1
|
Yang K, Nikolaev KG, Li X, Erofeev I, Mirsaidov UM, Kravets VG, Grigorenko AN, Qiu X, Zhang S, Novoselov KS, Andreeva DV. 2D Electrodes From Functionalized Graphene for Rapid Electrochemical Gold Extraction and Reduction From Electronic Waste. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408533. [PMID: 39504250 DOI: 10.1002/advs.202408533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/03/2024] [Indexed: 11/08/2024]
Abstract
Electronic waste (e-waste) contains substantial quantities of valuable precious metals, particularly gold (Au). However, inefficient metal recovery leads to these precious metals being discarded in landfills, causing significant water and environmental contamination. This study introduces a two-dimensional (2D) electrode with a layered graphene oxide membrane functionalized by chitosan (GO/CS). The GO/CS membrane acts as an ion-selective layer and demonstrates capabilities in the electrochemical extraction and reduction of Au ions. The multiple functional groups of GO and CS offer high cooperativity in ion extraction and reduction, achieving 95 wt.% extraction efficiency within 10 min. The simultaneous extraction and electrocatalytic reduction of Au ions within the membrane leads to the formation of ready-to-use metallic Au forms such as chips and sensors. Such an approach eliminates the processing steps required to convert extracted gold into functional products, reducing time, cost, and energy. This direct formation of usable Au components enhances the efficiency of the recovery process, making it economically viable and environmentally sustainable. The gold mining market is projected to be valued at $270 billion by 2032, with the recycling segment reaching $10.8 billion, highlighting the substantial benefits and economic potential of efficient e-waste recycling technologies.
Collapse
Affiliation(s)
- Kou Yang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, 117544, Singapore
| | - Konstantin G Nikolaev
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, 117544, Singapore
| | - Xiaolai Li
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Ivan Erofeev
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore
- Centre for BioImaging Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Utkur M Mirsaidov
- Centre for BioImaging Sciences, National University of Singapore, Singapore, 117543, Singapore
- Department of Physics, National University of Singapore, Singapore, 117551, Singapore
| | - Vasyl G Kravets
- Department of Physics and Astronomy, Manchester University, Manchester, M13 9PL, UK
| | | | - Xueqing Qiu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shanqing Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Kostya S Novoselov
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, 117544, Singapore
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Daria V Andreeva
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, 117544, Singapore
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| |
Collapse
|
2
|
Ahmad M, Naik MUD, Tariq MR, Khan I, Zhang L, Zhang B. Advances in natural polysaccharides for gold recovery from e-waste: Recent developments in preparation with structural features. Int J Biol Macromol 2024; 261:129688. [PMID: 38280695 DOI: 10.1016/j.ijbiomac.2024.129688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/01/2024] [Accepted: 01/21/2024] [Indexed: 01/29/2024]
Abstract
The increasing demand for gold because of its high market price and its wide use in the electronic industry has attracted interest in gold recovery from electronic waste (e-waste). Gold is being dumped as solid e-waste which contains gold concentrations ten times higher than gold ores. Adsorption is a widely used approach for extracting gold from e-waste due to its simplicity, low cost, high efficiency, and reusability of adsorbent material. Natural polysaccharides received increased attention due to their natural abundance, multi-functionality, biodegradability, and nontoxicity. In this review, a brief history, and advancements in this technology were evaluated with recent developments in the preparation and mechanism advancements of natural polysaccharides for efficient gold recovery. Moreover, we have discussed some bifunctional modified polysaccharides with detailed gold adsorption mechanisms. The modified adsorbent materials developed from polysaccharides coupled with inorganic/organic functional groups would demonstrate an efficient technology for the development of new bio-based materials for efficient gold recovery from e-waste. Also, future views are recommended for highlighting the direction to achieve fast and effective gold recovery from e-waste in a friendly and sustainable manner.
Collapse
Affiliation(s)
- Mudasir Ahmad
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xian 710072, China; Xian Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, 710129, China
| | - Mehraj Ud-Din Naik
- Department of Chemical Engineering, College of Engineering, Jazan University, Jazan 45142, Saudi Arabia
| | - Muhammad Rizwan Tariq
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xian 710072, China
| | - Idrees Khan
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xian 710072, China
| | - Lei Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xian 710072, China
| | - Baoliang Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xian 710072, China; Shaanxi Engineering and Research Center for Functional Polymers on Adsorption and Separation, Sunresins New Materials Co. Ltd., Xi'an 710072, China.
| |
Collapse
|
3
|
Chang SH, Jampang AOA. Enhanced adsorption selectivity of Au(III) over Cu(II) from acidic chloride solutions by chitosan/palm kernel fatty acid distillate/magnetite nanocomposites. Int J Biol Macromol 2023; 252:126491. [PMID: 37625756 DOI: 10.1016/j.ijbiomac.2023.126491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/19/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
This work aimed to develop a modified chitosan adsorbent with enhanced adsorption selectivity for Au(III) over Cu(II) from acidic chloride solutions using low-cost and green raw materials. Various adsorbents, i.e., chitosan powder, chitosan microbeads, chitosan/palm kernel fatty acid distillate (PKFAD) microcomposites, magnetite nanoparticles, and chitosan/PKFAD/magnetite nanocomposites (CPMNs), were first evaluated for their ability to adsorb Au(III) and Cu(II) from single- and binary-metal solutions across different pH levels, followed by parametric analysis of Au(III) and Cu(II) adsorption from binary- and multi-metal solutions onto CPMNs, Au(III) desorption from Au(III)-loaded CPMNs, and reusability of CPMNs. Finally, Au(III)-loaded CPMNs were characterized with SEM-EDX, XRD, FTIR, and XPS to confirm the proposed adsorption mechanisms. Among all the adsorbents studied, CPMNs exhibited outstanding performance in adsorbing Au(III) from an equimolar binary Au(III)-Cu(II) solution, achieving the highest equilibrium adsorption capacity of 0.479 mmol/g (94.4 mg/g) without reaching saturation. Under optimal adsorption conditions of pH 3, 1 g/L CPMN dosage, and 90 min contact time, CPMNs adsorbed 96 % of Au(III) with a selectivity over Cu(II) exceeding 99 %. CPMNs demonstrated excellent reusability, maintaining over 80 % adsorption and desorption efficiencies for 5 cycles. The proposed adsorption mechanisms of CPMNs for Au(III) encompass electrostatic attraction, hydrogen bonding, solvation, and reduction.
Collapse
Affiliation(s)
- Siu Hua Chang
- Waste Management and Resource Recovery (WeResCue) Group, Chemical Engineering Studies, College of Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500 Permatang Pauh, Penang, Malaysia.
| | - Annestasia Ollat Anak Jampang
- Waste Management and Resource Recovery (WeResCue) Group, Chemical Engineering Studies, College of Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500 Permatang Pauh, Penang, Malaysia
| |
Collapse
|
4
|
Immobilization of tannin onto dialdehyde chitosan as a strategy for highly efficient and selective Au(III) adsorption. Int J Biol Macromol 2023; 235:123919. [PMID: 36871692 DOI: 10.1016/j.ijbiomac.2023.123919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
Recycling of Au(III) from wastewater can not only increase resource utilization but also reduce environmental pollution. Herein, a chitosan-based bio-adsorbent (DCTS-TA) was successfully synthesized via crosslinking reaction between tannin (TA) and dialdehyde chitosan (DCTS) for the recovery of Au(III) from the solution. The maximum adsorption capacity for Au(III) was 1146.59 mg/g at pH 3.0, which fitted well with the Langmuir model. The XRD, XPS, and SEM-EDS analyses demonstrated that Au(III) adsorption on DCTS-TA was a collaborative process involving electrostatic interaction, chelation, and redox reaction. Existence of multiple coexisting metal ions did not significantly affect the Au(III) adsorption efficiency, with >90 % recovery of DCTS-TA obtained after five cycles. DCTS-TA is a promising candidate for Au(III) recovery from aqueous solutions due to its easy preparation, environmental-friendliness, and high efficiency.
Collapse
|
5
|
Xiang Y, Dai D, Bai W, Xu L, Liu G. Layered aerogel embedded with thiourea-resorcinol-formaldehyde resin for efficient adsorption of Au(III). Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
6
|
Bhuyan MM, Jophous M, Jeong JH. Preparation of Pectin–Acrylamide–(Vinyl phosphonic acid) hydrogel and its selective adsorption of metal ions. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04649-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Selective recovery of gold from discarded cell phones by silk fibroin from Bombyx mori. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Bouyahmed F, Muller F, Richard A, Mostefaoui TA, Belabbas I, Warmont F, Roulet M, Reinert L, Duclaux L, Delpeux-Ouldriane S. Chitosan-multilayered graphene oxide hybrid beads for Zn 2+ and metoprolol adsorption. CR CHIM 2022. [DOI: 10.5802/crchim.183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Modified phenolic resin for the removal and reduction of Au(III) and simultaneously as the nano-Au(0) immobilized carrier for catalysis. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Kong HY, Wang TX, Tao Y, Ding X, Han BH. Crown ether-based hypercrosslinked porous polymers for gold adsorption. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120805] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
11
|
Fabrication of Cross-Linked PMMA/SnO2 Nanocomposites for Highly Efficient Removal of Chromium (III) from Wastewater. Polymers (Basel) 2022; 14:polym14102101. [PMID: 35631983 PMCID: PMC9145786 DOI: 10.3390/polym14102101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/23/2022] Open
Abstract
In recent times, developments in polymer application properties have required the design of different polymer structures more than ever. Cross-linked polymers (CPs) could be considered a good candidate material for potential applications when used in conjunction with nanoparticles. Cross-linked polymethyl methacrylate nanocomposites are considered to be one of the most commonly polymeric adsorbents due to their varied and simple modification methods. A new class of C-PMMA/SnO2(a–d) nanocomposites have been fabricated as surface-selective adsorbents of Cr (III) with a good yield and different loading of SnO2 nanoparticles. The morphology, molecular structures, and thermal stability of the new cross-linked polymers were examined using a Scanning electron microscope (SEM), the Fourier Transform Infrared method (FTIR), X-ray diffraction (XRD), and Thermogravimetric Analysis (TGA). The adsorption study of C-PMMA/SnO2 was investigated, and an efficient level of adsorption for Cr (III) cations was detected. To evaluate the potential for the new polymers to be used as adsorbents against Cr (III) ions, the contact time, the initial concentration of Cr (III), and the effects of pH were studied. The introduction of SnO2 into the polymer network enhanced the efficiency of the adsorption of heavy metals. The C-PMMA/SnO2 is highly efficient at removing Cr (III) ions in wastewater samples at pH 6 for one hour. The adsorption study demonstrated that the adsorption capacity of C-PMMA/SnO2c for Cr (III) was 1.76 mg /g, and its adsorption isotherm agreed with the Langmuir adsorption model.
Collapse
|
12
|
Recovery of Platinum Group Metals from Leach Solutions of Spent Catalytic Converters Using Custom-Made Resins. MINERALS 2022. [DOI: 10.3390/min12030361] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Platinum group metals (PGMs) play a key role in modern society as they find application in clean technologies and other high-tech equipment. Spent catalytic converters as a secondary resource contain higher PGM concentrations and the recovery of these metals via leaching is continuously being improved but efforts are also directed at the purification of individual metal ions. The study presents the recovery of PGMs, namely, rhodium (Rh), platinum (Pt) and palladium (Pd) as well as base metals, namely, zinc (Zn), nickel (Ni), iron (Fe), manganese (Mn) and chromium (Cr) using leachates from spent diesel and petrol catalytic converters. The largest amount of Pt was leached from the diesel catalytic converter while the petrol gave the highest amount of Pd when leached with aqua regia. Merrifield beads (M) were functionalized with triethylenetetramine (TETA), ethane-1,2-dithiol (SS) and bis((1H-benzimidazol-2-yl)methyl)sulfide (NSN) to form M-TETA, M-SS and M-NSN, respectively, for recovery of PGMs and base metals from the leach solutions. The adsorption and loading capacities of the PGMs and base metals were investigated using column studies at 1 M HCl concentration. The loading capacity was observed in the increasing order of Pd to be 64.93 mmol/g (M-SS), 177.07 mmol/g (M-NSN), and 192.0 mmol/g (M-TETA), respectively, from a petrol catalytic converter. The M-NSN beads also had a much higher loading capacity for Fe (489.55 mmol/g) compared to other base metals. The finding showed that functionalized Merrifield resins were effective for the simultaneous recovery of PGMs and base metals from spent catalytic converters.
Collapse
|
13
|
Li W, Chao S, Li Y, Bai F, Teng Y, Li X, Li L, Wang C. Dual-layered composite nanofiber membrane with Cu-BTC-modified electrospun nanofibers and biopolymeric nanofibers for the removal of uremic toxins and its application in hemodialysis. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119964] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
14
|
da Costa TB, da Silva MGC, Vieira MGA. Effective recovery of ytterbium through biosorption using crosslinked sericin-alginate beads: A complete continuous packed-bed column study. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126742. [PMID: 34348210 DOI: 10.1016/j.jhazmat.2021.126742] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/01/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
The recovery of rare-earth from secondary sources is essential for cleaner production. The development of natural biocomposites is promising for this purpose. Sericin is a waste protein from silk manufacturing. The highly polar groups on the surface of sericin facilitate blending and crosslinking with other polymers to produce biocomposites with improved properties. In this work, we investigate ytterbium recovery onto a natural biocomposite based on sericin/alginate/poly(vinyl alcohol) (SAPVA) in packed-bed column, aiming to establish a profitable application for sericin. Effects of flow rate and ytterbium inlet concentration showed that the highest exhaustion biosorption capacity (128.39 mg/g) and lowest mass transfer zone (4.13 cm) were reached under the operating conditions of 0.03 L/h and 87.95 mg/L. Four reusability cycles were performed under the optimum operating conditions using 0.3 mol/L HNO3. Ytterbium recovery was highly successful; desorption efficiency was higher than 97% and a final ytterbium-rich concentrate (3870 mg/L) was 44 times higher than input concentration. Regenerated beads characterization showed that the cation exchange mechanism plays a major function in continuous biosorption of ytterbium. SAPVA beads also showed higher biosorption/desorption performance for ytterbium than other competing ions. These results suggest the application of SAPVA may be an alternative for large-scale ytterbium recovery.
Collapse
Affiliation(s)
- Talles Barcelos da Costa
- School of Chemical Engineering, University of Campinas, Albert Einstein Avenue, 13083-852 Campinas, Brazil.
| | | | | |
Collapse
|
15
|
Chang SH. Gold(III) recovery from aqueous solutions by raw and modified chitosan: A review. Carbohydr Polym 2021; 256:117423. [PMID: 33483013 DOI: 10.1016/j.carbpol.2020.117423] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/13/2020] [Accepted: 11/15/2020] [Indexed: 12/23/2022]
Abstract
Chitosan, a prestigious versatile biopolymer, has recently received considerable attention as a promising biosorbent for recovering gold ions, mainly Au(III), from aqueous solutions, particularly in modified forms. Confirming the assertion, this paper provides an up-to-date overview of Au(III) recovery from aqueous solutions by raw (unmodified) and modified chitosan. A particular emphasis is placed on the raw chitosan and its synthesis from chitin, characteristics of raw chitosan and their effects on metal sorption, modifications of raw chitosan for Au(III) sorption, and characterization of raw chitosan before and after modifications for Au(III) sorption. Comparisons of the sorption (conditions, percentage, capacity, selectivity, isotherms, thermodynamics, kinetics, and mechanisms), desorption (agents and percentage), and reusable properties between raw and modified chitosan in Au(III) recovery from aqueous solutions are also outlined and discussed. The major challenges and future prospects towards the large-scale applications of modified chitosan in Au(III) recovery from aqueous solutions are also addressed.
Collapse
Affiliation(s)
- Siu Hua Chang
- Faculty of Chemical Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500 Permatang Pauh, Penang, Malaysia; Faculty of Chemical Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia.
| |
Collapse
|
16
|
Cusioli LF, Bezerra CDO, Quesada HB, Alves Baptista AT, Nishi L, Vieira MF, Bergamasco R. Modified Moringa oleifera Lam. Seed husks as low-cost biosorbent for atrazine removal. ENVIRONMENTAL TECHNOLOGY 2021; 42:1092-1103. [PMID: 31412750 DOI: 10.1080/09593330.2019.1653381] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
Atrazine is an herbicide which is widely applied in sugarcane and corn crops. Its frequent use has resulted in environmental impacts, and its traces have been verified in surface and groundwater. Thus, it is necessary to remove this pollutant, and an alternative is the adsorption due to its universal nature, low-cost and ease of operation. Therefore, the objective of the present work was to study the adsorption capacity of atrazine by modified Moringa oleifera Lam. seed husks, a low-cost adsorbent. The biosorbent was subjected to c hemical and thermal treatment and was characterised by structural, morphological and textural analysis, which showed porous and heterogeneous characteristics, with a specific surface area of 5.77 m2 g-1. The kinetic study demonstrated equilibrium at 1200 min, with an adsorption capacity of 1.90 mg g-1 and the best fit was for the pseudo-second-order model. The isotherms were obtained at 298, 308 and 318 K. The Freundlich, Temkin and Langmuir models were applied to the experimental data, the latter being the best. The values of the thermodynamic parameters indicated that the biosorption was spontaneous, endothermic and reversible. The highest adsorption capacity obtained was 10.32 mg g-1, which was higher than several values found in the literature. The biosorbent was regenerated over three cycles, indicating its potential of atrazine removal from surface water.
Collapse
Affiliation(s)
| | | | | | | | - Letícia Nishi
- Department of Chemical Engineering, State University of Maringa, Maringa, Brazil
| | | | - Rosângela Bergamasco
- Department of Chemical Engineering, State University of Maringa, Maringa, Brazil
| |
Collapse
|
17
|
Liu F, Hua S, Zhou L, Hu B. Development and characterization of chitosan functionalized dialdehyde viscose fiber for adsorption of Au(III) and Pd(II). Int J Biol Macromol 2021; 173:457-466. [PMID: 33493565 DOI: 10.1016/j.ijbiomac.2021.01.145] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 11/25/2022]
Abstract
A highly efficient fiber-based adsorbent (DAVFs-CS) was developed via decoration of chitosan (CS) on the dialdehyde viscose fibers (DAVFs) substrate, and employed to selective separation of precious metals from simulated contaminated water. The surface functionalization of the solid material was probed using the Fourier transform infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), Thermogravimetric analysis (TGA) and nuclear magnetic resonance (NMR) technique. The batch characteristic results showed that the maximum uptake capacities of DAVFs-CS were higher up to 322 mg/g and 207 mg/g for Au(III) and Pd(II) at optimal pH 2.0 and 3.0, which exhibited competitiveness with the majority of the reported adsorbents. Meanwhile, the adsorption data were in accordance with Langmuir and PSO equations, which indicated that the monolayer chemisorption dominated the adsorption process. The competitive adsorption study showed that the removal efficiency of Au(III) was not susceptible to the co-existing impurities. Adsorption mechanism study revealed that the negative Au(III) or Pd(II) species were firstly adsorbed on DAVFs-CS via the protonated amino groups, subsequently the partially reduction of them to zero-valent gold and palladium with the help of reductive functional groups. Thus, DAVFs-CS could be as a promising adsorbent to recovery of precious metals owning to its unique adsorption mechanism and excellent adsorption performance.
Collapse
Affiliation(s)
- Fenglei Liu
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, China
| | - Shan Hua
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, China
| | - Liang Zhou
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Baowei Hu
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, China.
| |
Collapse
|
18
|
Kim KR, Kim J, Kim JW, Yavuz CT, Yang MY, Nam YS. Light-activated polydopamine coatings for efficient metal recovery from electronic waste. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
|
20
|
Affiliation(s)
- Chao Tang
- Department of Chemical and Biomolecular Engineering University of Notre Dame Notre Dame Indiana USA
| | - Merlin L. Bruening
- Department of Chemical and Biomolecular Engineering University of Notre Dame Notre Dame Indiana USA
- Department of Chemistry and Biochemistry University of Notre Dame Notre Dame Indiana USA
| |
Collapse
|
21
|
Bediako JK, Choi JW, Song MH, Zhao Y, Lin S, Sarkar AK, Cho CW, Yun YS. Recovery of gold via adsorption-incineration techniques using banana peel and its derivatives: Selectivity and mechanisms. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 113:225-235. [PMID: 32535374 DOI: 10.1016/j.wasman.2020.05.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/12/2020] [Accepted: 05/31/2020] [Indexed: 06/11/2023]
Abstract
In this study, banana peel (BP) and its derivatives after sequential extraction of biochemical components were evaluated for selective recovery of gold. In-depth instrumental characterizations including XPS, FTIR, XRD and HR-TEM were performed to understand the adsorption mechanisms. The biomass after lipid extraction, BP-L, demonstrated very good affinity and selectivity towards gold. In multi-metal systems containing 100 mg/L of Pt(IV), Au(III), Pd(II), Zn(II), Co(II), Ni(II) and Li(I), the selectivity coefficient increased from 978.45 in BP to 2034.70 in BP-L. Moreover, the equilibrium gold uptake was improved and reached 475.48 ± 3.08 mg/g owing to reduction-coupled adsorption mechanisms. The BP-L also showed improved gold nanoparticle formation properties that were pH-dependent. In a strategic adsorption-combined incineration process, metallic gold reaching 99.96% in purity was obtained. The BP and its derivative, BP-L have thus shown potentials for multiple applications in the areas of precious metal recovery and nanoscience.
Collapse
Affiliation(s)
- John Kwame Bediako
- Division of Semiconductor and Chemical Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea; School of Engineering Sciences, University of Ghana, Legon, Ghana
| | - Jong-Won Choi
- Division of Semiconductor and Chemical Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea
| | - Myung-Hee Song
- Division of Semiconductor and Chemical Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea
| | - Yufeng Zhao
- Division of Semiconductor and Chemical Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea
| | - Shuo Lin
- Division of Semiconductor and Chemical Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea
| | - Amit Kumar Sarkar
- Division of Semiconductor and Chemical Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea
| | - Chul-Woong Cho
- Division of Semiconductor and Chemical Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea; Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Yeoung-Sang Yun
- Division of Semiconductor and Chemical Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea.
| |
Collapse
|
22
|
Huang C, Xu X, Ao J, Ma L, Ye F, Wang Z, Xu L, Zhao X, Ma H. Selective Adsorption, Reduction, and Separation of Au(III) from Aqueous Solution with Amine-Type Non-Woven Fabric Adsorbents. MATERIALS 2020; 13:ma13132958. [PMID: 32630807 PMCID: PMC7372446 DOI: 10.3390/ma13132958] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/06/2020] [Accepted: 06/17/2020] [Indexed: 11/17/2022]
Abstract
Herein, adsorption, separation, and reduction of Au(III) from its aqueous solution were studied with different amine-type, non-woven fabric (NF) adsorbents fabricated with radiation-induced graft polymerization. The adsorbents exhibited different adsorption capacities of Au(III) over a concentration range of hydrochloric acid (HCl) from 5 mM to 5 M, and the diethylamine (DEA)-type adsorbent performed best under all test conditions. The DEA-type adsorbent was inert toward other metal ions, including Cu(II), Pb(II), Ni(II), Zn(II) and Li(I), within the fixed concentration range of HCl. Flow-through adsorption tests indicated DEA-type adsorbent exhibited a rapid recovery and high adsorption capacity of 3.23 mmol/g. Meanwhile, DEA-type adsorbent also exhibited high selectivity and rapid extraction for Au(III) from its mixed solution with Pt(IV) and Pd(II). After adsorption, the reduction of Au(III) was confirmed by XRD spectra, TEM, and digital micrograph images. The results indicated that nano-sized Au particles were mainly concentrated on the adsorbent in 5 mM HCl solution. In 1 M HCl solution, not only nano-sized Au particles were found, but also micro-size Au plates precipitation occurred. This study provides a novel material for selective and efficient gold uptake from aqueous solution.
Collapse
Affiliation(s)
- Chen Huang
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China;
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; (X.X.); (J.A.); (L.M.); (F.Y.); (Z.W.); (L.X.)
| | - Xiao Xu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; (X.X.); (J.A.); (L.M.); (F.Y.); (Z.W.); (L.X.)
| | - Junxuan Ao
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; (X.X.); (J.A.); (L.M.); (F.Y.); (Z.W.); (L.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Ma
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; (X.X.); (J.A.); (L.M.); (F.Y.); (Z.W.); (L.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Ye
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; (X.X.); (J.A.); (L.M.); (F.Y.); (Z.W.); (L.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziqiang Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; (X.X.); (J.A.); (L.M.); (F.Y.); (Z.W.); (L.X.)
| | - Lu Xu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; (X.X.); (J.A.); (L.M.); (F.Y.); (Z.W.); (L.X.)
| | - Xiaoyan Zhao
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China;
- Correspondence: (X.Z.); (H.M.); Tel.: +86-1891-589-6792 (X.Z.); +86-1361-176-4034 (H.M.)
| | - Hongjuan Ma
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; (X.X.); (J.A.); (L.M.); (F.Y.); (Z.W.); (L.X.)
- Correspondence: (X.Z.); (H.M.); Tel.: +86-1891-589-6792 (X.Z.); +86-1361-176-4034 (H.M.)
| |
Collapse
|
23
|
Aguila B, Sun Q, Cassady HC, Shan C, Liang Z, Al‐Enizic AM, Nafadyc A, Wright JT, Meulenberg RW, Ma S. A Porous Organic Polymer Nanotrap for Efficient Extraction of Palladium. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006596] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Briana Aguila
- Department of Chemistry University of South Florida 4202 E Fowler Ave. Tampa FL 33620 USA
| | - Qi Sun
- Key Laboratory of Biomass Chemical Engineering College of Chemical and Biological Engineering Zheijang University Hangzhou 310027 P. R. China
| | - Harper C. Cassady
- Department of Chemistry University of South Florida 4202 E Fowler Ave. Tampa FL 33620 USA
| | - Chuan Shan
- Department of Chemistry University of South Florida 4202 E Fowler Ave. Tampa FL 33620 USA
| | - Zhiqiang Liang
- State Key Lab of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 P. R. China
| | | | - Ayman Nafadyc
- Chemistry Department King Saud University Riyadh 11451 Saudi Arabia
| | - Joshua T. Wright
- Department of Physics Illinois Institute of Technology Chicago IL 60616 USA
| | - Robert W. Meulenberg
- Department of Physics and Astronomy and Frontier Institute for Research in Sensor Technologies University of Maine Orono ME 04469 USA
| | - Shengqian Ma
- Department of Chemistry University of South Florida 4202 E Fowler Ave. Tampa FL 33620 USA
| |
Collapse
|
24
|
Aguila B, Sun Q, Cassady HC, Shan C, Liang Z, Al‐Enizic AM, Nafadyc A, Wright JT, Meulenberg RW, Ma S. A Porous Organic Polymer Nanotrap for Efficient Extraction of Palladium. Angew Chem Int Ed Engl 2020; 59:19618-19622. [DOI: 10.1002/anie.202006596] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Briana Aguila
- Department of Chemistry University of South Florida 4202 E Fowler Ave. Tampa FL 33620 USA
| | - Qi Sun
- Key Laboratory of Biomass Chemical Engineering College of Chemical and Biological Engineering Zheijang University Hangzhou 310027 P. R. China
| | - Harper C. Cassady
- Department of Chemistry University of South Florida 4202 E Fowler Ave. Tampa FL 33620 USA
| | - Chuan Shan
- Department of Chemistry University of South Florida 4202 E Fowler Ave. Tampa FL 33620 USA
| | - Zhiqiang Liang
- State Key Lab of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 P. R. China
| | | | - Ayman Nafadyc
- Chemistry Department King Saud University Riyadh 11451 Saudi Arabia
| | - Joshua T. Wright
- Department of Physics Illinois Institute of Technology Chicago IL 60616 USA
| | - Robert W. Meulenberg
- Department of Physics and Astronomy and Frontier Institute for Research in Sensor Technologies University of Maine Orono ME 04469 USA
| | - Shengqian Ma
- Department of Chemistry University of South Florida 4202 E Fowler Ave. Tampa FL 33620 USA
| |
Collapse
|
25
|
Chang Z, Li F, Qi X, Jiang B, Kou J, Sun C. Selective and efficient adsorption of Au (III) in aqueous solution by Zr-based metal-organic frameworks (MOFs): An unconventional way for gold recycling. JOURNAL OF HAZARDOUS MATERIALS 2020; 391:122175. [PMID: 32045802 DOI: 10.1016/j.jhazmat.2020.122175] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Recycling precious metals from secondary resources is of great environmental and economic significance. In this study, the Zr-based MOFs UiO-66-NH2 was synthesized and used to adsorb Au (III) in aqueous solution. The ultrafine particle size (∼50 nm), excellent crystallinity and huge specific surface area (1039.2 m2 ·g-1) were verified by transmission electron microscope (TEM), powder X-ray diffraction (PXRD) and surface area analysis. About 50 % Au (III) was adsorbed within 6 min and the maximum adsorption capacity at 298 K reached up to 650 mg·g-1, showing superiority to traditional adsorbents. The general order kinetics model and Liu equation were suitable to describe the adsorption process, which was spontaneous, endothermic and driven by the increasing system entropy. Electrostatic attraction between -NH3+ and Au (III) anions and inner complexation to Zr-OH played a vital role in adsorption. Au (Ⅲ) was reduced to Au° by amino groups via redox reaction certified by X-ray photoelectron spectroscopy (XPS), PXRD and high-resolution transmission electron microscopy (HRTEM) analysis. Moreover, UiO-66-NH2 displayed high selectivity, robust stability and excellent reusability, making it an ideal candidate for gold recycling in industrial practice.
Collapse
Affiliation(s)
- Ziyong Chang
- Civil and Resource Engineering School, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Fangxu Li
- Guangdong Institute of Resources Comprehensive Utilization, 363 Changxing Road, Guangzhou, 510650, China; State Key Laboratory of Rare Metals Separation and Comprehensive Utilization, 363 Changxing Road, Guangzhou, 510650, China.
| | - Xiaoyue Qi
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Bo Jiang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jue Kou
- Civil and Resource Engineering School, University of Science and Technology Beijing, Beijing, 100083, China
| | - Chunbao Sun
- Civil and Resource Engineering School, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
26
|
Yang X, Yang K, Wu L, Yang J, He Y. Fe3O4 nanoparticles functionalized with poly(ethylene glycol) for the selective separation and enrichment of Au(iii). NEW J CHEM 2020. [DOI: 10.1039/c9nj05551g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mechanism of Fe3O4@CPTES@PEG magnetic nanoparticles for selectively adsorbing Au(iii) from aqueous solution at pH = 1.0.
Collapse
Affiliation(s)
- Xu Yang
- School of Chemical Sciences
- University of Chinese Academy of Sciences
- Beijing 100049
- China
| | - Kunhao Yang
- School of Chemical Sciences
- University of Chinese Academy of Sciences
- Beijing 100049
- China
| | - Li Wu
- School of Chemical Sciences
- University of Chinese Academy of Sciences
- Beijing 100049
- China
| | - Jingkui Yang
- School of Chemical Sciences
- University of Chinese Academy of Sciences
- Beijing 100049
- China
| | - Yujian He
- School of Chemical Sciences
- University of Chinese Academy of Sciences
- Beijing 100049
- China
- Stake Key Laboratory of Natural and Biomimetic Drugs
| |
Collapse
|
27
|
Xu W, Mo X, Zhou S, Zhang P, Xiong B, Liu Y, Huang Y, Li H, Tang K. Highly efficient and selective recovery of Au(III) by a new metal-organic polymer. JOURNAL OF HAZARDOUS MATERIALS 2019; 380:120844. [PMID: 31299582 DOI: 10.1016/j.jhazmat.2019.120844] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/21/2019] [Accepted: 06/28/2019] [Indexed: 06/10/2023]
Abstract
A metal-organic polymer with high water stability was successfully developed to efficiently recover Au(III) from aqueous solutions. This material shows excellent performance for the adsorption of Au(III). Nearly 100% of Au(III) could be removed with fast adsorption rate at low concentration solutions, and the maximum adsorption capacity of 1317 mg/g could be achieved. Significantly, the material shows encouraging selectivity toward Au(III) in the presence of competitive ions such as Cu(II), Ni(II), Zn(II), and Cd(II) in both batch and flow-through experiments. Additionally, the material could be regenerated effectively by thiourea with desorption ratio of almost 100%, and exhibits excellent reutilization without significant loss of adsorption capacity. The adsorption mechanism could be attributed to reduce Au(III) to Au(0) by the material. The material still exhibits excellent adsorption performance toward Au in real electronic waste (e-waste) solutions, providing a promising adsorbent for recycle of Au(III) from e-waste.
Collapse
Affiliation(s)
- Weifeng Xu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, Hunan, China
| | - Xiaohui Mo
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, Hunan, China
| | - Shuxian Zhou
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, Hunan, China
| | - Panliang Zhang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, Hunan, China
| | - Biquan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, Hunan, China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, Hunan, China
| | - Yan Huang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, Hunan, China
| | - Hua Li
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, Hunan, China.
| | - Kewen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, Hunan, China.
| |
Collapse
|
28
|
Santos NTDG, da Silva MGC, Vieira MGA. Development of novel sericin and alginate-based biosorbents for precious metal removal from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:28455-28469. [PMID: 30293102 DOI: 10.1007/s11356-018-3378-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/01/2018] [Indexed: 06/08/2023]
Abstract
In this study, two novel low water-soluble sericin and alginate-based biosorbents were successfully developed for precious metal removal from wastewater: sericin and alginate particles chemically crosslinked by proantocyanidins (SAPAs) and sericin, alginate and polyvinyl alcohol particles (SAPVA). The proportions of proantocynidins (PAs) or polyvinyl alcohol (PVA) added to sericin (2.5% w/v) and alginate (2.0% w/v) blend were 0.5, 1.5, 2.5 and 3.5% w/v. Among these concentrations, particles produced with 0.5% w/v of PVA or 2.5% w/v of PAs presented the lowest water solubility percentages (3.74 ± 0.05 and 3.56 ± 0.21%, respectively) and the following metallic affinity order: AuCl4- > PdCl42- > PtCl62- > Ag+. Then, gold biosorption kinetics by SAPAs was evaluated at three gold initial concentrations (72.88, 187.12, and 273.79 mg/L), and its performance was compared to activated carbon adsorbent uptake. The data modeling revealed that the process follows pseudo-first-order kinetics and is mainly controlled by external diffusion. SAPAs before and after gold biosorption (SAPAs-gold) were characterized by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy, optical microscopy, helium pycnometry, mercury porosimetry, N2 physisorption, and Fourier-transform infrared spectroscopy.
Collapse
Affiliation(s)
- Nilza Tatiane das Graças Santos
- School of Chemical Engineering, University of Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, São Paulo, 13083-852, Brazil
| | - Meuris Gurgel Carlos da Silva
- School of Chemical Engineering, University of Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, São Paulo, 13083-852, Brazil
| | - Melissa Gurgel Adeodato Vieira
- School of Chemical Engineering, University of Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, São Paulo, 13083-852, Brazil.
| |
Collapse
|
29
|
El-Sayed W, Elwakeel KZ, Shahat A, Awual MR. Investigation of novel nanomaterial for the removal of toxic substances from contaminated water. RSC Adv 2019; 9:14167-14175. [PMID: 35519329 PMCID: PMC9064149 DOI: 10.1039/c9ra00383e] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/23/2019] [Indexed: 11/21/2022] Open
Abstract
Ligand-functionalized nanomaterials exhibit great potential for the removal of hazardous substances from the environment and industrial wastewater. In this work, a composite nanosphere material was fabricated using mesoporous silica and organic ligand, and employed for the efficient detection and subsequent removal of toxic sulfanilamide (SNA) from waste samples. The organic ligand 2-naphthol was successfully conjugated onto the mesoporous nanospheres, which then captured SNA under suitable conditions. A naked-eye color change was observed even when a trace amount of SNA interacted with the material, which is the most promising advantage of the fabricated material. A low limit of detection and quantification limit were also determined, and the new nanosphere material revealed the ultra-trace detection performance of 0.27 μg L−1 of SNA in aqueous media. The effect of solution pH, competing ions, color optimization and initial concentration of SNA on the nanosphere material was investigated under the optimum conditions. The nanosphere material exhibited rapid adsorption properties, and its maximum adsorption capability approached 79.20 mg g−1. Several compounds were examined as common interfering substances including vanillin, glucose, lactose, starch and sucrose, which did not adversely interfere in both the detection and adsorption systems using the proposed nanosphere material. The data emphasized that the proposed material is highly suitable for the capture of SNA from contaminated water based on its selectivity, sensitivity, cost-effectiveness and eco-friendly approach. The results also indicate that this nanosphere material will attract attention from researchers for the efficient and selective capture of the toxic SNA. Preparation of novel nanosphere material for efficient capture of toxic substances. The nanosphere material was systematically investigated for the capture of a toxic substance. The material displayed high sensitivity with high adsorption efficiency.![]()
Collapse
Affiliation(s)
| | - Khalid Z. Elwakeel
- Department of Environmental Science
- Faculty of Science
- Port-Said University
- Port-Said
- Egypt
| | - Ahmed Shahat
- Chemistry Department
- Faculty of Science
- Suez University
- Suez 43518
- Egypt
| | - Md. Rabiul Awual
- Department of Applied Chemistry and Chemical Engineering
- University of Dhaka
- Dhaka-1000
- Bangladesh
| |
Collapse
|
30
|
Efficient adsorption toward precious metal from aqueous solution by zeolitic imidazolate framework-8. ADSORPTION 2018. [DOI: 10.1007/s10450-018-9981-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
31
|
Niu Z, Jia Y, Chen Y, Hu Y, Chen J, Lv Y. Positive effects of bio-nano Pd (0) toward direct electron transfer in Pseudomona putida and phenol biodegradation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 161:356-363. [PMID: 29890437 DOI: 10.1016/j.ecoenv.2018.06.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/21/2018] [Accepted: 06/03/2018] [Indexed: 06/08/2023]
Abstract
This study constructed a biological-inorganic hybrid system including Pseudomonas putida (P. putida) and bioreduced Pd (0) nanoparticles (NPs), and inspected the influence of bio-nano Pd (0) on the direct electron transfer and phenol biodegradation. Scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM-EDX) showed that bio-nano Pd (0) (~10 nm) were evenly dispersed on the surface and in the periplasm of P. putida. With the incorporation of bio-nano Pd (0), the redox currents of bacteria in the cyclic voltammetry (CV) became higher and the oxidation current increased as the addition of lactate, while the highest increase rates of two electron transfer system (ETS) rates were 63.97% and 33.79%, respectively. These results indicated that bio-nano Pd (0) could directly promote the electron transfer of P. putida. In phenol biodegradation process, P. putida-Pd (0)- 2 showed the highest k (0.2992 h-1), μm (0.035 h-1) and Ki (714.29 mg/L) and the lowest apparent Ks (76.39 mg/L). The results of kinetic analysis indicated that bio-nano Pd (0) markedly enhanced the biocatalytic efficiency, substrate affinity and the growth of cells compared to native P. putida. The positive effects of bio-nano Pd (0) to the electron transfer of P. putida would promote the biodegradation of phenol.
Collapse
Affiliation(s)
- Zhuyu Niu
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China.
| | - Yating Jia
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China.
| | - Yuancai Chen
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China.
| | - Yongyou Hu
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Junfeng Chen
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; School of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Yuancai Lv
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; College of Environment & Resources, Fuzhou University, Fuzhou 350116, PR China
| |
Collapse
|
32
|
de Andrade JR, da Silva MGC, Gimenes ML, Vieira MGA. Bioadsorption of trivalent and hexavalent chromium from aqueous solutions by sericin-alginate particles produced from Bombyx mori cocoons. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:25967-25982. [PMID: 29968211 DOI: 10.1007/s11356-018-2651-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/25/2018] [Indexed: 06/08/2023]
Abstract
In this study, particles produced from sericin-alginate blend were used as non-conventional bioadsorbent for removing Cr(III) and Cr(VI) from aqueous solutions. Besides chromium mitigation, the use of sericin-alginate particles as bioadsorbent aims to offer an environmental solution of added value for sericin, which is a by-product from silk industry. Sericin-alginate particles in natura and loaded with Cr(III) and Cr(VI) were characterized using N2 physical adsorption analysis, optical microcopy, mercury porosimetry, helium pycnometry, scanning electron microscope coupled with energy dispersive X-ray spectrometer, Fourier transform infrared spectrometer, and X-ray diffraction. Kinetic studies on the removal of Cr(III) (at pH = 3.5) and Cr(VI) (at pH = 2) indicate the ion exchange mechanism with Ca(II) and the predominance of external mass transfer resistance. Cr(VI) uptake occurs through an adsorption-coupled reduction process, and bioadsorption equilibrium is reached after ~ 1000 min. Cr(III) bioadsorption occurs faster (~ 210 min). The Cr(VI) bioadsorption is endothermic, as bioadsorption capacity increases with temperature: 0.0783 mmol/g (20 °C), 0.1960 mmol/g (30 °C), 0.4570 mmol/g (40 °C), and 0.7577 mmol/g (55 °C). The three-parameter isotherm model of Tóth best represents the equilibrium data of total chromium. From Langmuir isotherm model, the maximum bioadsorption capacity is higher for total chromium, 0.25 mmol/g (30 °C), than for trivalent chromium, 0.023 mmol/g (30 °C). The comparison of bioadsorption capacities with different biomaterials confirms sericin-alginate particles as potential bioadsorbent of chromium.
Collapse
Affiliation(s)
- Júlia Resende de Andrade
- Chemical Engineering Department, State University of Maringá, Colombo Avenue, 5790, Maringá, Paraná, 87020-900, Brazil.
| | - Meuris Gurgel Carlos da Silva
- School of Chemical Engineering, University of Campinas, Albert Einstein Avenue, 500, Campinas, São Paulo, 13083-852, Brazil
| | - Marcelino Luiz Gimenes
- Chemical Engineering Department, State University of Maringá, Colombo Avenue, 5790, Maringá, Paraná, 87020-900, Brazil
| | - Melissa Gurgel Adeodato Vieira
- School of Chemical Engineering, University of Campinas, Albert Einstein Avenue, 500, Campinas, São Paulo, 13083-852, Brazil
| |
Collapse
|
33
|
Wan Ibrahim WN, Sanagi MM, Mohamad Hanapi NS, Kamaruzaman S, Yahaya N, Wan Ibrahim WA. Solid-phase microextraction based on an agarose-chitosan-multiwalled carbon nanotube composite film combined with HPLC-UV for the determination of nonsteroidal anti-inflammatory drugs in aqueous samples. J Sep Sci 2018; 41:2942-2951. [PMID: 29877605 DOI: 10.1002/jssc.201800064] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/14/2018] [Accepted: 05/16/2018] [Indexed: 01/24/2023]
Abstract
We describe the preparation, characterization, and application of a composite film adsorbent based on blended agarose-chitosan-multiwalled carbon nanotubes for the preconcentration of selected nonsteroidal anti-inflammatory drugs in aqueous samples before determination by high performance liquid chromatography with ultraviolet detection. The composite film showed a high surface area (4.0258 m2 /g) and strong hydrogen bonding between the multiwalled carbon nanotubes and agarose/chitosan matrix, which prevent adsorbent deactivation and ensure long-term stability. Several parameters, such as sample pH, addition of salt, extraction time, desorption solvent, and concentration of multiwalled carbon nanotubes in the composite film were optimized using a one-factor-at-time approach. The optimum extraction conditions obtained were as follows: isopropanol as conditioning solvent, 10 mL of sample solution at pH 2, extraction time of 30 min, stirring speed of 600 rpm, 100 μL of isopropanol as desorption solvent, desorption time of 5 min under ultrasonication, and 0.4% w/v of composite film. Under the optimized conditions, the calibration curve showed good linearity in the range of 1-500 ng/mL (r2 = 0.997-0.999), and good limits of detection (0.89-8.05 ng/mL) were obtained with good relative standard deviations of < 4.59% (n = 3) for the determination of naproxen, diclofenac sodium salt, and mefenamic acid drugs.
Collapse
Affiliation(s)
| | - Mohd Marsin Sanagi
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| | | | - Sazlinda Kamaruzaman
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Noorfatimah Yahaya
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia
| | - Wan Aini Wan Ibrahim
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| |
Collapse
|
34
|
Garole DJ, Choudhary BC, Paul D, Borse AU. Sorption and recovery of platinum from simulated spent catalyst solution and refinery wastewater using chemically modified biomass as a novel sorbent. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:10911-10925. [PMID: 29397510 DOI: 10.1007/s11356-018-1351-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/22/2018] [Indexed: 04/15/2023]
Abstract
In this study, Lagerstroemia speciosa biomass modified by polyethylenimine (PEI-LS) was developed as a potential biosorbent for sorption and recovery of platinum(II) from platinum bearing waste solutions. Batch experiments were conducted to study the effect of various parameters on the sorption and recovery of platinum(II) using PEI-LS. The equilibrium time for platinum(II) sorption process was found to be 6 h. Both the sorption kinetics and sorption isotherm data fits pseudo second-order kinetic model and Langmuir isotherm, respectively. The maximum sorption capacity of platinum(II) onto PEI-LS at pH 2 for the studied temperature range (25-45 °C) is in the range of 122-154 mg/g. Evaluation of thermodynamic parameters suggests that the platinum(II) sorption is spontaneous and endothermic in nature. The regeneration of PEI-LS can be achieved using acidic thiourea as an eluent for recovery of platinum from the biosorbent. Fourier transform infrared (FT-IR) analysis suggests many functional groups were involved in platinum(II) sorption onto PEI-LS. Both the scanning electron microscope/energy dispersive spectroscopy (SEM/EDS) and X-ray photoelectron spectroscopy (XPS) analysis suggest a successful modification of raw biomass with PEI. The XPS analysis further concludes that platinum(II) sorption is governed by ion-exchange and co-ordination reaction. Finally, the PEI-LS was shown to recover ≥ 90% of platinum from two simulated solutions: the acid-leached spent catalyst solution and refinery wastewater. The biosorbent developed in this study is a low-cost and eco-friendly media that can be effectively used for platinum recovery from industrial wastewater.
Collapse
Affiliation(s)
- Dipak J Garole
- School of Chemical Sciences, North Maharashtra University, Jalgaon, Maharashtra, 425001, India.
- Directorate of Geology and Mining, Government of Maharashtra, Nagpur, Maharashtra, 440010, India.
| | - Bharat C Choudhary
- School of Chemical Sciences, North Maharashtra University, Jalgaon, Maharashtra, 425001, India
- Centre for Environmental Science & Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| | - Debajyoti Paul
- Centre for Environmental Science & Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
- Department of Earth Sciences, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| | - Amulrao U Borse
- School of Chemical Sciences, North Maharashtra University, Jalgaon, Maharashtra, 425001, India
| |
Collapse
|
35
|
Surface functionalized biomass for adsorption and recovery of gold from electronic scrap and refinery wastewater. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2017.12.024] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Nahar K, Chowdhury MAK, Chowdhury MAH, Rahman A, Mohiuddin KM. Heavy metals in handloom-dyeing effluents and their biosorption by agricultural byproducts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:7954-7967. [PMID: 29302908 DOI: 10.1007/s11356-017-1166-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/26/2017] [Indexed: 06/07/2023]
Abstract
The Madhabdi municipality in the Narsingdi district of Bangladesh is a well-known area for textile, handloom weaving, and dyeing industries. These textile industries produce a considerable amount of effluents, sewage sludge, and solid waste materials every day that they directly discharge into surrounding water bodies and agricultural fields. This disposal poses a serious threat to the overall epidemic and socio-economic pattern of the locality. This research entailed the collection of 34 handloom-dyeing effluent samples from different handloom-dyeing industries of Madhabdi, which were then analyzed to determine the contents of the heavy metals iron (Fe), zinc (Zn), copper (Cu), chromium (Cr), manganese (Mn), lead (Pb), and cadmium (Cd). Average concentrations of Fe, Cr, Cu, Pb, Mn, and Zn were 3.81, 1.35, 1.70, 0.17, 0.75, and 0.73 mg L-1, respectively, whereas Cd content was below the detectable limit of the atomic adsorption spectrophotometer. The concentrations of Fe, Cr, Cu, Pb, and Mn exceed the industrial effluent discharge standards (IEDS) for inland surface water and irrigation water guideline values. A biosorption experiment of the heavy metals (Fe, Cr, Cu, Mn, and Zn) was conducted without controlling for any experimental parameters (e.g., pH, temperature, or other compounds present in the effluent samples) by using four agricultural wastes or byproducts, namely rice husk, sawdust, lemon peel, and eggshell. Twenty grams of each biosorbent was added to 1 L of effluent samples and stored for 7 days. The biosorption capacity of each biosorbent is ranked as follows: eggshell, sawdust, rice husk, and lemon peel. Furthermore, the biosorption affinity of each metal ion was found in the following order: Cu and Cr (both had similar biosorption affinity), Zn, Fe, Mn. The effluents should not be discharged before treatment, and efficient treatment of effluents is possible with eggshell powder or sawdust at a rate of 20 g of biosorbent per liter of effluents.
Collapse
Affiliation(s)
- Kamrun Nahar
- Department of Agricultural Chemistry, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Abul Khair Chowdhury
- Department of Agricultural Chemistry, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | | | - Afzal Rahman
- Department of Food Technology and Rural Industries, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - K M Mohiuddin
- Department of Agricultural Chemistry, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| |
Collapse
|
37
|
Preparation of 2-Aminothiazole-Functionalized Poly(glycidyl methacrylate) Microspheres and Their Excellent Gold Ion Adsorption Properties. Polymers (Basel) 2018; 10:polym10020159. [PMID: 30966195 PMCID: PMC6415127 DOI: 10.3390/polym10020159] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 01/30/2018] [Accepted: 02/04/2018] [Indexed: 11/17/2022] Open
Abstract
A new adsorbent(A-PGMA) has been synthesized via functionalizing poly(glycidyl methacrylate) microsphere with 2-aminothiazole and used to adsorb gold ions from aqueous solutions. The adsorbent was characterized by X-ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET), Zeta potential, scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FT-IR). The influence factors such as the pH value of the solution, the initial gold ion concentration and the contact time were examined. Simultaneously, the adsorption process of the gold ion on A-PGMA fitted well with the Langmuir and pseudo-second-order models, respectively. The results showed that the maximum adsorption capacity was 440.54 mg/g and the equilibrium time of adsorption was about 3 h under pH 4. Moreover, the adsorbent has a high reusability after five cycles and good selectivity from coexisting ions, including Zn(II), Mg(II), Cu(II), Ge(IV) and B(III). The adsorption mechanisms of gold ions were ion exchange and chelation between the sulfur and nitrogen groups on the surface of A-PGMA and AuCl4−. Therefore, the adsorbent has a great potential for adsorption of gold ions from aqueous solutions.
Collapse
|
38
|
Gabor A, Davidescu CM, Negrea A, Ciopec M, Grozav I, Negrea P, Duteanu N. Optimizing the lanthanum adsorption process onto chemically modified biomaterials using factorial and response surface design. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 204:839-844. [PMID: 28148453 DOI: 10.1016/j.jenvman.2017.01.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/17/2017] [Accepted: 01/20/2017] [Indexed: 06/06/2023]
Abstract
The rare metals' potential to pollute air, water, soil, and especially groundwater has received lot of attention recently. One of the most common rare earth group elements, lanthanum, is used in many industrial branches, and due to its toxicity, it needs to be eliminated from all residual aqueous solutions. The goal of this study was to evaluate the control of the adsorption process for lanthanum removal from aqueous solutions, using cellulose, a known biomaterial with high adsorbent properties, cheap, and environment friendly. The cellulose was chemically modified by functionalization with sodium β-glycerophosphate. The experimental results obtained after factorial design indicate optimum adsorption parameters as pH 6, contact time 60 min, and temperature 298 K, when the equilibrium concentration of lanthanum was 250 mg L-1, and the experimental adsorption capacity obtained was 31.58 mg g-1. Further refinement of the optimization of the adsorption process by response surface design indicates that at pH 6 and the initial concentration of 256 mg L-1, the adsorption capacity has maximum values between 30.87 and 36.73 mg g-1.
Collapse
Affiliation(s)
- Andreea Gabor
- Politehnica University of Timisoara, Faculty of Industrial Chemistry and Environmental Engineering, 2 Piata Victoriei, RO 300006 Timisoara, Romania
| | - Corneliu Mircea Davidescu
- Politehnica University of Timisoara, Faculty of Industrial Chemistry and Environmental Engineering, 2 Piata Victoriei, RO 300006 Timisoara, Romania
| | - Adina Negrea
- Politehnica University of Timisoara, Faculty of Industrial Chemistry and Environmental Engineering, 2 Piata Victoriei, RO 300006 Timisoara, Romania
| | - Mihaela Ciopec
- Politehnica University of Timisoara, Faculty of Industrial Chemistry and Environmental Engineering, 2 Piata Victoriei, RO 300006 Timisoara, Romania.
| | - Ion Grozav
- Politehnica University of Timisoara, Faculty of Industrial Chemistry and Environmental Engineering, 2 Piata Victoriei, RO 300006 Timisoara, Romania
| | - Petru Negrea
- Politehnica University of Timisoara, Faculty of Industrial Chemistry and Environmental Engineering, 2 Piata Victoriei, RO 300006 Timisoara, Romania
| | - Narcis Duteanu
- Politehnica University of Timisoara, Faculty of Industrial Chemistry and Environmental Engineering, 2 Piata Victoriei, RO 300006 Timisoara, Romania.
| |
Collapse
|
39
|
Shah KR, Duggirala SM, Tipre DR, Dave SR. Mechanistic aspects of Au(III) sorption by Aspergillus terreus SRD49. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Wei X, Sugumaran PJ, Peng E, Liu XL, Ding J. Low-Field Dynamic Magnetic Separation by Self-Fabricated Magnetic Meshes for Efficient Heavy Metal Removal. ACS APPLIED MATERIALS & INTERFACES 2017; 9:36772-36782. [PMID: 28971675 DOI: 10.1021/acsami.7b10549] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Wastewater contaminated with heavy metals is a worldwide concern due to the toxicity to human and animals. The current study presents an incorporation of adsorption and low-field dynamic magnetic separation technique for the treatment of heavy-metal-contaminated water. The key components are the eco-fabricated magnetic filter with mesh architectures (constituted of a soft magnetic material (Ni,Zn)Fe2O4) and poly(acrylic acid) (PAA)-coated quasi-superparamagnetic Fe3O4 nanoparticles (NPs). PAA-coated Fe3O4 NPs possess high adsorption capacity of heavy metal ions including Pb, Ni, Co, and Cu and can be easily regenerated after the adjustment of pH. Moreover, magnetic mesh filter has shown excellent collection ability of quasi-superparamagnetic particles under a magnetic field as low as 0.7 kOe (0.07 T) and can easily release these particles during ultrasonic washing when small magnets are removed. In the end, after one filtration process, the heavy metal concentration can be significantly decreased from 1.0 mg L-1 to below the drinking water standard recommended by the World Health Organization (e.g., less than 0.01 mg L-1 for Pb). Overall, a proof-of-concept adsorption and subsequent low-field dynamic separation technique is demonstrated as an economical and efficient route for heavy metal removal from wastewater.
Collapse
Affiliation(s)
- Xiangxia Wei
- Department of Materials Science and Engineering, National University of Singapore , 117575, Singapore
| | - Pon Janani Sugumaran
- Department of Materials Science and Engineering, National University of Singapore , 117575, Singapore
| | - Erwin Peng
- Department of Materials Science and Engineering, National University of Singapore , 117575, Singapore
| | - Xiao Li Liu
- Department of Materials Science and Engineering, National University of Singapore , 117575, Singapore
| | - Jun Ding
- Department of Materials Science and Engineering, National University of Singapore , 117575, Singapore
| |
Collapse
|
41
|
Han YL, Wu JH, Cheng CL, Nagarajan D, Lee CR, Li YH, Lo YC, Chang JS. Recovery of gold from industrial wastewater by extracellular proteins obtained from a thermophilic bacterium Tepidimonas fonticaldi AT-A2. BIORESOURCE TECHNOLOGY 2017; 239:160-170. [PMID: 28521225 DOI: 10.1016/j.biortech.2017.05.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/05/2017] [Accepted: 05/07/2017] [Indexed: 06/07/2023]
Abstract
Biosorption has emerged as a promising alternative approach for treating wastewater with dilute metal contents in a green and cost effective way. In this study, extracellular proteins of an isolated thermophilic bacterium (Tepidimonas fonticaldi AT-A2) were used as biosorbent to recover precious metal (i.e., Au) from wastewater. The Au (III) adsorption capacity on the T. fonticaldi AT-A2 proteins was the highest when the pH was set at about 4.0-5.0. The adsorption capacity increased with increasing temperature from 15 to 70°C. Adsorption isotherm studies show that both Langmuir and Freundrich models could describe the adsorption equilibrium. The maximum adsorption capacity of Au (III) at 50°C and pH 5 could reach 9.7mg Au/mg protein. The protein-based biosorbent was also used for the recovery of Au from a wastewater containing 15mg/L of Au, achieving a high adsorption capacity of 1.45mg Au/mg protein and a removal efficiency of 71%.
Collapse
Affiliation(s)
- Yin-Lung Han
- Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Jen-Hao Wu
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Chieh-Lun Cheng
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Dillirani Nagarajan
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Ray Lee
- Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Yi-Heng Li
- Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Yung-Chung Lo
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
42
|
Isopentyl-Sulfide-Impregnated Nano-MnO₂ for the Selective Sorption of Pd(II) from the Leaching Liquor of Ores. Molecules 2017; 22:molecules22071117. [PMID: 28684696 PMCID: PMC6152070 DOI: 10.3390/molecules22071117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 07/01/2017] [Accepted: 07/02/2017] [Indexed: 11/18/2022] Open
Abstract
Conventional separation methods are not suitable for recovering palladium present in low concentrations in ore leaching solutions. In this study, a novel isopentyl sulfide (S201)-impregnated α-MnO2 nanorod adsorbent (BISIN) was prepared, characterized, and applied for the selective adsorption and separation of palladium from the leaching liquor of ores. Batch studies were carried out, and the main adsorption parameters were systematically investigated, in addition to the relevant thermodynamic parameters, isotherms, and kinetic models. The thermodynamic parameters reflected the endothermic and spontaneous nature of the adsorption. Moreover, the experimental results indicated that the Langmuir isotherm model fits the palladium adsorption data well and the adsorption was well described by the pseudo-second-order kinetic model. The main adsorption mechanisms of palladium were elucidated at the molecular level by X-ray crystal structure analysis. Thiourea was found to be an excellent desorption agent, and the palladium-thiourea complex was also confirmed by X-ray crystal structure analysis. The results indicated that almost all of the Pd(II) (>99.0%) is adsorbed on BISIN, whereas less than 2% of the adsorbed Pt(IV), Fe3+, Cu2+, Ni2+, and Co2+ is observed under the optimum conditions. The proposed method can be used for the efficient adsorption and separation of palladium from the leaching liquor of ores.
Collapse
|
43
|
Ramirez O, Bonardd S, Saldías C, Radic D, Leiva Á. Biobased Chitosan Nanocomposite Films Containing Gold Nanoparticles: Obtainment, Characterization, and Catalytic Activity Assessment. ACS APPLIED MATERIALS & INTERFACES 2017; 9:16561-16570. [PMID: 28459535 DOI: 10.1021/acsami.7b04422] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A "green" two-step methodology to prepare biobased gold-chitosan nanocomposite films using chitosan and AuCl4- as a stabilizer and precursor, respectively, is reported. The biobased nanocomposites were prepared in situ by a wet chemical reduction method. Effects of hydrazine and l-ascorbic acid as different strength reducing agents on the characteristics of gold nanoparticles were observed. In addition, the performance of these nanocomposite films as catalytic materials was assessed. The relevance of this work underlies that the catalytic activity, conversion degree and order of the reaction of the 4-nitrophenol-sodium borohydride (4NP-NaBH4) reduction system depend on the size distribution, content and mainly to the location of gold nanoparticles in the nanocomposite films. Finally, the potential recyclability of these nanocomposite films as catalytic materials was studied.
Collapse
Affiliation(s)
- Oscar Ramirez
- Departamento de Química Física, Facultad de Química, Pontificia Universidad Católica de Chile , Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile
| | - Sebastián Bonardd
- Departamento de Química Física, Facultad de Química, Pontificia Universidad Católica de Chile , Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile
| | - Cesar Saldías
- Departamento de Química Física, Facultad de Química, Pontificia Universidad Católica de Chile , Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile
| | - Deodato Radic
- Departamento de Química Física, Facultad de Química, Pontificia Universidad Católica de Chile , Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile
| | - Ángel Leiva
- Departamento de Química Física, Facultad de Química, Pontificia Universidad Católica de Chile , Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile
| |
Collapse
|
44
|
Crini G, Morin-Crini N, Fatin-Rouge N, Déon S, Fievet P. Metal removal from aqueous media by polymer-assisted ultrafiltration with chitosan. ARAB J CHEM 2017. [DOI: 10.1016/j.arabjc.2014.05.020] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
45
|
Unveiling the potentialities of activated carbon in recovering palladium from model leaching solutions. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2016.10.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
|
47
|
Zhong L, Zhang J, Zhang Q, Chen M, Huang Z. Novel poly(aniline-co-3-amino-4-methoxybenzoic acid) copolymer for the separation and recovery of Pd(ii) from the leaching liquor of automotive catalysts. RSC Adv 2017. [DOI: 10.1039/c7ra06404g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The PANI–AMB copolymers were prepared and used for separation and recovery palladium from the leaching solutions of the automotive catalysts.
Collapse
Affiliation(s)
- Lijiang Zhong
- School of Chemical Science and Technology
- Yunnan University
- Kunming 650091
- PR China
| | - Jinyan Zhang
- School of Chemical Science and Technology
- Yunnan University
- Kunming 650091
- PR China
| | - Qin Zhang
- School of Chemical Science and Technology
- Yunnan University
- Kunming 650091
- PR China
| | - Muhan Chen
- School of Chemical Science and Technology
- Yunnan University
- Kunming 650091
- PR China
| | - Zhangjie Huang
- School of Chemical Science and Technology
- Yunnan University
- Kunming 650091
- PR China
| |
Collapse
|
48
|
Zhang G, Zhou Y, Ding Z, Fu L, Wang S. Nanosilica-supported thiosemicarbazide–glutaraldehyde polymer for selective Au(iii) removal from aqueous solution. RSC Adv 2017. [DOI: 10.1039/c7ra10199f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A thiosemicarbazide/nanosilica composite exhibited significant uptake toward Au(iii). Adsorption isotherms and kinetics revealed a synergistic effect of ionic interaction and chelation exists between Au(iii) and the synthesized nanocomposites.
Collapse
Affiliation(s)
- Gengwei Zhang
- Faculty of Metallurgical and Energy Engineering
- Kunming University of Science and Technology
- Kunming 650093
- China
| | - Yang Zhou
- School of Textile Science and Engineering
- National Engineering Laboratory for Advanced Yarn and Clean Production
- Wuhan Textile University
- Wuhan 430200
- China
| | - Zhao Ding
- Department of Mechanical, Materials and Aerospace Engineering
- Illinois Institute of Technology
- Chicago 60616
- USA
| | - Likang Fu
- Faculty of Metallurgical and Energy Engineering
- Kunming University of Science and Technology
- Kunming 650093
- China
| | - Shixing Wang
- Faculty of Metallurgical and Energy Engineering
- Kunming University of Science and Technology
- Kunming 650093
- China
| |
Collapse
|
49
|
Wu XL, Xiao P, Zhong S, Fang K, Lin H, Chen J. Magnetic ZnFe2O4@chitosan encapsulated in graphene oxide for adsorptive removal of organic dye. RSC Adv 2017. [DOI: 10.1039/c7ra04100d] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Magnetic ZnFe2O4@chitosan (ZnFe2O4@CS) encapsulated into graphene oxide (GO) layers was fabricated. The ZnFe2O4@CS/GO composites showed excellent adsorption capacity towards organic dye.
Collapse
Affiliation(s)
- Xi-Lin Wu
- College of Geography and Environmental Sciences
- College of Chemistry and Life Science
- Zhejiang Normal University
- Jinhua
- China
| | - Peiyuan Xiao
- College of Geography and Environmental Sciences
- College of Chemistry and Life Science
- Zhejiang Normal University
- Jinhua
- China
| | - Shuxian Zhong
- College of Geography and Environmental Sciences
- College of Chemistry and Life Science
- Zhejiang Normal University
- Jinhua
- China
| | - Keming Fang
- College of Geography and Environmental Sciences
- College of Chemistry and Life Science
- Zhejiang Normal University
- Jinhua
- China
| | - Hongjun Lin
- College of Geography and Environmental Sciences
- College of Chemistry and Life Science
- Zhejiang Normal University
- Jinhua
- China
| | - Jianrong Chen
- College of Geography and Environmental Sciences
- College of Chemistry and Life Science
- Zhejiang Normal University
- Jinhua
- China
| |
Collapse
|
50
|
Cui Q, Zhao H, Luo G, Xu J. An Efficient Chitosan/Silica Composite Core–Shell Microspheres-Supported Pd Catalyst for Aryl Iodides Sonogashira Coupling Reactions. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b04077] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qing Cui
- The
State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- School
of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Hong Zhao
- The
State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Guangsheng Luo
- The
State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Jianhong Xu
- The
State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|