1
|
Hollanda LR, de Souza JAB, Dotto GL, Foletto EL, Chiavone-Filho O. Iron-bearing mining reject as an alternative and effective catalyst for photo-Fenton oxidation of phenol in water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:21291-21301. [PMID: 38383932 DOI: 10.1007/s11356-024-32513-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/13/2024] [Indexed: 02/23/2024]
Abstract
In this work, iron-bearing mining reject was employed as an alternative and potential low-cost catalyst to degrade phenol in water by photo-Fenton strategy. Various techniques, including SEM-EDS, BET, FTIR, and XRD, were applied to evaluate the material's properties. Process parameters such as hydrogen peroxide concentration, catalyst dosage, and pH were studied to determine the optimum reaction conditions ([catalyst] = 0.75 g L-1, [H2O2] = 7.5 mM, and pH = 3). Phenol degradation and mineralization efficiencies at 180 and 300 min were 96.5 and 78%, respectively. These satisfactory results can be associated with the iron amount present in the waste sample. Furthermore, the material showed high catalytic activity and negligible iron leaching even after the fourth reuse cycle. The degradation behavior of phenol in water was well represented by a kinetic model based on the Fermi function. The iron-bearing mining reject can be considered a potential photo-Fenton catalyst for phenol degradation in wastewater.
Collapse
Affiliation(s)
- Luana Rabelo Hollanda
- Department of Chemical Engineering, Federal University of Rio Grande Do Norte, Natal, 59078-970, Brazil
| | | | - Guilherme Luiz Dotto
- Department of Chemical Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil.
| | - Edson Luiz Foletto
- Department of Chemical Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Osvaldo Chiavone-Filho
- Department of Chemical Engineering, Federal University of Rio Grande Do Norte, Natal, 59078-970, Brazil
| |
Collapse
|
2
|
Preethi, Shanmugavel SP, Kumar G, N YK, M G, J RB. Recent progress in mineralization of emerging contaminants by advanced oxidation process: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122842. [PMID: 37940020 DOI: 10.1016/j.envpol.2023.122842] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/25/2023] [Accepted: 10/29/2023] [Indexed: 11/10/2023]
Abstract
Emerging contaminants are chemicals generated due to the usage of pesticide, endocrine disrupting compounds, pharmaceuticals, and personal care products and are liberated into the environment in trace quantities. The emerging contaminants eventually become a greater menace to living beings owing to their wide range and inhibitory action. To diminish these emerging contaminants from the environment, an Advanced Oxidation Process was considered as an efficient option. The Advanced Oxidation Process is an efficient method for mineralizing fractional or generous contaminants due to the generation of reactive species. The primary aim of this review paper is to provide a thorough knowledge on different Advanced Oxidation Process methods and to assess their mineralization efficacy of emerging contaminants. This study indicates the need for an integrated process for enhancing the treatment efficiency and overcoming the drawbacks of the individual Advanced Oxidation Process. Further, its application concerning technical and economic aspects is reviewed. Until now, most of the studies have been based on lab or pilot scale and do not represent the actual scenario of the emerging contaminant mineralization. Thus, the scaling up of the process was discussed, and the major challenges in large scale implementation were pointed out.
Collapse
Affiliation(s)
- Preethi
- Department of Physics, Anna University, Chennai, Tamil Nadu, 600025, India
| | - Surya Prakash Shanmugavel
- Department of Solid Waste Management and Health, Greater Chennai Corporation, Tamil Nadu, 600 003, India
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, 4036 Stavanger, Norway; School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yogalakshmi K N
- Department of Environmental Science and Technology, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Gunasekaran M
- Department of Physics, Anna University, Chennai, Tamil Nadu, 600025, India
| | - Rajesh Banu J
- Department of Biotechnology, Central University of Tamil Nadu, Neelakudi, Thiruvarur, 610005, India.
| |
Collapse
|
3
|
Efficient Removal Performance of COD in Real Laundry Wastewater via Conventional and Photo-Fenton Degradation Systems: A Comparative Study on Oxidants and Operating Time by H2O2/Fe2+. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2023. [DOI: 10.1007/s13369-023-07652-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
4
|
Critical analysis of the role of various iron-based heterogeneous catalysts for advanced oxidation processes: A state of the art review. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
5
|
Ferromagnetic Biochar Prepared from Hydrothermally Modified Calcined Mango Seeds for Fenton-like Degradation of Indigo Carmine. Mol Vis 2022. [DOI: 10.3390/c8040081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Biochar and ferromagnetic biochar obtained from the pyrolysis of dried mango seeds and modified using a hydrothermal method were used as catalyst for the heterogeneous degradation of indigo carmine in an aqueous medium. These prepared biochars were characterized using different techniques: Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). The analyses of the results revealed the presence of iron oxide in the form of magnetite (Fe3O4) in the catalyst. The catalytic tests carried out with this composite material showed a significant degradation of indigo carmine. The maximum degradation of indigo carmine in the aqueous solution was reached after 240 min of agitation. The Fenton degradation process using irradiation with a 100 W electric lamp and hydrogen peroxide (concentration 4 mol/L) showed the best results at pH = 3. From this study, it emerged that the second-order kinetic model better described the degradation process, and it gave lower half-lives compared to those obtained with the first-order kinetic law. The study also showed that ferromagnetic biochar could be prepared from mango seeds and used for the degradation of indigo carmine in an aqueous solution.
Collapse
|
6
|
El Gaidoumi A, Tanji K, Loqman A, El Mrabet I, Arrahli A, Dra A, Fahoul Y, Zouheir M, El Bali B, Kherbeche A. Cu(II) impregnated clay-derived HS zeolite: Synthesis, characterization and catalytic activity on catalytic wet peroxide oxidation (CWPO) of phenol. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2154156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Abdelali El Gaidoumi
- Laboratoire de Biotechnologie, Bioressources et Bioinformatique (3Bio), École Supérieure de Technologie de Khénifra, Université Sultan Moulay Slimane, Béni Mellal, Morocco
- Laboratoire de Matériaux, Procédés, Catalyse et Environnement (LMPCE), École Supérieure de Technologie de Fès, Université Sidi Mohamed Ben Abdellah, Fès, Morocco
| | - Karim Tanji
- Laboratoire de Matériaux, Procédés, Catalyse et Environnement (LMPCE), École Supérieure de Technologie de Fès, Université Sidi Mohamed Ben Abdellah, Fès, Morocco
| | - Amal Loqman
- Laboratoire de Matériaux, Procédés, Catalyse et Environnement (LMPCE), École Supérieure de Technologie de Fès, Université Sidi Mohamed Ben Abdellah, Fès, Morocco
| | - Imane El Mrabet
- Department of Physics-Chemistry, Polydisciplinary Faculty of Ouarzazate, University of Ibn Zohr, Morocco
| | - Abdellah Arrahli
- Centre de recherche Euromed, Institut International des Sciences Appliquées, Université Euro-Méditerranéenne de Fès (UEMF), Fès, Morocco
| | - Abdelaziz Dra
- Laboratoire de Matériaux, Procédés, Catalyse et Environnement (LMPCE), École Supérieure de Technologie de Fès, Université Sidi Mohamed Ben Abdellah, Fès, Morocco
| | - Youssef Fahoul
- Laboratoire de Matériaux, Procédés, Catalyse et Environnement (LMPCE), École Supérieure de Technologie de Fès, Université Sidi Mohamed Ben Abdellah, Fès, Morocco
| | - Morad Zouheir
- Laboratoire de Matériaux, Procédés, Catalyse et Environnement (LMPCE), École Supérieure de Technologie de Fès, Université Sidi Mohamed Ben Abdellah, Fès, Morocco
| | | | - Abdelhak Kherbeche
- Laboratoire de Matériaux, Procédés, Catalyse et Environnement (LMPCE), École Supérieure de Technologie de Fès, Université Sidi Mohamed Ben Abdellah, Fès, Morocco
| |
Collapse
|
7
|
Experimental and Density Functional Theoretical Analyses on Degradation of Acid Orange 7 via UV Irradiation and Ultrasound enhanced by Fenton Process. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Nguyen TTT, Hoang DQ, Nguyen DTC, Tran TV. Adsorptive Optimization of Crystal Violet Dye Using Central Composite Rotatable Design and Response Surface Methodology: Statistical Analysis, Kinetic and Isotherm Studies. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022; 48:1-14. [PMID: 36415668 PMCID: PMC9668708 DOI: 10.1007/s13369-022-07391-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/16/2022] [Indexed: 11/18/2022]
Abstract
Water contamination is emerging as the most critical global issues in the world, calling for the treatment eco-techniques. Taking advantage of biowastes as adsorbent materials is not only in accordance with the purpose of environmental protection but also enhance the higher value-added products. In this work, water hyacinth (Eichhornia crassipes) powder was used as an efficient adsorbent for the removal of crystal violet from aqueous solutions. The structure of water hyacinth powder adsorbent was characterized by Fourier transform infrared spectroscopy and scanning electron microscopy analysis. Based on the central composite rotatable design and response surface methodology, the effect of different parameters such as initial pH solution, contact time, adsorbent dosage, and initial crystal violet concentration was optimized. The maximum adsorption capacity of 180.336 mg/g was achieved under the optimum condition as initial pH solution of 6.246, contact time of 125.698 min, the adsorbent dosage of 1.382 g/L, and initial dye concentration of 615.865 mg/L. Moreover, the Langmuir isotherm provided the best fit with a high correlation coefficient of 0.9981 and a maximum monolayer adsorption capacity of 181.818 mg/g at 30 °C. The kinetic studies indicated that the pseudo-second-order model was adequately applied for the adsorption kinetic of crystal violet on the water hyacinth powder adsorbent. The utilization of the water hyacinth plant, an abundant species, as a low-cost biosorbent to remove crystal violet using the central composite rotatable design combined with response surface methodology approach is recommended for the real treatment of organic dyes.
Collapse
Affiliation(s)
| | - Dong Quy Hoang
- Faculty of Materials Science and Technology, University of Science, Ho Chi Minh City, 700000 Vietnam
| | - Duyen Thi Cam Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414 Vietnam
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414 Vietnam
| | - Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414 Vietnam
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414 Vietnam
| |
Collapse
|
9
|
Rafaela de Almeida A, Casanova Monteiro F, Frederico Haas Leandro Monteiro J, Regina Lopes Tiburtius E, Andrade Pessôa C. Photocatalytic oxidation of textile dye using sugarcane bagasse-Nb2O5 as a catalyst. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
10
|
Al Kausor M, Sen Gupta S, Bhattacharyya KG, Chakrabortty D. Montmorillonite and modified montmorillonite as adsorbents for removal of water soluble organic dyes: A review on current status of the art. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Zhang T, Hu C, Li Q, Chen C, Hu J, Xiao X, Li M, Zou X, Huang L. Hydrogen Peroxide Activated by Biochar-Supported Sulfidated Nano Zerovalent Iron for Removal of Sulfamethazine: Response Surface Method Approach. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:9923. [PMID: 36011563 PMCID: PMC9408743 DOI: 10.3390/ijerph19169923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Biochar (BC)-supported sulfide-modified nanoscale zerovalent iron (S-nZVI/BC) was prepared using the liquid-phase reduction method for the application of the removal of sulfamethazine (SMZ) from water. The reaction conditions were optimized by the Box−Behnken response surface method (RSM). A model was constructed based on the influence factors of the removal rate, i.e., the carbon-to-iron ratio (C/Fe), iron-sulfur ratio (Fe/S), pH, and hydrogen peroxide (H2O2) concentration, and the influence of each factor on the removal efficiency was investigated. The optimal removal process parameters were determined based on theoretical and experimental results. The results showed that the removal efficiency was significantly affected by the C/Fe ratio and pH (p < 0.0001) but relatively weakly affected by the Fe/S ratio (p = 0.0973) and H2O2 concentration (p = 0.022). The optimal removal process parameters were as follows: 0.1 mol/L H2O2, a pH of 3.18, a C/Fe ratio of 0.411, and a Fe/S ratio of 59.75. The removal rate of SMZ by S-nZVI/BC was 100% under these conditions. Therefore, it is feasible to use the Box−Behnken RSM to optimize the removal of emerging pollutants in water bodies by S-nZVI/BC.
Collapse
Affiliation(s)
- Tiao Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
- Key Laboratory of Agricultural Environmental Pollution Prevention and Control in Red Soil Hilly Region of Jiangxi Province, School of Life Science, Jinggangshan University, Ji’an 343009, China
| | - Cui Hu
- Key Laboratory of Agricultural Environmental Pollution Prevention and Control in Red Soil Hilly Region of Jiangxi Province, School of Life Science, Jinggangshan University, Ji’an 343009, China
| | - Qian Li
- Key Laboratory of Agricultural Environmental Pollution Prevention and Control in Red Soil Hilly Region of Jiangxi Province, School of Life Science, Jinggangshan University, Ji’an 343009, China
| | - Chuxin Chen
- Key Laboratory of Agricultural Environmental Pollution Prevention and Control in Red Soil Hilly Region of Jiangxi Province, School of Life Science, Jinggangshan University, Ji’an 343009, China
| | - Jianhui Hu
- Key Laboratory of Agricultural Environmental Pollution Prevention and Control in Red Soil Hilly Region of Jiangxi Province, School of Life Science, Jinggangshan University, Ji’an 343009, China
| | - Xiaoyu Xiao
- Key Laboratory of Agricultural Environmental Pollution Prevention and Control in Red Soil Hilly Region of Jiangxi Province, School of Life Science, Jinggangshan University, Ji’an 343009, China
- Zhongke-Ji’an Institute for Eco-Environmental Sciences, Ji’an 343016, China
| | - Mi Li
- Key Laboratory of Agricultural Environmental Pollution Prevention and Control in Red Soil Hilly Region of Jiangxi Province, School of Life Science, Jinggangshan University, Ji’an 343009, China
| | - Xiaoming Zou
- Key Laboratory of Agricultural Environmental Pollution Prevention and Control in Red Soil Hilly Region of Jiangxi Province, School of Life Science, Jinggangshan University, Ji’an 343009, China
| | - Liangliang Huang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
12
|
Prete P, Fiorentino A, Rizzo L, Proto A, Cucciniello R. Open the way to turnover frequency determination in (photo)Fenton processes for catalytic activities comparison. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Ozguven A, Ozturk D. A Numerical Optimization Approach for Removal of Astrazon Pink FG from Aqueous Media by Fenton Oxidation. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-06996-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Albuquerque MVDC, Ramos RDO, Leite VD, de Sousa JT, de Araújo MCU, de Ceballos BSO, Lopes WS. Studies of the liposolubility and the ecotoxicity of MC-LR degradation by-products using computational molecular modeling and in-vivo tests with Chlorella vulgaris and Daphnia magna. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 245:106127. [PMID: 35248895 DOI: 10.1016/j.aquatox.2022.106127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/23/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Computational molecular modelling, mass spectrometry and in-vivo tests with Chlorella vulgaris (C. vulgaris) and Daphnia magna (D. magna) were used to investigate the liposolubility and ecotoxicity of MC-LR degradation by-products generated after oxidation by OH• radicals in Fenton process. Exposure of MC-LR (5 µg.L-1) to the most severe oxidation conditions (Fe2+ 20 mM and H2O2 60 mM) resulted in a reduction in the toxin concentration of 96% (0.16 µg.L-1), however, with the formation of many by-products. The by-product of m/z 445 was the most resistant to degradation and retained a toxic structure of diene bonds present in the Adda amino acid. Computational modeling revealed that m/z 445 (tPSA = 132.88 Ų; KOW = 2.02) is more fat-soluble than MC-LR (tPSA = 340.64 Ų; KOW = 0.68), evidencing an easier transport process of this by-product. Given this, toxicity tests using C. vulgaris and D. magna indicated greater toxicity of the by-product m/z 445 compared to MC-LR. When the conversion of MC-LR to by-products was 77%, the growth inhibition of C. vulgaris and the D. magna immobility were, respectively, 6.14 and 0%, with 96% conversion; growth inhibition and the immobility were both 100% for both species.
Collapse
Affiliation(s)
| | - Railson de Oliveira Ramos
- Departamento de Engenharia Sanitária e Ambiental, Universidade Estadual da Paraíba, Campina Grande, Paraíba 58429-500, Brazil.
| | - Valderi Duarte Leite
- Departamento de Engenharia Sanitária e Ambiental, Universidade Estadual da Paraíba, Campina Grande, Paraíba 58429-500, Brazil
| | - José Tavares de Sousa
- Departamento de Engenharia Sanitária e Ambiental, Universidade Estadual da Paraíba, Campina Grande, Paraíba 58429-500, Brazil
| | - Mário César Ugulino de Araújo
- Departamento de Química, Universidade Federal da Paraíba, CCEN, Caixa Postal 5093, João Pessoa, Paraíba CEP 58051-970, Brazil
| | | | - Wilton Silva Lopes
- Departamento de Engenharia Sanitária e Ambiental, Universidade Estadual da Paraíba, Campina Grande, Paraíba 58429-500, Brazil
| |
Collapse
|
15
|
Zhao Q, Long M, Li H, Wen Q, Li D. Synthesis of MFeO 3/SBA-15 (M = La or Bi) for peroxymonosulfate activation towards enhanced photocatalytic activity. NEW J CHEM 2022. [DOI: 10.1039/d1nj04712d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
MFeO3/SBA-15 was synthesized by a simple sol–gel method and was used to activate peroxymonosulfate for the degradation of doxycycline hydrochloride.
Collapse
Affiliation(s)
- Qianqian Zhao
- School of Chemistry and Chemical Engineering, Xi’an University of Architecture and Technology, Xi’an, 710055, China
| | - Mingyang Long
- School of Chemistry and Chemical Engineering, Xi’an University of Architecture and Technology, Xi’an, 710055, China
| | - Hongmiao Li
- School of Chemistry and Chemical Engineering, Xi’an University of Architecture and Technology, Xi’an, 710055, China
| | - Qi Wen
- School of Chemistry and Chemical Engineering, Xi’an University of Architecture and Technology, Xi’an, 710055, China
| | - Di Li
- School of Chemistry and Chemical Engineering, Xi’an University of Architecture and Technology, Xi’an, 710055, China
| |
Collapse
|
16
|
Cüce H, Temel FA, Yolcu OC. Modelling and optimization of Fenton processes through neural network and genetic algorithm. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-021-0867-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
17
|
Reggiane de Carvalho Costa L, Guerra Pacheco Nunes K, Amaral Féris L. Ultrasound as an Advanced Oxidative Process: A Review on Treating Pharmaceutical Compounds. Chem Eng Technol 2021. [DOI: 10.1002/ceat.202100090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Letícia Reggiane de Carvalho Costa
- Federal University of Rio Grande do Sul Department of Chemical Engineering Ramiro Barcelos Street, 2777 90035-007 Porto Alegre RS Brazil
| | - Keila Guerra Pacheco Nunes
- Federal University of Rio Grande do Sul Department of Chemical Engineering Ramiro Barcelos Street, 2777 90035-007 Porto Alegre RS Brazil
| | - Liliana Amaral Féris
- Federal University of Rio Grande do Sul Department of Chemical Engineering Ramiro Barcelos Street, 2777 90035-007 Porto Alegre RS Brazil
| |
Collapse
|
18
|
El Gaidoumi A, Loqman A, Zouheir M, Tanji K, Mertah O, Dra A, El Bali B, Kherbeche A. Sol–gel fluorinated TiO2–clay nanocomposite: study of fluor-titanium interaction on the photodegradation of phenol. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04573-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Huang X, Nan Z. Synergetic adsorption and photo-Fenton degradation of methylene blue by ZnFe 2O 4/SiO 2 magnetic double-mesoporous-shelled hollow spheres. ENVIRONMENTAL TECHNOLOGY 2021; 42:3218-3230. [PMID: 32008479 DOI: 10.1080/09593330.2020.1725142] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 01/26/2020] [Indexed: 06/10/2023]
Abstract
Adsorption and Fenton technologies have been widely employed to deal with wastewater. ZnFe2O4/SiO2 magnetic double-mesoporous-shelled hollow spheres (MDSHSs) were feasibly synthesized by a solvothermal method. The as-synthesized MDSHSs show excellent adsorption and selectivity for methylene blue (MB), which it took about only 1 min to reach the adsorption equilibrium. About 50% MB was removed by adsorption, and other 50% MB was degraded under further photo-Fenton process. Effects of experimental conditions on the adsorption and photo-Fenton process were investigated. The mechanisms of MDSHSs formation and photo-Fenton process were proposed. Total organic carbon (TOC) reduction reached as high as 90% with 60 mg/L of MB for 90 min. The experimental results indicated that MDSHSs exhibit a remarkable adsorption and catalytic activity for photo-Fenton process in a wide pH range of 3.3-11.0. Simultaneously, the composite shows an excellent stability and reusability.
Collapse
Affiliation(s)
- Xing Huang
- College of Chemistry and Chemical Engineering, Yang Zhou University, Yangzhou, People's Republic of China
| | - Zhaodong Nan
- College of Chemistry and Chemical Engineering, Yang Zhou University, Yangzhou, People's Republic of China
| |
Collapse
|
20
|
Rojas-Mantilla HD, Ayala-Duran SC, Pupo Nogueira RF. Nontronite mineral clay NAu-2 as support for hematite applied as catalyst for heterogeneous photo-Fenton processes. CHEMOSPHERE 2021; 277:130258. [PMID: 33774227 DOI: 10.1016/j.chemosphere.2021.130258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/02/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
This study describes the characterization of Nontronite, a clay mineral with high content of structural iron, before and after iron incorporation and 600 °C heat treatment. The Nontronite was classified as a mesoporous material, with high absorption in the UV-Vis range and band gap energy of 1.9 eV, indicative of the presence of superficial hematite, also verified in XRD analysis. The heat treatment promoted a structure rearrangement and the conversion of other iron phases to hematite, allowing the formation of surface irregular sites on Nontronite and facilitating the access for the decomposition of H2O2 into HO. Its catalytic activity in heterogeneous photo-Fenton process was evaluated during the degradation of the antibiotic sulfathiazole (STZ) and showed high activity achieving undetectable levels of STZ after 20 min under UV-LED irradiation and solar irradiation, and showing no iron leaching under controlled pH = 3. The degradation intermediates identified indicated hydroxylation as the main degradation route.
Collapse
Affiliation(s)
- Hernán D Rojas-Mantilla
- São Paulo State University (UNESP), Institute of Chemistry, Av. Prof. Francisco Degni 55, 14800-060, Araraquara, SP, Brazil.
| | - Saidy C Ayala-Duran
- São Paulo State University (UNESP), Institute of Chemistry, Av. Prof. Francisco Degni 55, 14800-060, Araraquara, SP, Brazil.
| | - Raquel F Pupo Nogueira
- São Paulo State University (UNESP), Institute of Chemistry, Av. Prof. Francisco Degni 55, 14800-060, Araraquara, SP, Brazil.
| |
Collapse
|
21
|
Zorzo CF, Inticher JJ, Borba FH, Cabrera LC, Dugatto JS, Baroni S, Kreutz GK, Seibert D, Bergamasco R. Oxidative degradation and mineralization of the endocrine disrupting chemical bisphenol-A by an eco-friendly system based on UV-solar/H 2O 2 with reduction of genotoxicity and cytotoxicity levels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:145296. [PMID: 33736423 DOI: 10.1016/j.scitotenv.2021.145296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/13/2020] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
A solar-driven advanced oxidation process at a lab scale was studied for the degradation and mineralization of the known endocrine disrupting chemical (EDC), bisphenol A (BPA). Preliminary tests were performed varying the irradiation source, BPA/H2O2 ratio, temperature, initial H2O2 concentration, initial solution pH, and initial BPA concentration, then, the operational conditions of the UV-solar/H2O2 were optimized by a response surface methodology (RSM), providing the following responses: UV-solar/H2O2 process at pH 3.0, [BPA]0 = 25 mg L-1, [H2O2] = 350 mg L-1, T = 50 °C, achieving BPA degradation of 77.4% and BPA mineralization of 38.2%, H2O2 consumption of 230 mg L-1. From the optimized condition, different pH ranges were tested (3.0; 5.0; 7.0; 9.0; and 11.0), where, at solution pH 5.0 the best removal rates were achieved (89.2% BPA degradation and 49.0% BPA mineralization). The BPA amount in solution was monitored by High Performance Liquid Chromatography (HPLC) and a study of the intermediate reaction by-products was performed by Gas Chromatography-Mass Spectrometry (GC-MS) analyses, highlighting the lower amount of by-products identified when the solution pH 5.0 was employed, rather than the solution pH 3.0. Genotoxicity tests with Zebrafish (Danio rerio) and cytotoxicity tests with Allium cepa were performed aiming to evaluate errors in the cells and nuclear abnormalities of the tested organisms induced by BPA raw samples, as well as by the BPA samples treated by the UV-solar/H2O2 process. Therefore, the bio-toxicity levels for an animal and a vegetal bio-indicator were reduced by applying a renewable source of energy as the irradiation source for the UV/H2O2 process, representing an efficient and eco-friendly alternative for BPA treatment in aqueous solutions.
Collapse
Affiliation(s)
- Camila F Zorzo
- Postgraduate Program of Environment and Sustainable Technologies, Federal University of Fronteira Sul, Rua Jacob Reinaldo Haupenthal 1580, 97900-00 Cerro Largo, RS, Brazil.
| | - Jonas J Inticher
- Postgraduate Program of Environment and Sustainable Technologies, Federal University of Fronteira Sul, Rua Jacob Reinaldo Haupenthal 1580, 97900-00 Cerro Largo, RS, Brazil
| | - Fernando H Borba
- Postgraduate Program of Environment and Sustainable Technologies, Federal University of Fronteira Sul, Rua Jacob Reinaldo Haupenthal 1580, 97900-00 Cerro Largo, RS, Brazil
| | - Liziara C Cabrera
- Postgraduate Program of Environment and Sustainable Technologies, Federal University of Fronteira Sul, Rua Jacob Reinaldo Haupenthal 1580, 97900-00 Cerro Largo, RS, Brazil
| | - Jonas S Dugatto
- Postgraduate Program of Environment and Sustainable Technologies, Federal University of Fronteira Sul, Rua Jacob Reinaldo Haupenthal 1580, 97900-00 Cerro Largo, RS, Brazil
| | - Suzymeire Baroni
- Postgraduate Program of Environment and Sustainable Technologies, Federal University of Fronteira Sul, Rua Jacob Reinaldo Haupenthal 1580, 97900-00 Cerro Largo, RS, Brazil
| | - Gustavo K Kreutz
- Postgraduate Program of Environment and Sustainable Technologies, Federal University of Fronteira Sul, Rua Jacob Reinaldo Haupenthal 1580, 97900-00 Cerro Largo, RS, Brazil
| | - Daiana Seibert
- Postgraduate Program of Chemical Engineering, State University of Maringa - UEM, Av. Colombo, 5790, Maringa, Parana CEP: 87020-900, Brazil
| | - Rosângela Bergamasco
- Postgraduate Program of Chemical Engineering, State University of Maringa - UEM, Av. Colombo, 5790, Maringa, Parana CEP: 87020-900, Brazil
| |
Collapse
|
22
|
Adabavazeh H, Saljooqi A, Shamspur T, Mostafavi A. Synthesis of polyaniline decorated with ZnO and CoMoO4 nanoparticles for enhanced photocatalytic degradation of imidacloprid pesticide under visible light. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115058] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Thomas N, Dionysiou DD, Pillai SC. Heterogeneous Fenton catalysts: A review of recent advances. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124082. [PMID: 33069994 PMCID: PMC7530584 DOI: 10.1016/j.jhazmat.2020.124082] [Citation(s) in RCA: 206] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 05/17/2023]
Abstract
Heterogeneous Fenton catalysts are emerging as excellent materials for applications related to water purification. In this review, recent trends in the synthesis and application of heterogeneous Fenton catalysts for the abatement of organic pollutants and disinfection of microorganisms are discussed. It is noted that as the complexity of cell wall increases, the resistance level towards various disinfectants increases and it requires either harsh conditions or longer exposure time for the complete disinfection. In case of viruses, enveloped viruses (e.g. SARS-CoV-2) are found to be more susceptible to disinfectants than the non-enveloped viruses. The introduction of plasmonic materials with the Fenton catalysts broadens the visible light absorption efficiency of the hybrid material, and incorporation of semiconductor material improves the rate of regeneration of Fe(II) from Fe(III). A special emphasis is given to the use of Fenton catalysts for antibacterial applications. Composite materials of magnetite and ferrites remain a champion in this area because of their easy separation and reuse, owing to their magnetic properties. Iron minerals supported on clay materials, perovskites, carbon materials, zeolites and metal-organic frameworks (MOFs) dramatically increase the catalytic degradation rate of contaminants by providing high surface area, good mechanical stability, and improved electron transfer. Moreover, insights to the zero-valent iron and its capacity to remove a wide range of organic pollutants, heavy metals and bacterial contamination are also discussed. Real world applications and the role of natural organic matter are summarised. Parameter optimisation (e.g. light source, dosage of catalyst, concentration of H2O2 etc.), sustainable models for the reusability or recyclability of the catalyst and the theoretical understanding and mechanistic aspects of the photo-Fenton process are also explained. Additionally, this review summarises the opportunities and future directions of research in the heterogeneous Fenton catalysis.
Collapse
Affiliation(s)
- Nishanth Thomas
- Nanotechnology and Bio-engineering Research Group, Department of Environmental Science, Institute of Technology Sligo, Sligo, Ireland; Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology Sligo, Sligo, Ireland
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, USA
| | - Suresh C Pillai
- Nanotechnology and Bio-engineering Research Group, Department of Environmental Science, Institute of Technology Sligo, Sligo, Ireland; Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology Sligo, Sligo, Ireland.
| |
Collapse
|
24
|
Guo H, Li Z, Lin S, Li D, Jiang N, Wang H, Han J, Li J. Multi-catalysis induced by pulsed discharge plasma coupled with graphene-Fe 3O 4 nanocomposites for efficient removal of ofloxacin in water: Mechanism, degradation pathway and potential toxicity. CHEMOSPHERE 2021; 265:129089. [PMID: 33261841 DOI: 10.1016/j.chemosphere.2020.129089] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/01/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
Herein, degradation of ofloxacin (OFX) by pulsed discharge plasma (PDP) coupled with multi-catalysis using graphene-Fe3O4 nanocomposites was inspected. The graphene-Fe3O4 nanocomposites were prepared by hydrothermal synthesis, and their morphology, specific surface area, chemical bond structure and magnetic property were characterized systematically. Compared with sole Fe3O4, the specific surface area of graphene-Fe3O4 nanocomposites increased from 26.34 m2/g to 125.04 m2/g. The prepared graphene-Fe3O4 nanocomposites had higher paramagnetism and the magnetic strength reached 66.05 emu/g, which was prone to separate from solution. Graphene-Fe3O4 nanocomposites could further accelerate OFX degradation compared to sole Fe3O4. When graphene content was 18 wt%, graphene-Fe3O4 nanocomposites exhibited the highest catalytic activity, and the removal efficiency of OFX enhanced from 65.0% (PDP alone) to 99.9%. 0.23 g/L dosage and acid solution were beneficial for OFX degradation. Higher stability of graphene-Fe3O4 nanocomposites could be maintained although four times use. Graphene-Fe3O4 nanocomposites could catalyze H2O2 and O3 to produce more ·OH. The degradation products of OFX were identified by liquid chromatography mass spectrometry (LC-MS) and ion chromatography (IC). According to the identified products and discrete Fourier transform (DFT), the degradation pathway was inferred. Further toxicity assessment of products manifested that the toxicity of oral rat 50% lethal dose (LD50) and the developmental toxicity of OFX were reduced.
Collapse
Affiliation(s)
- He Guo
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China.
| | - Zhen Li
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Siying Lin
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Dongsheng Li
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Nan Jiang
- School of Electrical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Huijuan Wang
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Jiangang Han
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China; Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu, 223100, China.
| | - Jie Li
- School of Electrical Engineering, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
25
|
Liu L, Xu Q, Owens G, Chen Z. Fenton-oxidation of rifampicin via a green synthesized rGO@nFe/Pd nanocomposite. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123544. [PMID: 32755796 DOI: 10.1016/j.jhazmat.2020.123544] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 07/10/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
Antibiotics are an emerging class of persistent contaminants that are now of major environmental concern because they pose potential risks to both environmental and human health. Here reduced graphene oxide composited with bimetallic iron/palladium nanoparticles (rGO@nFe/Pd) was synthesized via a green tea extract and used to remove a common antibiotic, rifampicin from aqueous solution. The innate physical rifampicin removal efficiency of the composite (79.9 %) was increased to 85.7 % when combined with Fenton-oxidation. The mechanism and the main factors controlling Fenton-oxidation of rifampicin by rGO@nFe/Pd were investigated. Oxidation followed a pseudo-second-order degradation kinetic model with an activation energy of 47.3 kJ mol-1. rGO@nFe/Pd were characterized by Brunauer-Emmett-Teller (BET), fourier transform infrared (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray energy spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), X-Ray powder diffraction (XRD), and zeta potential. Rifampicin degradation products observed by LC-UV, where subsequently confirmed to be mainly 5,6,9-trihydroxynaphtho [2,1-b] furan-1(2 H)-one, 5,6-dihydroxy-1-oxo-1,2-dihydronaphtho [2,1-b] furan-2-yl formate and (S)-5,6,9-trihydroxy-2-(3-methoxypropoxy)-2-methylnaphtho [2,1-b] furan-1(2 H)-one by LC-MS. Finally, the practical effectiveness of the composite material for antibiotic removal was demonstrated by the treatment of representative wastewaters, where rifampicin removal efficiencies of 80.4, 77.9 and 70.2 % were observed for river, aquaculture wastewater and domestic wastewater, respectively.
Collapse
Affiliation(s)
- Longjie Liu
- School of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, Fujian Province, China
| | - Qianyu Xu
- School of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, Fujian Province, China
| | - Gary Owens
- Environmental Contaminants Group, Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Zuliang Chen
- School of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, Fujian Province, China.
| |
Collapse
|
26
|
Omri A, Benzina M. Degradation of Alizarin Red S by Heterogeneous Fenton-Like Oxidation Over Copper-Containing Sand Catalysts. CATALYSIS SURVEYS FROM ASIA 2021. [DOI: 10.1007/s10563-020-09321-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
27
|
Vilé G. Photocatalytic materials and light-driven continuous processes to remove emerging pharmaceutical pollutants from water and selectively close the carbon cycle. Catal Sci Technol 2021. [DOI: 10.1039/d0cy01713b] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Past and present technologies for wastewater purification and future research directions are critically discussed in this review.
Collapse
Affiliation(s)
- Gianvito Vilé
- Department of Chemistry
- Materials, and Chemical Engineering “Giulio Natta”
- Politecnico di Milano
- IT-20133 Milano
- Italy
| |
Collapse
|
28
|
Alderete BL, da Silva J, Godoi R, da Silva FR, Taffarel SR, da Silva LP, Garcia ALH, Júnior HM, de Amorim HLN, Picada JN. Evaluation of toxicity and mutagenicity of a synthetic effluent containing azo dye after Advanced Oxidation Process treatment. CHEMOSPHERE 2021; 263:128291. [PMID: 33297233 DOI: 10.1016/j.chemosphere.2020.128291] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/02/2020] [Accepted: 09/06/2020] [Indexed: 06/12/2023]
Abstract
Approximately 20% industrial water pollution comes from textile dyeing process, with Azo dyes being a major problem in this scenario and requiring new forms of efficient treatment. Effluent treatments using the Advanced Oxidation Processes (AOP) are justified by the potential of application in the dyed effluent treatments once they can change the Azo dye chemical structure. Thus, this study aimed to evaluate the toxicity and mutagenic capacity of a synthetic effluent containing Amido Black 10B (AB10B) azo dye before treatment with AOP, named Gross Synthetic Effluent (GSE), and after the AOP, named Treated Synthetic Effluent (TSE). Daphnia magna and Allium cepa tests were used to evaluate acute toxicity effects and chromosomal mutagenesis, respectively. The Salmonella/microsome assay was performed to evaluate gene mutations. In silico assays were also performed aiming to identify the mutagenic and carcinogenic potential of the degradation byproducts of AB10B. There was 100% immobility to D. magna after 24 h and 48 h of treatments with TSE, showing EC50 values around 5%, whereas GSE did not show acute toxicity. However, GSE induced chromosomal mutations in A. cepa test. Both GSE and TSE were not able to induce gene mutations in S. typhimurium strains. These effects can be associated with two byproducts generated with the cleavage of the azo bonds of AB10B, 4-nitroaniline and -2-7-triamino-8-hydroxy-3-6-naphthalinedisulfate (TAHNDS). In conclusion, AOP is an efficient method to reduce the mutagenicity of synthetic effluent containing AB10B and additional methods should be applied aiming to reduce the toxicity.
Collapse
Affiliation(s)
- Bárbara Lopes Alderete
- Lutheran University of Brazil (ULBRA), Laboratory of Genetic Toxicology. PPGBioSaúde (Postgraduate Program in Cellular and Molecular Biology Applied to Health), 92425-900, Canoas, RS, Brazil
| | - Juliana da Silva
- Lutheran University of Brazil (ULBRA), Laboratory of Genetic Toxicology. PPGBioSaúde (Postgraduate Program in Cellular and Molecular Biology Applied to Health), 92425-900, Canoas, RS, Brazil; La Salle University, Laboratory of Genetic Toxicology. PPGSDH (Professional Master's Degree in Health and Human Development) and Academic Master in Environmental Impact Assessment, Canoas, RS, Brazil.
| | - Rafael Godoi
- Lutheran University of Brazil (ULBRA), Laboratory of Genetic Toxicology. PPGBioSaúde (Postgraduate Program in Cellular and Molecular Biology Applied to Health), 92425-900, Canoas, RS, Brazil; La Salle University, Laboratory of Genetic Toxicology. PPGSDH (Professional Master's Degree in Health and Human Development) and Academic Master in Environmental Impact Assessment, Canoas, RS, Brazil
| | - Fernanda Rabaioli da Silva
- La Salle University, Laboratory of Genetic Toxicology. PPGSDH (Professional Master's Degree in Health and Human Development) and Academic Master in Environmental Impact Assessment, Canoas, RS, Brazil
| | - Silvio Roberto Taffarel
- La Salle University, Laboratory of Genetic Toxicology. PPGSDH (Professional Master's Degree in Health and Human Development) and Academic Master in Environmental Impact Assessment, Canoas, RS, Brazil
| | - Lucas Pisoni da Silva
- La Salle University, Laboratory of Genetic Toxicology. PPGSDH (Professional Master's Degree in Health and Human Development) and Academic Master in Environmental Impact Assessment, Canoas, RS, Brazil
| | - Ana Leticia Hilario Garcia
- Lutheran University of Brazil (ULBRA), Laboratory of Genetic Toxicology. PPGBioSaúde (Postgraduate Program in Cellular and Molecular Biology Applied to Health), 92425-900, Canoas, RS, Brazil
| | - Horst Mitteregger Júnior
- Laboratory of Ecotoxicology, SENAI, Institute of Technology in Leather and the Environment, 93600-000, Estância Velha, RS, Brazil
| | | | - Jaqueline Nascimento Picada
- Lutheran University of Brazil (ULBRA), Laboratory of Genetic Toxicology. PPGBioSaúde (Postgraduate Program in Cellular and Molecular Biology Applied to Health), 92425-900, Canoas, RS, Brazil.
| |
Collapse
|
29
|
Bui Thanh Son, Nguyen Viet Long, Nguyen Thi Nhat Hang. Natural clay minerals and fly ash waste as green catalysts for heterogeneous photo-Fenton reactions. NEW J CHEM 2021. [DOI: 10.1039/d1nj03553c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review highlights recent advances in the use of natural clay minerals and fly ash waste as efficient catalysts for the heterogeneous photo-Fenton degradation of emerging contaminants.
Collapse
Affiliation(s)
- Bui Thanh Son
- Nanotechnology, Thu Dau Mot University, Binh Duong Province, Vietnam
| | - Nguyen Viet Long
- Nanotechnology, Thu Dau Mot University, Binh Duong Province, Vietnam
| | | |
Collapse
|
30
|
Modeling of Degradation of Diazo Dye in Swirl-Flow Photocatalytic Reactor: Response Surface Approach. Catalysts 2020. [DOI: 10.3390/catal10121418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Photocatalytic degradation of Direct Blue 15 (DB15), an azo dye, was studied using a swirl-flow monolithic reactor under UV irradiation. The degradation reactions were carried out to investigate effects of initial dye concentration, catalyst loading, and light intensity at an optimal pH. The experiments were designed and mathematically modelled by CCD-RSM (central composite design-response surface methodology) approach. It was found that the selected parameters significantly affect DB15 degradation. In terms of the linear term, catalyst loading and light intensity had a synergistic effect, while dye concentration registered the opposite effect. Strong interaction was observed between catalyst loading and both light intensity and initial dye concentration compared with the interaction of light intensity and initial dye concentration. Based on the experimental results, a quadratic model was developed to predict the percentage removal of DB15. The predicted values of the model were in good agreement with the experimental values (R2 = 0.987), indicating the model fits well for the parameter space for which experiments were performed. According to diagnostic plots, the model credibility was valid because its residuals were distributed normally and exhibited a random pattern based on their examination versus the predicted values. The results revealed that the initial dye concentration and catalyst concentration have a significant effect on the mineralization time.
Collapse
|
31
|
Deep eutectic solvent-mediated, energy-efficient synthesis of copper terephthalate metal-organic framework and its application in degradation of an azo dye. CHEMICAL ENGINEERING JOURNAL ADVANCES 2020. [DOI: 10.1016/j.ceja.2020.100032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
32
|
Hu ZT, Liu JW, Zhao J, Ding Y, Jin Z, Chen J, Dai Q, Pan B, Chen Z, Chen J. Enhanced BiFeO3/Bi2Fe4O9/H2O2 heterogeneous system for sulfamethoxazole decontamination: System optimization and degradation pathways. J Colloid Interface Sci 2020; 577:54-65. [DOI: 10.1016/j.jcis.2020.05.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/08/2020] [Accepted: 05/15/2020] [Indexed: 02/06/2023]
|
33
|
Gwak GH, Yamaguchi T, Kim MK, Park JK, Oh JM. Silver nanoplate-pillared mesoporous nano-clays for surface enhanced raman scattering. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.05.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Al Kausor M, Chakrabortty D. Facile fabrication of N-TiO2/Ag3PO4@GO nanocomposite toward photodegradation of organic dye under visible light. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.107907] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
35
|
Synthesis of a Magnetic Fe3O4/RGO Composite for the Rapid Photo-Fenton Discoloration of Indigo Carmine Dye. Top Catal 2020. [DOI: 10.1007/s11244-020-01277-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
36
|
Yu X, Sun J, Li G, Huang Y, Li Y, Xia D, Jiang F. Integration of •SO 4--based AOP mediated by reusable iron particles and a sulfidogenic process to degrade and detoxify Orange II. WATER RESEARCH 2020; 174:115622. [PMID: 32145554 DOI: 10.1016/j.watres.2020.115622] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 12/26/2019] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
The sulfate radical (•SO4-)-based advanced oxidation processes (AOPs) for the degradation of refractory organic pollutants consume a large amount of persulfate activators and often generate toxic organic by-products. In this study, we proposed a novel iron-cycling process integrating •SO4--based AOP mediated by reusable iron particles and a sulfidogenic process to degrade and detoxify Orange II completely. The rusted waste iron particles (Fe0@FexOy), which contained FeII/FeIII oxides (FexOy) on the shell and zero-valent iron (Fe0) in the core, efficiently activated persulfate to produce •SO4- and hydroxyl radicals (•OH) to degrade over 95% of Orange II within 120 min. Both •SO4- and •OH destructed Orange II through a sequence of electron transfer, electrophilic addition and hydrogen abstraction reactions to generate several organic by-products (e.g., aromatic amines and phenol), which were more toxic than the untreated Orange II. The AOP-generated organic by-products were further mineralized and detoxified in a sulfidogenic bioreactor with sewage treatment together. In a 170-d trial, the organic carbon removal efficiency was up to 90%. The inhibition of the bioreactor effluents on the growth of Chlorella pyrenoidosa became negligible, due to the complete degradation and mineralization of toxic AOP-generated by-products by aromatic-degrading bacteria (e.g., Clostridium and Dechloromonas) and other bacteria. The sulfidogenic process also well recovered the used Fe0@FexOy particles through the reduction of surface FeIII back into FeII by hydrogen sulfide formed and iron-reducing bacteria (e.g., Sulfurospirillum and Paracoccus). The regenerated Fe0@FexOy particles had more reactive surface FeII sites and exhibited much better reactivity in activating persulfate in at least 20 reuse cycles. The findings demonstrate that the integrated process is a promising solution to the remediation of toxic and refractory organic pollutants because it reduces the chemical cost of persulfate activation and also completely detoxifies the toxic by-products.
Collapse
Affiliation(s)
- Xiaoyu Yu
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, China; Department of Environmental Engineering, Guangdong Polytechnic of Environmental Protection Engineering, Foshan, 528216, China
| | - Jianliang Sun
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Guibiao Li
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Yi Huang
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Yu Li
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Dehua Xia
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Feng Jiang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
37
|
Wang H, Zhang Q, Mujumdar A, Fang XM, Wang J, Pei YP, Wu W, Zielinska M, Xiao HW. High-humidity hot air impingement blanching (HHAIB) efficiently inactivates enzymes, enhances extraction of phytochemicals and mitigates brown actions of chili pepper. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.107050] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
38
|
Mohammadi P, Ghorbani-Shahna F, Bahrami A, Rafati AA, Farhadian M. Plasma-photocatalytic degradation of gaseous toluene using SrTiO3/rGO as an efficient heterojunction for by-products abatement and synergistic effects. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112460] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
39
|
Abrile MG, Fiasconaro ML, Lovato ME. Optimization of Reactive Blue 19 dye removal using ozone and ozone/UV employing response surface methodology. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2824-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
40
|
Cai C, Kang S, Xie X, Liao C. Ultrasound-assisted heterogeneous peroxymonosulfate activation with Co/SBA-15 for the efficient degradation of organic contaminant in water. JOURNAL OF HAZARDOUS MATERIALS 2020; 385:121519. [PMID: 31706748 DOI: 10.1016/j.jhazmat.2019.121519] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 10/19/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
A potential advanced oxidation process is provided by SBA-15 supported cobalt (Co/SBA-15) activated peroxymonosulfate (PMS, HSO5-) in the ultrasound (US) enhanced system, named Co/SBA-15/PMS/US process, for the elimination of refractory organic contaminants (ROCs) in water. This process exhibited favorable behavior with 95.5 % C.I. Acid Orange 7 (AO7) degradation using 5 mM PMS, 0.5 g/L Co/SBA-15 catalyst, 190 W US power at initial pH of 6.0 after 90 min reaction. Co/SBA-15 particles remained satisfied catalytic activity and stability with very low level of cobalt release in 10 successive cycles. The scavenge tests and electron paramagnetic resonance (EPR) result as well as the cobalt leaching concentration revealed that the reactive radicals (SO4- and OH) on catalyst surface were primarily responsible for AO7 oxidation, and a rational mechanism was elucidated accordingly. The presence of chloride ions and bicarbonate could improve AO7 removal. The probable pathway of AO7 degradation was proposed based on the intermediates identified. This Co/SBA-15/PMS/US process could be well applied for the destruction of other typical ROCs (bisphenol A, clofibric acid, and rhodamine B) and the treatment of lake and river water spiked with AO7, and this study may provide an efficient PMS technique for the remediation of ROCs in water.
Collapse
Affiliation(s)
- Chun Cai
- Department of Environmental Science and Engineering, Hubei Provincial Engineering Research Center of Systematic Water Pollution Control, China University of Geosciences, Wuhan 430074, China.
| | - Shuping Kang
- Department of Environmental Science and Engineering, Hubei Provincial Engineering Research Center of Systematic Water Pollution Control, China University of Geosciences, Wuhan 430074, China
| | - Xianjun Xie
- Department of Environmental Science and Engineering, Hubei Provincial Engineering Research Center of Systematic Water Pollution Control, China University of Geosciences, Wuhan 430074, China
| | - Chanjuan Liao
- College of Resources & Environment, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
41
|
Rahimzadeh H, Rahmani A, Samadi MT, Farmany A, Asgari G. Sono-photo-assisted heterogeneous activation of peroxymonosulfate by Fe/CMK-3 catalyst for the degradation of bisphenol A, optimization with response surface methodology. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:189-201. [PMID: 31295751 DOI: 10.1002/wer.1181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/03/2019] [Accepted: 07/05/2019] [Indexed: 06/09/2023]
Abstract
The present study examined the removal of bisphenol A (BPA) and total organic carbon (TOC) from aqueous solutions by the Fe/CMK-3 as peroxymonosulfate activator used in the sono-photo-catalytic process. The synthesis of Fe/CMK-3 was carried out using the co-precipitation method, and it was characterized by FTIR, XRD, BET, EDX, and TEM. The results showed that the iron nanoparticles were uniformly embedded in the CMK-3 pores. The effect of factors affecting on the removal of BPA and TOC was evaluated by response surface methodology (RSM) with center composite design (CCD). The analysis of variance of the quadratic model showed that the model is significant (p value < .0001 and R2 > 99.4%) and can be used to optimize the removal efficiency of BPA. Optimization results showed that the highest removal efficiency of BPA (100%) and TOC (80.6%) was achieved in optimum conditions of pH 7.8, catalyst dose 0.33 g/L, PMS dose 3.35 mmol/L, BPA concentration 39.3 mg/L, and 78.5 min. In addition, statistical analysis of the data showed that, in the studied range, the initial concentration of BPA was the most influential factor, followed by pH and PMS dose. Highest catalytic stability of Fe/CMK-3 showed the potential applicability of catalyst in the treatment of BPA-containing solutions. The quenching test showed that sulfate radical was the main responsible for the removal of BPA. The decrease in IOUR value after the 75-min reaction time indicates that this process has a high ability for oxidation of the pollutant and its intermediates. Generally, the observed results suggest that the Fe-CMK-3/UV/US/PMS system can be a promising procedure for the removal of persistent pollutants such as BPA from aqueous media. PRACTITIONER POINTS: Fe/CMK-3 exhibited prominent catalytic activity and high stability for peroxymonosulfate activation. Effective degradation of bisphenol A was achieved in the Fe-CMK-3/UV/US/PMS system. The effect of five factors at five levels and their interactions during the removal of BPA was evaluated by RSM method coupled with central composite design (CCD). The analysis of variance of the quadratic model showed that the model is very significant (p value < .0001) and can be used to optimize the removal efficiency of BPA. The quenching test showed that sulfate radical was the main responsible for the removal of BPA. Reducing IOUR value after the 75-min reaction time indicates that toxicity of the solution was significantly decreased in this system.
Collapse
Affiliation(s)
- Hadi Rahimzadeh
- Department of Environmental Health Engineering, Faculty of Health and Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Rahmani
- Department of Environmental Health Engineering, Faculty of Health and Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad-Taghi Samadi
- Department of Environmental Health Engineering, Faculty of Health and Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abbas Farmany
- Dental Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ghorban Asgari
- Department of Environmental Health Engineering, Faculty of Health and Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
42
|
Wang X, Liu W, Qin J, Lei L. Improvement of H2O2 Utilization by the Persistent Heterogeneous Fenton Reaction with the Fe3O4-Zeolite-Cyclodextrin Composite. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06091] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xiaoping Wang
- Chongqing Key Laboratory of Catalysis and Environmental New Material, Innovation Group of New Technologies for Industrial Pollution Control, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Wei Liu
- Chongqing Key Laboratory of Catalysis and Environmental New Material, Innovation Group of New Technologies for Industrial Pollution Control, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Jiayuan Qin
- Chongqing Key Laboratory of Catalysis and Environmental New Material, Innovation Group of New Technologies for Industrial Pollution Control, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Lecheng Lei
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
43
|
Influence of the origin of carbon support on the structure and properties of TiO2 nanoparticles prepared by dip coating method. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2015.06.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
44
|
Guimarães V, Teixeira AR, Lucas MS, Silva AM, Peres JA. Pillared interlayered natural clays as heterogeneous photocatalysts for H2O2-assisted treatment of a winery wastewater. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.115768] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
45
|
Buyukada M. Removal, potential reaction pathways, and overall cost analysis of various pollution parameters and toxic odor compounds from the effluents of turkey processing plant using TiO 2-assisted UV/O 3 process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 248:109298. [PMID: 31362171 DOI: 10.1016/j.jenvman.2019.109298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/24/2019] [Accepted: 07/18/2019] [Indexed: 06/10/2023]
Abstract
In the present study, removal of hazardous toxic odor compounds with color, COD and turbidity were concurrently investigated for the effluents of a turkey processing plant located in Bolu, Turkey. A hybrid TiO2-assisted photo-ozonation (UV/TiO2/O3) process was set to address this issue. Subsequently, a comprehensive GC/MS method was developed for quantification of odor compounds. Finally, a complete overall cost analysis was incorporated with the findings of the study to demonstrate an economic analysis of the process. Descriptive results showed that the effluents had high pollution content in terms of color (0.374 IU; b = -0.06), COD (146 mg/L O2) and turbidity (15.52 NTU). Moreover, dimethyl silanediol (DS, 34.3%), acetic acid (AA, 20.5%), and diisobutyl phthalate (DP, 32.5%) were determined as major odor compounds of the effluents. After UV/TiO2/O3 process, DS, AA, and DP were reduced to 12.4%, 12.0%, and 8.4%, respectively under the operating conditions of ozone dose of 16 mg/L, initial pH of 7.5, reaction time of 25 min, and catalyst dose of 3 g/L TiO2. At the same conditions removal efficiencies of color, COD and turbidity were obtained %99, %85, and 78%, respectively. These values demonstrated the accuracy of UV/TiO2/O3 process in terms of removal of hazardous odor compounds and the other pollution parameters. Studies on reaction mechanism showed that main degradation mechanism occurred in three ways: formation of long-chained cyclic compounds from DS (1), formation of acetamide and ammonium acetate from AA (2), and formation of phthallic acid from DP (3). Finally, overall cost analysis showed that the current process costed 0.014 $ per 1 L of treated effluent and this value showed that the current process met the economic criteria in terms of feasibility.
Collapse
Affiliation(s)
- Musa Buyukada
- Department of Chemical Engineering, Bolu Abant Izzet Baysal University, 14030, Bolu, Turkey.
| |
Collapse
|
46
|
Guimarães V, Lucas MS, Peres JA. Combination of adsorption and heterogeneous photo-Fenton processes for the treatment of winery wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:31000-31013. [PMID: 31452122 DOI: 10.1007/s11356-019-06207-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
The performance of both adsorption and heterogeneous photo-Fenton processes, combined for the first time for the treatment of a real winery wastewater (WW), was evaluated under different operational conditions. A Portuguese natural Ca-smectite (Ca-Sm) was applied in both processes, however, with different purposes: (1) as an adsorbent, which reveals great capacity to retain organic acids, and (2) as catalyst support for the production of an iron-based catalyst (Fe-Sm). Both Ca-Sm and Fe-Sm materials were characterized by XRD, FTIR, low temperature N2 adsorption isotherms, and SEM-EDX. The adsorption process was investigated under different experimental conditions, namely, different pH, adsorbent dosages, and different concentrations of the organic contaminant. The adsorption isotherm was successfully described by Jovanovich isothermal model (R2 = 0.990), which predicted a maximum adsorption capacity of 161 mg C/g. Regarding to the heterogeneous photo-Fenton process, the higher TOC removal percentage obtained (78.7% - 240 min) was achieved at pH 4.0, with a H2O2 concentration of 98 mM and a catalyst dosage (S:L, solid:liquid ratio) corresponding to 6.00 g/L (UV-C). As a result, the combination of both treatment processes, using the optimized conditions, allowed a total TOC removal of 90%, where the initial TOC0 (825 mg C/L) was reduced by 54%, through the adsorption process, and by 36% by means of heterogeneous photo-Fenton process [TOC0 = 825 mg C/L (1) - TOCf-ads = 380 mg C/L (2) - TOCf-pF = 81 mg C/L (3)].
Collapse
Affiliation(s)
- Vanessa Guimarães
- Centro de Química de Vila Real, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal.
| | - Marco S Lucas
- Centro de Química de Vila Real, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal
| | - José A Peres
- Centro de Química de Vila Real, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal
| |
Collapse
|
47
|
Majumder A, Gupta B, Gupta AK. Pharmaceutically active compounds in aqueous environment: A status, toxicity and insights of remediation. ENVIRONMENTAL RESEARCH 2019; 176:108542. [PMID: 31387068 DOI: 10.1016/j.envres.2019.108542] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/12/2019] [Accepted: 06/17/2019] [Indexed: 05/22/2023]
Abstract
Pharmaceutically active compounds (PhACs) have pernicious effects on all kinds of life forms because of their toxicological effects and are found profoundly in various wastewater treatment plant influents, hospital effluents, and surface waters. The concentrations of different pharmaceuticals were found in alarmingly high concentrations in various parts of the globe, and it was also observed that the concentration of PhACs present in the water could be eventually related to the socio-economic conditions and climate of the region. Drinking water equivalent limit for each PhAC has been calculated and compared with the occurrence data from various continents. Since these compounds are recalcitrant towards conventional treatment methods, while advanced oxidation processes (AOPs) have shown better efficiency in degrading these PhACs. The performance of the AOPs have been evaluated based on percentage removal, time, and electrical energy consumed to degrade different classes of PhACs. Ozone based AOPs were found to be favorable because of their low treatment time, low cost, and high efficiency. However, complete degradation cannot be achieved by these processes, and various transformation products are formed, which may be more toxic than the parent compounds. The various transformation products formed from various PhACs during treatment have been highlighted. Significant stress has been given on the role of various process parameters, water matrix, oxidizing radicals, and the mechanism of degradation. Presence of organic compounds, nitrate, and phosphate usually hinders the degradation process, while chlorine and sulfate showed a positive effect. The role of individual oxidizing radicals, interfering ions, and pH demonstrated dissimilar effects on different groups of PhACs.
Collapse
Affiliation(s)
- Abhradeep Majumder
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - Bramha Gupta
- School of Water Resources, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - Ashok Kumar Gupta
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
48
|
Wang T, Zhou Y, Cao S, Lu J, Zhou Y. Degradation of sulfanilamide by Fenton-like reaction and optimization using response surface methodology. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 172:334-340. [PMID: 30721877 DOI: 10.1016/j.ecoenv.2019.01.106] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 06/09/2023]
Abstract
Excess sulfonamides are discharged into the environmental system due to the abuse of antibiotics, which threatens the ecological environment and human health. In this study, the ferric and ferrous as well as calcium peroxide (CP), sodium percarbonate (SPC) and sodium persulfate (SPS) have been used to build Fenton-like system for the sulfanilamide (SA) removal. Compared with other Fenton-like system, the Fe3+/CP system exhibited better degradation capacity and 94.65% SA was removed with 3.0 mM CP and 3.0 mM Fe3+. A response surface and corresponding quadratic regression equation were obtained by using a three-level Box-Behnken factorial design with the initial pH value and the dosage of Fe3+ and CP as the model parameters. Depended on the result of the response surface, the optimum conditions of the removal of SA in Fe3+/CP system could be obtained: [Fe3+] = 2.96 mM, [CaO2] = 2.33 mM and [pH] = 6.45. Besides that, the influences of Na+, Mg2+, Cl-, HCO3-, NO3- and HA on SA removal were also investigated under the optimum condition. The results revealed that the high concentration of HCO3- was able to inhibit degradation of SA while other ions and HA have little effect on SA degradation. These results provided a novel strategy to evaluate the catalyst/oxidant system by combining experiment and computer simulation in wastewater treatment.
Collapse
Affiliation(s)
- Tenghao Wang
- Key Laboratory of Coal Gasification and Energy Chemical Engineering of Ministry of Education, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China
| | - Yi Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China
| | - Shixin Cao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China
| | - Jian Lu
- Key Laboratory of Coal Gasification and Energy Chemical Engineering of Ministry of Education, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China
| | - Yanbo Zhou
- Key Laboratory of Coal Gasification and Energy Chemical Engineering of Ministry of Education, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
49
|
Hurtado L, Romero R, Mendoza A, Brewer S, Donkor K, Gómez-Espinosa RM, Natividad R. Paracetamol mineralization by Photo Fenton process catalyzed by a Cu/Fe-PILC under circumneutral pH conditions. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.01.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
50
|
GilPavas E, Dobrosz-Gómez I, Gómez-García MÁ. Optimization and toxicity assessment of a combined electrocoagulation, H 2O 2/Fe 2+/UV and activated carbon adsorption for textile wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:551-560. [PMID: 30245411 DOI: 10.1016/j.scitotenv.2018.09.125] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/06/2018] [Accepted: 09/09/2018] [Indexed: 05/25/2023]
Abstract
In this study, the potential application of sequential Electrocoagulation + Fenton (F) or Photo-Fenton (PF) + Active carbon adsorption (EC + F/PF + AC) processes were analyzed as alternatives for the treatment of an industrial textile wastewater resulting from an industrial facility located in Medellín (Colombia). In order to maximize the organic matter degradation, each step of the treatment was optimized using the Response Surface Methodology. At first, the optimal performance of EC was achieved with Fe electrodes operating at pH = 7, jEC = 10 mA/cm2 and 60 rpm, during 10 min of electrolysis. At these conditions, EC let to remove 94% of the dye's color, 56% of the COD and 54% of the TOC. Next, sequentially applied Fenton or photo-Fenton process (i.e., EC + F/PF), operating at the optimized conditions (pH = 4.3, [Fe2+] = 1.1 mM, [H2O2] = 9.7 mM, stirring velocity = 100 rpm and reaction time = 60 min.), improved the quality of the treated effluent. The EC + F let to achieve total color reduction, as well as COD and TOC removals of 72 and 75%, respectively. The EC + PF reached 100% of color, 76% of COD and 78% of TOC reductions. The EC + F/PF processes were more efficient than EC in elimination of low molecular weight (<5 kDa) compounds from wastewater. Moreover, the BOD5/COD ratio increased from 0.21 to 0.42 and from 0.21 to 0.46 using EC + F and EC + PF processes, respectively. However, EC + F/PF were not fully effective for the removal of acute toxicity to Artemia salina: 20% and 60% of reduction in toxicity using EC + F and EC + PF, respectively, comparing to very toxic (100%) raw textile wastewater. Thus, activated carbon adsorption was applied as an additional step to complete the treatment. After AC adsorption, the acute toxicity decreased to 10% and 0% using EC + F and EC + PF, respectively. The total operational costs, including chemical reagents, electrodes, energy consumption and sludge disposal, were of 1.65 USD/m3 and 2.3 USD/m3 for EC + F and EC + PF, respectively.
Collapse
Affiliation(s)
- Edison GilPavas
- GIPAB: Grupo de Investigación en Procesos Ambientales, Departamento de Ingeniería de Procesos, Universidad EAFIT, Cr 49 # 7 Sur 50, Medellín, Colombia.
| | - Izabela Dobrosz-Gómez
- Grupo de Investigación en Procesos Reactivos Intensificados con Separación y Materiales Avanzados - PRISMA, Departamento de Física y Química, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Colombia, Sede Manizales, Campus La Nubia, km 9 vía al Aeropuerto la Nubia, Apartado Aéreo 127, Manizales, Caldas, Colombia.
| | - Miguel-Ángel Gómez-García
- Grupo de Investigación en Procesos Reactivos Intensificados con Separación y Materiales Avanzados - PRISMA, Departamento de Ingeniería Química, Facultad de Ingeniería y Arquitectura, Universidad Nacional de Colombia, Sede Manizales, Campus La Nubia, km 9 vía al Aeropuerto la Nubia, Apartado Aéreo 127, Manizales, Caldas, Colombia.
| |
Collapse
|