of 0.80 US$/m3 was estimated under these conditions.
Collapse
Affiliation(s)
- Hua Zhang
- CNPC Research Institute of Safety and Environmental Technology, Beijing 102206, China; State Key Laboratory of Petroleum Pollution Control, Beijing 102206, China.
| | - Baichun Wu
- CNPC Research Institute of Safety and Environmental Technology, Beijing 102206, China; State Key Laboratory of Petroleum Pollution Control, Beijing 102206, China
| | - Xingchun Li
- CNPC Research Institute of Safety and Environmental Technology, Beijing 102206, China; State Key Laboratory of Petroleum Pollution Control, Beijing 102206, China
| | - Xiaofei Zhang
- CNPC Research Institute of Safety and Environmental Technology, Beijing 102206, China; State Key Laboratory of Petroleum Pollution Control, Beijing 102206, China
| | - Yuxi Wang
- CNPC Research Institute of Safety and Environmental Technology, Beijing 102206, China; State Key Laboratory of Petroleum Pollution Control, Beijing 102206, China
| |
Collapse
|
9
|
Liu H, Kong T, Qiu L, Xu R, Li F, Kolton M, Lin H, Zhang L, Lin L, Chen J, Sun X, Gao P, Sun W. Solar-driven, self-sustainable electrolysis for treating eutrophic river water: Intensified nutrient removal and reshaped microbial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 764:144293. [PMID: 33385655 DOI: 10.1016/j.scitotenv.2020.144293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/15/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
River ecosystems are the most important resource of surface freshwater, but they have frequently been contaminated by excessive nutrient input of nitrogen (N) and phosphorus (P) in particular. An efficient and economic river water treatment technology that possesses the capacity of simultaneous N and P removal is urgently required. In this study, a solar-driven, self-sustainable electrolytic treatment was conducted in situ to intensify N and P removal from eutrophic river water. Solar panel was applied to provide the electrolysis setups with energy (voltage 10 ± 0.5 V), and the current density was controlled to be 0.06 ± 0.02 mA cm-2. Results indicated that the average removal efficiencies of total N (TN) and total P (TP) under electrolysis conditions reached 72.4 ± 11.7 and 13.8 ± 5.3 mg m-2 d-1, which were 3.7- and 4.7-fold higher compared to untreated conditions. Enhanced TN removal mainly reflected the abatement of nitrate N (NO3--N) (80.6 ± 4.1%). The formation of ferric ions through the electro-dissolution of the sacrificial iron anode improved TP removal by coprecipitation with SPS. Combined high-throughput sequencing and statistical analyses revealed that electrolysis significantly reshaped the microbial communities in both the sediment-water interface and suspended sediment (SPS), and hydrogenotrophic denitrifiers (e.g., Hydrogenophaga) were highly enriched under electrolysis conditions. These findings indicated that in situ electrolysis is a feasible and effective technology for intensified nutrient removal from river water.
Collapse
Affiliation(s)
- Huaqing Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Tianle Kong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Lang Qiu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Rui Xu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Max Kolton
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Hanzhi Lin
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Lei Zhang
- Research Institute of Petrochemical and Fine Chemical Engineering, Guangzhou 510665, PR China
| | - Lan Lin
- Research Institute of Petrochemical and Fine Chemical Engineering, Guangzhou 510665, PR China
| | - Jiazhi Chen
- Research Institute of Petrochemical and Fine Chemical Engineering, Guangzhou 510665, PR China
| | - Xiaoxu Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Pin Gao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
10
|
Sato Y, Zeng Q, Meng L, Chen G. Importance of Combined Electrochemical Process Sequence and Electrode Arrangements: A Lab-scale Trial of Real Reverse Osmosis Landfill Leachate Concentrate. WATER RESEARCH 2021; 192:116849. [PMID: 33517046 DOI: 10.1016/j.watres.2021.116849] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
Reverse osmosis (RO) is a widely applied technique for wastewater effluent reuse and landfill leachate treatment. The latter generates a refractory RO leachate concentrate (ROLC), for which cost-effective treatment is required. This study focuses on a two-step electrochemical method consisting of aluminum-based electrocoagulation (EC), and simultaneous electrooxidation-electrocoagulation with a titanium-based lead dioxide (Ti/ß-PbO2) anode and aluminum cathode (EOEC) assembly. The sequence and electrode arrangements of the combined electrochemical process were investigated to determine the organic transformation, Ti/ß-PbO2 anode viability, and energy consumption. Series-based EC-EOEC decreased the total chemical oxygen demand (COD) from 8750 mg L-1 to 380 mg L-1, a 96% removal efficiency, in 3.5 hours at 141 A m-2. Under a low energy consumption of 28.7 kWh kgCOD-1, the ROLC biodegradability (BOD5/COD) significantly increased from 0.015 to 0.530, which was ascribed to aromatic removal (e.g., -C=C) and an increase in -COOH functional groups. Furthermore, the rapid removal of natural organic matter and increase in pH elevation from EC suppressed the dissolution of Pb from the Ti/ß-PbO2 anode during the subsequent EOEC, thereby leaving 0.061 mg L-1 in the ROLC after treatment. The treatment cost was 3.86 USD kgCOD-1, which was approximately 34% lower than that of previously reported electrochemical processes for ROLC treatment. These findings obtained with a real RO concentrate provide a foundation for scaling up this new electrochemical treatment approach.
Collapse
Affiliation(s)
- Yugo Sato
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Qian Zeng
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Liao Meng
- Xiaping Municipal Solid Waste Landfill Plant, Shenzhen, Guangdong Province, China
| | - Guanghao Chen
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China; Fok Ying Tung Research Institute, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| |
Collapse
|
11
|
Nippatla N, Philip L. Electrochemical process employing scrap metal waste as electrodes for dye removal. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 273:111039. [PMID: 32741763 DOI: 10.1016/j.jenvman.2020.111039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/06/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
In the present study, efficiency of electro-coagulation-flotation (EC-F) process using waste metal scrap of Al and Fe collected from construction and demolition waste of Indian Institute of Technology Madras (IIT M) campus for the removal of double azo bond dye Acid Red 66 (AR66) was studied. The key operating parameters such as current density and electrical conductivity were optimized individually with an initial dye concentration of 50 mg/L, at pH 7. Different electrode combinations and connection modes (parallel MP-P, series (MP-S, BP-S)) were tested, at pre-optimized conditions, in order to achieve better removal of AR66 dye with minimum energy consumption. Series connection in bipolar electrode mode (BP-S) showed better COD reduction from 164 mg/L to 26.2 mg/L with complete decolourization (BDL). Hybrid electrode system of Fe-Al-Fe-Al-Fe-Al showed maximum reduction of COD from 164 mg/L to 11.3 mg/L along with 86.3% TSS reduction and complete decolourization. LC-MS analysis showed the formation of intermediates with m/z 195, m/z 210.6 and m/z 159.3 due to the destruction of AR66 dye during electrolysis. Highest current efficiency (CE φ = 107%) was observed in case of hybrid electrode system compared to Al (φ = 30.1%) and Fe (φ = 98.3%) electrode system at similar operating conditions. Compared to the same electrode material as anode and cathode, use of appropriate hybrid electrode combination can improve the removal efficiency and reduce the energy consumption (ENC). The influence of aeration on the performance of the system was also studied. Aeration significantly improved the COD removal efficiency (98.3%) along with complete decolourization (100%). The use of waste metal scrap as electrodes reduced the overall cost of the treatment process from 1.6 $/m3 to 0.06 $/m3. Using waste metal scrap as electrodes not only reduces the metal accumulation in the environment but also reduces the cost of EC-F process.
Collapse
Affiliation(s)
- Narasamma Nippatla
- Environmental and Water Resources Engineering Division, Department of Civil Engineering, IIT Madras, Chennai, 600 036, India
| | - Ligy Philip
- Environmental and Water Resources Engineering Division, Department of Civil Engineering, IIT Madras, Chennai, 600 036, India.
| |
Collapse
|
12
|
Zaied BK, Rashid M, Nasrullah M, Zularisam AW, Pant D, Singh L. A comprehensive review on contaminants removal from pharmaceutical wastewater by electrocoagulation process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 726:138095. [PMID: 32481207 DOI: 10.1016/j.scitotenv.2020.138095] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 03/19/2020] [Accepted: 03/19/2020] [Indexed: 05/28/2023]
Abstract
The pharmaceuticals are emergent contaminants, which can create potential threats for human health and the environment. All the pharmaceutical contaminants are becoming enormous in the environment as conventional wastewater treatment cannot be effectively implemented due to toxic and intractable action of pharmaceuticals. For this reason, the existence of pharmaceutical contaminants has brought great awareness, causing significant concern on their transformation, occurrence, risk, and fate in the environments. Electrocoagulation (EC) treatment process is effectively applied for the removal of contaminants, radionuclides, pesticides, and also harmful microorganisms. During the EC process, an electric current is employed directly, and both electrodes are dissoluted partially in the reactor under the special conditions. This electrode dissolution produces the increased concentration of cation, which is finally precipitated as hydroxides and oxides. Different anode materials usage like aluminum, stainless steel, iron, etc. are found more effective in EC operation for efficient removal of pharmaceutical contaminants. Due to the simple procedure and less costly material, EC method is extensively recognized for pharmaceutical wastewater treatment over further conventional treatment methods. The EC process has more usefulness to destabilize the pharmaceutical contaminants with the neutralization of charge and after that coagulating those contaminants to produce flocs. Thus, the review places particular emphasis on the application of EC process to remove pharmaceutical contaminants. First, the operational parameters influencing EC efficiency with the electroanalysis techniques are described. Second, in this review emerging challenges, current developments and techno-economic concerns of EC are highlighted. Finally, future recommendations and prospective on EC are envisioned.
Collapse
Affiliation(s)
- B K Zaied
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang (UMP), Gambang, 26300 Kuantan, Pahang, Malaysia
| | - Mamunur Rashid
- Faculty of Electrical and Electronics Engineering Technology, Universiti Malaysia Pahang (UMP), 26600 Pekan, Pahang, Malaysia
| | - Mohd Nasrullah
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang (UMP), Gambang, 26300 Kuantan, Pahang, Malaysia; Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang (UMP), Gambang, 26300, Kuantan, Pahang, Malaysia
| | - A W Zularisam
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang (UMP), Gambang, 26300 Kuantan, Pahang, Malaysia
| | - Deepak Pant
- Separation and Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, Mol 2400, Belgium
| | - Lakhveer Singh
- Department of Environmental Science, SRM University-AP, Amaravati, Andhra Pradesh - 522502, India.
| |
Collapse
|
13
|
Çırak M, Atay HY. Coagulation/flocculation process for marble processing plant effluent: Modelling and optimization through response surface methodology. ASIA-PAC J CHEM ENG 2019. [DOI: 10.1002/apj.2371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mustafa Çırak
- Department of Mining EngineeringMuğla Sıtkı Koçman University Muğla Turkey
| | - Hüsnügül Yilmaz Atay
- Department of Material Science and Engineeringİzmir Katip Çelebi University İzmir Turkey
| |
Collapse
|
14
|
Syam Babu D, Anantha Singh TS, Nidheesh PV, Suresh Kumar M. Industrial wastewater treatment by electrocoagulation process. SEP SCI TECHNOL 2019. [DOI: 10.1080/01496395.2019.1671866] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- D. Syam Babu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - T. S. Anantha Singh
- Department of Civil Engineering, School of Technology, Pandit Deenadayal Petroleum University, Gujarat, India
| | - P. V. Nidheesh
- Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute, Nagpur, India
| | - M. Suresh Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute, Nagpur, India
| |
Collapse
|
15
|
Camcıoğlu Ş, Özyurt B, Doğan IC, Hapoğlu H. Application of response surface methodology as a new PID tuning method in an electrocoagulation process control case. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2017; 76:3410-3427. [PMID: 29236020 DOI: 10.2166/wst.2017.506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this work the application of response surface methodology (RSM) to proportional-integral-derivative (PID) controller parameter tuning for electrocoagulation (EC) treatment of pulp and paper mill wastewater was researched. Dynamic data for two controlled variables (pH and electrical conductivity) were obtained under pseudo random binary sequence (PRBS) input signals applied to manipulated variables (acid and supporting electrolyte flow rates). Third order plus time delay model parameters were evaluated through System Identification Toolbox™ in MATLAB®. Four level full factorial design was applied to form a design matrix for three controller tuning parameters as factors and to evaluate statistical analysis of the system in terms of integral of square error (ISE), integral of absolute error (IAE), integral of time square error (ITSE) and integral of time absolute error (ITAE) performance criteria as response. Numerical values of the responses for the runs in the design matrices were determined using closed-loop PID control system simulations designed in Simulink®. Optimum proportional gain, integral action and derivative action values for electrical conductivity control were found to be 1,500 s, 0 s and 16.4636 s respectively. Accordingly, the same optimization scheme was followed for pH control and optimum controller parameters were found to be -8.6970 s, 0.0211 s and 50 s, respectively. Theoretically optimized controller parameters were applied to batch experimental studies. Chemical oxygen demand (COD) removal efficiency and energy consumption of pulp and paper mill wastewater treatment by EC under controlled action of pH at 5.5 and electrical conductivity at 2.72 mS/cm was found to be 85% and 3.87 kWh/m3 respectively. Results showed that multi input-multi output (MIMO) control action increased removal efficiency of COD by 15.41% and reduced energy consumption by 6.52% in comparison with treatment under uncontrolled conditions.
Collapse
Affiliation(s)
- Ş Camcıoğlu
- Ankara University Faculty of Engineering Department of Chemical Engineering, Tandoğan, Ankara, Turkey E-mail:
| | - B Özyurt
- Ankara University Faculty of Engineering Department of Chemical Engineering, Tandoğan, Ankara, Turkey E-mail:
| | - I C Doğan
- Ankara University Faculty of Engineering Department of Chemical Engineering, Tandoğan, Ankara, Turkey E-mail:
| | - H Hapoğlu
- Ankara University Faculty of Engineering Department of Chemical Engineering, Tandoğan, Ankara, Turkey E-mail:
| |
Collapse
|
16
|
Nariyan E, Aghababaei A, Sillanpää M. Removal of pharmaceutical from water with an electrocoagulation process; effect of various parameters and studies of isotherm and kinetic. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2017.07.031] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
17
|
Enhanced efficiency in HA removal by electrocoagulation through optimizing flocs properties: Role of current density and pH. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2016.11.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
18
|
An C, Huang G, Yao Y, Zhao S. Emerging usage of electrocoagulation technology for oil removal from wastewater: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 579:537-556. [PMID: 27865526 DOI: 10.1016/j.scitotenv.2016.11.062] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 06/06/2023]
Abstract
Electrocoagulation is a simple and efficient treatment method involving the electrodissolution of sacrificial anodes and formation of hydroxo-metal products as coagulants, while the simultaneous production of hydrogen at the cathode facilitates the pollutant removal by flotation. Oil is one of the most important hydrocarbon products in the modern world. It can cause environmental pollution during various stages of production, transportation, refining and use. Electrocoagulation treatment is particularly effective for destabilization of oil-in-water emulsions by neutralizing charges and bonding oil pollutants to generated flocs and hydrogen bubbles. The development of electrocoagulation technologies provided a promising alternative for oil removal from wastewater. This paper presents a review of emerging electrochemical technologies used for treating oil-containing wastewater. It includes a brief description of the oily wastewater origin and characteristics. The treatment processes developed so far for oily wastewater and the electrocoagulation mechanisms are also introduced. This paper summarizes the current applications of electrocoagulation for oil removal from wastewater. The factors that influence the electrocoagulation treatment efficiencies as well as the process optimization and modeling studies are discussed. The state-of-the-art and development trends of electrocoagulation process for oil removal are further introduced.
Collapse
Affiliation(s)
- Chunjiang An
- Faculty of Engineering and Applied Science, University of Regina, Regina S4S 0A2, Canada; Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina S4S 0A2, Canada
| | - Gordon Huang
- Faculty of Engineering and Applied Science, University of Regina, Regina S4S 0A2, Canada; Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina S4S 0A2, Canada.
| | - Yao Yao
- Faculty of Engineering and Applied Science, University of Regina, Regina S4S 0A2, Canada
| | - Shan Zhao
- Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina S4S 0A2, Canada
| |
Collapse
|
19
|
A practical hybrid modelling approach for the prediction of potential fouling parameters in ultrafiltration membrane water treatment plant. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2016.09.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Gousmi N, Sahmi A, Li HZ, Poncin S, Djebbar R, Bensadok K. Purification and detoxification of petroleum refinery wastewater by electrocoagulation process. ENVIRONMENTAL TECHNOLOGY 2016; 37:2348-2357. [PMID: 26853634 DOI: 10.1080/09593330.2016.1150349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 01/31/2016] [Indexed: 06/05/2023]
Abstract
The treatment of synthetic oily wastewater having the characteristics of a typical petroleum refinery wastewater (PRW) by electrocoagulation (EC) using iron and aluminum electrodes was conducted in an electrolytic reactor equipped with fluid recirculation. During the treatment, the emulsion stability was followed by the measurement of Zeta potential and particle sizes. Effects of some operating conditions such as electrodes material, current density and electrolysis time on removal efficiencies of turbidity, and chemical oxygen demand (COD) were investigated in detail. The PRW purification by the EC process was found to be the most effective using aluminum as the anode and cathode, current density of 60 A/m(2) and 30 min of electrolysis time. Under these conditions, the process efficiencies were 83.52% and 99.94%, respectively, for COD and turbidity removals which correspond to final values of 96 mg O2/L and 0.5 NTU. A moderate energy consumption (0.341 kWh) was needed to treat 1 m(3) of PRW. Besides, the ecotoxicity test proved that toxic substances presented in the PRW, and those inhibiting the germination growth of whet, were eliminated by the EC technique.
Collapse
Affiliation(s)
- N Gousmi
- a Laboratoire de Génie des Procédés Industriels et de l'Environnement , Université des Sciences et de la Technologie Houari Boumediene , Alger , Algeria
| | - A Sahmi
- a Laboratoire de Génie des Procédés Industriels et de l'Environnement , Université des Sciences et de la Technologie Houari Boumediene , Alger , Algeria
| | - H Z Li
- b Laboratoire Réaction et Génie des Procédés , Université de Lorraine , Nancy , France
| | - S Poncin
- b Laboratoire Réaction et Génie des Procédés , Université de Lorraine , Nancy , France
| | - R Djebbar
- c Laboratoire de Biologie et Physiologie des Organismes , Université des Sciences et de la Technologie Houari Boumediene , Alger , Algeria
| | - K Bensadok
- a Laboratoire de Génie des Procédés Industriels et de l'Environnement , Université des Sciences et de la Technologie Houari Boumediene , Alger , Algeria
| |
Collapse
|
21
|
Auguste AFT, Quand-Meme GC, Ollo K, Mohamed B, Sahi placide S, Ibrahima S, Lassine O. Electrochemical Oxidation of Amoxicillin in Its Commercial Formulation on Thermally Prepared RuO2/Ti. J ELECTROCHEM SCI TE 2016. [DOI: 10.5229/jecst.2016.7.1.82] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
22
|
Auguste AFT, Quand-Meme GC, Ollo K, Mohamed B, Sadia SP, Ibrahima S, Lassiné O. Electrochemical Oxidation of Amoxicillin in Its Commercial Formulation on Thermally Prepared RuO2/Ti. J ELECTROCHEM SCI TE 2016. [DOI: 10.33961/jecst.2016.7.1.82] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Adamovic S, Prica M, Dalmacija B, Rapajic S, Novakovic D, Pavlovic Z, Maletic S. Feasibility of electrocoagulation/flotation treatment of waste offset printing developer based on the response surface analysis. ARAB J CHEM 2016. [DOI: 10.1016/j.arabjc.2015.03.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
24
|
Hu C, Wang S, Sun J, Liu H, Qu J. An effective method for improving electrocoagulation process: Optimization of Al 13 polymer formation. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2015.10.063] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Moussavi G, Aghanejad M. The performance of electrochemical peroxidation process for COD reduction and biodegradability improvement of the wastewater from a paper recycling plant. Sep Purif Technol 2014. [DOI: 10.1016/j.seppur.2014.05.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
26
|
Kuokkanen V, Kuokkanen T, Rämö J, Lassi U. Recent Applications of Electrocoagulation in Treatment of Water and Wastewater—A Review. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/gsc.2013.32013] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Mansouri K, Hannachi A, Abdel-Wahab A, Bensalah N. Electrochemically Dissolved Aluminum Coagulants for the Removal of Natural Organic Matter from Synthetic and Real Industrial Wastewaters. Ind Eng Chem Res 2012. [DOI: 10.1021/ie202188m] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Khaled Mansouri
- Department of Chemical
Engineering,
National School of Engineering of Gabes, University of Gabes, 6072 Gabes, Tunisia
| | - Ahmed Hannachi
- Department of Chemical
Engineering,
National School of Engineering of Gabes, University of Gabes, 6072 Gabes, Tunisia
| | - Ahmed Abdel-Wahab
- Department of Chemical Engineering, Texas A&M University at Qatar, Education City, P.O. Box 23874, Doha, Qatar
| | - Nasr Bensalah
- Department of Chemical
Engineering,
National School of Engineering of Gabes, University of Gabes, 6072 Gabes, Tunisia
- Department of Chemical Engineering, Texas A&M University at Qatar, Education City, P.O. Box 23874, Doha, Qatar
| |
Collapse
|