1
|
Xu D, Ding A, Yu Y, Zheng P, Zhang M, Hu Z. An overlooked nanofluids effect from Fe 3O 4 nanoparticles enhances mass transfer in anammox granular sludge. WATER RESEARCH X 2024; 25:100260. [PMID: 39421277 PMCID: PMC11483320 DOI: 10.1016/j.wroa.2024.100260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024]
Abstract
Magnetite (Fe3O4) particles have been widely reported to enhance the anammox's activity in anammox granular sludge (AnGS), yet the underlying mechanisms remain unclear. This study demonstrates that both Fe3O4 microparticles (MPs) and nanoparticles (NPs) at a dosage of 200 mg Fe3O4/L significantly increased the specific anammox activity (SAA) of AnGS. Additionally, the transcriptional activities of the hzs and hdh genes involved in the anammox process, as well as the heme c content in AnGS, were also notably enhanced. Notably, Fe3O4 NPs were more effective than MPs in boosting anammox activity within AnGS. Mechanistically, Fe3O4 MPs released free iron, which anammox bacteria utilized to promote the synthesis of key enzymes, thereby enhancing their activity. Compared to MPs, Fe3O4 NPs not only elevated the synthesis of these key enzymes to a higher level but also induced a nanofluids effect on the surface of AnGS, improving substrate permeability and accessibility to intragranular anammox bacteria. Moreover, the nanofluids effect was identified as the primary mechanism through which Fe3O4 NPs enhanced anammox activity within AnGS. These findings provide new insights into the effects of nanoparticles on granular sludge systems, extending beyond AnGS.
Collapse
Affiliation(s)
- Dongdong Xu
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia 4072, Queensland, Australia
| | - Aqiang Ding
- Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Yang Yu
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
| | - Ping Zheng
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
| | - Meng Zhang
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
| | - Zhetai Hu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia 4072, Queensland, Australia
| |
Collapse
|
2
|
Wang S, Tian Y, Bi Y, Meng F, Qiu C, Yu J, Liu L, Zhao Y. Recovery strategies and mechanisms of anammox reaction following inhibition by environmental factors: A review. ENVIRONMENTAL RESEARCH 2024; 252:118824. [PMID: 38588911 DOI: 10.1016/j.envres.2024.118824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/10/2024] [Accepted: 03/27/2024] [Indexed: 04/10/2024]
Abstract
Anaerobic ammonium oxidation (anammox) is a promising biological method for treating nitrogen-rich, low-carbon wastewater. However, the application of anammox technology in actual engineering is easily limited by environmental factors. Considerable progress has been investigated in recent years in anammox restoration strategies, significantly addressing the challenge of poor reaction performance following inhibition. This review systematically outlines the strategies employed to recover anammox performance following inhibition by conventional environmental factors and emerging pollutants. Additionally, comprehensive summaries of strategies aimed at promoting anammox activity and enhancing nitrogen removal performance provide valuable insights into the current research landscape in this field. The review contributes to a comprehensive understanding of restoration strategies of anammox-based technologies.
Collapse
Affiliation(s)
- Shaopo Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Yu Tian
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Yanmeng Bi
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Fansheng Meng
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Chunsheng Qiu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Jingjie Yu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Lingjie Liu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China.
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China.
| |
Collapse
|
3
|
Qin Y, Wei Q, Chen R, Jiang Z, Qiu Y, Jiang Y, Li L. Roles of red mud-based biochar carriers in the recovery of anammox activity: characteristics and mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:20488-20498. [PMID: 38376779 DOI: 10.1007/s11356-024-32263-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/26/2024] [Indexed: 02/21/2024]
Abstract
Anaerobic ammonium oxidation (anammox) sludge is easily deactivated in the process of treating ammonia-laden wastewater. To investigate an effective recovery method, red mud-based biochar carriers (RMBC) were prepared and added to a deactivated anammox reactor; the operation of this reactor had been interrupted for 6 months with starvation and low temperature. The deactivated sludge with added RMBC was recovered rapidly after 31 days, with the specific anammox activity rapidly increasing to 0.84 g N/(g VSS∙day), and the recovery efficiency of nitrogen removal rate increased by four times compared to the unadded control. The granulation degree and extracellular polymeric substances secretion of the anammox sludge with the added RMBC were significantly higher than that of the control group. In addition, a large number of spherical anammox bacteria were observed moored at the porous channels of RMBC, and the copy numbers of functional genes of anammox bacteria were approximately twice that of the control group. Hence, RMBC is a potential sludge activator, and it can provide a "house" to protect anammox bacteria, enhance the metabolic activity and the agglomerative growth of anammox bacteria, and synergistically achieve rapid recovery of deactivated anammox sludge.
Collapse
Affiliation(s)
- Yongli Qin
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Qiaoyan Wei
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Ruihong Chen
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Zhicheng Jiang
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Yuchen Qiu
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Yongrong Jiang
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, China.
| | - Li Li
- School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin, 541004, China
| |
Collapse
|
4
|
Wang D, Pan Q, Yang J, Gong S, Liu X, Fu Y. Effects of Mixtures of Engineered Nanoparticles and Cocontaminants on Anaerobic Digestion. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2598-2614. [PMID: 38291652 DOI: 10.1021/acs.est.3c09239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The widespread application of nanotechnology inevitably leads to an increased release of engineered nanoparticles (ENPs) into the environment. Due to their specific physicochemical properties, ENPs may interact with other contaminants and exert combined effects on the microbial community and metabolism of anaerobic digestion (AD), an important process for organic waste reduction, stabilization, and bioenergy recovery. However, the complicated interactions between ENPs and other contaminants as well as their combined effects on AD are often overlooked. This review therefore focuses on the co-occurrence of ENPs and cocontaminants in the AD process. The key interactions between ENPs and cocontaminants and their combined influences on AD are summarized from the available literature, including the critical mechanisms and influencing factors. Some sulfides, coagulants, and chelating agents have a dramatic "detoxification" effect on the inhibition effect of ENPs on AD. However, some antibiotics and surfactants increase the inhibition of ENPs on AD. The reasons for these differences may be related to the interactive effects between ENPs and cocontaminants, changes of key enzyme activities, adenosine triphosphate (ATP) levels, reactive oxygen species (ROS) production, and microbial communities. New scientific opportunities for a better understanding of the coexistence in real world situations are converging on the scale of nanoparticles.
Collapse
Affiliation(s)
- Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P.R. China
| | - Qinyi Pan
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P.R. China
| | - Jingnan Yang
- Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, School of Water Resources and Environmental Engineering, Nanyang Normal University, Nanyang 473061, PR China
| | - Sheng Gong
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P.R. China
| | - Xuran Liu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P.R. China
| | - Yukui Fu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P.R. China
| |
Collapse
|
5
|
Qian J, Luo D, Yu PF, Ye B, Li YH, Wang YY, Gao YN, Fu JX. Insights into the reaction of anammox to exogenous pyridine: Long-term performance and micro mechanisms. BIORESOURCE TECHNOLOGY 2023:129273. [PMID: 37290710 DOI: 10.1016/j.biortech.2023.129273] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/28/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Some industrial wastewaters contain high amounts of toxic nitrogen-containing heterocyclic compounds, which may inhibit the efficiency of biological treatment. This work systematically investigated how exogenous pyridine affected the anaerobic ammonia oxidation (anammox) system and discussed the microscopic response mechanisms based on genes and enzymes. The anammox efficiency was not seriously inhibited by pyridine less than 50 mg/L. Bacteria secreted more extracellular polymeric substances to resist pyridine stress. After 6 days stress with 80 mg/L pyridine, the nitrogen removal rate of anammox system lost 47.7%. Long-term stress of pyridine reduced anammox bacteria by 7.26% and the expression of functional genes by 45%. Pyridine could actively bind to hydrazine synthase and ammonium transporter. This work fills a research gap in the ongoing threat of pyridines to anammox, and has guiding value for the application of anammox process in the treatment of ammonia-rich wastewater containing pyridine.
Collapse
Affiliation(s)
- Jie Qian
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110004, PR China
| | - Di Luo
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang 110168, PR China.
| | - Peng-Fei Yu
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang 110168, PR China
| | - Bin Ye
- Appraisal Center for Environment and Engineering, Ministry of Ecology and Environment, Beijing 100012, PR China
| | - Ying-Hua Li
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110004, PR China
| | - Yong-Yong Wang
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang 110168, PR China
| | - Yu-Nan Gao
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528225, PR China
| | - Jin-Xiang Fu
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang 110168, PR China
| |
Collapse
|
6
|
Sun Y, Han T, Lu W, Wang Y, Jiang D, Abbasi HN, Guo Z, Zhang S, Li B, Wang X, Dai H. Effects of nano metal oxide particles on denitrifying phosphorus removal system: Potential stress mechanism and recovery strategy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162706. [PMID: 36906010 DOI: 10.1016/j.scitotenv.2023.162706] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
The accumulation of nano metal oxide particles (NMOPs) in municipal sewage treatment systems harms the microbial community and its metabolism in activated sludge system, resulting in the degradation of its pollutants removal performance. In this work, the stress effect of NMOPs on the denitrifying phosphorus removal system was systematically investigated in terms of pollutants removal performance, key enzyme activities, microbial community diversity and abundances, and intracellular metabolites. Among the ZnO NPs, TiO2 NPs, CeO2 NPs, and CuO NPs, the ZnO NPs showed the most significant impacts with the chemical oxygen demand, total phosphorus, and nitrate nitrogen removal ratio decreased from above 90 % to 66.50 %, 49.13 %, and 57.11 %, respectively. The addition of surfactants and chelating agents could relieve the toxic effect of NMOPs on the denitrifying phosphorus removal system, and the chelating agents were more effective than surfactants in performance recovery. After adding ethylene diamine tetra acetic acid, the removal ratio of chemical oxygen demand, total phosphorus, and nitrate nitrogen under ZnO NPs stress was restored to 87.31 %, 88.79 %, and 90.35 %, respectively. The study provides valuable knowledge to better understand the impacts and stress mechanism of NMOPs on activated sludge systems and provides a solution to recover the nutrients removal performance of denitrifying phosphorus removal system under NMOPs stress.
Collapse
Affiliation(s)
- Yang Sun
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Ting Han
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Wenxin Lu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Yingqi Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Deyi Jiang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Haq Nawaz Abbasi
- Department of Environmental science, Federal Urdu University of Arts, Science and Technology, Karachi, Pakistan.
| | - Zechong Guo
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China; School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, China.
| | - Shuai Zhang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Bing Li
- Jiangsu Zhongchuang Qingyuan Technology Co., Ltd., Yancheng 224000, China
| | - Xingang Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China.
| | - Hongliang Dai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China; School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
7
|
Sun C, Hu K, Mu D, Wang Z, Yu X. The Widespread Use of Nanomaterials: The Effects on the Function and Diversity of Environmental Microbial Communities. Microorganisms 2022; 10:microorganisms10102080. [PMID: 36296356 PMCID: PMC9609405 DOI: 10.3390/microorganisms10102080] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/07/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022] Open
Abstract
In recent years, as an emerging material, nanomaterials have rapidly expanded from laboratories to large-scale industrial productions. Along with people's productive activities, these nanomaterials can enter the natural environment of soil, water and atmosphere through various ways. At present, a large number of reports have proved that nanomaterials have certain toxic effects on bacteria, algae, plants, invertebrates, mammalian cell lines and mammals in these environments, but people still know little about the ecotoxicology of nanomaterials. Most relevant studies focus on the responses of model strains to nanomaterials in pure culture conditions, but these results do not fully represent the response of microbial communities to nanomaterials in natural environments. Over the years, the effect of nanomaterials infiltrated into the natural environment on the microbial communities has become a popular topic in the field of nano-ecological environment research. It was found that under different environmental conditions, nanomaterials have various effects on the microbial communities. The medium; the coexisting pollutants in the environment and the structure, particle size and surface modification of nanomaterials may cause changes in the structure and function of microbial communities. This paper systematically summarizes the impacts of different nanomaterials on microbial communities in various environments, which can provide a reference for us to evaluate the impacts of nanomaterials released into the environment on the microecology and has certain guiding significance for strengthening the emission control of nanomaterials pollutants.
Collapse
Affiliation(s)
- Chunshui Sun
- College of Marine Science, Shandong University, Weihai 264209, China
| | - Ke Hu
- College of Marine Science, Shandong University, Weihai 264209, China
| | - Dashuai Mu
- College of Marine Science, Shandong University, Weihai 264209, China
| | - Zhijun Wang
- Institute for Advanced Study, Chengdu University, 2025 Chengluo Avenue, Chengdu 610106, China
| | - Xiuxia Yu
- College of Marine Science, Shandong University, Weihai 264209, China
- Correspondence:
| |
Collapse
|
8
|
Wang X, Han T, Sun Y, Geng H, Li B, Dai H. Effects of nano metal oxide particles on activated sludge system: Stress and performance recovery mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117408. [PMID: 34049134 DOI: 10.1016/j.envpol.2021.117408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/02/2021] [Accepted: 05/16/2021] [Indexed: 06/12/2023]
Abstract
Nano metal oxide particles (NMOPs) are widely used in daily life because of their superior performance, and inevitably enter the sewage treatment system. Pollutants in sewage are adsorbed and degraded in wastewater treatment plants (WWTPs) depending on the microbial aggregates of activated sludge system to achieve sewage purification. NMOPs may cause ecotoxicity to the microbial community and metabolism due to their complex chemical behavior, resulting in a potential threat to the safe and steady operation of activated sludge system. It is of great significance to clarify the influencing mechanism of NMOPs on activated sludge system and reduce the risk of WWTPs. Herein, we first introduce the physicochemical behavior of six typical engineering NMOPs including ZnO, TiO2, CuO, CeO2, MgO, and MnO2 in water environment, then highlight the principal mechanisms of NMOPs for activated sludge system. In particular, the performance recovery mechanisms of activated sludge systems in the presence of NMOPs and their future development trends are well documented and discussed extensively. This review can provide a theoretical guidance and technical support for predicting and evaluating the potential threat of NMOPs on activated sludge systems, and promoting the establishment of effective control strategies and performance recovery measures of biological wastewater treatment process under the stress of NMOPs.
Collapse
Affiliation(s)
- Xingang Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China.
| | - Ting Han
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China.
| | - Yang Sun
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China.
| | - Hongya Geng
- Department of Materials, Imperial College London, Prince Consort Road, London, SW7 2AZ, UK.
| | - Bing Li
- Jiangsu Zhongchuang Qingyuan Technology Co., Ltd., Yancheng, 224000, China.
| | - Hongliang Dai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China; School of Environmental and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
9
|
Wang Y, Ji XM, Jin RC. How anammox responds to the emerging contaminants: Status and mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 293:112906. [PMID: 34087646 DOI: 10.1016/j.jenvman.2021.112906] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/11/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
Numerous researches have been carried out to study the effects of emerging contaminants in wastewater, such as antibiotics, nanomaterials, heavy metals, and microplastics, on the anammox process. However, they are fragmented and difficult to provide a comprehensive understanding of their effects on reactor performance and the metabolic mechanisms in anammox bacteria. Therefore, this paper overviews the effects on anammox processes by the introduced emerging contaminants in the past years to fulfill such knowledge gaps that affect our perception of the inhibitory mechanisms and limit the optimization of the anammox process. In detail, their effects on anammox processes from the aspects of reactor performance, microbial community, antibiotic resistance genes (ARGs), and functional genes related to anammox and nitrogen transformation in anammox consortia are summarized. Furthermore, the metabolic mechanisms causing the cell death of anammox bacteria, such as induction of reactive oxygen species, limitation of substrates diffusion, and membrane binding are proposed. By offering this review, the remaining research gaps are identified, and the potential metabolic mechanisms in anammox consortia are highlighted.
Collapse
Affiliation(s)
- Ye Wang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Xiao-Ming Ji
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Ren-Cun Jin
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
10
|
Fu JJ, Huang DQ, Lu ZY, Ma YL, Xu XW, Huang BC, Fan NS, Jin RC. Comparison of the dynamic responses of different anammox granules to copper nanoparticle stress: Antibiotic exposure history made a difference. BIORESOURCE TECHNOLOGY 2021; 333:125186. [PMID: 33892423 DOI: 10.1016/j.biortech.2021.125186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/08/2021] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
Two types of anaerobic ammonium oxidation (anammox) seed sludge were selected to evaluate their responses to copper nanoparticles (CuNPs) exposure. Antibiotic-exposed anammox granules (R1) were more likely to be inhibited by 5.0 mg L-1 CuNPs than the normal anammox granules (C1). The nitrogen removal efficiency (NRE) of C1 decreased by 9.00% after two weeks of exposure to CuNPs, whereas that of R1 decreased by 20.32%. Simultaneously, the abundance of Candidatus. Kuenenia decreased by 27.65% and 36.02% in C1 and R1 under CuNPs stress conditions, respectively. Generally, R1 was more susceptible to CuNPs than C1. The correlation analysis indicated that the horizontal transfer of antibiotic resistance genes and copA triggered by intI1 facilitated the generation of multiresistance in the anammox process. Moreover, the potential multiresistance mechanism of anammox bacteria was hypothesized based on previous results. The results will generate new ideas for the treatment of complex wastewater using the anammox process.
Collapse
Affiliation(s)
- Jin-Jin Fu
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Dong-Qi Huang
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Zheng-Yang Lu
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yuan-Long Ma
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xian-Wen Xu
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Bao-Cheng Huang
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Nian-Si Fan
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| | - Ren-Cun Jin
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
11
|
You G, Xu Y, Wang P, Wang C, Chen J, Hou J, Miao L, Gao Y, Li Y. Deciphering the effects of CeO 2 nanoparticles on Escherichia coli in the presence of ferrous and sulfide ions: Physicochemical transformation-induced toxicity and detoxification mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125300. [PMID: 33578093 DOI: 10.1016/j.jhazmat.2021.125300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/15/2021] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
The physicochemical transformations as well as the redox reaction-induced toxicity changes of ceria nanoparticles (CeO2 NPs) in reducing conditions is extremely lacking. Herein, the behaviors, chemical modifications and toxicity of CeO2 NPs in the presence of reduction-active ions (namely Fe2+ and S2-) were investigated, with a particular emphasis on the cytotoxicity mechanism associated with their physicochemical transformations. The presence of Fe2+ and S2- differently altered the surface properties and toxicity of CeO2 NPs. Redox reactions with Fe2+ led to form small aggregates, boosted the reduction of CeIVO2 and enhanced dissolved Ce3+ concentration. Moreover, CeO2 NPs possessed a high affinity for Escherichia coli (E. coli) and induced the generation of •OH abiotically after reaction with Fe2+, provoking serious disruption of cell membranes and causing high toxicity to E. coli. In contrast, the amending of S2- protected E. coli from direct contact with CeO2 NPs by creating new Ce2S3 precipitated on the surface, accelerating the aggregation of NPs and reducing the concentration of dissolved Ce3+. This study suggested that the chemical interactions between the reactive surfaces of CeO2 and reduction-active ions highly determined the stability and cytotoxicity of CeO2 NPs, which provides fundamental insights into the environmental risks of CeO2 NPs.
Collapse
Affiliation(s)
- Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, People's Republic of China
| | - Yi Xu
- College of Agricultural Engineering, Hohai University, Nanjing 210098, People's Republic of China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, People's Republic of China
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, People's Republic of China.
| | - Juan Chen
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, People's Republic of China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, People's Republic of China.
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, People's Republic of China
| | - Yang Gao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, People's Republic of China
| | - Yan Li
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, People's Republic of China
| |
Collapse
|
12
|
Wang JJ, Xu LZJ, Huang BC, Li J, Jin RC. Multiple electron acceptor-mediated sulfur autotrophic denitrification: Nitrogen source competition, long-term performance and microbial community evolution. BIORESOURCE TECHNOLOGY 2021; 329:124918. [PMID: 33684839 DOI: 10.1016/j.biortech.2021.124918] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/20/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Sulfur-driven autotrophic denitrification (SDAD) is feasible for the treatment of low-C/N-ratio and sulfur-laden wastewaters. The nitrite accumulated in SDAD will affect the performance and stability of the system but can be a potential electron acceptor. Thus, single- and multiple-electron acceptor-mediated SDAD systems were investigated. Batch assays revealed that nitrite and nitrate were the preferential options in the SDAD system with single and multiple electron acceptors, respectively. Synchronous nitrogen and sulfur removal was successfully achieved in continuous flow experiments with multiple electron acceptors, and the system could adapt well to high concentrations of sulfide, nitrate and nitrite (i.e., 720, 108 and 64.8 mg L-1, respectively), with the predominant genera shifting from Thiobacillus (48.88%) at the initial stage to unclassified_p_Firmicute (34.24%) and Syner-01 (12.31%) at the last stage. This work provides a fundamental basis for applying and regulating SDAD with multiple electron acceptors for the remediation of nitrogen- and sulfide- laden wastewaters.
Collapse
Affiliation(s)
- Jiao-Jiao Wang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Lian-Zeng-Ji Xu
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Bao-Cheng Huang
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jun Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ren-Cun Jin
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
13
|
Xing Y, Harper WF. The effects of engineered nanoparticles on nitrification during biological wastewater treatment. Biotechnol Bioeng 2021; 118:2401-2410. [PMID: 33682924 DOI: 10.1002/bit.27746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 10/08/2020] [Accepted: 03/04/2021] [Indexed: 11/12/2022]
Abstract
Technological advancements in the past few decades have made it possible to manufacture nanomaterials at a large scale, and engineered nanoparticles (ENPs) are increasingly found in consumer products, such as cosmetics, sports products, and LED displays. A large amount of these ENPs end up in wastewater and potentially impact the performance of wastewater treatment plants (WWTPs). One important function of the WWTP is nitrification, which is carried out by the actions of two groups of bacteria, ammonia-oxidizing bacteria (AOB), and nitrite-oxidizing bacteria (NOB). Since most ENPs are found to have or are designed to have antimicrobial activities, it is a legitimate concern that ENPs entering WWTPs may have negative impacts on nitrification. In this paper, the effects of ENPs on nitrification are discussed, focusing mainly on autotrophic nitrification by AOBs and NOBs. This review also covers ENP effects on anaerobic ammonium oxidation (anammox). Generally, nitrifiers in pure and mixed cultures can be inhibited by a variety of ENPs, but stress response mechanisms may attenuate toxicity. Long-term studies demonstrated that a wide range of NPs could cause severe deterioration of AOBs and/or NOBs when the influent concentration exceeded an inhibition threshold. Proposed mechanisms include the generation of reactive oxygen species, dissolved metals, physical disruption of cell membranes, bacterial engulfment, and intracellular accumulation of ENPs. Future research needs are also discussed.
Collapse
Affiliation(s)
- Yun Xing
- Department of Systems Engineering and Management, Air Force Institute of Technology, Environmental Engineering and Science Program, Wright-Patterson AFB, Ohio, USA
| | - Willie F Harper
- Department of Systems Engineering and Management, Air Force Institute of Technology, Environmental Engineering and Science Program, Wright-Patterson AFB, Ohio, USA
| |
Collapse
|
14
|
Zhang ZZ, Zhang Y, Cheng YF, Jin RC. Linear anionic surfactant (SDBS) destabilized anammox process through sludge disaggregation and metabolic inhibition. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123641. [PMID: 33264860 DOI: 10.1016/j.jhazmat.2020.123641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/29/2020] [Accepted: 08/04/2020] [Indexed: 06/12/2023]
Abstract
The increase of emerging contaminants, such as surfactants, is one of the major challenges to biological wastewater treatment. However, the potential impact of linear alkylbenzene sulphonates (LAS), a major class of anionic surfactants, on anammox process is unclear. The long-term effects of sodium dodecyl benzene sulfonate (SDBS, as a model LAS) on reactor performance, microbial community and sludge properties were investigated in this study. The presence of 5 mg L-1 SDBS promoted the release of extracellular microbial products from anammox granules and the wash-out of anammox population via effluent. Despite sludge disaggregation, the reactor performance was robust to the exposure of 5 mg L-1 SDBS due to functional redundancy. With the further increase of SDBS to 10 mg L-1, the metabolic activity of anammox biomass and the transcription and post-translation of hydrazine dehydrogenase were significantly decreased. The potential mechanism might be associated with the damage on cell membrane that induced the leakage of intracellular matrix. These results highlight the need to consider the potential risk of LAS to operation of anammox process in biological wastewater treatment plant.
Collapse
Affiliation(s)
- Zheng-Zhe Zhang
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yu Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ya-Fei Cheng
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Ren-Cun Jin
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
15
|
Xu JJ, Cheng YF, Jin RC. Long-term effects of Fe 3O 4 NPs on the granule-based anaerobic ammonium oxidation process: Performance, sludge characteristics and microbial community. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122965. [PMID: 32474323 DOI: 10.1016/j.jhazmat.2020.122965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
The performance of anaerobic ammonium oxidation (anammox) granules were studied under long-term exposure to Fe3O4 NPs. The Fe3O4 NPs had no negative impacts on nitrogen removal performance with the addition of 2-200 mg L-1. The specific anammox activity (SAA) slightly decreased from 287.0 ± 13.2 to -253.0 ± 9.2 mg TN g-1VSS d-1 with the increase in Fe3O4 NPs level from 2 to 60 mg L-1, and then significantly enhanced to 381.8 ± 15.7 mg TN g-1VSS d-1 at 200 mg L-1 Fe3O4 NPs. And the change trends of the heme c content, extracellular polymeric substance amount and settling velocity were consistent with that of SAA. The Candidatus_Kuenenia was the dominant species during the entire experiment and its relative abundance was up to 33.4 % at the end the experiment. The results provide some useful information for comprehending the impact of Fe3O4 NPs on the performance of wastewater biological treatment systems.
Collapse
Affiliation(s)
- Jia-Jia Xu
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Ya-Fei Cheng
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Ren-Cun Jin
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
16
|
Li Z, Peng Y, Gao H. A novel strategy for accelerating the recovery of a Fe(II)-inhibited anammox reactor by intermittent addition of betaine: Performance, kinetics and statistical analysis. CHEMOSPHERE 2020; 251:126362. [PMID: 32151808 DOI: 10.1016/j.chemosphere.2020.126362] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/12/2020] [Accepted: 02/26/2020] [Indexed: 06/10/2023]
Abstract
In this manuscript, Fe(II) inhibition of anammox and its recovery were investigated, and the performance, kinetics and statistical features were comprehensively studied simultaneously. Anammox was suppressed and completely inhibited by the addition of 109.29 and 378.57 mg/L Fe(II), respectively, via uncompetitive inhibition. Nitrite inhibition of anammox was best fitted by the Edwards model and Aiba model. EDTA-2Na wash (0.5, 1.0, 1.5, and 2.0 mM) had a limited effect on anammox recovery, while the addition of 2.0 mM betaine accelerated anammox recovery. Prolonged betaine addition caused an unintended reduction of anammox activity, though it self-recovered after the withdrawal of betaine. The modified Boltzmann model most accurately simulated the processes of anammox recovery using the EDTA-2Na wash, betaine regulation and self-recovery, and the modified Stover-Kincannon model was able to assess the results of anammox recovery. The one-sample t-test was successfully applied to determine the effects of these three recovery strategies on inhibited anammox, which were short-term disinhibition or long-term recovery effects. The above-mentioned results demonstrate that an intermittent addition of betaine, which is a better alternative to frequently-used but poorly-degradable EDTA, may be a useful and environmentally friendly recovery strategy for Fe(II)-inhibited anammox reactor.
Collapse
Affiliation(s)
- Zhixing Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, China.
| | - Haijing Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
17
|
Ma Y, Xie C, He X, Zhang B, Yang J, Sun M, Luo W, Feng S, Zhang J, Wang G, Zhang Z. Effects of Ceria Nanoparticles and CeCl 3 on Plant Growth, Biological and Physiological Parameters, and Nutritional Value of Soil Grown Common Bean (Phaseolus vulgaris). SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907435. [PMID: 32174030 DOI: 10.1002/smll.201907435] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/05/2020] [Indexed: 05/24/2023]
Abstract
The release of metal ions may play an important role in toxicity of metal-based nanoparticles. In this report, a life cycle study is carried out in a greenhouse, to compare the effects of ceria nanoparticles (NPs) and Ce3+ ions at 0, 50, 100, and 200 mg Ce kg-1 on plant growth, biological and physiological parameters, and nutritional value of soil-grown common bean plants. Ceria NPs have a tendency to negatively affect photosynthesis, but the effect is not statistically significant. Ce3+ ionic treatments at 50, 100, and 200 mg Ce kg-1 result in increases of 1.25-, 0.66-, and 1.20-fold in stomatal conductance, respectively, relative to control plants. Both ceria NPs and Ce3+ ions disturb the homeostasis of antioxidant defense system in the plants, but only 200 mg Ce kg-1 ceria NPs significantly induce lipid peroxidation in the roots. Ceria NP treatments tend to reduced fresh weight and to increase mineral contents of the green pods, but have no effect on the organic nutrient contents. On the contrary, Ce3+ ion treatments modify the organic compositions and thus alter the nutritional quality and flavor of the green pods. These results suggest that the two Ce forms may have different mechanisms on common bean plants.
Collapse
Affiliation(s)
- Yuhui Ma
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- IHEP-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Changjian Xie
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- School of life Sciences, Shandong University of Technology, No. 266 Xincun West Road, Zibo, 255000, Shandong, China
| | - Xiao He
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- IHEP-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Boxin Zhang
- International Department, Beijing National Day School, Beijing, 100049, China
| | - Jie Yang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Minghui Sun
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenhe Luo
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Sheng Feng
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Junzhe Zhang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Guohua Wang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiyong Zhang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- IHEP-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
18
|
Xu LZJ, Zhang Q, Fu JJ, Zhang JT, Zhao YH, Jin LY, Fan NS, Huang BC, Jin RC. Deciphering the microbial community and functional genes response of anammox sludge to sulfide stress. BIORESOURCE TECHNOLOGY 2020; 302:122885. [PMID: 32014733 DOI: 10.1016/j.biortech.2020.122885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/14/2020] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Sulfide has attracted increasing attention due to its odor nuisance, toxicity and corrosion. Although variations in the nitrogen removal performance of anammox under sulfide stress have been reported previously, understanding the microorganisms at the molecular level is of greater significance. This study first deciphered the microbial community and functional gene response of anammox sludge to sulfide stress. Results showed that 20 mg L-1 sulfide could reduce specific anammox activity by 61.7%. The protein-like substances within extracellular polymeric substances were quenched at the end of the experiment. Moreover, the relative abundance of Candidatus Kuenenia significantly decreased from 28.7% to 6.4% while Thiobacillus increased from 0 to 7.2% due to sulfide stress. Furthermore, the abundances of functional genes (hzsA, hdh, nirK and nirS) significantly decreased when the sulfide concentration reached 20 mg L-1. These findings provide a further theoretical basis for the anammox process for nitrogen removal from wastewater containing sulfide.
Collapse
Affiliation(s)
- Lian-Zeng-Ji Xu
- Laboratory of Environmental Technology, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Quan Zhang
- Laboratory of Environmental Technology, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jin-Jin Fu
- Laboratory of Environmental Technology, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jiang-Tao Zhang
- Laboratory of Environmental Technology, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yi-Hong Zhao
- Laboratory of Environmental Technology, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Lu-Yang Jin
- Laboratory of Environmental Technology, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Nian-Si Fan
- Laboratory of Environmental Technology, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Bao-Cheng Huang
- Laboratory of Environmental Technology, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Ren-Cun Jin
- Laboratory of Environmental Technology, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
19
|
Wang J, Wu L, Yang T, Yan X, Pei X, Huang X, Long G, Xue R. Laboratory experiments on HMC coupling mechanisms in innovative clean foundation treatments for Zn-contaminated dredger fills. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 702:134939. [PMID: 31733561 DOI: 10.1016/j.scitotenv.2019.134939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
Large-scale contaminated dredger fills have comprehensively resulted from human activities and geological deposition processes, and their disposal is a worldwide challenge. Innovative soil remediation coupling foundation treatment methods, namely, clean foundation treatment methods (CFTMs), were proposed and verified using a hydraulic-mechanical-chemical coupling triaxial testing system. The CFTM exploration triaxial tests on undisturbed clayey, silty, and sandy dredger fills showed that the critical injection significantly dilated soil volume even after the soil was vacuum pumped. Critical injection-vacuum soil flushing (CIVF), critical injection soil flushing (CIF), and vacuum soil flushing (VF) were proposed to perform clean foundation treatment for clayey silt, sandy silt, and silty sand of 1900-2300 ppm Zn. EDDS, HCl + CaCl2, and HCl were selected as the three chelating agents. Orthogonal tests on three factors (CFTM, soil type, and eluent) showed that CIF with 5:1 EDDS aq. of pH 3.8 was the best CFTM scheme for the three soil types at a depth of 2.5-10 m. CIF with HCl aq. of pH 3.8 also reached a high comprehensive clean foundation treatment efficiency for silty sand at a depth of 2.5 m. The deep depth and heterogeneous texture resulted in low Zn contamination extraction efficiency.
Collapse
Affiliation(s)
- Jianxiu Wang
- College of Civil Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092, China.
| | - Linbo Wu
- College of Civil Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092, China.
| | - Tianliang Yang
- Key Laboratory of Land Subsidence Monitoring and Prevention, Ministry of Land and Resources, Shanghai 201204, China; Shanghai Institute of Geological Survey, Shanghai 200072, China
| | - Xuexin Yan
- Key Laboratory of Land Subsidence Monitoring and Prevention, Ministry of Land and Resources, Shanghai 201204, China; Shanghai Institute of Geological Survey, Shanghai 200072, China
| | - Xiangjun Pei
- State Key Laboratory of Geohazard Prevention and Geo-environmental Protection, Chengdu University of Technology, Chengdu 610059, China.
| | - Xinlei Huang
- Key Laboratory of Land Subsidence Monitoring and Prevention, Ministry of Land and Resources, Shanghai 201204, China; Shanghai Institute of Geological Survey, Shanghai 200072, China
| | - Guanhong Long
- College of Civil Engineering, Tongji University, Shanghai 200092, China
| | - Rui Xue
- College of Civil Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
20
|
Cheng YF, Zhang Q, Li GF, Xue Y, Zheng XP, Cai S, Zhang ZZ, Jin RC. Long-term effects of copper nanoparticles on granule-based denitrification systems: Performance, microbial communities, functional genes and sludge properties. BIORESOURCE TECHNOLOGY 2019; 289:121707. [PMID: 31271915 DOI: 10.1016/j.biortech.2019.121707] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/22/2019] [Accepted: 06/26/2019] [Indexed: 06/09/2023]
Abstract
The widespread use of copper nanoparticles (CuNPs) has attracted increasing concern because of their potential effects on biological wastewater treatment. However, their effect on granule-based denitrification systems is unclear. Hence, the effects of CuNPs on denitrifying granules were investigated during long-term operation. The results showed that 51.9% of nitrogen removal capacity was lost after exposure to 5 mg L-1 CuNPs, with the amount of Cu(II) gradually increasing with elevating CuNP levels. Moreover, the relative abundance of denitrifying bacteria (Castellaniella) and denitrifying functional genes (nirK, napA, narG and nosZ) obviously decreased. Meanwhile, the specific denitrification activity, the content of extracellular polymeric substances and dehydrogenase activity decreased by 44.0%, 15.2% and 99.9%, respectively, compared to their values in the initial sludge. Considering the downtrend in the abundance of copper resistance genes, it was deduced that the toxicity of CuNPs was mainly or at least partially due to the release of Cu(II).
Collapse
Affiliation(s)
- Ya-Fei Cheng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Qian Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Gui-Feng Li
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Yuan Xue
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Xia-Ping Zheng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Shuang Cai
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Zheng-Zhe Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Ren-Cun Jin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China.
| |
Collapse
|
21
|
Xu JJ, Cheng YF, Xu LZJ, Zhu XL, Zhu WQ, Jin RC. The performance and microbial community in response to MnO 2 nanoparticles in anammox granular sludge. CHEMOSPHERE 2019; 233:625-632. [PMID: 31195266 DOI: 10.1016/j.chemosphere.2019.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/12/2019] [Accepted: 06/01/2019] [Indexed: 06/09/2023]
Abstract
The response of anaerobic ammonium oxidation (anammox) process and granular sludge in the upflow anaerobic sludge blanket reactor was analyzed under long-term exposure to MnO2 nanoparticles (NPs) (1-200 mg L-1). The addition of 200 mg L-1 MnO2 NPs had a significantly positive effect on nitrogen removal and this system exhibited excellent performance, with a total nitrogen removal efficiency of 93.1%. Moreover, the specific anammox activity enhanced with increasing concentrations of MnO2 NPs up to the maximum value of 657.3 ± 9.3 mg TN g-1 VSS d-1 under MnO2 NPs concentration of 200 mg L-1. This value was approximately 1.6-fold higher than that of the reactor in the absence of MnO2 NPs. The extracellular polymeric substances and settling velocity were both increased with MnO2 NPs addition. Meanwhile, the high-throughput sequencing results revealed that MnO2 NPs increased the relative abundance of dominant bacteria (Candidatus Kuenenia) from 17.3% at the absence of MnO2 NPs to 23.9% at 200 mg L-1 MnO2 NPs, which resulted in a higher efficiency of biological nitrogen removal on the anammox system. These results indicated that MnO2 NPs enhanced nitrogen removal performance of anammox process.
Collapse
Affiliation(s)
- Jia-Jia Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 310036, China
| | - Ya-Fei Cheng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 310036, China
| | - Lian-Zeng-Ji Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 310036, China
| | - Xiao-Ling Zhu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 310036, China
| | - Wei-Qin Zhu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 310036, China
| | - Ren-Cun Jin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 310036, China.
| |
Collapse
|
22
|
Xu LZJ, Wu J, Xia WJ, Jin LY, Zhao YH, Fan NS, Huang BC, Jin RC. Adaption and restoration of anammox biomass to Cd(II) stress: Performance, extracellular polymeric substance and microbial community. BIORESOURCE TECHNOLOGY 2019; 290:121766. [PMID: 31302464 DOI: 10.1016/j.biortech.2019.121766] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
Cadmium (Cd) can cause the deterioration of biological systems through inhibiting the enzymes activity and disturbing the microbial metabolism. Although the influence of Cd on conventional wastewater treatment process has been studied, the response of anammox to Cd exposure still remains unclear. This study firstly investigated the adaption and restoration of anammox biomass to Cd(II) stress. Results showed that long-term exposure of anammox bacteria to 2 mg L-1 Cd(II) was beneficial for the reactor performance, while 5 mg L-1 Cd(II) would cause the decline of SAA, extracellular polymeric substance content and relative abundance of Candidatus kuenenia by 40%, 25% and 31%, respectively. Furthermore, these indexes could approximately recover to the initial status after withdrawing Cd(II) from the influent. Overall, the anammox biomass exhibited a certain adaption and restoration ability to the suppression of Cd(II). This study may provide key valuable information for the biological treatment of wastewater containing Cd(II).
Collapse
Affiliation(s)
- Lian-Zeng-Ji Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Jing Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Wen-Jing Xia
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Lu-Yang Jin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Yi-Hong Zhao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Nian-Si Fan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Bao-Cheng Huang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China.
| | - Ren-Cun Jin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| |
Collapse
|
23
|
Cheng YF, Zhang ZZ, Li GF, Zhu BQ, Zhang Q, Liu YY, Zhu WQ, Fan NS, Jin RC. Effects of ZnO nanoparticles on high-rate denitrifying granular sludge and the role of phosphate in toxicity attenuation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:166-174. [PMID: 31078088 DOI: 10.1016/j.envpol.2019.04.138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 03/10/2019] [Accepted: 04/29/2019] [Indexed: 06/09/2023]
Abstract
The increasing release of engineered nanoparticles (NPs) from consumer products has raised great concerns about their impacts on biological wastewater treatment. In this study, the widely-used ZnO NP was selected as a model NP to investigate its impact on high-rate denitrifying granular sludge in terms of sludge properties and community structure. A hormesis effect was observed during short-term exposure, in which the specific denitrification activity (SDA) was stimulated by 10% at 1 mg L-1 ZnO NPs, but inhibited by 23% at 5.0 mg L-1 ZnO NPs. When continuously exposed to 2.5 mg L-1 ZnO NPs, the nitrogen removal capacity of the denitrification reactor was nearly deprived within 15 days, and the relative abundance of the dominant denitrifying bacterium (Castellaniella) was decreased from 51.0 to 8.0%. Meanwhile, the dehydrogenase activity (DHA) and the content of extracellular polymeric substance (EPS) significantly decreased to 22.3 and 61.1%, respectively. Nevertheless, the presence of phosphate substantially weakened the adverse effects of ZnO NPs on the SDA, EPS, DHA and the relative abundance of functional genes even exposed to 6.25 mg L-1 ZnO NPs, which was associated with the fact that the level of Zn(II) released from ZnO NPs was significantly reduced in the presence of phosphate. Therefore, the toxicity of ZnO NPs may be mainly attributed to the release of toxic Zn(II) and could be attenuated in the presence of phosphate. Overall, this study provided further reference and meaningful insights into the impact of engineered NPs on biological wastewater treatment.
Collapse
Affiliation(s)
- Ya-Fei Cheng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 310036, China
| | - Zheng-Zhe Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 310036, China
| | - Gui-Feng Li
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 310036, China
| | - Bing-Qian Zhu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Qian Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Ying-Yi Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Wei-Qin Zhu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 310036, China
| | - Nian-Si Fan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 310036, China
| | - Ren-Cun Jin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 310036, China.
| |
Collapse
|
24
|
Huang H, Zheng X, Yang S, Chen Y. More than sulfidation: Roles of biogenic sulfide in attenuating the impacts of CuO nanoparticle on antibiotic resistance genes during sludge anaerobic digestion. WATER RESEARCH 2019; 158:1-10. [PMID: 31004981 DOI: 10.1016/j.watres.2019.04.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 04/07/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
Biogenic sulfide (BS) in anaerobic digesters was previously suggested to mitigate the potential impacts of metallic nanoparticles (M-NPs) on antibiotic resistance genes (ARGs) propagation by sulfidation of the M-NPs. In this study, a new role of BS in regulating ARGs responses to M-NPs is reported. It was observed that CuO NPs at environmentally relevant level had no significant effects on the spread of ARGs. However, higher dosage (50 mg/gTSS) contributed to the propagation of ARGs, whose abundances would be effectively reduced by 74-115% if BS production was stimulated. Instead, introduction of EDTA, a metal ion chelator, resulted in much lower attenuation efficiencies (12-40%), indicating that restriction of the bioavailability of CuO NPs might not be the only reason for the buffering of ARG responses in the presence of BS. Further investigation showed that the presence of BS together with activation of key enzymes (O-acetyl serine sulfhydrylase and γ-glutamylcysteine synthetase) supplied and favored the biosynthesis and transformation of cysteine, which mitigated the oxidative stress induced by CuO NPs. Moreover, the amounts of cysteine and its metabolite glutathione in sludge were associated with the abundances of ARGs negatively, implying that in situ generated cysteine was the important ARGs regulator. Exploration of possible mechanisms revealed that the biosynthesized cysteine might limit gene transfer potential via mobile genetic elements, as cysteine restricted the abundances of intI 1, Tn916/1545 and ISCR 1. In addition, the cysteine remarkably alleviated the copper stress and copper resistance, which in turn blocked possible co-selection between copper and antibiotic resistance. This work provides new insight into attenuation of the bio-effects of NPs in digesters.
Collapse
Affiliation(s)
- Haining Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xiong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Shouye Yang
- State Key Laboratory of Marine Geology, School of Ocean and Earth Science, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
25
|
Li H, Chi Z, Yan B. Long-term impacts of graphene oxide and Ag nanoparticles on anammox process: Performance, microbial community and toxic mechanism. J Environ Sci (China) 2019; 79:239-247. [PMID: 30784446 DOI: 10.1016/j.jes.2018.07.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/16/2018] [Accepted: 07/19/2018] [Indexed: 06/09/2023]
Abstract
The increasing application of engineered nanoparticles (NPs) has posed an emerging challenge to constructed wetland wastewater treatment. The performance, microbial community and toxic mechanism of anammox-based unplanted subsurface-flow constructed wetlands (USFCWs) were investigated under the long-term exposure of different graphene oxides (GOs) and Ag NP concentrations. Results showed that the addition of GO could promote TN removal, manifesting as function anammox bacteria C. Anammoxoglobus having a relative high abundance, for GO did not cause significant damage to the cell integrity though there was an increase in ROS concentrations. TN removal would not be obviously affected under exposure of 1 mg/L Ag NPs, for the function gene related to cell biogenesis and repair was up-regulated; while the addition of 10 mg/L Ag NPs would have an inhibiting effect on TN removal in the USFCWs, for the disappearance of some species having anammox ability. Key enzymes of anammox process (NIR and HDH) decreased to some extent under GO and Ag NP exposure, and function gene of defense mechanisms had an increase trend in samples.
Collapse
Affiliation(s)
- Huai Li
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Zifang Chi
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China.
| | - Baixing Yan
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| |
Collapse
|
26
|
Zhang H, Liu N, Zhao J, Ge F, Xu Y, Chen Y. Disturbance of photosystem II-oxygen evolution complex induced the oxidative damage in Chlorella vulgaris under the stress of cetyltrimethylammonium chloride. CHEMOSPHERE 2019; 223:659-667. [PMID: 30802831 DOI: 10.1016/j.chemosphere.2019.01.135] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 01/08/2019] [Accepted: 01/23/2019] [Indexed: 06/09/2023]
Abstract
Oxygen evolution complex (OEC) in photosystem II (PSII) is sensitive to environmental stressors. However, oxidative damage mechanism in PSII-OEC is still unclear. Here, we investigated photosynthetic performance of PSII, oxidative stress and antioxidant reaction induced by reactive oxygen species (ROS) in a unicellular green alga Chlorella vulgaris (C. vulgaris) under the stress of cetyltrimethylammonium chloride (CTAC). From the changes of chlorophyll fluorescence parameters and PSII activity, it was proved that the electron transport, which occurred initially at the electron donor side of OEC, was disturbed by CTAC. Moreover, a significant decrease of the oxygen evolution rate in OEC (40.95%) while an increase of ROS (50.50%) was obtained after the exposure to 0.6 mg/L CTAC compared to the control (without CTAC), confirming that more oxygen transferred to ROS under the stress. Furthermore, the increased ROS in chloroplast and the structural destruction in thylakoid membrane were observed, respectively. These results proved that oxidative damage mechanism in PSII-OEC is mainly through the reduction of oxygen evolution and the production of excessive ROS, thus leading to the destruction of OEC performance and chloroplast structure.
Collapse
Affiliation(s)
- Han Zhang
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, PR China
| | - Na Liu
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, PR China
| | - Jinfeng Zhao
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, PR China
| | - Fei Ge
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, PR China.
| | - Yin Xu
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, PR China
| | - Yuehui Chen
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, PR China
| |
Collapse
|
27
|
Zhang X, Chen Z, Zhou Y, Ma Y, Zhang H, Zhou L, Fang S. Comparisons of Nitrogen Removal and Microbial Communities in Anammox Systems upon Addition of Copper-Based Nanoparticles and Copper Ion. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00182] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiaojing Zhang
- Henan Engineering Research Center of Chemical Engineering Separation Process Intensification, Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China 450001
| | - Zhao Chen
- Henan Engineering Research Center of Chemical Engineering Separation Process Intensification, Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China 450001
| | - Yue Zhou
- Henan Engineering Research Center of Chemical Engineering Separation Process Intensification, Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China 450001
| | - Yongpeng Ma
- Henan Engineering Research Center of Chemical Engineering Separation Process Intensification, Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China 450001
| | - Hongzhong Zhang
- Henan Engineering Research Center of Chemical Engineering Separation Process Intensification, Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China 450001
| | - Liming Zhou
- Henan Engineering Research Center of Chemical Engineering Separation Process Intensification, Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China 450001
| | - Shaoming Fang
- Henan Engineering Research Center of Chemical Engineering Separation Process Intensification, Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China 450001
| |
Collapse
|
28
|
Yazdanbakhsh AR, Rafiee M, Daraei H, Amoozegar MA. Responses of flocculated activated sludge to bimetallic Ag-Fe nanoparticles toxicity: Performance, activity enzymatic, and bacterial community shift. JOURNAL OF HAZARDOUS MATERIALS 2019; 366:114-123. [PMID: 30504079 DOI: 10.1016/j.jhazmat.2018.11.098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/25/2018] [Accepted: 11/26/2018] [Indexed: 06/09/2023]
Abstract
Ever-increasing production and use of nanoparticles (NPs) have aroused overarching concerns for their toxic effects on the environment and human. In the present study, the toxic effects of Silver (Ag) and Iron (Fe) NPs on the performance of activated sludge were investigated under continuous aerobic/anoxic/anaerobic conditions in laboratory-scale sequencing batch reactors (SBRs).Activated sludge was exposed to various concentrations (5-100 mg/L) of Ag-Fe NPs for 60 days and its response was assessed through the enzymatic activity, COD, nitrogen (TN) and phosphorus (TP) removal, toxicity tests, as well as variations in bacterial community. Compared with the pristine control sample, the exposure to NPs suppressed TN and TP removal efficiencies. Indeed, the respiration rate and biomass concentration were significantly affected by the NPs. Although the simultaneous exposure to Ag-Fe NPs did affect the integrity of cell membrane (LDH) and key enzymes activities, the higher concentration induced an increased generation of reactive oxygen species (ROS). The metagenome analysis revealed a marked shift in the microbial community structure suggesting that both heterotrophic and autotrophic communities were affected by the presence of Ag-Fe NPs. Our results provide some evidence for compounded effects of NPs in their simultaneous presence, and generate new leads for future research efforts.
Collapse
Affiliation(s)
- Ahmad Reza Yazdanbakhsh
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rafiee
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hasti Daraei
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Ali Amoozegar
- Extremophiles Lab., Dept. of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
29
|
Ge CH, Dong Y, Li H, Li Q, Ni SQ, Gao B, Xu S, Qiao Z, Ding S. Nitritation-anammox process - A realizable and satisfactory way to remove nitrogen from high saline wastewater. BIORESOURCE TECHNOLOGY 2019; 275:86-93. [PMID: 30579105 DOI: 10.1016/j.biortech.2018.12.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/08/2018] [Accepted: 12/10/2018] [Indexed: 05/14/2023]
Abstract
In this study, acclimation of freshwater nitritation-anammox sludge to remove nitrogen in high saline and hypersaline wastewater was evaluated, during which the microbes activity and microbial community revolution were revealed to understand the fate of a nitritation-anammox process (SNAP) in response to increasing salt stress. By enhanced aeration, the SNAP system can treat saline (3%) ammonium-rich (185 mg/L) wastewater after gradual adaption. Hypersalinity (5%) caused final deterioration of the SNAP system due to a severe inhibition on anammox activity. Genera Kuenenia (anammox), Nitrosomonas (AOB) and Nitrosovibrio (AOB) bacteria were salt adaptable microbes, while genus Nitrospira (NOB) bacteria were sensitive to salinity. Under the enhanced aeration, AOB bacteria could bear 3% salinity with possible enriched ammonia monooxygenase to stimulate the conversion of ammonium to nitrite by producing more intermediate-hydroxylamine, which could alleviate the negative effect of insufficient hydroxylamine oxidase members in AOB bacteria.
Collapse
Affiliation(s)
- Cheng-Hao Ge
- Shenzhen Research Institute of Shandong University, Shenzhen, PR China; School of Environmental Science and Engineering, Shandong University, Qingdao, PR China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, PR China
| | - Ying Dong
- Shenzhen Research Institute of Shandong University, Shenzhen, PR China; School of Environmental Science and Engineering, Shandong University, Qingdao, PR China
| | - Hongmin Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, PR China; University of Chinese Academy of Sciences, Beijing, PR China
| | - Qianxia Li
- Shenzhen Research Institute of Shandong University, Shenzhen, PR China; School of Environmental Science and Engineering, Shandong University, Qingdao, PR China
| | - Shou-Qing Ni
- Shenzhen Research Institute of Shandong University, Shenzhen, PR China; School of Environmental Science and Engineering, Shandong University, Qingdao, PR China.
| | - Baoyu Gao
- School of Environmental Science and Engineering, Shandong University, Qingdao, PR China
| | - Shiping Xu
- School of Environmental Science and Engineering, Shandong University, Qingdao, PR China
| | - Zhuangming Qiao
- Shandong Meiquan Environmental Protection Technology Co., Ltd., Jinan, PR China
| | - Shaowu Ding
- Shandong Wanhao Fertilizer Co., Ltd., Jinan, PR China
| |
Collapse
|
30
|
Transformation of the zero valent iron dosage effect on anammox after long-term culture: From inhibition to promotion. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.01.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
31
|
Zhang ZZ, Cheng YF, Zhu BQ, Liu YY, Zhang Q, Jin RC. Achieving completely anaerobic ammonium removal over nitrite (CAARON) in one single UASB reactor: Synchronous and asynchronous feeding regimes of organic carbon make a difference. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 653:342-350. [PMID: 30412879 DOI: 10.1016/j.scitotenv.2018.10.401] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 06/08/2023]
Abstract
At least 11% of total nitrogen (TN) remains in the anammox effluent, making it difficult to meet increasingly stringent discharge standards. To overcome this bottleneck, an innovative process to achieve completely anaerobic ammonium removal over nitrite (CAARON) in one single up-flow anaerobic sludge blanket reactor was proposed in this study. The synchronous feeding of acetate at a C/N (nitrite) ratio of 0.6 significantly reduced the nitrogen removal capacity of anammox reactor by limiting the abundance and metabolism of anammox bacteria. In contrast, the asynchronous feeding of acetate optimized the partition of the reactor column into two specific compartments: the lower half favoring anammox and the upper half dominated by DEAMOX (DEnitrifying AMmonium Oxidation). A high TN removal efficiency of 96.2±0.4% and a low effluent TN concentration of 9.3±0.9mgL-1 were obtained under a high TN loading rate of 9.0kgNm-3d-1. The dominant functional microbes in the CAARON process were identified as Candidatus Kuenenia and Thauera, which were responsible for the anammox and denitratation reactions, respectively. Overall, the results in this study provide valuable insight into the coupling of anammox with denitratation, which is a cost-efficient approach for treating ammonium-rich wastewaters.
Collapse
Affiliation(s)
- Zheng-Zhe Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Ya-Fei Cheng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Bing-Qian Zhu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Ying-Yi Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Qian Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Ren-Cun Jin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China.
| |
Collapse
|
32
|
Chen QQ, Xu LZJ, Zhang ZZ, Sun FQ, Shi ZJ, Huang BC, Fan NS, Jin RC. Insight into the short- and long-term effects of quinoline on anammox granules: Inhibition and acclimatization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:1294-1301. [PMID: 30360261 DOI: 10.1016/j.scitotenv.2018.09.285] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/30/2018] [Accepted: 09/21/2018] [Indexed: 06/08/2023]
Abstract
The short- and long-term influence of quinoline on the properties of anaerobic ammonium oxidation (anammox) biogranules was evaluated. During batch tests, the bioactivity of anammox granules in the presence of different quinoline concentrations was monitored, and the IC50 of quinoline was calculated to be 13.1 mg L-1 using a non-competitive inhibition model. The response of anammox granules to pre-exposure to quinoline was dependent on metabolic status, and the presence of both quinoline and NO2--N had a rapid detrimental effect, resulting in a 64.5% decrease within 12 h. During continuous-flow experiments, the nitrogen removal rate (NRR) of the reactor decreased sharply within 3 days in the presence of 10 mg L-1 quinoline and then was restored to 2.6 kg N m-3 d-1. In the presence of quinoline-induced stress, the specific anammox activity and levels of extracellular polymeric substance and heme c were decreased, while settling velocity persistently increased. After cultivation and acclimation obtained by adding a medium level of quinoline to the influent, the anammox granule sludge was able to tolerate 10 mg L-1 quinoline in 178 days.
Collapse
Affiliation(s)
- Qian-Qian Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Lian-Zeng-Ji Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Zao-Zao Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Fan-Qi Sun
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Zhi-Jian Shi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Bao-Cheng Huang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Nian-Si Fan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China.
| | - Ren-Cun Jin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China.
| |
Collapse
|
33
|
Xu JJ, Cheng YF, Xu LZJ, Liu YY, Zhu BQ, Fan NS, Huang BC, Jin RC. The revolution of performance, sludge characteristics and microbial community of anammox biogranules under long-term NiO NPs exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 649:440-447. [PMID: 30176457 DOI: 10.1016/j.scitotenv.2018.08.386] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/21/2018] [Accepted: 08/27/2018] [Indexed: 06/08/2023]
Abstract
Given the increasing applications of NiO nanoparticles (NPs) in battery products, the potential effects of NiO NPs on anaerobic ammonium oxidation (anammox) systems were studied for the first time. The results showed that the anammox system performance obviously differed under the stresses of different NiO NPs concentrations. After the withdrawal of NiO NPs, the nitrogen removal performance of the anammox reactor returned to nearly that of the initial phase within 35 days. Compared with 0 mg L-1 NiO NPs, the specific anammox activity first increased and then decreased to the minimum value of 116.8 ± 13.8 mg TN g-1 VSS d-1 at 60 mg L-1 NiO NPs. The variations in the heme c contents and extracellular polymeric substance amounts were similar to the variations in the specific anammox activity throughout the whole experiment. Additionally, the relative abundance of the dominant bacteria (Candidatus kuenenia) increased from 20.44% at 60 mg L-1 NiO NPs to 23.14% at the end of the last phase. Thus, the potential effects of NiO NPs on anammox systems should be a cause for great concern.
Collapse
Affiliation(s)
- Jia-Jia Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Ya-Fei Cheng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Lian-Zeng-Ji Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Ying-Yi Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Bing-Qian Zhu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Nian-Si Fan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Bao-Cheng Huang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China.
| | - Ren-Cun Jin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China.
| |
Collapse
|
34
|
Zhang ZZ, Cheng YF, Xu LZJ, Bai YH, Xu JJ, Shi ZJ, Shen YY, Jin RC. Evaluating the effects of metal oxide nanoparticles (TiO 2, Al 2O 3, SiO 2 and CeO 2) on anammox process: Performance, microflora and sludge properties. BIORESOURCE TECHNOLOGY 2018; 266:11-18. [PMID: 29940437 DOI: 10.1016/j.biortech.2018.06.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/12/2018] [Accepted: 06/16/2018] [Indexed: 06/08/2023]
Abstract
The increasing use of engineered metal oxide nanoparticles (MONPs) in consumer products raises great concerns about their environmental impacts, but their potential impacts on anaerobic ammonium oxidation (anammox) process in wastewater treatment remain unclear. In this study, the presence of MONPs (1, 50, 200 mg L-1) exhibited no visible effects on the nitrogen removal performance of anammox reactors, but high levels (200 mg L-1) of SiO2NPs, Al2O3NPs and CeO2NPs had a distinct effect on shaping the anammox community. Long-term exposure of MONPs caused different responses in the relative abundance of Ca. Kuenenia, the level of functional gene HzsA and the activities of three key enzymes involved in anammox metabolism, but no significant inhibition effects on specific anammox activity were detected. Overall, the effects of MONPs on anammox community structure and sludge properties depended on their types and levels and followed the order SiO2 > CeO2 > Al2O3 > TiO2.
Collapse
Affiliation(s)
- Zheng-Zhe Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Ya-Fei Cheng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Lian-Zeng-Ji Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Yu-Hui Bai
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Jia-Jia Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Zhi-Jian Shi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Yang-Yang Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Ren-Cun Jin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China.
| |
Collapse
|
35
|
Li H, Chi Z, Yan B. Insight into the impact of Fe 3O 4 nanoparticles on anammox process of subsurface-flow constructed wetlands under long-term exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:29584-29592. [PMID: 30141165 DOI: 10.1007/s11356-018-2975-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 08/14/2018] [Indexed: 06/08/2023]
Abstract
The increasing use of Fe3O4 nanoparticles (NPs) had posed an emerging challenge to wastewater treatment processes, and their potential impact on anaerobic ammonium oxidation (anammox) process of unplanted subsurface-flow constructed wetlands (USFCWs) was investigated firstly under the long-term exposure of different Fe3O4 NP concentrations. It was found that Fe3O4 NP exposure could improve total nitrogen (TN) removal. The abundance of Candidatus Anammoxoglobus increased significantly at 10 mg/L Fe3O4 NPs, while decreased under 1 mg/L Fe3O4 NP exposure. Desulfosporosinus and Exiguobacterium increased to some extent at 1 mg/L Fe3O4 NPs, suggesting that Fe-anammox played an important role in TN removal. The ROS production increased with the increase of Fe3O4 NP concentration, and the integrity of cell membrane was good under Fe3O4 NP exposure. The functional genes that related to inorganic ion transport and metabolism and lipid transport and metabolism were upregulated, and cell motility decreased after long-term exposure of 1 mg/L Fe3O4 NPs. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Huai Li
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, People's Republic of China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Zifang Chi
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, People's Republic of China.
| | - Baixing Yan
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, People's Republic of China
| |
Collapse
|
36
|
Zhang ZZ, Cheng YF, Xu LZJ, Wu J, Bai YH, Xu JJ, Shi ZJ, Jin RC. Discrepant effects of metal and metal oxide nanoparticles on anammox sludge properties: A comparison between Cu and CuO nanoparticles. BIORESOURCE TECHNOLOGY 2018; 266:507-515. [PMID: 30005413 DOI: 10.1016/j.biortech.2018.06.094] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/22/2018] [Accepted: 06/27/2018] [Indexed: 06/08/2023]
Abstract
Metal and metal oxide nanoparticles (NPs) show differences in antimicrobial activity due to different chemical and physical properties. Using copper as a representative example, this study compared the NP effects on anaerobic ammonium oxidation (anammox) bacteria in wastewater treatment. Long-term exposure to 5 mgCu L-1 CuNPs reduced the physiological activity and abundance of anammox bacteria, thereby causing deterioration of reactor performance. However, anammox granules exhibited stronger resistance and resilience to perturbation by 1-160 mgCu L-1 CuONPs, and no adverse effects on performance were observed. Moreover, the level of Cu(II) released from NPs in the influent exhibited good correlations with variations of the community structure and sludge properties. Therefore, the effects of Cu-based NPs on anammox sludge properties are dependent on their forms and levels, and their discrepant effects are partially attributed to their ability to release ionic copper.
Collapse
Affiliation(s)
- Zheng-Zhe Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Ya-Fei Cheng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Lian-Zeng-Ji Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Jing Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Yu-Hui Bai
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Jia-Jia Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Zhi-Jian Shi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Ren-Cun Jin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China.
| |
Collapse
|
37
|
Xu Y, Wang C, Hou J, Wang P, Miao L, You G. Strategies and relative mechanisms to attenuate the bioaccumulation and biotoxicity of ceria nanoparticles in wastewater biofilms. BIORESOURCE TECHNOLOGY 2018; 265:102-109. [PMID: 29885495 DOI: 10.1016/j.biortech.2018.05.107] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/28/2018] [Accepted: 05/30/2018] [Indexed: 06/08/2023]
Abstract
Inhibitory effects of ceria nanoparticles (CeO2 NPs) on biofilm were investigated individually and in combination with phosphate (P), ethylene diamine tetraacetic acid (EDTA), humic acid (HA) and citrate (CA) to further explore the toxicity alleviating solutions. Exposure to 20 mg/L CeO2 NPs significantly decreased the performance of biofilm in nutrients removal. Distribution experiments suggested >98% of the CeO2 NPs retained in microbial aggregates, leading to 51.26 μg/L Ce ions dissolution. The dissolved CeIV and its further being reduced to CeIII stimulated the formation of O2- and OH, which increased lipid peroxidation level to 130.93% in biofilms. However, P/EDTA/CA captured or precipitated Ce ions, whereas EDTA/HA/CA shielded NPs-bacteria direct contacts, both disturbing the NPs adsorption, intercepting the redox transition between CeIV and CeIII, reducing the generation of O2- and OH, thus mitigating the toxicity of CeO2 NPs. These results illustrate the main drivers of CeO2 NPs biotoxicity and provide safer-by-design strategies.
Collapse
Affiliation(s)
- Yi Xu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China.
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| |
Collapse
|
38
|
Jiang XY, Cheng YF, Zhu WQ, Bai YH, Xu LZJ, Wu XQ, Jin RC. Effect of chromium on granule-based anammox processes. BIORESOURCE TECHNOLOGY 2018; 260:1-8. [PMID: 29601995 DOI: 10.1016/j.biortech.2018.03.055] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/08/2018] [Accepted: 03/11/2018] [Indexed: 06/08/2023]
Abstract
In this study, the feasibility of application of anaerobic ammonium oxidation (anammox) to teat wastewater containing chromium was assessed. Anammox granule activity decreased with increasing Cr(VI) concentration and pre-exposure time in batch tests, and the 50% inhibition concentration of Cr(VI) on anammox biomass was 296.5 mg L-1. Approximately 93.9% chromium was absorbed by loosely bound-extracellular polymeric substances and tightly bound-extracellular polymeric substances when less than 60 mg L-1 Cr(VI) was added. During long-term operation in up-flow anaerobic sludge blanket reactor, significant inhibitory effects anammox performance were observed for Cr(VI) concentrations up to 2 mg L-1. The nitrogen removal rate (NRR) rapidly decreased to 1.49 ± 0.89 kg N m-3 d-1, whereas the NRR was 11.37 ± 1.30 kg N m-3 d-1 in a control reactor. Compared with initial levels, specific anammox granule activity was 22%. The tolerance of the anammox process to Cr(VI) can be enhanced after a long-term adaptive phase.
Collapse
Affiliation(s)
- Xiao-Yan Jiang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Ya-Fei Cheng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Wei-Qin Zhu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Yu-Hui Bai
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Lian-Zeng-Ji Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Xue-Qi Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Ren-Cun Jin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China.
| |
Collapse
|
39
|
Xu JJ, Zhang ZZ, Ji ZQ, Zhu YH, Qi SY, Tang CJ, Jin RC. Short-term effects of nanoscale Zero-Valent Iron (nZVI) and hydraulic shock during high-rate anammox wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 215:248-257. [PMID: 29573675 DOI: 10.1016/j.jenvman.2018.03.069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/20/2018] [Accepted: 03/14/2018] [Indexed: 06/08/2023]
Abstract
The stability and resilience of an anaerobic ammonium oxidation (anammox) system under transient nanoscale Zero-Valent Iron (nZVI) (50, 75 and 100 mg L-1), hydraulic shock (2-fold increase in flow rate) and their combination were studied in an up-flow anaerobic sludge blanket reactor. The response to the shock loads can be divided into three phases i.e. shock, inertial and recovery periods. The effects of the shock loads were directly proportional to the shock intensity. The effluent quality was gradually deteriorated after exposure to high nZVI level (100 mg L-1) for 2 h. The higher effluent sensitivity index and response caused by unit intensity of shock was observed under hydraulic and combined shocks. Notably, the specific anammox activity and the content of heme c were considerably reduced during the shock phase and the maximum loss rates were about 30.5% and 24.8%, respectively. Nevertheless, the extracellular polymeric substance amount in the shock phase was enhanced in varying degrees and variation tendency was disparate at all the tested shock loads. These results suggested that robustness of the anammox system was dependent on the magnitude shocks applied and the reactor resistance can be improved by reducing hydraulic retention time with the increase of nZVI concentration under these circumstances.
Collapse
Affiliation(s)
- Jia-Jia Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Zheng-Zhe Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Zheng-Quan Ji
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Ying-Hong Zhu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Si-Yu Qi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Chong-Jian Tang
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Ren-Cun Jin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China.
| |
Collapse
|
40
|
Zhang ZZ, Cheng YF, Xu LZJ, Bai YH, Xu JJ, Shi ZJ, Zhang QQ, Jin RC. Transient disturbance of engineered ZnO nanoparticles enhances the resistance and resilience of anammox process in wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 622-623:402-409. [PMID: 29220765 DOI: 10.1016/j.scitotenv.2017.12.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/26/2017] [Accepted: 12/02/2017] [Indexed: 06/07/2023]
Abstract
The increasing use of engineered nanoparticles (NPs) in consumer and industrial products raises concerns about their environmental impacts, but their potential influence on anaerobic ammonium oxidation (anammox) process in wastewater treatment remains unknown. In this study, the response of granule-based anammox reactor to different loads of ZnONPs was investigated. The introduction of 1-5mgL-1 ZnONPs did not affect reactor performance, but 90% of the nitrogen removal capacity was deprived by a shock of 10mgL-1 ZnONPs within 3days. Anammox activity was significantly inhibited, but no significant stimulation of intracellular reactive oxygen species (ROS) production or extracellular lactate dehydrogenase (LDH) activity was observed. The inhibition was thus mainly due to the accumulation of toxic Zn(II) ions in anammox biomass. However, the resistance and resilience of this anammox reactor to ZnONPs were enhanced by intermittent perturbations in the mode of "shock-recovery". The up-regulated abundance of Zn(II)-exporter ZntA might contribute to the enhanced resistance. In addition, these repeated transient disturbances improved the functional specificity of the anammox community despite the reduction of its diversity. Overall, these results may provide useful references for evaluating and controlling the risk of NPs to anammox process.
Collapse
Affiliation(s)
- Zheng-Zhe Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Ya-Fei Cheng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Lian-Zeng-Ji Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Yu-Hui Bai
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Jia-Jia Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Zhi-Jian Shi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Qian-Qian Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Ren-Cun Jin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China.
| |
Collapse
|
41
|
Influence of ZnO nanoparticles on anammox granules: The inhibition kinetics and mechanism analysis by batch assays. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.02.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
42
|
Wang P, You G, Hou J, Wang C, Xu Y, Miao L, Feng T, Zhang F. Responses of wastewater biofilms to chronic CeO 2 nanoparticles exposure: Structural, physicochemical and microbial properties and potential mechanism. WATER RESEARCH 2018; 133:208-217. [PMID: 29407701 DOI: 10.1016/j.watres.2018.01.031] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/11/2018] [Accepted: 01/13/2018] [Indexed: 06/07/2023]
Abstract
With the accelerated application of CeO2 nanoparticles (NPs), wastewater treatment plants will increasingly receive CeO2 NPs, thus inevitably causing CeO2 NPs to encounter microaggregates. Here, we comprehensively elucidate the responses in the structural, physicochemical and microbial properties of wastewater biofilms to chronic exposure (75 days) to different CeO2 NPs concentrations, with a particular emphasis on the protective mechanisms of stratified extracellular polymeric substances (EPSs). Chronic exposure to 0.1 mg/L CeO2 NPs boosted the content and broadened the distribution of α-d-glucopyranose polysaccharides (PS), while the sharply increased production and breadth of β-d-glucopyranose PS, forming a formidable shield, was a response to 10 mg/L CeO2 NPs. After the bacteria were exposed to CeO2 NPs, loosely bound EPSs (LB-EPSs) aggregated into macromolecules (increasing in apparent molecular weight (AMW)) but at a lower abundance, whereas the average AMW in tightly bound EPSs (TB-EPSs) decreased. The acetyl content and (α-helix+3-turn helix)/β-sheet value of TB-EPSs increased to resist CeO2 NPs. Furthermore, long-term exposure to CeO2 NPs decreased cell viability, reduced microbial diversity and shifted the microbial composition. N-acylated-l-homoserine lactone concentrations increased with increased density of Pseudomonas, which was associated with PS-regulated control, thus promoting PS production in EPSs in response to CeO2 NPs. These results expand the understanding of how microaggregates resist environmental stress caused by NPs.
Collapse
Affiliation(s)
- Peifang Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Yi Xu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Tao Feng
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Fei Zhang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
43
|
Zhang ZZ, Cheng YF, Bai YH, Xu LZJ, Xu JJ, Shi ZJ, Zhang QQ, Jin RC. Enhanced effects of maghemite nanoparticles on the flocculent sludge wasted from a high-rate anammox reactor: Performance, microbial community and sludge characteristics. BIORESOURCE TECHNOLOGY 2018; 250:265-272. [PMID: 29174904 DOI: 10.1016/j.biortech.2017.11.053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/14/2017] [Accepted: 11/16/2017] [Indexed: 06/07/2023]
Abstract
Magnetic nanoparticles (NPs) have been widely applied in environmental remediation, biomass immobilization and wastewater treatment, but their potential impact on anaerobic ammonium oxidation (anammox) biomass remains unknown. In this study, the short-term and long-term impacts of maghemite NPs (MHNPs) on the flocculent sludge wasted from a high-rate anammox reactor were investigated. Batch assays showed that the presence of MHNPs up to 200 mg L-1 did not affect anammox activity, reactive oxygen species production, or cell membrane integrity. Moreover, long-term addition of 1-200 mg L-1 MHNPs had no adverse effects on reactor performance. Notably, the specific anammox activity, the abundance of hydrazine synthase structural genes and the content of extracellular polymeric substance were increased with elevated MHNP concentrations. Meanwhile, the community structure was shifted to higher abundance of Candidatus Kuenenia indicated by high-throughput sequencing. Therefore, MHNPs could be applied to enhance anammox flocculent sludge due to their favorable biocompatibility.
Collapse
Affiliation(s)
- Zheng-Zhe Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Ya-Fei Cheng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Yu-Hui Bai
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Lian-Zeng-Ji Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Jia-Jia Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Zhi-Jian Shi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Qian-Qian Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Ren-Cun Jin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China.
| |
Collapse
|
44
|
Zhang ZZ, Xu JJ, Shi ZJ, Bai YH, Cheng YF, Hu HY, Jin RC. Unraveling the impact of nanoscale zero-valent iron on the nitrogen removal performance and microbial community of anammox sludge. BIORESOURCE TECHNOLOGY 2017; 243:883-892. [PMID: 28738514 DOI: 10.1016/j.biortech.2017.07.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/06/2017] [Accepted: 07/09/2017] [Indexed: 06/07/2023]
Abstract
Given the increasing use of nanoscale zero-valent iron (NZVI) particles for environmental remediation and wastewater treatment, their potential impact on anaerobic ammonium oxidation (anammox) bacteria was investigated in this study using anammox sludge. Batch assays showed that NZVI concentrations up to 200mgL-1 did not affect anammox activity, reactive oxygen species production, and cell membrane integrity. The nitrogen removal efficiency of the continuous-flow reactor fluctuated in the presence of 20 or 50mgL-1 NZVI, but it could return to normal over time, even at 200mgL-1 NZVI. 16S rDNA-based high-throughput sequencing indicated that although the presence of 10, 20, 50, and 200mgL-1 NZVI to some extent affected microbial composition, the anammox bacteria (Candidatus Kuenenia) never lost its dominance. The abundance of gene families that are related to the assimilation and utilization of iron was down-regulated in response to the stress of high-level NZVI.
Collapse
Affiliation(s)
- Zheng-Zhe Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Jia-Jia Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Zhi-Jian Shi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Yu-Hui Bai
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Ya-Fei Cheng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Hai-Yan Hu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Ren-Cun Jin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China.
| |
Collapse
|
45
|
Xu Q, Li X, Ding R, Wang D, Liu Y, Wang Q, Zhao J, Chen F, Zeng G, Yang Q, Li H. Understanding and mitigating the toxicity of cadmium to the anaerobic fermentation of waste activated sludge. WATER RESEARCH 2017; 124:269-279. [PMID: 28772139 DOI: 10.1016/j.watres.2017.07.067] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/15/2017] [Accepted: 07/25/2017] [Indexed: 06/07/2023]
Abstract
Cadmium (Cd) is present in significant levels in waste activated sludge, but its potential toxicities on anaerobic fermentation of sludge remain largely unknown. This work therefore aims to provide such support. Experimental results showed that the impact of Cd on short-chain fatty acids (SCFA) production from sludge anaerobic fermentation was dose-dependent. The presence of environmentally relevant level of Cd (e.g., 0.1 mg/g VSS) enhanced SCFA production by 10.6%, but 10 mg/g VSS of Cd caused 68.1% of inhibition. Mechanism exploration revealed that although all levels of Cd did not cause extra leakage of intracellular substrates, 0.1 mg/g VSS Cd increased the contents of both soluble and loosely-bound extracellular polymeric substances (EPS), thereby benefitting sludge solubilization. On the contrary, 10 mg/g VSS Cd decreased the levels of all EPS layers, which reduced the content of soluble substrates. It was also found that 0.1 mg/g VSS Cd benefited both the hydrolysis and acidogenesis but 10 mg/g VSS Cd inhibited all the hydrolysis, acidogenesis, and methanogenesis processes. Further investigations with microbial community and enzyme analysis showed that the pertinent presence of Cd enhanced the activities of protease, acetate kinase, and oxaloacetate transcarboxylase whereas 10 mg/g VSS Cd decreased the microbial diversity, the abundances of functional microbes, and the activities of key enzymes. Finally, one strategy that could effectively mitigate the adverse impact of high Cd levels on SCFA production was proposed and examined. This work provides insights into Cd-present sludge fermentation systems, and the findings obtained may guide engineers to manipulate sludge treatment systems in the future.
Collapse
Affiliation(s)
- Qiuxiang Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xiaoming Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Rongrong Ding
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Yiwen Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Qilin Wang
- Griffith School of Engineering & Centre for Clean Environment and Energy, Griffith University, QLD, Australia
| | - Jianwei Zhao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Fei Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Hailong Li
- School of Energy Science and Engineering, Central South University, Changsha 410083, PR China
| |
Collapse
|
46
|
Zhang ZZ, Hu HY, Xu JJ, Shi ZJ, Shen YY, Shi ML, Jin RC. Susceptibility, resistance and resilience of anammox biomass to nanoscale copper stress. BIORESOURCE TECHNOLOGY 2017; 241:35-43. [PMID: 28550773 DOI: 10.1016/j.biortech.2017.05.069] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/08/2017] [Accepted: 05/12/2017] [Indexed: 06/07/2023]
Abstract
The increasing use of engineered nanoparticles (NPs) poses an emerging challenge to biological wastewater treatment. The long-term impact of CuNPs on anaerobic ammonium oxidation (anammox) process was firstly investigated in this study. The nitrogen removal capacity of anammox reactor was nearly deprived within 30days under the stress of 5.0mgL-1 CuNPs and the relative abundance of anammox bacteria (Ca. Kuenenia) was decreased from 29.59% to 17.53%. Meanwhile, copper resistance genes associated with the Cus, Cop and Pco systems were enriched to eliminate excess intracellular copper. After the withdrawal of CuNPs from the influent, the nitrogen removal capacity of anammox biomass recovered completely within 70days. Overall, anammox biomass showed susceptibility, resistance and resilience to the stress of CuNPs. Therefore, the potential impacts of ENPs on anammox-based processes should be of great concern.
Collapse
Affiliation(s)
- Zheng-Zhe Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Hai-Yan Hu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Jia-Jia Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Zhi-Jian Shi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Yang-Yang Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Man-Ling Shi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Ren-Cun Jin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China.
| |
Collapse
|