1
|
Okwaraku SI, Norddin MNAM, Oseh JO, ALBajalan AR, Agi A, Oladapo O, Wosu N. Lignosulfonate-based deflocculant and its derivatives for water-based drilling mud: A review. Int J Biol Macromol 2025; 295:139467. [PMID: 39788244 DOI: 10.1016/j.ijbiomac.2025.139467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/27/2024] [Accepted: 01/01/2025] [Indexed: 01/12/2025]
Abstract
Chromium-based lignosulfonate (CrLS) deflocculants that are commonly used in water-based drilling muds (WBDMs) to deflocculate bentonites under high temperature (HT), high-pressure (HP), and high-salinity (HS) oil well drilling conditions have been found to contain heavy metals such as chromium, which is toxic and degrades rapidly. However, different ways of addressing this issue have been proffered, including the use of natural polymers such as starch, cellulose, or anionic inorganic agents such as sodium polyphosphates with little or no impact. Other lignosulfonate (LS)-based deflocculants, like sodium-based LS and bio-based LS, have shown a number of benefits, such as being better for the environment, more soluble and evenly distributed in WBDMs, more resistant to salt contamination, easily biodegradable, safe, and able to go through different chemical changes. This is due to its abundant functional groups, which make it a suitable alternative to chrome-based deflocculants. This review discusses LS-based deflocculants as possible additives to WBDMs in comparison with some non-LS-based deflocculants under HTHP and HS conditions. This could address the need for safer alternatives to natural polymers or inorganic agents. Based on recently reviewed studies, the advantages, uses, research obstacles, green synthesis, and potential of incorporating nanotechnology-based modification for LS-based deflocculants improvement in WBDMs under HTHP and HS drilling conditions are discussed.
Collapse
Affiliation(s)
- Samuelson I Okwaraku
- Department of Petroleum Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), 81310 UTM Skudai, Johor Bahru, Johor, Malaysia; Department of Petroleum and Gas Engineering Technology, Federal Polytechnic of Oil and Gas, Bonny-island, PMB 5027, Rivers State, Nigeria
| | - M N A M Norddin
- Department of Petroleum Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), 81310 UTM Skudai, Johor Bahru, Johor, Malaysia; Advanced Membrane Technology Research Centre (AMTEC), Nanostructured Materials Research Group (NMRG) - MD - Frontier Materials, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Bahru, Johor, Malaysia.
| | - Jeffrey O Oseh
- Department of Petroleum Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), 81310 UTM Skudai, Johor Bahru, Johor, Malaysia; Department of Petroleum Engineering, School of Engineering and Engineering Technology, Federal University of Technology, P.M.B. 1526, Owerri, Imo State, Nigeria
| | - Ahmed R ALBajalan
- Department of Petroleum Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), 81310 UTM Skudai, Johor Bahru, Johor, Malaysia; Department of Petroleum Technology, Erbil Technology College, Erbil Polytechnic University, 44001 Erbil, Iraq
| | - Augustine Agi
- Faculty of Chemical and Process Engineering Technology, College of Engineering Technology, Universiti Malaysia Pahang, Gambang 26300, Pahang, Malaysia; Centre for Research in Advanced Fluid and Processes (Fluid Centre), Universiti Malaysia Pahang, Gambang 26300, Pahang, Malaysia
| | - Olumide Oladapo
- Department of Petroleum and Gas Engineering Technology, Federal Polytechnic of Oil and Gas, Bonny-island, PMB 5027, Rivers State, Nigeria
| | - Nwonodi Wosu
- Department of Petroleum and Gas Engineering Technology, Federal Polytechnic of Oil and Gas, Bonny-island, PMB 5027, Rivers State, Nigeria
| |
Collapse
|
2
|
Al Lafi AG, Khuder A. Removal of Cr(VI) from aqueous solutions by activated carbon and its composite with P 2W 17O 61: A spectroscopic study to reveal adsorption mechanism. Heliyon 2025; 11:e41862. [PMID: 39877604 PMCID: PMC11773057 DOI: 10.1016/j.heliyon.2025.e41862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/31/2025] Open
Abstract
Molecular scale information is needed to understand ions coordination to mineral surfaces and consequently to accelerate the design of improved adsorbents. The present work reports on the use of two-dimensional correlation Fourier Transform infra-red spectroscopy (2D-COS-FTIR) and hetero 2D-COS-FTIR- X-ray diffraction (XRD) to probe the mechanism of Cr(VI) removal from aqueous solutions by activated carbon (AC) and its composite with P2W17O61 (AC-composite). The adsorption data at an initial Cr(VI) concentration of 320 mg L-1 (320 ppm) revealed maximum adsorption capacities of 65 mg g-1 for AC and 73 mg g-1 for AC-composite, corresponding to removal percentages of 83 % and 94 %, respectively. The adsorption mechanism of Cr(VI) onto AC involved electrostatic attraction of charged ions, reduction of Cr(VI), orientation of O-H groups, complex formation and ion exchange reaction. On the other hand, ion exchange reactions were not observed in the case of AC-composite, but increasing reduction and complex formation due to the presence of W were more pronounced. Moreover, a monosubstituted compound; i.e. K6P2CrW17 O61·nH2O, having chromium in its maximum oxidation state (Cr(VI)) was formed. These resulted in an improved adsorption capacity of AC-composite towards Cr(VI) in comparison to AC, and could explain the differences in adsorption thermodynamics and capacity of the two studied adsorbents. High value information could be extracted from both FTIR spectroscopy and XRD patterns when combined with available 2D-COS routines and subsequently powerful tools to investigate the mechanisms of adsorption are obtained.
Collapse
Affiliation(s)
- Abdul G. Al Lafi
- Polymer Chemistry Division, Department of Chemistry, Atomic Energy Commission, P. O. Box: 9061, Damascus, Syrian Arab Republic
| | - Ali Khuder
- Nuclear Chemistry Division, Department of Chemistry, Atomic Energy Commission, P. O. Box: 9061, Damascus, Syrian Arab Republic
| |
Collapse
|
3
|
Yin H, Huang L, Dai Y, Zheng Z, Li Y, Tang B, Wang X, Shi L. In-situ redox processes of electrosorption-based systems during As, Cr detoxification and recovery: mechanisms, applications and challenges. CHEMICAL ENGINEERING JOURNAL 2025; 503:157946. [DOI: 10.1016/j.cej.2024.157946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
4
|
Luo L, Yang T, Dzakpasu M, Jiang X, Guo W, Ngo HH, Wang XC. Interplay of humic acid and Cr(VI) on green microalgae: Metabolic responses and chromium enrichment. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135885. [PMID: 39298963 DOI: 10.1016/j.jhazmat.2024.135885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Dissolved organic matter (DOM) present in aquatic environments can significantly influence microalgal metabolism and the enrichment of heavy metals. However, the specific mechanism through which typical DOM affects the enrichment of the heavy metal chromium (Cr) in green algae remains unclear. This study investigates the impacts of varying concentrations of humic acid (HA), selected as a representative DOM in water, on the growth, metabolism, and Cr enrichment in Chlorella vulgaris, a typical green alga. The results indicated that low concentrations of HA were capable of enhancing Cr enrichment in C. vulgaris, with the highest Cr enrichment rate recorded at 41.50 % at TOC = 10 mg/L. The enrichment of Cr in algal cells primarily occurred through cell proliferation and complexation reduction of extracellular polymeric substances (EPS). In the presence of HA, C. vulgaris predominantly removed Cr through extracellular adsorption, accounting for 79.76-85.88 % of the total Cr removal. Furthermore, carboxyl complexation and hydroxyl reduction within EPS facilitated both the enrichment of Cr (18.72-21.49 %) and the reduction of Cr(VI) (63.93-74.10 %). These findings provide valuable insights into strategies for mitigating heavy metal pollution and managing associated risks in aquatic environments.
Collapse
Affiliation(s)
- Li Luo
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi Province, Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No. 13, Yanta Road, Xi'an 710055, China.
| | - Tong Yang
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi Province, Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No. 13, Yanta Road, Xi'an 710055, China
| | - Mawuli Dzakpasu
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi Province, Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No. 13, Yanta Road, Xi'an 710055, China
| | - Xu Jiang
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi Province, Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No. 13, Yanta Road, Xi'an 710055, China
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, Faculty of Engineering and Information Technology, University of Technology, Sydney, NSW 2007, Australia
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, Faculty of Engineering and Information Technology, University of Technology, Sydney, NSW 2007, Australia
| | - Xiaochang C Wang
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi Province, Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No. 13, Yanta Road, Xi'an 710055, China
| |
Collapse
|
5
|
Feng L, Wang J, Zhang L, Li J, Zhang Y, Xu M, Tang P, Wang H. Construction of direct Z-scheme Co 9S 8/CdS with tubular heterostructure through the simultaneous immobilization and in-situ reduction strategy for enhanced photocatalytic Cr(VI) reduction under visible light. J Colloid Interface Sci 2024; 675:535-548. [PMID: 38986327 DOI: 10.1016/j.jcis.2024.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/15/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
Tubular Co9S8/CdS heterostructures have been successfully synthesized by in-situ growing CdS onto Co9S8 nanotubes through a simultaneous immobilization and in-situ reduction strategy. It turned out that the so-obtained heterostructure with Co9S8/CdS molar ratio of 1/10 can display a broad light absorption edge and especially much enhanced capacity for photocatalytic reduction of Cr(VI) under visible light. The characterization analysis and experimental results suggested that an interfacial electrostatic field between Co9S8 and CdS elements in the heterostructure could be constructed due to their different Fermi levels, allowing for more quantities of highly reductive electrons to participate in the photocatalytic reaction. Therefore, the so-obtained Co9S8/CdS (1/10) heterostructures could achieve the photocatalytic reduction efficiency of 100% within 20 min, which was more than two and four times larger than that of pristine CdS and Co9S8, respectively. Moreover, the possible photocatalytic reaction mechanism for reducing Cr(VI) was investigated and found to follow the direct Z-scheme charge transfer pathway. This novel fabrication route for composite photocatalysts with tubular heterostructures could lead to the widespread implementations for the elimination of various harmful pollutants in the process of environmental governance.
Collapse
Affiliation(s)
- Luping Feng
- Huzhou Key Laboratory of Medical and Environmental Applications Technologies, School of Life Sciences, Huzhou University, Huzhou, Zhejiang 313000, PR China
| | - Jianghong Wang
- Huzhou Key Laboratory of Environmental Functional Materials and Pollution Control, School of Engineering, Huzhou University, Huzhou, Zhejiang 313000, PR China
| | - Lixiang Zhang
- Huzhou Key Laboratory of Environmental Functional Materials and Pollution Control, School of Engineering, Huzhou University, Huzhou, Zhejiang 313000, PR China.
| | - Jiadong Li
- School of New Energy, Ningbo University of Technology, Ningbo, Zhejiang 313000, PR China
| | - Yifan Zhang
- Huzhou Key Laboratory of Environmental Functional Materials and Pollution Control, School of Engineering, Huzhou University, Huzhou, Zhejiang 313000, PR China
| | - Minghong Xu
- Huzhou Key Laboratory of Environmental Functional Materials and Pollution Control, School of Engineering, Huzhou University, Huzhou, Zhejiang 313000, PR China
| | - Peisong Tang
- Huzhou Key Laboratory of Environmental Functional Materials and Pollution Control, School of Engineering, Huzhou University, Huzhou, Zhejiang 313000, PR China
| | - Hua Wang
- Huzhou Key Laboratory of Medical and Environmental Applications Technologies, School of Life Sciences, Huzhou University, Huzhou, Zhejiang 313000, PR China
| |
Collapse
|
6
|
S S, R.V H. Myco-remediation of chromium heavy metal from industrial wastewater: A review. Toxicol Rep 2024; 13:101740. [PMID: 39399094 PMCID: PMC11470465 DOI: 10.1016/j.toxrep.2024.101740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 10/15/2024] Open
Abstract
Chromium a heavy metal present in the effluent of the industries causes accumulation of toxicity in water. Chromium commonly has Cr (III) and Cr (VI), two oxidation states, in which hexavalent form causes more health issues to human, other species and environment. The increased anthropogenic effects, especially tannery industrial effluent contributes the higher percentage of chromium accumulation. Removal of heavy metal can be attributed to many aspects, conventionally the physio-chemical methods which superseded by biological means of remediation. Chromium resistant microbes can be used to remove metal ions of chromium from the effluent, as this can be considered an eco-friendly approach. The microbial accession of nanoparticles synthesis is being focused, due to its accuracy and specificity in results. Mycoremediation grabbed attention as fungal absorbance efficiency and the surface-mechanism of heavy metal ions correlates each other. Current study in-depth indulges the base to core mechanism of mycoremediation of chromium ions from different effluents. Fungal-assisted mechanism of chromium ions have insists to be fewer, which may gain attention by enhancing the methodology of removal of chromium ions. This study focuses on improvement of fungal strain and pave-way, to improvise the study with immobilization technique which renders usage of the adsorbents redundant usage and applications, substantially with the low-cost polymeric material alginate is given more importance for immobilization technique. Alginate apart from low-cost adsorbent, is an excellent support for fungal producing nanoparticles which would provide wide-cast and an extraordinary adsorbent material.
Collapse
Affiliation(s)
- Shruthi. S
- Department of Biotechnology. Rajalakshmi Engineering College, Thandalam, Chennai 602105, India
| | - Hemavathy. R.V
- Department of Biotechnology. Rajalakshmi Engineering College, Thandalam, Chennai 602105, India
| |
Collapse
|
7
|
Wang Q, Wang Z, Tao Y, Liu P, Huang Y, Du J, Hu J, Lu J, Lv Y, Wang H. Redox active metallene anchored amino-functionalized cellulose composite for electrochemical capture and conversion of chromium. Int J Biol Macromol 2024; 282:137310. [PMID: 39510477 DOI: 10.1016/j.ijbiomac.2024.137310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/19/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Considering the ubiquity and high toxicity of Cr(VI) species for destroying a sustainable environment, developing energy-efficient method for capturing and detoxifying chromium [Cr(VI) → Cr(III)] is imperative. Herein, ferrocene (Fc) was combined with carboxymethyl cellulose (CMC) and polyethyleneimine (PEI) for Cr(VI) remediation. Fc species possessed reversible redox behavior and low ionization potential, yet it faced challenges with conductivity and stability. Results revealed that, PEI facilitated the binding of Fc within the CMC through electrostatic interactions or coordination bonds, ensuring the good dispersion and stability of Fc. When applied in the electrochemical adsorption of Cr(VI), the combination created a synergistic effect. The presence of Fc and PEI boosted the electrochemical performance by providing faster electronic and ionic transportation, higher specific capacitance coupled with improved electrode-electrolyte interactions, leading to a higher Cr(VI) adsorption capacity over CMC/PEI/Fc (280.5 mg/g) compared to those over CMC and CMC/PEI. The interactions between the Cr(VI) and electrode included the electrosorption, electrostatic interaction of protonated PEI and oxidized Fc species. When the electric field was reversed, the Cr(VI) was electrostatic repulsed and electrocatalytic reduced to Cr(III) with a reduction rate of 85.4 %. This work promoted the development of effective electrosorption materials suitable for complete Cr(VI) removal and detoxification.
Collapse
Affiliation(s)
- Qingqing Wang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Department of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, PR China
| | - Zhicheng Wang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Department of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, PR China
| | - Yehan Tao
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Department of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, PR China.
| | - Peiwen Liu
- College of Engineering, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan 430070, PR China
| | - Yuhui Huang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Department of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, PR China
| | - Jian Du
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Department of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, PR China
| | - Jinwen Hu
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Department of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, PR China
| | - Jie Lu
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Department of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, PR China
| | - Yanna Lv
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Department of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, PR China
| | - Haisong Wang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Department of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, PR China.
| |
Collapse
|
8
|
Huang H, Luo J, Ma R, Zhang D, Sun S, Du C. Review on microwave immobilization of soil heavy metals: Processes and mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122824. [PMID: 39378819 DOI: 10.1016/j.jenvman.2024.122824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/27/2024] [Accepted: 10/02/2024] [Indexed: 10/10/2024]
Abstract
Soil contamination with heavy metals (HMs) is still a global issue. The maintenance of long-term stability of HMs in soil during immobilization remediation is a challenge. Microwave (MW) technology can promote the immobilization of HMs in the form of crystals and minerals, thus enhancing their resistance of corrosion. This review provides a comprehensive introduction to the basics of MW irradiation through 177 papers, and reviews the research progress of MW involvement in the immobilization of soil HMs in 10 years. The effects of MW parameter settings, absorber/fixative types and soil physicochemical properties on immobilized HMs are investigated. The immobilization mechanisms of HMs are discussed, high-temperature physical encapsulation and chemical stabilization are the two basic mechanisms in the immobilization process. MW has a unique heating method to achieve efficient remediation by shortening remediation time, reducing the activation energy of reactions and promoting the transformation of stabilization products. Finally, the current limitations of MW in the remediation of HMs contaminated soils are systematically discussed and the corresponding proposed solutions are presented which may provide directions for further laboratory studies. There are still serious problems in taking the results obtained in the laboratory to the full scale. Thus, process optimization, scale-up, design and demonstration are strongly desired. In summary, this review may help new researchers to seize the research frontier in MW and can serve as a reference for future development of MW technology in soil remediation.
Collapse
Affiliation(s)
- Huiyin Huang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Juan Luo
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Rui Ma
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Dengcai Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Shichang Sun
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Chaoyong Du
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
9
|
Wang S, Wu C, Peng W, Huang D, Liao W, Cui HJ. Phytic acid inhibits Cr(VI) reduction on Fe(II)-bearing clay minerals: Changing reduction sites and electron transfer pathways. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124701. [PMID: 39127337 DOI: 10.1016/j.envpol.2024.124701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/24/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
The presence of organic phosphorus may influence the characteristics of Cr(VI) reduction and immobilization on Fe(II)-bearing clay minerals under anoxic conditions, as the organic phosphorus tends to bind strongly to clay minerals in soil. Herein, reduced nontronite (rNAu-2) was used to reduction of Cr(VI) in the presence of phytic acid (IHP) at neutral pH. With IHP concentration from 0 to 500 μM, Cr(VI) reduction decreased obviously (17.8%) within first 5 min, and then preferred to stagnate during 4-12 h (≥50 μM). After that, Cr(VI) was reduced continuously at a slightly faster rate. Density functional theory (DFT) calculations revealed that IHP primarily absorbed at the edge sites of rNAu-2 to form Fe-IHP complexes. X-ray diffraction (XRD), scanning transmission electron microscopy (STEM), and Fourier transform infrared spectroscopy (FTIR) results demonstrated that IHP hindered the ingress of CrO42- into the interlayer space of rNAu-2 and impeded their reduction by trioctahedral Fe(II) and Al-Fe(II) at basal plane sites in the initial stage. Additionally, Fe(II) extraction results showed that IHP promoted the electron from interior transfer to near-edge, but hindered it further transfer to surface, resulting in the inhibition on Cr(VI) reduction at edge sites during the later stage. Consequently, IHP inhibits the reduction and immobilization of Cr(VI) by rNAu-2. Our study offers novel insights into electron transfer pathways during the Cr(VI) reduction by rNAu-2 with coexisting IHP, thereby improve the understanding of the geochemical processes of chromium within the iron cycle in soil.
Collapse
Affiliation(s)
- Shuai Wang
- Yuelushan Laboratory, College of Resources, Hunan Agricultural University, Changsha, 410128, China; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| | - Cong Wu
- Yuelushan Laboratory, College of Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Wei Peng
- Yuelushan Laboratory, College of Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Daoyou Huang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Wenjuan Liao
- Yuelushan Laboratory, College of Resources, Hunan Agricultural University, Changsha, 410128, China.
| | - Hao-Jie Cui
- Yuelushan Laboratory, College of Resources, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
10
|
Ding C, Ding Z, Liu Q, Liu W, Chai L. Advances in mechanism for the microbial transformation of heavy metals: implications for bioremediation strategies. Chem Commun (Camb) 2024; 60:12315-12332. [PMID: 39364540 DOI: 10.1039/d4cc03722g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Heavy metals are extensively discharged through various anthropogenic activities, resulting in an environmental risk on a global scale. In this case, microorganisms can survive in an extreme heavy metal-contaminated environment via detoxification or resistance, playing a pivotal role in the speciation, bioavailability, and mobility of heavy metals. Therefore, studies on the mechanism for the microbial transformation of heavy metals are of great importance and can provide guidance for heavy metal bioremediation. Current research studies on the microbial transformation of heavy metals mainly focus on the single oxidation, reduction and methylation pathways. However, complex microbial transformation processes and corresponding bioremediation strategies have never been clarified, which may involve the inherent physicochemical properties of heavy metals. To uncover the underlying mechanism, we reclassified heavy metals into three categories based on their biological transformation pathways, namely, metals that can be chelated, reduced or oxidized, and methylated. Firstly, we comprehensively characterized the difference in transmembrane pathways between heavy metal cations and anions. Further, biotransformation based on chelation by low-molecular-weight organic complexes is thoroughly discussed. Moreover, the progress and knowledge gaps in the microbial redox and (de)methylation mechanisms are discussed to establish a connection linking theoretical advancements with solutions to the heavy metal contamination problem. Finally, several efficient bioremediation strategies for heavy metals and the limitations of bioremediation are proposed. This review presents a solid contribution to the design of efficient microbial remediation strategies applied in the real environment.
Collapse
Affiliation(s)
- Chunlian Ding
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China.
| | - Zihan Ding
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China.
| | - Qingcai Liu
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China.
| | - Weizao Liu
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China.
| | - Liyuan Chai
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| |
Collapse
|
11
|
Sun L, Wang T, Li B, Chen M, Wu J, Shang Z, Wu P, Dang Z, Zhu N. Sunlight-Driven Direct/Mediated Electron Transfer for Cr(VI) Reductive Sequestration on Dissolved Black Carbon-Ferrihydrite Coprecipitates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18379-18390. [PMID: 39363618 DOI: 10.1021/acs.est.4c08371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Surface runoff horizontally distributed chromium (Cr) pollution into various surface environments. Sunlight is a vital factor for the Cr cycle in the surface environment, which may be affected by photoactive substances such as ferrihydrite (Fh) and dissolved black carbon (DBC). Herein, sunlight-driven transformation dynamics of Cr species on DBC-Fh coprecipitates were studied. Under sunlight, the removal of aqueous Cr(VI) by DBC-Fh coprecipitates occurred through sunlight-driven reductive sequestration including adsorption, followed by surface reduction (pathway 1) and aqueous reduction, followed by precipitation (pathway 2). Additionally, coprecipitates with a higher DBC content exhibited a more effective reduction of both adsorbed (kapp,S_red) and aqueous Cr(VI) (kapp,A_red). Photoelectrons facilitated Cr(VI) reduction through direct electron transfer; notably, electron donating DBC promoted the production of photoelectrons by consuming photogenerated holes. Photogenerated Fe(II) species (mineral-phase and aqueous Fe(II)) mediated electron transfer for Cr(VI) reduction, which was reinforced via a ligand-to-metal charge transfer (LMCT) process between DBC-organic ligands and mineral Fe(III). Furthermore, ·O2- also mediated Cr(VI) reduction, although this impact was limited. Overall, this study demonstrates that photoelectrons and photogenerated electron mediators play a crucial role in Cr(VI) reductive sequestration on DBC-Fh coprecipitates, providing new insights into the geochemical cycle of Cr pollution in sunlight-influenced surface environments.
Collapse
Affiliation(s)
- Leiye Sun
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Tianming Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Bo Li
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Meiqing Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jiayan Wu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Zhongbo Shang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Pingxiao Wu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China
- Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou 510006, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Nengwu Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
12
|
Zhang X, Ma K, Zhao L, Peng H, Gong Y. EDAC-modified chitosan/imidazolium-polysulfone composite beads for removal of Cr(VI) from aqueous solution. Int J Biol Macromol 2024; 278:134876. [PMID: 39168218 DOI: 10.1016/j.ijbiomac.2024.134876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/05/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
To enhance the stability and adsorption performance of chitosan in Cr(VI)-contaminated acidic wastewater, a novel EDAC-modified-EDTA-crosslinked chitosan derivative (CSEC) was synthesized via a one-pot method with chitosan, 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDAC), and Na2EDTA as raw materials. To further improve the mechanical strength and separation performance of CSEC, a novel composite bead (CSEP) of CSEC and imidazolium-functionalized polysulfone (IMPSF) was prepared through a phase inversion method. The chemical composition and microstructure of CSEC and CSEP were characterized by FESEM, FTIR, NMR and XPS techniques. The maximum adsorption capacities of CSEC and CSEP for Cr(VI) were 145.96 and 135.82 mg g-1 at pH 3, respectively, and the equilibrium time for Cr(VI) adsorption by CSEC and CSEP was 5 min and 8 h, respectively. The adsorption process of Cr(VI) by both CSEC and CSEP was exothermic and spontaneous. Compared to CSEC, CSEP has significantly enhanced resistance to interference from coexisting anions. The removal mechanism of Cr(VI) by CSEP might involve redox reaction as well as electrostatic attraction between Cr(VI) oxyanions and various nitrogen cations, including protonated amino groups, guanidinium groups, protonated tertiary amine groups, and imidazolium cations. The CSEP beads have potential application value in the treatment of acidic wastewater containing Cr(VI).
Collapse
Affiliation(s)
- Xiaojie Zhang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Kangrui Ma
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Liqin Zhao
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Hong Peng
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Yuefa Gong
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
13
|
Chang P, Zhou S, Wang T, Hua D, Liu S, Okoro OV, Shavandi A, Nie L. Eco-Friendly Carbon Nanotubes Reinforced with Sodium Alginate/Polyacrylic Acid for Enhanced Adsorption of Copper Ions: Kinetics, Isotherm, and Mechanism Adsorption Studies. Molecules 2024; 29:4518. [PMID: 39407448 PMCID: PMC11477899 DOI: 10.3390/molecules29194518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/14/2024] [Accepted: 09/18/2024] [Indexed: 10/20/2024] Open
Abstract
This study investigates the removal efficiency of Cu2+ from wastewater using a composite hydrogel made of carbon nanotubes (CNTs), sodium alginate (SA), and polyacrylic acid (PAA) prepared by free radical polymerization. The CNTs@SA/PAA hydrogel's structure and properties were characterized using SEM, TEM, FTIR, XRD, rheology, DSC, EDS, elemental mapping analysis, and swelling. The adsorption performance for Cu2+ was tested in batch adsorption experiments, considering the pH, dosage, initial concentration, and contact time. The optimal conditions for Cu2+ removal were pH 5.0, an adsorbent dosage of 500 mg/L, and a contact time of 360 min. The adsorption followed pseudo-second order kinetics. Isotherm analyses (Langmuir, Freundlich, Temkin, Dubinin-Radushkevich, Sips, Toth, and Khan) revealed that the Freundlich isotherm best described the adsorption, with a maximum capacity of 358.52 mg/g. A thermodynamic analysis indicated that physical adsorption was the main interaction, with the spontaneity of the process also demonstrated. This study highlights the high efficiency and environmental friendliness of CNT@SA/PAA composites for Cu2+ removal from wastewater, offering a promising approach for water treatment.
Collapse
Affiliation(s)
- Pengbo Chang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China; (P.C.); (D.H.); (S.L.)
- Zhengzhou Technical College, Zhengzhou 450121, China
| | - Shuyang Zhou
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China;
| | - Tongchao Wang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China; (P.C.); (D.H.); (S.L.)
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Dangling Hua
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China; (P.C.); (D.H.); (S.L.)
| | - Shiliang Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China; (P.C.); (D.H.); (S.L.)
| | - Oseweuba Valentine Okoro
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium
| | - Armin Shavandi
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium
| | - Lei Nie
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China;
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium
| |
Collapse
|
14
|
Zhang Y, Tang Y, Jin B, Yan R, Zhang L, Li Y, Li J, Liang S. Urea-modified hazelnut shell biochar (N-HSB) for efficient Cr(VI) removal: Performance and mechanism insights. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 266:104414. [PMID: 39154557 DOI: 10.1016/j.jconhyd.2024.104414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024]
Abstract
Composite with a high specific surface area of 224.62 m2 g-1 was prepared by adding urea as a nitrogen source to hazelnut shell biochar (HSB). Nitrogen doping significantly enhanced the ability of biochar for Cr(VI) elimination, achieving twice the removal efficiency of unmodified biochar. The impacts of varying the pH and initial concentrations on Cr(VI) removal by urea-modified biochar (N-HSB) were investigated. The Cr(VI) removal by N-HSB was better described by intra particle diffusion model and pseudo-second order kinetic model under optimal conditions. Furthermore, XPS, FTIR, SEM, and BET analyses were used to verify the pivotal roles of oxygen- and nitrogen-containing functional groups. Electrostatic attraction, redox reaction, and complexation constituted the principal mechanisms facilitating Cr(VI) elimination by N-HSB. This study demonstrated that the modification of biochar with urea as a nitrogen source represented a promising strategy for enhancing the removal capacity of biochar for Cr(VI) in aqueous environments.
Collapse
Affiliation(s)
- Yuting Zhang
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, PR China
| | - Yuwei Tang
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, PR China
| | - Baoming Jin
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, PR China
| | - Ruiping Yan
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, PR China
| | - Li Zhang
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, PR China
| | - Yilong Li
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, PR China
| | - Jinchunzi Li
- School of Food and Pharmaceutical Engineering (Liubao Tea Modern Industry College), Wuzhou University, Wuzhou 543002, China
| | - Shuang Liang
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, PR China.
| |
Collapse
|
15
|
Hajloo H, Bashiri H. Optimizing Cr(VI) reduction to Cr(III) using Pd-CNTs nanocatalyst: kinetic Monte Carlo simulation and experimental design insights. Sci Rep 2024; 14:19192. [PMID: 39160195 PMCID: PMC11333503 DOI: 10.1038/s41598-024-69980-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/12/2024] [Indexed: 08/21/2024] Open
Abstract
In this investigation, we explored the kinetics of Cr(VI) reduction to Cr(III) on carbon nanotube decorated with palladium (Pd-CNTs) nanocatalyst, using formic acid as the reducing agent. This study has been bone utilizing kinetic Monte Carlo simulation and experimental design methods. The mechanism and kinetic parameters of this reaction are provided. The effect various factors such as reaction time, pH level, dichromate (Cr2O72-) concentration, and formic acid concentration on Cr(VI) reduction was studied. Concentrations of HCOOH and Cr2O72- were identified as the crucial variables, while the HCOOH concentration has the most significant impact. Positive influences on Cr(VI) reduction were observed with increasing pH level and HCOOH concentration. Reaction time positively affects on Cr(VI) reduction efficiency. However, the concentration of Cr2O72- showed an increasing effect up to a threshold, negatively impacting the efficiency. The optimal conditions (Reaction time = 60 min, pH = 4.5, [Cr2O72-] = 5.05 × 10-3 M, and [HCOOH] = 0.95 M) for Cr(VI) reduction. At optimal conditions, the Cr(VI) reduction efficiency was obtained to be 100%.
Collapse
Affiliation(s)
- Hamideh Hajloo
- Department of Physical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Hadis Bashiri
- Department of Physical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran.
| |
Collapse
|
16
|
Cheballah K, Mitiche L, Fontàs C, Sahmoune A. Efficient chromium(VI) removal using trioctylmethylammonium salicylate as the carrier in polymer inclusion membranes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:53497-53509. [PMID: 39190253 DOI: 10.1007/s11356-024-34781-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 08/19/2024] [Indexed: 08/28/2024]
Abstract
In this study, the ionic liquid (IL) trioctylmethylammonium salicylate (TOMAS) was prepared and incorporated into a polymer inclusion membrane (PIM) based on cellulose triacetate (CTA) as the polymer for the removal of Cr(VI). Various parameters including the effect of membrane composition (plasticizer and carrier concentration) as well as variables affecting both the feed phase and receiving solution have been investigated. Optimal results were achieved with a PIM made of 50% CTA and 50% TOMAS (% in mass) without the addition of any plasticizer. Using this PIM, Cr(VI) was effectively transported from a feed solution consisting of 10 mg L-1 Cr(VI) in 0.01 mol L-1 NaNO3 at pH = 2, to a receiving solution containing 0.1 mol L-1 NaOH. The transport of Cr(VI) was not affected by the presence of other metals, such as Cr(III), Cd(II), Zn(II), Cu(II), and Ni(II), and a selective recovery rate of 93.61% for both single-ion and mixed-ion solutions after 24 h of processing was obtained. Finally, the stability of the membrane was also investigated, with a slight decrease in efficiency observed after 5 days of reuse.
Collapse
Affiliation(s)
- Karima Cheballah
- Laboratoire de Physique Et Chimie Des Matériaux (LPCM), Université Mouloud Mammeri, Route de Hasnaoua, 15000, Tizi-Ouzou, Algeria
| | - Lynda Mitiche
- Laboratoire de Physique Et Chimie Des Matériaux (LPCM), Université Mouloud Mammeri, Route de Hasnaoua, 15000, Tizi-Ouzou, Algeria
| | - Clàudia Fontàs
- Department of Chemistry, University of Girona, C/ Maria Aurelia Capmany 69, 17003, Girona, Spain
| | - Amar Sahmoune
- Laboratoire de Physique Et Chimie Des Matériaux (LPCM), Université Mouloud Mammeri, Route de Hasnaoua, 15000, Tizi-Ouzou, Algeria.
| |
Collapse
|
17
|
Ran M, Lu Y, Ren Y, He L, Li J. Efficient reduction of Cr(VI) by guava (Psidium guajava) leaf extract and its mitigation effect on Cr toxicity in rice seedlings. J Environ Sci (China) 2024; 141:1-15. [PMID: 38408812 DOI: 10.1016/j.jes.2023.06.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 02/28/2024]
Abstract
Hexavalent chromium (Cr(VI)) is a toxic element that has negative impacts on crop growth and yield. Using plant extracts to convert toxic Cr(VI) into less toxic Cr(III) may be a more favorable option compared to chemical reducing agents. In this study, the potential effects and mechanisms of using an aqueous extract of Psidium guajava L. leaves (AEP) in reducing Cr(VI) toxicity in rice were comprehensively studied. Firstly, the reducing power of AEP for Cr(VI) was confirmed by the cyclic voltammetry combined with X-ray photoelectron spectroscopy (XPS) assays. The highest Cr(VI) reduction efficiency reached approximately 78% under 1.5 mg gallic acid equivalent (GAE)/mL of AEP and 10 mg/L Cr(VI) condition. Additionally, Cr(VI) stress had a significant inhibitory effect on rice growth. However, the exogenous application of AEP alleviated the growth inhibition and oxidative damage of rice under Cr(VI) stress by increasing the activity and level of enzymatic and non-enzymatic antioxidants. Furthermore, the addition of AEP restored the ultrastructure of root cells, promoted Cr adsorption onto root cell walls, and limited the translocation Cr to shoots. In shoots, AEP application also triggered the expression of specific genes involved in Cr defense and detoxification response, including photosynthesis pathways, antioxidant systems, flavonoids biosynthesis, and plant hormone signal transduction. These results suggest that AEP is an efficient reduction agent for Cr(VI), and exogenous application of AEP may be a promising strategy to mitigate the harm of Cr(VI) on rice, ultimately contributing to improved crop yield in Cr-contaminated environments.
Collapse
Affiliation(s)
- Maodi Ran
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Yongqing Lu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Yanzhen Ren
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Li He
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Jiaokun Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China.
| |
Collapse
|
18
|
Dang Thi MH, Hoang Thi LG, Huynh CD, Nguyen Thi HP, La DD. La-doped MIL-88B(Fe)-NH 2: a mixed-metal-organic framework photocatalyst for highly efficient reduction of Cr(vi) in an aqueous solution. RSC Adv 2024; 14:20543-20552. [PMID: 38946761 PMCID: PMC11210369 DOI: 10.1039/d4ra03351e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/16/2024] [Indexed: 07/02/2024] Open
Abstract
With the aim to resolve the problem of water pollution, we herein propose a new photocatalyst based on metal-organic frameworks (MOFs), called La-doped MIL-88B(Fe)-NH2 (MIL-88B((1 - x)Fe/xLa)-NH2), which was designed and employed for the photocatalytic reduction of Cr(vi) in aqueous solutions. MIL-88B((1-x)Fe/xLa)-NH2 materials with different x values were synthesized via a one-pot solvothermal method. Their characteristics were investigated using various techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), Brunauer-Emmett-Teller (BET) analysis, Fourier-transform infrared (FT-IR) spectroscopy and ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS). We found that compared to pristine MIL-88B(Fe)-NH2 with a photocatalytic efficiency of 67.08, MIL-88B((1 - x)Fe/xLa)-NH2 materials with x = 0.010, 0.025 and 0.050 exhibit excellent photocatalytic efficiencies reaching 88.21, 81.19 and 80.26%, respectively, after only 30 minutes of irradiation at a small catalyst dosage of 0.2 g L-1. These La-doped MIL-88B(Fe)-NH2 photocatalysts can work well under mild conditions (pH = 6). Furthermore, they are robust-can be recycled for at least four consecutive runs without any activity loss. This novel material is promising for the photocatalytic degradation of pollutants.
Collapse
Affiliation(s)
- Minh Hue Dang Thi
- School of Chemistry and Life Sciences, Hanoi University of Science and Technology Hanoi Vietnam
| | - Linh Giang Hoang Thi
- School of Chemistry and Life Sciences, Hanoi University of Science and Technology Hanoi Vietnam
| | - Chinh Dang Huynh
- School of Chemistry and Life Sciences, Hanoi University of Science and Technology Hanoi Vietnam
| | - Hoai Phuong Nguyen Thi
- Department of Chemistry and Environment, Joint Vietnam-Russia Tropical Science and Technology Research Center 63 Nguyen Văn Huyen Street, Cau Giay Ha Noi Vietnam
| | - Duc D La
- Laboratory of Advanced Materials Chemistry, Institute for Advanced Study in Technology, Ton Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University Ho Chi Minh City Vietnam
| |
Collapse
|
19
|
Pan L, Liu Z, Hernandez MV, Schroeder BC, Sun Y, Faul CFJ. Polyaniline-Based Cationic Porous Organic Polymers for Fast and Efficient Anion-Exchange-Driven Capture of Cr 2O 7 2. ACS APPLIED POLYMER MATERIALS 2024; 6:6416-6424. [PMID: 38903399 PMCID: PMC11186002 DOI: 10.1021/acsapm.4c00658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 06/22/2024]
Abstract
Efficient treatment of wastewater contaminated with carcinogenic Cr(VI) has been a long-term challenge for both academic and industrial research efforts. Removal of Cr(VI) species by ion exchange is a relatively simple and efficient method, and its combination with highly tailorable nanomaterials is promising for the treatment of such wastewater. Here, we report a type of cationic porous organic polymer (POP), namely, PTPA-PIP, which can be prepared simply by converting the corresponding aromatic polyamine PTPA to its protonated form, thereby significantly increasing its hydrophilicity and ability to disperse homogeneously in water, crucial for application in water treatment. In addition to detailed characterization of the physicochemical properties of PTPA-PIP (including using Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET), and solid-state NMR techniques), adsorption experiments demonstrate that PTPA-PIP removes low-concentration dichromate anions with very high performance, including excellent exchange capacity (maximum capacity of 230 mg Cr2O7 2-/g PTPA-PIP), ultrafast removal (initial adsorption rate of 83 mg g-1 min-1), excellent selectivity (∼10% loss of adsorption capacity in the presence of 40-fold concentration of competing anions), as well as superior reusability (reusable for at least 5 cycles without compromised performance). These results demonstrate that PTPA-PIP is an outstanding candidate for application in industrial settings for the effective removal of harmful Cr(VI) pollutants in wastewater.
Collapse
Affiliation(s)
- Long Pan
- School
of Chemistry, University of Bristol, Bristol, England BS8 1TS, U.K.
- Institute
for Advanced Pharmaceutical Materials, Asymchem
Life Sciences (Tianjin) Co., Ltd., No.265 South Avenue, TEDA, Tianjin 300462, P. R. China
| | - Zilu Liu
- Department
of Chemistry, University College London, London WC1H 0AJ, U.K.
| | | | - Bob C. Schroeder
- Department
of Chemistry, University College London, London WC1H 0AJ, U.K.
| | - Yuchen Sun
- Institute
for Advanced Pharmaceutical Materials, Asymchem
Life Sciences (Tianjin) Co., Ltd., No.265 South Avenue, TEDA, Tianjin 300462, P. R. China
| | - Charl F. J. Faul
- School
of Chemistry, University of Bristol, Bristol, England BS8 1TS, U.K.
| |
Collapse
|
20
|
Ying R, Yang B, Chen M, Zhang X, Zhao C, Long T, Qiu H, Ji W. Characteristics and numerical simulation of chromium transportation, migration and transformation in soil-groundwater system. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134414. [PMID: 38678718 DOI: 10.1016/j.jhazmat.2024.134414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/14/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Understanding chromium (Cr) migration and dispersion patterns in the soil-groundwater system is critical for the control and remediation of subsurface Cr contamination. In this study, a typical Cr-contaminated site from the Pearl River Delta (PRD) in China was simulated with a three-dimensional (3D) sandbox experiment to investigate the migration and transformation behavior of Cr. Results revealed that under the combined influence of rainfall and groundwater flow, a complex flow field favorable for 3D migration and solute dispersion was formed. The flow field characteristics were influenced by water-table depth, which in turn affected Cr behavior in the system. Moreover, downward flow field expansion under low water-table conditions led to Cr vertical migration range expansion, causing greater contamination in the deep soil. The migration process was accompanied with Cr(VI) reduction, during which approximately 75 % of the total Cr was immobilized in soils. The reactive transport model achieved a good fit for Cr retention and morphological distribution in the solid phase. The model indicates that Cr is more readily transported and dispersed with groundwater, and Cr migrated and spread downstream by 15 m during the eighth year. Therefore, managing water-table depth could be a strategy to minimize the Cr vertical migration and contamination.
Collapse
Affiliation(s)
- Rongrong Ying
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China
| | - Bin Yang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Meng Chen
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China
| | - Xiaoyu Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China
| | - Caiyi Zhao
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China
| | - Tao Long
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Wenbing Ji
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China.
| |
Collapse
|
21
|
Sharma S, Sharma M, Kumar R, Akhtar MS, Umar A, Alkhanjaf AAM, Baskoutas S. Recent advances and mechanisms of microbial bioremediation of nickel from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:40224-40244. [PMID: 37930578 DOI: 10.1007/s11356-023-30556-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023]
Abstract
The global concern over emerging pollutants, characterized by their low concentrations and high toxicity, necessitates effective remediation strategies. Among these pollutants, pharmaceutical and personal care products, pesticides, surfactants, and persistent organic pollutants have gained significant attention. These contaminants are extensively distributed within aquatic ecosystems, posing threats to both human and aquatic physiological systems. Nickel, a valuable metal renowned for its corrosion-resistant properties, is widely utilized in various industrial processes, leading to the generation of nickel-containing waste streams, including batteries, catalysts, wastewater, and electrolyte bleed-off. Contamination of soil, water, or air by these waste materials can have adverse effects on the environment and human health. This review article focuses on the recent advancements in environmental and economic implications associated with the removal of nickel from diverse waste sources. Physicochemical technologies employed for treating different nickel-containing effluents and wastewater are discussed, alongside bioremediation techniques and the underlying mechanisms by which microorganisms facilitate nickel removal. The recovery of nickel from waste materials holds paramount importance not only from an economic standpoint but also to mitigate environmental impacts.
Collapse
Affiliation(s)
- Sonu Sharma
- Department of Biosciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana (Ambala), Haryana, 133207, India
| | - Monu Sharma
- Department of Biosciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana (Ambala), Haryana, 133207, India
| | - Raman Kumar
- Department of Biosciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana (Ambala), Haryana, 133207, India.
| | - Mohammad Sayeed Akhtar
- Department of Botany, Gandhi Faiz-e-Aam College, Shahjahanpur, Uttar Pradesh, 242001, India
| | - Ahmad Umar
- Department of Chemistry, Faculty of Science and Arts, and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001, Saudi Arabia
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Abdulrab Ahmed M Alkhanjaf
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, 11001, Saudi Arabia
| | - Sotirios Baskoutas
- Department of Materials Science, University of Patras, 26500, Patras, Greece
| |
Collapse
|
22
|
Rahmatpour A, Alizadeh AH. Biofilm hydrogel derived from physical crosslinking (self-assembly) of xanthan gum and chitosan for removing Cd 2+, Ni 2+, and Cu 2+ from aqueous solution. Int J Biol Macromol 2024; 266:131394. [PMID: 38582469 DOI: 10.1016/j.ijbiomac.2024.131394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 02/20/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
This study aimed to fabricate a series of biodegradable hydrogel films by gelating/physically crosslinking a blend of xanthan gum (XG) and chitosan (CS) in various combinations using a facile, green, and low cost solution casting technique. The adsorption of Cd2+, Cu2+ and Ni2+ by the XG/CS biofilm in aqueous solution was studied in batch experiments to determine how the pH of the solution, contact time, dosage of adsorbent, initial metal ion concentration and ionic strength affect its adsorption. A highly pH-dependent adsorption process was observed for three metal ions. A maximum amount of Cd2+, Ni2+, and Cu2+ ions was adsorbable with 50 mg of the adsorbent at pH 6.0 for an initial metal concentration of 50 mg.L-1. An empirical pseudo-second-order model seems to fit the kinetic experimental data reasonably well. It was found that the Langmuir model correlated better with equilibrium isotherm when compared with the Freundlich model. For Cd2+, Ni2+, and Cu2+ ions at 25 °C, the maximum monolayer adsorption capacity was 152.33, 144.79, and 139.71 mg.g-1, respectively. Furthermore, the biofilm was capable of regenerating, allowing metal ions to adsorb and desorb for five consecutive cycles. Therefore, the developed biodegradable film offers the potential for remediation of specified metal ions.
Collapse
Affiliation(s)
- Ali Rahmatpour
- Polymer Chemistry Research Laboratory, Faculty of Chemistry and Petroleum Science, Shahid Beheshti University, P. O. Box 1983969411, Tehran, Iran.
| | - Amir Hossein Alizadeh
- Polymer Chemistry Research Laboratory, Faculty of Chemistry and Petroleum Science, Shahid Beheshti University, P. O. Box 1983969411, Tehran, Iran
| |
Collapse
|
23
|
Shi Y, Liu Q, Wu G, Zhao S, Li Y, You S, Huang G. Removal and reduction mechanism of Cr (VI) in Leersia hexandra Swartz constructed wetland-microbial fuel cell coupling system. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116373. [PMID: 38653023 DOI: 10.1016/j.ecoenv.2024.116373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/29/2024] [Accepted: 04/20/2024] [Indexed: 04/25/2024]
Abstract
Cr (VI) is extremely harmful to both the environment and human health, and it can linger in the environment for a very long period. In this research, the Leersia hexandra Swartz constructed wetland-microbial fuel cell (CW-MFC) system was constructed to purify Cr (VI) wastewater. By comparing with the constructed wetland (CW) system, the system electricity generation, pollutants removal, Cr enrichment, and morphological transformation of the system were discussed. The results demonstrated that the L. hexandra CW-MFC system promoted removal of pollutants and production of electricity of the system. The maximum voltage of the system was 499 mV, the COD and Cr (VI) removal efficiency was 93.73% and 97.00%. At the same time, it enhanced the substrate and L. hexandra ability to absorb Cr and change it morphologically transformation. Additionally, the results of XPS and XANES showed that the majority of the Cr in the L. hexandra and substrate was present as Cr (III). In the L. hexandra CW-MFC system, Geobacter also functioned as the primary metal catabolic reducing and electrogenic bacteria. As a result, L. hexandra CW-MFC system possesses the added benefit of removing Cr (VI) while producing energy compared to the traditional CW system.
Collapse
Affiliation(s)
- Yucui Shi
- School of Chemical Engineering and Environment, Weifang University of Science and Technology, Weifang 262700, China; Shandong Engineering Research Center of Green and High-value Marine Fine Chemical, Weifang 262700, China; Weifang Key Laboratory of Chemical Wastewater Pollution Control and Resource Reuse, Weifang 262700, China
| | - Qing Liu
- School of Chemical Engineering and Environment, Weifang University of Science and Technology, Weifang 262700, China; Shandong Engineering Research Center of Green and High-value Marine Fine Chemical, Weifang 262700, China; Weifang Key Laboratory of Chemical Wastewater Pollution Control and Resource Reuse, Weifang 262700, China
| | - Guowei Wu
- Shouguang Hospital of Traditional Chinese Medicine, Weifang 262700, China
| | - Shasha Zhao
- School of Chemical Engineering and Environment, Weifang University of Science and Technology, Weifang 262700, China; Shandong Engineering Research Center of Green and High-value Marine Fine Chemical, Weifang 262700, China; Weifang Key Laboratory of Chemical Wastewater Pollution Control and Resource Reuse, Weifang 262700, China
| | - Yongwei Li
- School of Chemical Engineering and Environment, Weifang University of Science and Technology, Weifang 262700, China; Shandong Engineering Research Center of Green and High-value Marine Fine Chemical, Weifang 262700, China
| | - Shaohong You
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology of Guilin University of Technology, Guilin 541004, China.
| | - Guofu Huang
- School of Chemical Engineering and Environment, Weifang University of Science and Technology, Weifang 262700, China; Shandong Engineering Research Center of Green and High-value Marine Fine Chemical, Weifang 262700, China; Weifang Key Laboratory of Chemical Wastewater Pollution Control and Resource Reuse, Weifang 262700, China.
| |
Collapse
|
24
|
Long T, Luo H, Li H, Sun J, Wang Y, Zhou J, Chen Y, Xu D. Fe-doping green fluorescent carbon dots via co-electrolysis of chrysoidine G and potassium ferrocyanide for sensitive Cr(VI) detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 311:124010. [PMID: 38340446 DOI: 10.1016/j.saa.2024.124010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
In this study, we aimed to synthesis of Fe-doping green fluorescent carbon dots (G-CDs) through the co-electrolysis of chrysoidine G and potassium ferrocyanide for Cr(VI) detection. The use of potassium ferrocyanide improves the quantum yield and sensing performance of G-CDs toward Cr(VI). The G-CDs have a maximum excitation wavelength of 308 nm and an emission wavelength of 510 nm. Comprehensive analyses including Raman, FT-IR, and XPS provided insights into the chemical structure and composition of the G-CDs. Under optimal conditions, G-CDs demonstrated concentration-dependent quenching upon interaction with Cr(VI). A linear relationship within the range of 0.25-100 µM was established with a calibration equation of ΔF/F0 = 0.005 + 0.015CCr(VI), yielding an R2 value of 0.996 and a limit of detection of 0.15 μM. The applicability of the G-CDs method was demonstrated by successful Cr(VI) detection in water samples with recovery rates ranging from 98.8 % to 100.1 % and relative standard deviation within 3.0 %. The fluorescence lifetime and Zeta potential measurements confirmed that the mechanism was via a static quenching process, while redox reaction, nanoparticle aggregation, and surface charge variation also played significant roles.
Collapse
Affiliation(s)
- Tiantian Long
- National Engineering Laboratory for Rice and By-products Further Processing, College of Food Science and Engineering, Central South University of Forestry & Technology, Changsha, 410004, China; College of Food Science and Engineering, Xinjiang Institute of Technology, Aksu, 843100, China
| | - Hongmei Luo
- National Engineering Laboratory for Rice and By-products Further Processing, College of Food Science and Engineering, Central South University of Forestry & Technology, Changsha, 410004, China
| | - Hongchen Li
- National Engineering Laboratory for Rice and By-products Further Processing, College of Food Science and Engineering, Central South University of Forestry & Technology, Changsha, 410004, China
| | - Jingbo Sun
- National Engineering Laboratory for Rice and By-products Further Processing, College of Food Science and Engineering, Central South University of Forestry & Technology, Changsha, 410004, China
| | - Yang Wang
- Department of Urology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan 570000, China
| | - Jiaquan Zhou
- Department of Urology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan 570000, China
| | - Yi Chen
- Hunan Intellijoy Biotechnology Co., Ltd., Changsha, Hunan 410125, China
| | - Dong Xu
- National Engineering Laboratory for Rice and By-products Further Processing, College of Food Science and Engineering, Central South University of Forestry & Technology, Changsha, 410004, China.
| |
Collapse
|
25
|
Tang L, Yang J, Liu X, Kang L, Li W, Wang T, Qian T, Li B. Biodegradation of phenanthrene-Cr (VI) co-contamination by Pseudomonas aeruginosa AO-4 and characterization of enhanced degradation of phenanthrene. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170744. [PMID: 38325483 DOI: 10.1016/j.scitotenv.2024.170744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/09/2024] [Accepted: 02/04/2024] [Indexed: 02/09/2024]
Abstract
Microorganisms capable of simultaneously remediating heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) pollution hold significant importance in bioremediation efforts. In this study, we investigated the ability of Pseudomonas aeruginosa AO-4 to simultaneously degrade phenanthrene (PHE) and reduce Cr (VI). Specifically, it has the ability to reduce 100 % of Cr (VI) (30 mg/L) while degrading 43.8 % of PHE (50 mg/L). In batch experiments, it was observed that the presence of Cr (VI) can enhance the degradation of PHE by strain AO-4. The solubility of PHE in soluble extracellular polymeric substances (S-EPS) was found to be related to the initial concentration of Cr (VI), which could explain why Cr (VI) promotes the degradation of PHE. Additionally, XPS analysis confirmed that Cr (VI) was reduced to Cr (III) with S-EPS produced by Pseudomonas aeruginosa AO-4. GC-MS analysis was conducted to analyze the degradation metabolites of phenanthrene, di(2-ethylhexyl) phthalate and 2TMS derivatives of salicylic acid were detected, indicating that Pseudomonas aeruginosa AO-4 is capable of degrading phenanthrene through two distinct pathways. These findings demonstrate the potential of Pseudomonas aeruginosa AO-4 in the treatment of co-contamination scenarios involving PAHs and HMs.
Collapse
Affiliation(s)
- Liuyuan Tang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Earth Surface Processes and Resource Ecological Security in Fenhe River Basin, Shanxi Engineering Research Center of Low Carbon Remediation for Water and Soil Pollution in Yellow River Basin, Jinzhong 030600, China
| | - Jing Yang
- Shanxi Transportation Holding Ecological Environment Co., Ltd, Shanxi 030000, China
| | - Xiaona Liu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Earth Surface Processes and Resource Ecological Security in Fenhe River Basin, Shanxi Engineering Research Center of Low Carbon Remediation for Water and Soil Pollution in Yellow River Basin, Jinzhong 030600, China
| | - Lingke Kang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Earth Surface Processes and Resource Ecological Security in Fenhe River Basin, Shanxi Engineering Research Center of Low Carbon Remediation for Water and Soil Pollution in Yellow River Basin, Jinzhong 030600, China
| | - Wenjun Li
- Shanxi Transportation Holding Ecological Environment Co., Ltd, Shanxi 030000, China
| | - Ting Wang
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan, Shanxi 030024, China
| | - Tianwei Qian
- College of Environmental Science and Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Earth Surface Processes and Resource Ecological Security in Fenhe River Basin, Shanxi Engineering Research Center of Low Carbon Remediation for Water and Soil Pollution in Yellow River Basin, Jinzhong 030600, China.
| | - Bo Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Earth Surface Processes and Resource Ecological Security in Fenhe River Basin, Shanxi Engineering Research Center of Low Carbon Remediation for Water and Soil Pollution in Yellow River Basin, Jinzhong 030600, China.
| |
Collapse
|
26
|
Wu D, Zhang B, Shi S, Tang R, Qiao C, Li T, Jia J, Yang M, Si X, Wang Y, Sun X, Xiao D, Li F, Song H. Engineering extracellular electron transfer to promote simultaneous brewing wastewater treatment and chromium reduction. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133171. [PMID: 38147750 DOI: 10.1016/j.jhazmat.2023.133171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/06/2023] [Accepted: 12/01/2023] [Indexed: 12/28/2023]
Abstract
Microbial fuel cell (MFC) technology has been developed for wastewater treatment in the anodic chamber, and heavy metal reduction in the cathodic chamber. However, the limited extracellular electron transfer (EET) rate of exoelectrogens remained a constraint for practical applications of MFCs. Here, a MFC system that used the electricity derived from anodic wastewater treatment to drive cathodic Cr6+ reduction was developed, which enabled an energy self-sustained approach to efficiently address Cr6+ contamination. This MFC system was achieved by screening exoelectrogens with a superior EET rate, promoting the exoelectrogenic EET rate, and constructing a conductive bio-anode. Firstly, Shewanella algae-L3 was screened from brewing wastewater acclimatized sludge, which generated power density of 566.83 mW m-2. Secondly, to facilitate EET rate, flavin synthesis gene operon ribADEHC was overexpressed in engineered S. algae-L3F to increase flavins biosynthesis, which promoted the power density to 1233.21 mW m-2. Thirdly, to facilitate interface electron transfer, carbon nanotube (CNT) was employed to construct a S. algae-L3F-CNT bio-anode, which further enhanced power density to 3112.98 mW m-2. Lastly, S. algae-L3F-CNT bio-anode was used to harvest electrical energy from brewing wastewater to drive cathodic Cr6+ reduction in MFC, realizing 71.43% anodic COD removal and 98.14% cathodic Cr6+ reduction. This study demonstrated that enhanced exoelectrogenic EET could facilitate cathodic Cr6+ reduction in MFC.
Collapse
Affiliation(s)
- Deguang Wu
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin Industrial Microbiology Key Lab, College of Biotechnology, Tianjin University of Science and Technology, Box 08, No. 29, 13ST. TEDA, Tianjin 300457, PR China
| | - Baocai Zhang
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Sicheng Shi
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Rui Tang
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Chunxiao Qiao
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Teng Li
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Jichao Jia
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Meiyi Yang
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Xiaoguang Si
- The Institute of Seawater Desalination and Multipurpose Utilization, Ministry of Natural Resources, Tianjin, PR China
| | - Yifei Wang
- College of Biological Engineering, Tianjin Agricultural University, Tianjin, PR China
| | - Xi Sun
- College of Biological Engineering, Tianjin Agricultural University, Tianjin, PR China
| | - Dongguang Xiao
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin Industrial Microbiology Key Lab, College of Biotechnology, Tianjin University of Science and Technology, Box 08, No. 29, 13ST. TEDA, Tianjin 300457, PR China.
| | - Feng Li
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China.
| | - Hao Song
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China.
| |
Collapse
|
27
|
Li W, Feng Z, Zhu X, Gong W. Efficient removal of Cr (VI) from coal gangue by indigenous bacteria-YZ1 bacteria: Adsorption mechanism and reduction characteristics of extracellular polymer. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116047. [PMID: 38301582 DOI: 10.1016/j.ecoenv.2024.116047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/02/2024] [Accepted: 01/27/2024] [Indexed: 02/03/2024]
Abstract
The existence of heavy metals (especially Cr (VI)) in coal gangue has brought great safety risks to the environment. The indigenous bacteria (YZ1 bacteria) were separated and applied for removing Cr (VI) from the coal gangue, in which its tolerance to Cr (VI) was explored. The removal mechanism of Cr (VI) was investigated with pyrite in coal gangue, metabolite organic acids and extracellular polymer of YZ1 bacteria. The concentration of Cr (VI) could be stabilized around 0.012 mg/L by the treatment with YZ1 bacteria. The Cr (VI) tolerance of YZ1 bacteria reached 60 mg/L, and the removal efficiency of Cr (VI) was more than 95% by using YZ1 bacteria combined with pyrite. The organic acids had a certain reducing ability to Cr (VI) (removal efficiency of less than 10%). The extracellular polymers (EPS) were protective for the YZ1 bacteria resisting to Cr (VI). The polysaccharides and Humic-like substances in the soluble extracellular polymers (S-EPS) had strong adsorption and reduction effect on Cr (VI), in which the tryptophan and tyrosine proteins in the bound extracellular polymers (LB-EPS and TB-EPS) could effectively promote the reduction of Cr (VI). YZ1 bacteria could obviously reduce the damage of Cr (VI) from coal gangue to the environment.
Collapse
Affiliation(s)
- Wang Li
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China; Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, China
| | - Zhaoxiang Feng
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China; Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, China
| | - Xiaobo Zhu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China; Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, China.
| | - Wenhui Gong
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China
| |
Collapse
|
28
|
Akhzari F, Naseri T, Mousavi SM, Khosravi-Darani K. A sustainable solution for alleviating hexavalent chromium from water streams using Lactococcus lactis AM99 as a novel Cr(VI)-reducing bacterium. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120190. [PMID: 38306859 DOI: 10.1016/j.jenvman.2024.120190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/03/2024] [Accepted: 01/20/2024] [Indexed: 02/04/2024]
Abstract
Chromium, extensively used in various industries, poses significant challenges due to its environmental impact. The threat of Cr(VI) causes critical concerns in aquatic ecosystems as a consequence of the fluidity of water. The conventional approach for the treatment of effluents containing Cr(VI) is reducing Cr(VI) to low-noxious Cr(III). This research is related to a Gram positive bacterium newly isolated from tannery effluent under aerobic conditions. To characterize functional groups on the isolate, Fourier transform infrared spectroscopy was utilized. The effect of different factors on Cr(VI) bioreduction was investigated, including temperature, initial Cr(VI) concentration, acetate concentration, and Tween 80 surfactant. Under optimal conditions (37 °C and 0.90 g/L sodium acetate), the bioreduction rate of the isolate, identified as Lactococcus lactis AM99, achieved 88.0 % at 300 mg/L Cr(VI) during 72 h (p < 0.05). It was observed that Cr(VI) bioreduction was enhanced by the acetate in both the quantity and intensity, while Tween 80 had no impact on the reaction. The strain AM99 exhibited remarkable characteristics, notably a marginal decrease in growth at elevated concentrations of hexavalent chromium and an exceptional potential to reduce Cr(VI) even at very low biomass levels, surpassing any prior findings in the associated research. Furthermore, The isolate could tolerate 1400 mg/L Cr(VI) in a solid medium. These distinctive features make the isolate a promising and well-suited candidate for remediating Cr(VI)-polluted environments. Additionally, the impact of biogenic extracellular polymer produced by the strain AM99 on reduction was examined at different temperatures.
Collapse
Affiliation(s)
- Farid Akhzari
- Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Tehran, Iran
| | - Tannaz Naseri
- Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Tehran, Iran
| | - Seyyed Mohammad Mousavi
- Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Tehran, Iran; Modares Environmental Research Institute, Tarbiat Modares University, Tehran, Iran.
| | - Kianoush Khosravi-Darani
- Department of Food Technology Research, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Shi XC, Wang K, Xue M, Mao W, Xu K, Tremblay PL, Zhang T. Ultrafast removal of toxic Cr(VI) by the marine bacterium Vibrio natriegens. CHEMOSPHERE 2024; 350:141177. [PMID: 38211787 DOI: 10.1016/j.chemosphere.2024.141177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/04/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
The fastest-growing microbe Vibrio natriegens is an excellent platform for bioproduction processes. Until now, this marine bacterium has not been examined for bioremediation applications, where the production of substantial amounts of biomass would be beneficial. V. natriegens can perform extracellular electron transfer (EET) to Fe(III) via a single porin-cytochrome circuit conserved in Vibrionaceae. Electroactive microbes capable of EET to Fe(III) usually also reduce toxic metals such as carcinogenic Cr(VI), which is converted to Cr(III), thus decreasing its toxicity and mobility. Here, the performance of V. natriegens was explored for the bioremediation of Cr(VI). At a density of 100 mg/mL, V. natriegens removed 5-20 mg/L Cr(VI) within 30 s and 100 mg/L Cr(VI) within 10 min. In comparison, the model bacterium Escherichia coli grown to a comparable cell density removed Cr(VI) 36 times slower. To eliminate Cr(VI), V. natriegens had to be metabolically active, and functional outer-membrane c-type cytochromes were required. At the end of the Cr(VI) removal process, V. natriegens had reduced all of it into Cr(III) while adsorbing more than half of the metallic ions. These results demonstrate that V. natriegens, with its fast metabolism, is a viable option for the rapid treatment of aqueous pollution with Cr.
Collapse
Affiliation(s)
- Xiao-Chen Shi
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan, 430070, PR China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China; Advanced Engineering Technology Research Institute of Zhongshan City, Wuhan University of Technology, Zhongshan, 528437, PR China
| | - Kefan Wang
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Miao Xue
- Institut WUT-AMU, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Weijia Mao
- Institut WUT-AMU, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Kai Xu
- Center for Material Research and Analysis, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Pier-Luc Tremblay
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan, 430070, PR China; Institut WUT-AMU, Wuhan University of Technology, Wuhan, 430070, PR China; Shaoxing Institute for Advanced Research, Wuhan University of Technology, Shaoxing, 312300, PR China; Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya, 572024, PR China.
| | - Tian Zhang
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan, 430070, PR China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China; Institut WUT-AMU, Wuhan University of Technology, Wuhan, 430070, PR China; Shaoxing Institute for Advanced Research, Wuhan University of Technology, Shaoxing, 312300, PR China; Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya, 572024, PR China.
| |
Collapse
|
30
|
Lin C, Tang Y, Sun J, Dong B, Zuxin X. Tracking of the conversion and transformation pathways of dissolved organic matter in sludge hydrothermal liquids during Cr(VI) reduction using FT-ICR MS. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133566. [PMID: 38246056 DOI: 10.1016/j.jhazmat.2024.133566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 01/23/2024]
Abstract
In this study, the remediation effects of two types of sludge (ferric-based flocculant and non-ferric-based flocculant) on Cr(VI)-polluted wastewater were evaluated to clarify the key components in sludge hydrothermal solutions responsible for reducing Cr(VI) and understand the underlying molecular-level transformation mechanisms. The results revealed that the primary reactions during the hydrothermal processes were deamination and decarboxylation reactions. Correlation analysis highlighted proteins, reducing sugars, amino groups, and phenolic hydroxyl groups as the major contributors. In-depth analysis of the transformation process of functional groups within dissolved organic matter (DOM) and synergistic redox process between Cr(VI) and DOM in hydrothermal solutions demonstrated that phenolic hydroxyl and amino groups gradually underwent oxidation during reduction of Cr(VI) by DOM, forming aldehyde and carboxyl groups, among the others. Time-dependent density functional theory calculations revealed notable shift of reducing functional groups from ground state to excited state following iron complexation, ultimately facilitating reduction reaction. Subsequent investigations, including soil column leaching and seed germination rate tests, indicated that synergistic redox interaction between Cr(VI) and DOM significantly reduced waterborne heavy metal and toxic organic pollution. These findings carry substantial implications for sludge treatment and remediation of heavy metal pollution in wastewater, offering valuable insights into effective environmental remediation strategies.
Collapse
Affiliation(s)
- Chuanjin Lin
- College of Environmental Science and Engineering, Tongji University, No. 1239, Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, No. 1239, Siping Road, Shanghai 200092, China
| | - Yanfei Tang
- College of Environmental Science and Engineering, Tongji University, No. 1239, Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, No. 1239, Siping Road, Shanghai 200092, China
| | - Jing Sun
- College of Environmental Science and Engineering, Tongji University, No. 1239, Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, No. 1239, Siping Road, Shanghai 200092, China
| | - Bin Dong
- College of Environmental Science and Engineering, Tongji University, No. 1239, Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, No. 1239, Siping Road, Shanghai 200092, China; YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing 100038, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China.
| | - Xu Zuxin
- College of Environmental Science and Engineering, Tongji University, No. 1239, Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, No. 1239, Siping Road, Shanghai 200092, China
| |
Collapse
|
31
|
Huang CC, Song ZY, Xiao XY, Cai X, Yang YF, Chen SH, Li PH, Yang M, Huang XJ. In Situ Laser-Induced Breakdown Spectroscopy for Chromium Speciation Analysis Based on the Interactions of Oxygen-Containing Groups with Functionalized Co 3O 4-rGO: Evidence from Advanced Optical Techniques and Density Functional Theoretical Calculations under Electric Field. Anal Chem 2024; 96:179-187. [PMID: 38100653 DOI: 10.1021/acs.analchem.3c03536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Achieving accurate detection of different speciations of heavy metal ions (HMIs) in an aqueous solution is an urgent problem due to the different bioavailabilities and physiological toxicity. Herein, we nominated a novel strategy to detect HCrO4- and Cr(OH)2+ at a trace level via the electrochemical sensitive surface constructed by Co3O4-rGO modified with amino and carboxyl groups, which revealed that the interactions between distinct functional groups and different oxygen-containing groups of target ions are conducive to the susceptible and anti-interference detection. The detection sensitivities of 19.46 counts μg-1 L for HCrO4- and 13.44 counts μg-1 L for Cr(OH)2+ were obtained under optimal conditions, while the limits of detection were 0.10 and 0.12 μg L-1, respectively. Satisfactory anti-interference and actual water sample analysis results were obtained. A series of advanced optical techniques like X-ray photoelectron spectroscopy, X-ray absorption near-edge structure technology, and density functional theory calculations under an electric field demonstrated that chemical interactions between groups contribute more to the fixation of target ions than electrical attraction alone. The presence of oxygen-containing groups distinct from simple ionic forms was a critical factor in the selectivity and anti-interference detection. Furthermore, the valence cycle of Co(II)/(III) synergistically boosted the detection performance. This research provides a promising tactic from the microscopic perspective of groups' interactions to accomplish the precise speciation analysis of HMIs in the water environment.
Collapse
Affiliation(s)
- Cong-Cong Huang
- Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zong-Yin Song
- Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xiang-Yu Xiao
- Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xin Cai
- Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yuan-Fan Yang
- Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Shi-Hua Chen
- Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Pei-Hua Li
- Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Meng Yang
- Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Xing-Jiu Huang
- Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
32
|
Li Q, Zhang X, Zheng J, Qin J, Ou C, Liao Q, Si M, Yang Z, Yang W. Phase transformation of Cr(VI) host-mineral driven by citric acid-aided mechanochemical approach for advanced remediation of chromium ore processing residue-contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132530. [PMID: 37716262 DOI: 10.1016/j.jhazmat.2023.132530] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/18/2023] [Accepted: 09/09/2023] [Indexed: 09/18/2023]
Abstract
The slow release of Cr(VI) from chromium ore processing residue-contaminated soil (COPR-soil) poses a significant environmental and health risk, yet advanced remediation techniques are still insufficient. Here, the slow-release behavior of Cr(VI) in COPR-soil is observed and attributed to the embedded Cr(VI) in the lattice of vaterite due to the isomeric substitution of CrO42- for CO32-. A citric acid-aided mechanochemical approach with FeS2/ZVI as reductive material was developed and found to be highly effective in remediating COPR-soil. Almost all Cr(VI) in COPR-soil, including Cr(VI) embedded in the minerals, are reduced with a reduction efficiency of 99.94%. Cr(VI) reduction kinetics indicate that the Cr(VI) reduction rate constant in the presence of citric acid was 4.8 times higher compared to its absence. According to the Raman spectroscopy, X-ray diffraction (XRD), and Electron Probe X-ray Micro-Analyzer (EPMA) analysis, the reduction of Cr(VI) embedded in vaterite was mainly attributed to the citric acid-induced protonation effect. That is, under the protonation effect, the embedded Cr(VI) could be released from vaterite through its phase transformation to calcite, whose affinity to Cr(VI) is low. While the reduction of released Cr(VI) could be promoted due to the complexation of citric acid with disulfide groups on FeS2/ZVI. The results of long-term stability tests demonstrated that the remediated COPR-soil exhibited excellent long-term stability, which may also be associated with improved utilization of available carbon and electron donors by the Cr(VI) reducing bacteria (Proteobacteria)-dominated microbial community in the presence of citric acid, thereby promoting to establish a stable reducing microenvironment. Collectively, these findings will further our understanding of the reduction remediation of COPR-soil, especially in the case of Cr(VI) embedded in minerals.
Collapse
Affiliation(s)
- Qi Li
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Xiaoming Zhang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Junhao Zheng
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Jingxi Qin
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Chunyu Ou
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Qi Liao
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha 410083, PR China
| | - Mengying Si
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha 410083, PR China
| | - Zhihui Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha 410083, PR China
| | - Weichun Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha 410083, PR China.
| |
Collapse
|
33
|
Boopathi S, Haridevamuthu B, Gandhi A, Nayak SPRR, Sudhakaran G, Rajagopal R, Arokiyaraj S, Arockiaraj J. Neurobehavioral impairments from chromium exposure: Insights from a zebrafish model and drug validation. Comp Biochem Physiol C Toxicol Pharmacol 2024; 275:109780. [PMID: 37884255 DOI: 10.1016/j.cbpc.2023.109780] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/15/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
We have developed a zebrafish model to explore the alterations in neurobehaviors resulting from both acute and chronic exposure to chromium (Cr). Zebrafish exposed to half (HC group: 19.7 mg/L) and a quarter (LC group: 9.85 mg/L) of the LD50 concentration of Cr for a span of 2 weeks exhibited aberrant locomotion, heightened anxiety, cognitive impairment, and reduced aggression - hallmark traits reminiscent of an Alzheimer's Disease (AD)-like syndrome. Furthermore, zebrafish exposed to an environmentally relevant concentration of Cr (EC group: 100 μg/L) for an extended period of 9 weeks exhibited behaviors comparable to those observed in the HC group. Moreover, the study investigated the neuroprotective effects of donepezil (Don), galantamine (Gal) and resveratrol (Res) drugs in response to neurobehavioral impairments induced by Cr (VI) exposure in zebrafish. Don and Res effectively protect the zebrafish from Cr (VI)-induced anxiety, and memory impairment. Furthermore, Cr (VI) exposure induced heightened oxidative stress while simultaneously diminishing antioxidant enzyme levels. Remarkably, these effects were counteracted in the drug-treated groups. Likewise, exposure to Cr (VI) led to an increase in the expression of genes linked to AD and neuroinflammation. Nevertheless, drug treatment reversed this effect in Cr (VI)-exposed fish. The results of our study highlight the potentials of zebrafish model in demonstrating neurobehavioral impairments induced by Cr (VI), thereby paving the way for its utilization in vivo neurobehaviors investigations and pharmaceutical screening.
Collapse
Affiliation(s)
- Seenivasan Boopathi
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India. https://twitter.com/@iamboopathi
| | - B Haridevamuthu
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - Akash Gandhi
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - S P Ramya Ranjan Nayak
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - Gokul Sudhakaran
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Selvaraj Arokiyaraj
- Department of Food Science & Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
34
|
Zhang Z, Ren J, Liang J, Xu X, Zhao L, Qiu H, Li H, Cao X. New Insight into the Natural Detoxification of Cr(VI) in Fe-Rich Surface Soil: Crucial Role of Photogenerated Silicate-Bound Fe(II). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21370-21381. [PMID: 37946506 DOI: 10.1021/acs.est.3c05767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Photoexcitation of natural semiconductor Fe(III) minerals has been proven to generate Fe(II), but the photogeneration of Fe(II) in Fe-rich surface soil as well as its role in the redox biogeochemistry of Cr(VI) remains poorly understood. In this work, we confirmed the generation of Fe(II) in soil by solar irradiation and proposed a new mechanism for the natural reductive detoxification of Cr(VI) to Cr(III) in surface soil. The kinetic results showed that solar irradiation promoted the reduction of Cr(VI) in Fe-rich soils, while a negligible Cr(VI) reduction was observed in the dark. Fe(II), mainly in the form of silicate-bound Fe(II), was generated under solar irradiation and responsible for the reduction of Cr(VI) in soils, which was evidenced by sequential extraction, transmission electron microscopy with electron energy loss spectroscopy, and electron transfer calculation. Photogenerated silicate-bound Fe(II) resulted from the massive clay-iron (hydr)oxide associations, consisting of iron (hydr)oxides (e.g., hematite and goethite) and kaolinite. These associations could generate Fe(II) under solar irradiation either via intrinsic excitation to produce photoelectrons or via the ligand-to-metal charge transfer process after the formation of clay-iron (hydr)oxide-organic matter complexes, which was proven by photoluminescence spectroscopy and X-ray photoelectron spectroscopy. These findings highlight the important role of photogenerated Fe(II) in Cr(VI) reduction in surface soil, which advances a fundamental understanding of the natural detoxification of Cr(VI) as well as the redox biogeochemistry of Cr(VI) in soil.
Collapse
Affiliation(s)
- Zehong Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jia Ren
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jun Liang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyun Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ling Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
35
|
Jafari E, Malayeri MR, Brückner H, Weimer T, Krebs P. Innovative spiral electrode configuration for enhancement of electrocoagulation-flotation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119085. [PMID: 37757685 DOI: 10.1016/j.jenvman.2023.119085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/09/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023]
Abstract
The performance of electrocoagulation-flotation (ECF) process can profoundly be affected by the reactor design and electrode configuration. These may, in turn, influence the removal efficiency, flow hydrodynamic, floc formation, and flotation/settling characteristics. The present work aimed at developing a new spiral electrode configuration to enhance the ECF process. To do so, the impacts of parameters such as energy consumption, removal efficiency of the contaminants from industrial wastewater with a composition of turbidity, emulsified oil, and heavy metals (Si, Zn, Pb, Ni, Cu, Cr, and Cd), as well as stirring speed and foaming have been investigated. Comparison was also made between the experimental results of the new electrode configuration with the conventional rectangular cell with plate electrode configuration with the same volume and electrode surface area. The findings revealed that energy consumption of the spiral electrode configuration within the operating times of 10, 20, 30, 32, 48, and 70 min, was approximately 20% lower compared to that of the conventional ECF. Moreover, the maximum and minimum removal efficiency of 97% and 60% were obtained for turbidity and TOC for the stirring speed of 500 rpm and Reynolds number of 10,035, respectively. Finally, the formed gas bubbles tilted toward the center due to the enhanced flow hydrodynamic which resulted in substantial reduction of foam formation.
Collapse
Affiliation(s)
- Ehsan Jafari
- Institute of Urban and Industrial Water Management, Technische Universität Dresden, Germany
| | - M Reza Malayeri
- Department of Chemical Engineering, Shiraz University, Iran.
| | - Heike Brückner
- Institute of Urban and Industrial Water Management, Technische Universität Dresden, Germany
| | - Thomas Weimer
- Department of Research and Development, Spiraltec GmbH, Germany
| | - Peter Krebs
- Institute of Urban and Industrial Water Management, Technische Universität Dresden, Germany
| |
Collapse
|
36
|
Biswas J, Sarkar HS, Paul AK, Mandal S. Simultaneous conversion of chromium and malachite green coexists in halophilic bacterium Halomonas xianhensis SUR308 isolated from a solar saltern. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:118881-118896. [PMID: 37922074 DOI: 10.1007/s11356-023-30652-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/20/2023] [Indexed: 11/05/2023]
Abstract
Many industries are known to use heavy metals like chromium (Cr) to fix dyes in the fabrication processes and malachite green (MG) as colorant. Alkalinity, elevated temperature, or salinity of the industrial effluents makes conventional physicochemical removal of MG and hexavalent chromium [Cr(VI)] more difficult to apply and demands to perceive potential cost-effective and environment-friendly treatment methods to eliminate or convert them into less toxic compounds. Here, we report simultaneous removal and bioconversion of MG and Cr(VI) by a halophilic biofilm-forming bacterium Halomonas xianhensis SUR308. It can efficiently produce exopolysaccharides as extracellular polymeric substances (EPS) and form biofilm under oxygen limiting condition. The reduction of hexavalent chromium [Cr(VI)] to trivalent chromium [Cr(III)] is about 100%, and 95% after 84 h of growth in shaken and stagnant culture, respectively. The strain completely decolorizes MG after 48 h of growth in shaken culture. Furthermore, we found that strain SUR308 can efficiently detoxify chromium by reduction and degrades MG via producing various intermediate products simultaneously. Most interestingly, such conversions can also take place in alkaline environment and in environment where substantial amount of salt is present. These unique features of strain SUR308 make it suitable for the simultaneous remediation of toxic heavy metals and hazardous dye even from the environment having higher pH and salinity. The detail molecular mechanism of the bioconversion with its application in open environment would be the future research focus for bioprospecting strain SUR308.
Collapse
Affiliation(s)
- Jhuma Biswas
- Laboratory of Molecular Bacteriology, Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Himadri Sekhar Sarkar
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, 700032, India
| | - Amal Kanti Paul
- Microbiology Laboratory, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Sukhendu Mandal
- Laboratory of Molecular Bacteriology, Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
37
|
Khater DZ, Amin RS, Fetohi AE, Mahmoud M, El-Khatib KM. Insights on hexavalent chromium(VI) remediation strategies in abiotic and biotic dual chamber microbial fuel cells: electrochemical, physical, and metagenomics characterizations. Sci Rep 2023; 13:20184. [PMID: 37978236 PMCID: PMC10656525 DOI: 10.1038/s41598-023-47450-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023] Open
Abstract
Hexavalent chromium [Cr(VI)] is one of the most carcinogenic and mutagenic toxins, and is commonly released into the environemt from different industries, including leather tanning, pulp and paper manufacturing, and metal finishing. This study aimed to investigate the performance of dual chamber microbial fuel cells (DMFCs) equipped with a biocathode as alternative promising remediation approaches for the biological reduction of hexavalent chromium [Cr(VI)] with instantaneous power generation. A succession batch under preliminary diverse concentrations of Cr(VI) (from 5 to 60 mg L-1) was conducted to investigate the reduction mechanism of DMFCs. Compared to abiotic-cathode DMFC, biotic-cathode DMFC exhibited a much higher power density, Cr(VI) reduction, and coulombic efficiency over a wide range of Cr(VI) concentrations (i.e., 5-60 mg L-1). Furthermore, the X-ray photoelectron spectroscopy (XPS) revealed that the chemical functional groups on the surface of biotic cathode DMFC were mainly trivalent chromium (Cr(III)). Additionally, high throughput sequencing showed that the predominant anodic bacterial phyla were Firmicutes, Proteobacteria, and Deinococcota with the dominance of Clostridiumsensu strict 1, Enterobacter, Pseudomonas, Clostridiumsensu strict 11 and Lysinibacillus in the cathodic microbial community. Collectively, our results showed that the Cr(VI) removal occurred through two different mechanisms: biosorption and bioelectrochemical reduction. These findings confirmed that the DMFC could be used as a bioremediation approach for the removal of Cr(VI) commonly found in different industrial wastewater, such as tannery effluents. with simultaneous bioenergy production.
Collapse
Affiliation(s)
- Dena Z Khater
- Chemical Engineering and Pilot Plant Department, Engineering Research and Renewable Energy Institute, National Research Centre, 33 El-Buhouth St., Dokki, Cairo, 12311, Egypt
| | - R S Amin
- Chemical Engineering and Pilot Plant Department, Engineering Research and Renewable Energy Institute, National Research Centre, 33 El-Buhouth St., Dokki, Cairo, 12311, Egypt
| | - Amani E Fetohi
- Chemical Engineering and Pilot Plant Department, Engineering Research and Renewable Energy Institute, National Research Centre, 33 El-Buhouth St., Dokki, Cairo, 12311, Egypt
| | - Mohamed Mahmoud
- Water Pollution Research Department, National Research Centre, 33 El-Buhouth St., Dokki, Cairo, 12311, Egypt
- Material and Manufacturing Engineering Department, Faculty of Engineering, Galala University, Galala City, Suez, 43511, Egypt
| | - K M El-Khatib
- Chemical Engineering and Pilot Plant Department, Engineering Research and Renewable Energy Institute, National Research Centre, 33 El-Buhouth St., Dokki, Cairo, 12311, Egypt.
| |
Collapse
|
38
|
Wang Z, He X, Li X, Chen L, Tang T, Cui G, Zhang Q, Liu Y. Long-term stability and toxicity effects of three-dimensional electrokinetic remediation on chromium-contaminated soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122461. [PMID: 37689131 DOI: 10.1016/j.envpol.2023.122461] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/11/2023]
Abstract
The three-dimensional electrokinetic remediation (3D EKR) achieved efficient removal of chromium (Cr) from the soil through mechanisms including electromigration, electroosmosis, and redox reactions. In this study, the long-term stability, leaching toxicity, bioavailability, and phytotoxicity of Cr in remediated soils were systematically analyzed to comprehensively evaluate the effectiveness of the 3D EKR method. The results showed that the concentration of hexavalent chromium (Cr (VI)) in the leachate of the 3D EKR system with sulfidated nano-scale zerovalent iron (S-nZVI) was more than 40% lower than those of the other 3D electrode groups, and the time required to reach the level III standard of groundwater quality criterion in China (0.05 mg/L, GB/T 14848-2017) was significantly shortened. The stabilization of Cr(VI) in contaminated soil after 3D EKR was maintained for 300 pore volumes (PVs), indicating that the treated Cr(VI) had good long-term stability. The leaching toxicity and bioaccessibility of Cr were assessed by the synthetic precipitation leaching procedure (SPLP), the toxicity characteristic leaching procedure (TCLP), and the physiologically based extraction test (PBET). The concentration of Cr(VI) in the SPLP, TCLP, and PBET leachates of the S-nZVI group decreased by more than 25% compared to the other 3D electrode groups, corresponding to the decrease in leaching toxicity and bioavailability of the treated Cr during the 15-day remediation period. In addition, the germination rate of wheat seeds and the average biomass of wheat seedlings in the S-nZVI group under alkaline conditions (EE) were higher than those in the non-polluting group (Blank-OH), indicating that the remediated soil had no obvious toxicity to wheat. In summary, 3D EKR achieved a satisfactory and stable remediation effect on Cr-contaminated soil, especially when using S-nZVI as the 3D electrode.
Collapse
Affiliation(s)
- Zheng Wang
- College of Environmental Sciences and Engineering, Peking University; Beijing Key Laboratory for Solid Waste Utilization and Management, Beijing 100871, China.
| | - Xiao He
- China MCC5 Group Corp. Ltd., Chengdu, 610063, China
| | - Xin Li
- Ecological Environment Consulting Department, Beijing Construction Engineering Environmental Remediation Co., Ltd., Beijing 100015, China
| | - Liuzhou Chen
- College of Environmental Sciences and Engineering, Peking University; Beijing Key Laboratory for Solid Waste Utilization and Management, Beijing 100871, China
| | - Tian Tang
- College of Environmental Sciences and Engineering, Peking University; Beijing Key Laboratory for Solid Waste Utilization and Management, Beijing 100871, China
| | - Guodong Cui
- College of Environmental Sciences and Engineering, Peking University; Beijing Key Laboratory for Solid Waste Utilization and Management, Beijing 100871, China
| | - Qiming Zhang
- College of Environmental Sciences and Engineering, Peking University; Beijing Key Laboratory for Solid Waste Utilization and Management, Beijing 100871, China
| | - Yangsheng Liu
- College of Environmental Sciences and Engineering, Peking University; Beijing Key Laboratory for Solid Waste Utilization and Management, Beijing 100871, China.
| |
Collapse
|
39
|
Park SD, Kim SY. First-Principles Study on the Electronic and Mechanical Properties of the Cr(001)/Al(001) Structure. ACS OMEGA 2023; 8:42840-42848. [PMID: 38024746 PMCID: PMC10652817 DOI: 10.1021/acsomega.3c05827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023]
Abstract
We utilized spin-polarized density functional theory to analyze the properties of the Cr(001)/Al(001) structure. The interface was classified into three forms-bcc, bridge, and top-based on the bonding coordinates between Cr and Al atoms. The total density of states (DOS) of the structures is mainly influenced by the Cr (d) orbitals. The local DOS of the Cr atoms at the interface exhibits slight variations based on their coordination with neighboring Al atoms. The mechanical properties of a specific layer were analyzed by using the rigid grain shift (RGS) method, and the properties of all layers were analyzed by using the homogeneous lattice extension method. Our results confirmed that the bonding strength, as determined by the RGS method, follows a decreasing order from the strongest to the weakest: bcc, bridge, and top. We applied uniform deformation to the entire system in the thickness direction and allowed it to relax: we observed that deformation occurs mainly in the Al region and ultimately leads to failure regardless of the type of interface. Consequently, similar strain-stress curves were observed in all Cr(001)/Al(001) structures. The failure in the Al region is attributed to the lower stiffness of the Al-Al layers compared to the top interface despite the lower work of separation for the top interface.
Collapse
Affiliation(s)
- Soon-Dong Park
- Graduate
School of Carbon Neutrality, Ulsan National
Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Sung Youb Kim
- Graduate
School of Carbon Neutrality, Ulsan National
Institute of Science and Technology, Ulsan 44919, Republic of Korea
- Department
of Mechanical Engineering, Ulsan National
Institute of Science and Technology, Ulsan 44919, Republic of Korea
| |
Collapse
|
40
|
Ma C, Liu M, Yang Z, Zheng Q, Mei J, Yang S. Highly efficient Cr (VI) removal from electroplating wastewater by regenerable copper sulfides: Mechanism and magical induction effect for Cr resource recovery. ENVIRONMENTAL RESEARCH 2023; 236:116799. [PMID: 37524156 DOI: 10.1016/j.envres.2023.116799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/25/2023] [Accepted: 07/29/2023] [Indexed: 08/02/2023]
Abstract
The current sorbents used to remove Cr (VI) from electroplating wastewater are faced with some challenges including the difficulty in separating, regenerating, and safely disposing of adsorbed Cr species. To address these challenges, CuSx/TiO2 was developed to recover Cr (VI) from electroplating wastewater. CuSx/TiO2 had superior performance in removing Cr (VI), with the rate and capacity of approximately 9.36 mg g-1 h-1 and 68.8 mg g-1 at initial pH 4.0, respectively. Additionally, Cu2+ released from CuSx/TiO2 during Cr (VI) removal would come back to its external surface as the Cu(OH)2 precipitate at initial pH 4.0, which helped to prevent the generation of secondary pollution. The Cu(OH)2 precipitate would be decomposed into CuOx after calcination, which would then be transformed back into CuSx by re-sulfuration for regeneration. Hence, CuSx showed a magical induction effect on Cr (VI) recovery, and Cr (VI) from electroplating wastewater might be gradually enriched as Cr2O3 in the sandwich between CuSx and TiO2 through multiple regenerations and removals, which could be considered as a chromium ore resource for industrial applications when the amount of enriched Cr2O3 reached more than 30 wt%. Overall, CuSx/TiO2 showed great potential as a promising sorbent for Cr (VI) removal from electroplating wastewater.
Collapse
Affiliation(s)
- Chen Ma
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Mengle Liu
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Zichen Yang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Qianxian Zheng
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Jian Mei
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China.
| | - Shijian Yang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China
| |
Collapse
|
41
|
Xu R, Wang YN, Li S, Sun Y, Gao Y, Guo L, Wang H. Effective Cr(VI) reduction and immobilization in chromite ore processing residue (COPR) contaminated soils by ferrous sulfate and digestate: A comparative investigation with typical reducing agents. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 265:115522. [PMID: 37769582 DOI: 10.1016/j.ecoenv.2023.115522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/30/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023]
Abstract
Chemical reduction combined with microbial stabilization is a green and efficient method for the remediation of hexavalent chromium (Cr(VI)) contaminated soil. In this study, the combination of ferrous sulfate with kitchen waste digestate was applied to reduce and immobilize Cr(VI) in chromite ore processing residue (COPR) contaminated soils, and systematically evaluated the remediation performance of Cr(VI) compared with several typical reducing agents (i.e., ferrous sulfate, zero valent iron, sodium thiosulfate, ferrous sulfide, and calcium polysulfide). The results showed that the combination of ferrous sulfate and digestate had superior advantages of a lower dosage of reducing agent and a long-term remediation effect compared to other single chemical reductants. Under an Fe(II):Cr(VI) molar ratio of 3:1% and 4% digestate (wt), the content of Cr(VI) in the soil decreased to 5.07 mg/kg after 60 days of remediation. Meanwhile, the leaching concentrations of Cr(VI) were below detection limit, which can meet the hazardous waste toxicity leaching standard. The risk level of Cr pollution was decreased from very high risk to low risk. The X-ray photoelectron spectroscopy (XPS) results further demonstrated that the combined treatments were beneficial to Cr(VI) reduction and stabilization. The abundance of bacteria with Cr(VI) reducing ability was higher than other treatments. Moreover, the high abundance of carbon and nitrogen metabolism in the combined treatments demonstrated that the addition of digestate was beneficial to the recovery and flourishing of Cr(VI)-reducing related microorganisms in COPR contaminated soils. This work provided an alternative way on Cr(VI) remediation in COPR contaminated soils.
Collapse
Affiliation(s)
- Rong Xu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Ya-Nan Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China.
| | - Shupeng Li
- Beijing Construction Engineering Environmental Remediation Co., Ltd., Beijing 100015, China; National Engineering Laboratory for Safety Remediation of Contaminated Sites, Beijing 100015, China
| | - Yingjie Sun
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Ying Gao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Lili Guo
- Beijing Construction Engineering Environmental Remediation Co., Ltd., Beijing 100015, China; National Engineering Laboratory for Safety Remediation of Contaminated Sites, Beijing 100015, China
| | - Huawei Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China.
| |
Collapse
|
42
|
Zhang J, Yu C, Xu L, Zhao Z, Wu D. Electro-enhanced metal-free peroxymonosulfate activator coupled with membrane-assisted process for simultaneous Ni-EDTA decomplexation and Ni ions recovery. CHEMOSPHERE 2023; 338:139447. [PMID: 37423408 DOI: 10.1016/j.chemosphere.2023.139447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Electro-enhanced metal-free boron/peroxymonosulfate (B/PMS) system has demonstrated potential for efficient metal-organic complexes degradation in an eco-friendly way. However, the efficiency and durability of the boron activator are limited by associated passivation effect. Additionally, the lack of suitable methods utilizing in-situ recovery of metal ions liberated from decomplexation causes huge resource waste. In this study, B/PMS coupled with a customized flow electrolysis membrane (FEM) system is proposed to address above challenges with Ni-EDTA used as the model contaminant. Electrolysis is confirmed to remarkably promote the activation performance of boron towards PMS to efficiently generate •OH which dominated Ni-EDTA decomplexation in the anode chamber. It is revealed that the acidification near the anode electrode improves the stability of boron by inhibiting passivation layer growth. Under optimal parameters (10 mM PMS, 0.5 g/L boron, initial pH = 2.3, current density = 68.87 A/m2), 91.8% of Ni-EDTA could be degraded in 40 min, with a kobs of 6.25 × 10-2 min-1. As the decomplexation proceeds, nickel ions are recovered in the cathode chamber with little interference from the concentration of co-existing cations. These findings provide a promising and sustainable strategy for simultaneous metal-organic complexes removal and metal resources recovery.
Collapse
Affiliation(s)
- Jiaming Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai, 200092, PR China.
| | - Chao Yu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai, 200092, PR China.
| | - Longqian Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai, 200092, PR China.
| | - Zhenyu Zhao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai, 200092, PR China.
| | - Deli Wu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
43
|
Murthy MK, Khandayataray P, Padhiary S, Samal D. A review on chromium health hazards and molecular mechanism of chromium bioremediation. REVIEWS ON ENVIRONMENTAL HEALTH 2023; 38:461-478. [PMID: 35537040 DOI: 10.1515/reveh-2021-0139] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 04/19/2022] [Indexed: 05/13/2023]
Abstract
Living beings have been devastated by environmental pollution, which has reached its peak. The disastrous pollution of the environment is in large part due to industrial wastes containing toxic pollutants. The widespread use of chromium (Cr (III)/Cr (VI)) in industries, especially tanneries, makes it one of the most dangerous environmental pollutants. Chromium pollution is widespread due to ineffective treatment methods. Bioremediation of chromium (Cr) using bacteria is very thoughtful due to its eco-friendly and cost-effective outcome. In order to counter chromium toxicity, bacteria have numerous mechanisms, such as the ability to absorb, reduce, efflux, or accumulate the metal. In this review article, we focused on chromium toxicity on human and environmental health as well as its bioremediation mechanism.
Collapse
Affiliation(s)
| | | | - Samprit Padhiary
- Department of Biotechnology, Academy of Management and Information Technology, Khordha, India
| | - Dibyaranjan Samal
- Department of Biotechnology, Academy of Management and Information Technology, Khordha, India
| |
Collapse
|
44
|
Lou J, Xu H, Jin H, Cao Y, Wang R. Interaction between Cr(VI) and Tubificidae in sludge reduction system: effect, reduction, and redistribution of Cr(VI). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:94803-94813. [PMID: 37540417 DOI: 10.1007/s11356-023-29108-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 07/28/2023] [Indexed: 08/05/2023]
Abstract
The treatment of heavy metals in sewage treatment systems has gained more attention with the increase in heavy metal hazards. Tubificidae in sludge reduction have been widely studied; however, little is known about the effect of Tubificidae in the treatment of Cr-containing wastewater. In this study, the mechanism of Tubificidae in the sludge reduction system with Cr stress was studied. Predation experiments by Tubificidae in a Cr-containing sludge reduction system were conducted to investigate the changes in enzyme activities in the Tubificidae under different concentrations of Cr, and the distribution of Cr in the sludge reduction reactor was analyzed. The kinetic model of uptake and elimination of Cr in Tubificidae was established. The results showed that the maximum activation multiplier factor of superoxide dismutase (SOD) activity was 1.95 under the low concentration of Cr(VI), which indicated that Tubificidae had a certain detoxification. After the effect of Tubificidae on Cr(VI) experiments, the Cr concentrations in Tubificidae, sludge, and feces increased first and then decreased with exposure time, and the proportion of total Cr and Cr(VI) in the sludge decreased from 71.98% and 42.7% to 29.18% and 6.82%, respectively. The detoxification mechanism of the Tubificidae could be activated with Cr stress, and 63.22% of the Cr(VI) was converted to Cr(III). The bioconcentration factor (BCF) for theoretical equilibrium was 446, the maximum bioaccumulation factor (BAF) reached 0.97 on the 15th day. It can be seen that Tubificidae could be considered a good scavenger of environmental Cr(VI). The hyperbolic model fits the process of Cr uptake and elimination well and can be used as a predictive tool for Tubificidae accumulation.
Collapse
Affiliation(s)
- Juqing Lou
- School of Environmental Science and Engineering, Zhejiang Gongshang University, No.149, Jiaogong Road, Hangzhou, 310012, China.
- Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou, 310012, China.
| | - Hui Xu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, No.149, Jiaogong Road, Hangzhou, 310012, China
| | - Hao Jin
- School of Environmental Science and Engineering, Zhejiang Gongshang University, No.149, Jiaogong Road, Hangzhou, 310012, China
| | - Yongqing Cao
- School of Environmental Science and Engineering, Zhejiang Gongshang University, No.149, Jiaogong Road, Hangzhou, 310012, China
| | - Ruyi Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, No.149, Jiaogong Road, Hangzhou, 310012, China
| |
Collapse
|
45
|
Islam JB, Islam MR, Furukawa M, Tateishi I, Katsumata H, Kaneco S. Ag-modified g-C 3N 4 with enhanced activity for the photocatalytic reduction of hexavalent chromium in the presence of EDTA under ultraviolet irradiation. ENVIRONMENTAL TECHNOLOGY 2023; 44:3627-3640. [PMID: 35443874 DOI: 10.1080/09593330.2022.2068379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
The photocatalytic reduction of Cr6+ to Cr3+ in an aqueous solution, using 3 wt% Ag/g-C3N4 in the presence of ethylenediaminetetraacetic acid (EDTA), has been investigated here. The photocatalytic reduction of Cr6+ with pure g-C3N4 was very low. The addition of Ag and EDTA can significantly improve the photocatalytic reduction of Cr6+ using g-C3N4. In the presence of EDTA, the efficiency with Ag/g-C3N4 was better than those with Au/g-C3N4 and Cu/g-C3N4. With EDTA, the reduction rate constant increased from 0.0005 for pure g-C3N4 to 0.12 min-1 for 3 wt% Ag/g-C3N4. By increasing the concentration of EDTA from 0 to 500 mg L-1, the reduction efficiency of Cr6+ increased extremely, and the rate constant raised from 0.008 to 0.12 min-1. The optimal EDTA concentration was 500 mg L-1 for the photocatalyst Ag/g-C3N4. The Ag-EDTA complex may be reduced to metallic silver by the conduction band electrons of g-C3N4. The electron-hole recombination was significantly suppressed by the electron trapping of Ag. EDTA may act in by the formation of Cr3+-complex and the separation of Cr3+ from the g-C3N4 surface and by the valence band hole scavenger of g-C3N4. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), UV-Vis diffuse reflectance spectroscopy (DRS) and photoluminescence spectra (PL) were used to characterize g-C3N4 and Ag/g-C3N4 nanoparticles. A possible mechanism for photocatalytic Cr6+ reduction has also been demonstrated.
Collapse
Affiliation(s)
- Jahida Binte Islam
- Department of Chemistry for Materials, Graduate School of Engineering, Mie University, Mie, Japan
| | - Md Rakibul Islam
- Department of Chemistry for Materials, Graduate School of Engineering, Mie University, Mie, Japan
| | - Mai Furukawa
- Department of Chemistry for Materials, Graduate School of Engineering, Mie University, Mie, Japan
| | - Ikki Tateishi
- Global Environment Center for Education & Research, Mie University, Mie, Japan
| | - Hideyuki Katsumata
- Department of Chemistry for Materials, Graduate School of Engineering, Mie University, Mie, Japan
| | - Satoshi Kaneco
- Department of Chemistry for Materials, Graduate School of Engineering, Mie University, Mie, Japan
- Global Environment Center for Education & Research, Mie University, Mie, Japan
| |
Collapse
|
46
|
Yang H, Kim N, Park D. Ecotoxicity study of reduced-Cr(III) generated by Cr(VI) biosorption. CHEMOSPHERE 2023; 332:138825. [PMID: 37232198 DOI: 10.1016/j.chemosphere.2023.138825] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/27/2023]
Abstract
Hexavalent chromium (Cr(VI)) is a known carcinogen in living organisms, and many studies have investigated Cr(VI) removal methods. Biosorption, one of the Cr(VI) removal methods, is dominated by chemical binding, ion exchange, physisorption, chelation and oxidation-reduction. Among these mechanisms, Cr(VI) can be removed by nonliving biomass through a redox reaction, which has been recognized as 'adsorption-coupled reduction'. Cr(VI) is reduced to Cr(III) during biosorption, but there are no studies on the property and toxicity of the reduced-Cr(III). In this study, the harmfulness of reduced-Cr(III) was identified through assessment of mobility and toxicity in nature. Pine bark, a low-cost biomass, was used to remove Cr(VI) from aqueous solution. Reduced-Cr(III) was characterized by structural features using X-ray Absorption Near Edge Structure (XANES) spectra, mobility assessed using precipitation, adsorption and soil column test, and toxicity using radish sprouts and water flea. XANES analysis confirmed that reduced-Cr(III) has an unsymmetrical structure, and the reduced-Cr(III) showed low mobility and was virtually non-toxic, and helpful for plant growth. Our findings demonstrate that Cr(VI) biosorption technology using pine bark is a groundbreaking technology for Cr(VI) detoxification.
Collapse
Affiliation(s)
- Hanui Yang
- Department of Environmental and Energy Engineering, Yonsei University, 1 Yonseidae-gil, Wonju, 26493, Republic of Korea
| | - Namgyu Kim
- Department of Environmental and Energy Engineering, Yonsei University, 1 Yonseidae-gil, Wonju, 26493, Republic of Korea
| | - Donghee Park
- Department of Environmental and Energy Engineering, Yonsei University, 1 Yonseidae-gil, Wonju, 26493, Republic of Korea.
| |
Collapse
|
47
|
Luo M, Zhu C, Chen C, Chen F, Zhu Y, Wei X. Efficient removal of Cr from aqueous solution by catechol/m-phenylenediamine nanospheres combined with Fe(II). JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:844-854. [PMID: 37516930 DOI: 10.1080/10934529.2023.2241315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/24/2023] [Accepted: 07/04/2023] [Indexed: 07/31/2023]
Abstract
The discharge of chromium-containing wastewater in industrial production causes resource loss and damage to the ecological environment. Currently, various phenolamine materials have been used to remove chromium, but their harsh adsorption conditions bring many difficulties. For example, ideal chromium removal is only achieved at low pH. In this study, we synthesized catechol/m-phenylenediamine nanospheres (CMN) and combined CMN with Fe(II) for Cr removal from aqueous solutions, and Fe(II) comes from FeSO4·7H2O. CMN was characterized and analyzed by field-emission scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), transmission electron microscopy (TEM), Fourier transformed infrared (FTIR), X-ray diffraction (XRD), X-ray photoelectron (XPS). The adsorption performance was studied through a series of adsorption experiments. When C0 = 900 mg/L and pH = 6, the maximum adsorption capacity obtained in the experiment was 977.1 mg/g. It maintains excellent adsorption properties in acidic, neutral and alkaline environments. The results of the adsorption mechanism showed that the ultra-high adsorption capacity of CMN and Fe(II) for Cr was the result of the synergistic effect of adsorption and reduction, including electrostatic attraction, reduction and coprecipitation. CMN is expected to be an ideal adsorbent for Cr removal in aqueous solution due to its low cost, high biocompatibility and high efficiency in Cr removal.
Collapse
Affiliation(s)
- Mina Luo
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, China
| | - Chunmei Zhu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, China
| | - Changcheng Chen
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, China
- Xingrong Environment Co., Ltd, Chengdu, Sichuan, China
| | - Fu Chen
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, China
| | - Yuanqiang Zhu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, China
| | - Xuemei Wei
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, China
| |
Collapse
|
48
|
Wan Y, Luo H, Cai Y, Dang Z, Yin H. Selective removal of total Cr from a complex water matrix by chitosan and biochar modified-FeS: Kinetics and underlying mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131475. [PMID: 37104956 DOI: 10.1016/j.jhazmat.2023.131475] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/14/2023] [Accepted: 04/21/2023] [Indexed: 05/19/2023]
Abstract
Cr(VI) is difficult to remove from wastewater via a one-step method because it is a type of oxyanion. Developing ARPs to selectively remove total Cr is critical for Cr(VI) remediation, including Cr(VI) adsorption-reduction and Cr(III) complexation. Hereon, chitosan and biochar modified-FeS (CTS-FeS@BC) was prepared to apply in the selective removal of total Cr from wastewaters. The results showed that the activity of amorphous FeS on CTS-FeS@BC for Cr(VI) removal (110.0 mg/g FeS) was significantly enhanced by CTS and BC, and efficiency was inhibited slightly by many anions and humic acid (HA). Meanwhile, the removal of total Cr by CTS-FeS@BC (99.1 mg/g FeS) via ARPs was improved by 1.2 and 40.3 times when compared with CTS-FeS and raw FeS, respectively. Besides, CTS-FeS@BC exhibited an outstanding selectivity for total Cr removal in metal cations-Cr binary solutions and in a complex water matrix. The mechanism of ARPs on CTS-FeS@BC demonstrated by the results of the 1,10-phenanthroline experiment and the distribution of Cr species was that Cr(VI) was first adsorbed by outer-sphere complexation for reduction, and then adsorbed Cr(III) combined with Fe(III) species to generate Fe(III)-Cr(III) complex for total Cr removal. Overall, this study provides an ARP to effectively solve Cr pollution in wastewaters.
Collapse
Affiliation(s)
- Yi Wan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Haoyu Luo
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yuhao Cai
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China
| | - Hua Yin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China.
| |
Collapse
|
49
|
Singh S, Naik TSSK, Uppara B, Narasimhappa P, Varshney R, Chauhan V, Shehata N, Thamaraiselvan C, Subramanian S, Singh J, Khan NA, Zahmatkesh S, Singh L, Ramamurthy PC. Novel and sustainable green sulfur-doped carbon nanospheres via hydrothermal process for Cd (II) ion removal. CHEMOSPHERE 2023; 328:138533. [PMID: 37004819 DOI: 10.1016/j.chemosphere.2023.138533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/13/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
Herein, the synthesis, characterization, and adsorption performance of a novel green sulfur-doped carbon nanosphere (S-CNs) is studied to eliminate Cd (II) ions from water effectively. S-CNs were characterized using different techniques including Raman spectroscopy, powder X-ray diffraction (PXRD), scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDX), , Brunauer-Emmett-Teller (BET) specific surface area analysis and Fourier transform infrared spectrophotometry (FT-IR), were performed. The efficient adsorption of the Cd (II) ions onto S-CNs strongly depended on pH, initial concentration of Cd (II) ions, S-CNs dosage, and temperature. Four isotherm models (Langmuir, Freundlich, Temkin & Redlich Peterson) were tested for modeling. Out of four, Langmuir showed more applicability than the other three models, with a Qmax value of 242.72 mg/g. Kinetic modeling studies suggest a superior fit of the obtained experimental data with the Elovich equation (linear) and pseudo-second-order (non-linear) rather than other linear and non-linear models. Data obtained from thermodynamic modeling indicates that using S-CNs for Cd (II) ions adsorption is a spontaneous and endothermic . The current work recommends using better and recyclable S-CNs to uptake excess Cd (II) ions.
Collapse
Affiliation(s)
- Simranjeet Singh
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 560012, India
| | - T S S K Naik
- Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012, India
| | - Basavaraju Uppara
- Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012, India
| | - Pavithra Narasimhappa
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 560012, India
| | - R Varshney
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 560012, India
| | - V Chauhan
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 560012, India
| | - N Shehata
- Department of Environmental Science and Industrial Development, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Egypt
| | - C Thamaraiselvan
- Inter Disciplinary Centre for Energy Research (ICER), Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - S Subramanian
- Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012, India
| | - Joginder Singh
- Department of Microbiology, Lovely Professional University, Jalandhar, Punjab, 144111, India
| | - Nadeem A Khan
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Sasan Zahmatkesh
- Tecnologico de Monterrey, Escuela de Ingenieríay Ciencias, Puebla, Mexico
| | - Lakhveer Singh
- Department of Chemistry, Sardar Patel University, Mandi, 175001, Himachal Pradesh, India
| | - Praveen C Ramamurthy
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
50
|
Zhang X, Su C, Zhang Y, Lai S, Han S, Zhang X, Zheng J. Mineralogical characteristics of root iron plaque and its functional mechanism for regulating Cr phytoextraction of hyperaccumulator Leersia hexandra Swartz. ENVIRONMENTAL RESEARCH 2023; 228:115846. [PMID: 37024027 DOI: 10.1016/j.envres.2023.115846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/24/2023] [Accepted: 04/03/2023] [Indexed: 05/16/2023]
Abstract
Leersia hexandra Swartz (L. hexandra) is a promising hyperaccumulator for Cr pollution remediation, but whether its Cr phytoextraction is subject to the root surface-attached iron plaque (IP) remains unclear. In this research, the natural and artificial IPs were proven to be comprised of small amounts of exchangeable Fe as well as carbonate Fe, and dominantly Fe minerals involving amorphous two-line ferrihydrite (Fh), poorly crystalline lepidocrocite (Le) and highly crystalline goethite (Go). The Fe content in the artificial IPs augmented with increasing induced Fe(II) concentration, and the 50 mg/L Fe(II) led to the identical Fe content and different component proportions of artificial IP (Fe50) and natural IP. Fh was consisted of highly aggregated nanoparticles, and the aging of Fh caused its phase conversion to rod-like Le and Go. The Cr(VI) adsorption results of Fe minerals corroborated the coordination of Cr(VI) onto the Fh surface and the significantly greater equilibrium Cr(VI) adsorption amount of Fh over Le and Go. The greatest Cr(VI) reduction capacity of Fh among three Fe minerals was found to be related to its most abundant surface-adsorbed Fe(II) content. The results of hydroponic experiment of L. hexandra showed that the presence of IP facilitated the Cr(VI) removal by L. hexandra during the cultivation period of 10-45 days, and consequently, compared to the Fe0 group (without IP), around 60% of increase in the Cr accumulation of shoots was achieved by Fe50 group. The findings of this work are conductive to furthering our understanding of IP-regulated Cr phytoextraction of L. hexandra.
Collapse
Affiliation(s)
- Xuehong Zhang
- College of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, China; Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Chang Su
- College of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Yuanyuan Zhang
- College of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, China; Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, Guilin, 541004, China.
| | - Simin Lai
- College of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Shuo Han
- College of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Xingran Zhang
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Junjian Zheng
- College of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, China; Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, Guilin, 541004, China.
| |
Collapse
|