1
|
Tang H, Xiang G, Xiao W, Yang Z, Zhao B. Microbial mediated remediation of heavy metals toxicity: mechanisms and future prospects. FRONTIERS IN PLANT SCIENCE 2024; 15:1420408. [PMID: 39100088 PMCID: PMC11294182 DOI: 10.3389/fpls.2024.1420408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/28/2024] [Indexed: 08/06/2024]
Abstract
Heavy metal pollution has become a serious concern across the globe due to their persistent nature, higher toxicity, and recalcitrance. These toxic metals threaten the stability of the environment and the health of all living beings. Heavy metals also enter the human food chain by eating contaminated foods and cause toxic effects on human health. Thus, remediation of HMs polluted soils is mandatory and it needs to be addressed at higher priority. The use of microbes is considered as a promising approach to combat the adverse impacts of HMs. Microbes aided in the restoration of deteriorated environments to their natural condition, with long-term environmental effects. Microbial remediation prevents the leaching and mobilization of HMs and they also make the extraction of HMs simple. Therefore, in this context recent technological advancement allowed to use of bioremediation as an imperative approach to remediate polluted soils. Microbes use different mechanisms including bio-sorption, bioaccumulation, bioleaching, bio-transformation, bio-volatilization and bio-mineralization to mitigate toxic the effects of HMs. Thus, keeping in the view toxic HMs here in this review explores the role of bacteria, fungi and algae in bioremediation of polluted soils. This review also discusses the various approaches that can be used to improve the efficiency of microbes to remediate HMs polluted soils. It also highlights different research gaps that must be solved in future study programs to improve bioremediation efficency.
Collapse
Affiliation(s)
- Haiying Tang
- School of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, China
| | - Guohong Xiang
- School of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, China
| | - Wen Xiao
- School of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, China
| | - Zeliang Yang
- School of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, China
| | - Baoyi Zhao
- Shuangfeng Agriculture and Rural Bureau, Loudi, Hunan, China
| |
Collapse
|
2
|
Li Z, Cui E, Gu N, Ma W, Guo Q, Li X, Jin J, Wang Q, Ding C. Unveiling the biointerfaces characteristics and removal pathways of Cr(Ⅵ) in Bacillus cereus FNXJ1-2-3 for the Cr(Ⅵ)-to-Cr(0) conversion. ENVIRONMENTAL RESEARCH 2024; 251:118663. [PMID: 38460667 DOI: 10.1016/j.envres.2024.118663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/23/2024] [Accepted: 03/07/2024] [Indexed: 03/11/2024]
Abstract
Although less toxic than hexavalent chromium, Cr (Ⅲ) species still pose a threat to human health. The Cr (Ⅵ) should be converted to Cr (0) instead of Cr (Ⅲ), which is still involved in biological detoxification filed. Herein, for the first time, it was found that Cr(Ⅵ) can be reduced into Cr(0) by Bacillus cereus FNXJ1-2-3, a way to completely harmless treatment of Cr(Ⅵ). The bacterial strain exhibited excellent performance in the reduction, sorption, and accumulation of Cr(Ⅵ) and Cr (Ⅲ). XPS etching characterization inferred that the transformation of Cr(Ⅵ) into Cr(0) followed a reduction pathway of Cr(Ⅵ)→Cr (Ⅲ)→metallic Cr(0), in which at least two secretory chromium reductases (ECrⅥ→Ⅲ and ECrⅢ→0) worked. Under the optimum condition, the yield ratio of Cr(0)/Cr (Ⅲ) reached 33.90%. In addition, the interfacial interactions, ion channels, chromium reductases, and external electron donors also contributed to the Cr(Ⅵ)/Cr(0) transformation. Findings of this study indicate that Bacillus cereus FNXJ1-2-3 is a promising bioremediation agent for Cr(Ⅵ) pollution control.
Collapse
Affiliation(s)
- Zhaoxia Li
- School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, 224051, China
| | - Entian Cui
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng, Jiangsu, 224051, China
| | - Naipeng Gu
- UNHO (China) BioPharmaceutical Co., Ltd., Nanjing, Jiangsu, 210046, China
| | - Weixing Ma
- School of Environmental Science and Engineering, Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng, Jiangsu, 224051, China
| | - Qingyuan Guo
- School of Environmental Science and Engineering, Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng, Jiangsu, 224051, China
| | - Xuan Li
- School of Environmental Science and Engineering, Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng, Jiangsu, 224051, China
| | - Jianxiang Jin
- School of Environmental Science and Engineering, Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng, Jiangsu, 224051, China
| | - Qun Wang
- Jiangsu YIDA Testing Technology Co., Ltd. , Building A-15, Big Data Industrial Park, Chengnan New District, Yancheng, Jiangsu, 224051, China
| | - Cheng Ding
- School of Environmental Science and Engineering, Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng, Jiangsu, 224051, China.
| |
Collapse
|
3
|
Cao G, Gao J, Song J, Jia X, Liu Y, Niu J, Yuan X, Zhao Y. Performance and mechanism of chromium reduction in denitrification biofilm system with different carbon sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167191. [PMID: 37741376 DOI: 10.1016/j.scitotenv.2023.167191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/07/2023] [Accepted: 09/16/2023] [Indexed: 09/25/2023]
Abstract
In the process of biological reduction of Cr(VI), the type of carbon sources affects the rate and effect of Cr(VI) reduction, but its specific performance and influencing mechanism have not yet been explored. In this study, four denitrification biofilm reactors were operated under four common carbon sources (C6H12O6, CH3COONa, CH3OH, CH3COONa:C6H12O6 1:1) to reveal the impact of carbon sources on Cr(VI) reduction. Through preliminary experimental concentration research, 75 mg/L Cr(VI) was selected as the dosing concentration. In long-term operation, the composite carbon sources of CH3COONa and C6H12O6 demonstrated excellent stability and achieved an impressive Cr(VI) removal efficiency of 99.5 %. The following sequence was C6H12O6, CH3COONa, and CH3OH. Among them, CH3OH was less competitive and the system was severely unbalanced with lowest Cr(VI) reduction efficiency. The toxicity reactions, changes in EPS and its functional groups, and electron transfer revealed the reduction and fixation mechanism of chromium on denitrification biofilm. The changes in microbial communities indicated that microbial communities in composite carbon sources can quickly adapt to the high toxic environment. The proportion of Trichococcus reached 43.6 %, which played an important role in denitrification and Cr(VI) reduction. Meanwhile, the prediction of microbial COG function reflected its excellent metabolic ability and defense mechanism.
Collapse
Affiliation(s)
- Ge Cao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Junzhi Gao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jinxin Song
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Xvlong Jia
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yinuo Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jiaojiao Niu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Xin Yuan
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
4
|
Ouyang J, Miao Q, Wei D, Zhang X, Luo E, Li C, Wei L. Removal of Cr (VI) and microbial community analysis in PCB wastewater treatment based on the BESI® process. PLoS One 2023; 18:e0290023. [PMID: 37585481 PMCID: PMC10431613 DOI: 10.1371/journal.pone.0290023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 07/31/2023] [Indexed: 08/18/2023] Open
Abstract
The treatment efficiency of Chromium (Cr)-containing Printed Circuit Board (PCB) wastewater is significantly hampered by the limited physiological activity of microorganisms when activated sludge is applied. In this study, the biodegradation and electron transfer based on sulfur metabolism in the integrated (BESI®) process use sulfur as the electron acceptor to achieve sulfate reduction and sulfide oxidation, leading to efficient removal of Cr. The concentrations of total Cr and Cr(VI) in the effluent were reduced to 0.5 mg/L and 0.1 mg/L, respectively, from an initial range of 25-32 mg/L in the influent. The removal of Cr (ΔC(Cr(VI))) mainly occurred in the Sulfate Reduction (SR) reactor, which was significantly correlated with the generation of sulphide ([Formula: see text]) (R2 = 0.9987). Meantime, analysis of the microbial community showed that Cr (VI) stress increased the diversity of the bacterial community in sludge. The presence of Clostridium (52.54% and 47.78%) in SR & Sulfide Oxidation (SO) reactor, along with the Synergistaceae (31.90%) and Trichococcus (26.59%) in aerobic reactor, might contribute to the gradient degradation of COD, resulting in a removal efficiency exceeding 80% when treating an influent with a concentration of 1000 mg/L. In addition, the main precipitation components in the SR reactor were identified by scanning electron microscope, indicating that Cr has been removed from wastewater as Cr(OH)3 precipitation. This study sheds light on the potential of using the BESI® process for the real PCB wastewater treatment.
Collapse
Affiliation(s)
- Jia Ouyang
- Guangzhou HKUST Fok Ying Tung Research Institute, Guangzhou, Guangdong, China
| | - Qinghua Miao
- School of Energy and Civil Engineering, Harbin University of Commerce, Harbin, China
| | - Dong Wei
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, China
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Xinxin Zhang
- Guangzhou HKUST Fok Ying Tung Research Institute, Guangzhou, Guangdong, China
| | - Erming Luo
- Guangzhou HKUST Fok Ying Tung Research Institute, Guangzhou, Guangdong, China
| | - Chunying Li
- School of Energy and Civil Engineering, Harbin University of Commerce, Harbin, China
| | - Li Wei
- Guangzhou HKUST Fok Ying Tung Research Institute, Guangzhou, Guangdong, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, China
| |
Collapse
|
5
|
Yan Z, Liu C, Liu Y, Tan X, Li X, Shi Y, Ding C. The interaction of ZnO nanoparticles, Cr(VI), and microorganisms triggers a novel ROS scavenging strategy to inhibit microbial Cr(VI) reduction. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130375. [PMID: 36444067 DOI: 10.1016/j.jhazmat.2022.130375] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/20/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Cr(VI) contaminated water usually contains other contaminants like engineered nanomaterials (ENMs). During the process of microbial treatment, the inevitable interaction of Cr(VI), ENMs, and microorganisms probably determines the efficiency of Cr(VI) biotransformation, however, the corresponding information remains elusive. This study investigated the interaction of ZnO nanoparticles (NPs), Cr(VI), and Pannonibacter phragmitetus BB (hereafter BB), which changed the process of microbial Cr(VI) reduction. ZnO NPs inhibited Cr(VI) reduction, but had no effect on bacterial viability. In particular, Cr(VI) induced BB to produce organic acids and to drive Zn2+ dissolution from ZnO NPs inside and outside of cells. The dissolved Zn2+ not only promoted Cr(VI) reduction to Cr(V)/Cr(IV) by strengthening sugar metabolism and inducing increase in NAD(P)H production, but also hindered Cr(V)/Cr(IV) transformation to Cr(III) through down-regulating Cr(VI) reductase genes. A novel bacterial driven ROS scavenging mechanism leading to the inhibition of Cr(VI) reduction was elucidated. Specifically, the accumulated Cr(VI) and Cr(V)/Cr(IV) formed a redox dynamic equilibrium, which triggered the disproportionation of superoxide radicals mimicking superoxide dismutase through the flip-flop of Cr(VI) and Cr(V)/Cr(IV) in bacterial cells. This study provided a realistic insight into design the applicability of biological remediation technology for Cr(VI) contaminant and evaluating environmental risks of ENMs.
Collapse
Affiliation(s)
- Zhiyan Yan
- School of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Chenrui Liu
- School of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Yun Liu
- School of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| | - Xiaoqian Tan
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083 Changsha, China
| | - Xinyue Li
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083 Changsha, China
| | - Yan Shi
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083 Changsha, China; National Engineering Research Center for Heavy Metals Pollution Control and Treatment, 410083 Changsha, China.
| | - Chunlian Ding
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
6
|
Preliminary Studies of Bio-Fortification of Yoghurt with Chromium. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8120727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Yoghurt is a delectable fermented milk product suitable for all ages. Chromium (Cr), a trace mineral is found in two forms: trivalent and hexavalent. Recent studies have shown that the Cr (III), or chromium picolinate (Cri), is beneficial for carbohydrate metabolism. Thus, Cr supplements are used to treat diabetes and manage blood sugar. However, the effect of the incorporation of Cri on starter growth and the quality of yoghurt still needs to be determined. In this study, we aim to produce Cr (CrPi)-fortified yoghurt to fulfil the proposed recommended daily allowance (RDA) of Cr (35–50 µg/day for adults). Additionally, it might act as a nutraceutical for persons with special medical conditions, such as patients with obesity or type 2 diabetes mellitus disease. In this respect, the effect of different concentrations of CrPi, (1, 2, 5, 10, 20 ppm) chromium chloride [Cr (III)] (1, 2, 3, 4, 5 ppm), and potassium chromate [Cr (VI)] (1, 2 ppm) on the activity of yoghurt starter culture were investigated in vitro on de Man, Rogosa, and Sharpe (MRS) media. Compared to the control (without Cr), the obtained data revealed significant inhibition of the yoghurt starter culture by Cr (VI) at 2 ppm compared to Cr (III), which did not affect the bacterial growth up to 5 ppm and was comparable with CrPi [Cr (III)]. We also produced yoghurt supplemented with two doses of Cr (0.25 and 0.5 ppm). We did not observe any significant differences in the physicochemical, rheological, microbiological, and sensory properties of the Cr-fortified yoghurt and the control up to 2 weeks in cold storage. These results clearly indicate that CrPi (0.25 and 0.5 ppm) can be used to manufacture yoghurt with the RDA for intact Cr without affecting its quality.
Collapse
|
7
|
Laiju AR, Sarkar S. A novel hybrid ferrous sulfide impregnated anion exchanger for trace removal of hexavalent chromium from contaminated water. CHEMOSPHERE 2022; 305:135369. [PMID: 35718039 DOI: 10.1016/j.chemosphere.2022.135369] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/11/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
To effectively remove trace concentration of potential cancer-causing Cr(VI) from impaired drinking water, a novel hybrid material was synthesized through an in-situ synthesis process by dispersing ferrous sulfide nanoparticles within an anion exchanger. Characterization studies revealed that the hybrid material, named hybrid ferrous sulfide impregnated anion exchanger (HISIIX), contained uniformly distributed ferrous sulfide nanoparticles of size 10-40 nm within the anion exchanger host. Apart from FeS2 nanoparticles, it also included nanoparticles of FeO and FeOOH. The incorporation of ferrous sulfide nanoparticles within the anion exchanger contributed to the significant differences in the Cr(VI) uptake capacity of HISIIX. Validation studies using fixed-bed column proved that HISIIX had significantly high Cr(VI) uptake capacity and was able to run for 4200 bed volumes (BVs) before a breakthrough of 50 μg L-1 when subjected to a synthetic aqueous solution containing 200 μg L-1 Cr(VI). Cr(VI) uptake capacity of the parent anion exchanger and HISIIX were determined to be 1.39 mg g-1 and 3.44 mg g-1, respectively, when the columns were allowed to run until exhaustion. Ferrous sulfide nanoparticles acted as a reducing agent transforming Cr(VI) anions into Cr(III) precipitates. It also produced sites for further removal of Cr(VI) anions through ligand sorption upon oxidation. The anion exchanger substrate attracted anions selectively via the Donnan membrane principle, resulting in a synergy of three different processes - ion exchange, redox reaction, and ligand sorption that gave the HISIIX a high capacity for the selective Cr(VI) removal from contaminated water.
Collapse
Affiliation(s)
- A R Laiju
- Department of Civil Engineering, National Institute of Technology, Uttarakhand, Uttarakhand, India
| | - Sudipta Sarkar
- Department of Civil Engineering, Indian Institute of Technology Roorkee, Uttarakhand, India.
| |
Collapse
|
8
|
Chen DW, Li HJ, Liu Y, Ma LN, Pu JH, Lu J, Tang XJ, Gao YS. Protective effects of fowl-origin cadmium-tolerant lactobacillus against sub-chronic cadmium-induced toxicity in chickens. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:76036-76049. [PMID: 35665891 DOI: 10.1007/s11356-022-19113-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/03/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) directly endangers poultry health and indirectly causes harm to human health by food chain. Numerous studies have focused on removing Cd using lactic acid bacteria (LAB). However, there is still a lack of in vivo studies to validate whether Cd can be absorbed successfully by LAB to alleviate Cd toxicity. Here, we aimed to isolated and screened poultry-derived Cd-tolerant LAB with the strongest adsorption capacity in vitro and investigate the protective effect of which on sub-chronic Cd toxicity in chickens. First, nine Cd-tolerant LAB strains were selected preliminarily by isolating, screening, and identifying from poultry farms. Next, four strains with the strongest adsorption capacity were used to explore the influence of different physical and chemical factors on the ability of LAB to adsorb Cd as well as its probiotic properties in terms of acid tolerance, bile salt tolerance, drug resistance, and antibacterial effects. Resultantly, the CLF9-1 strain with the best comprehensive ability was selected for further animal protection test. The Cd-tolerant LAB treatment promoted the growth performance of chickens and reduced the Cd-elevated liver and kidney coefficients. Moreover, Cd-induced liver, kidney, and duodenum injuries were alleviated significantly by high-dose LAB treatment. Furthermore, LAB treatment also increased the elimination of Cd in feces and markedly reduced the Cd buildup in the liver and kidney. In summary, these findings determine that screened Cd-tolerant LAB strain exerts a protective effect on chickens against sub-chronic cadmium poisoning, thus providing an essential guideline for the public health and safety of livestock and poultry.
Collapse
Affiliation(s)
- Da-Wei Chen
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu, 225125, People's Republic of China
| | - Hui-Jia Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - YinYin Liu
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu, 225125, People's Republic of China
| | - Li-Na Ma
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu, 225125, People's Republic of China
| | - Jun-Hua Pu
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu, 225125, People's Republic of China
| | - JunXian Lu
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu, 225125, People's Republic of China
| | - Xiu-Jun Tang
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu, 225125, People's Republic of China
| | - Yu-Shi Gao
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu, 225125, People's Republic of China.
| |
Collapse
|
9
|
Singh P, Berawala N, Patil Y. Automobile service station waste assessment and promising biological treatment alternatives: a review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:753. [PMID: 36076099 DOI: 10.1007/s10661-022-10387-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Unprecedented growth in the automobile sector has led to an increased number of automobile service stations across all major cities especially in the developing countries. These service stations release huge amounts of waste that contain objectionable levels of oil and grease (O&G) and heavy metals, amongst other environmentally toxic compounds. Not much literature is available on the hazardous nature, public health concerns, and sustainable treatment options of such an industrial waste. This review throws light on the nuisances caused by the automobile industry waste, the various conventional and promising physical-chemical remediation measures adopted, and the scope of bioremediation for the same. Work on the use of microbial enzymes such as lipases and microbial surface-active agents (biosurfactants) as emerging promising candidates for the bioremediation of metals and O&G contaminated automobile service centre wastewater and soil are especially highlighted in this review article. The adoption of constructed wetlands and regular scientific monitoring of service sector are the aspects that would prove to be critical in sustainable and ecological automobile service station waste management. Stricter environment regulations, along with the growing ecological and environmental awareness, call for stringent monitoring of the service station waste and its treatment in an environmentally sustainable manner. This review can effectively aid in revealing potential hazards of this industrial sectors and in policy making for effective environmental monitoring.
Collapse
Affiliation(s)
- Pooja Singh
- Symbiosis Centre for Waste Resource Management, Symbiosis International (Deemed University), Pune, India
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Nikita Berawala
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Yogesh Patil
- Symbiosis Centre for Research and Innovation, Symbiosis International (Deemed University), Pune, India.
| |
Collapse
|
10
|
Zhang X, Zhang X, Li L, Fu G, Liu X, Xing S, Feng H, Chen B. The toxicity of hexavalent chromium to soil microbial processes concerning soil properties and aging time. ENVIRONMENTAL RESEARCH 2022; 204:111941. [PMID: 34474034 DOI: 10.1016/j.envres.2021.111941] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 07/23/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Chromium (Cr) pollution has attracted much attention due to its biological toxicity. However, little is known regarding Cr toxicity to soil microorganisms. The present study assesses the toxicity of Cr(VI) on two microbial processes, potential nitrification rate (PNR) and substrate-induced respiration (SIR), in a wide range of agricultural soils and detected the abundance of soil bacteria, fungi, ammonia-oxidizing bacteria and archaea. The toxicity thresholds of 10% and 50% effective concentrations (EC10 and EC50) for PNR varied by 32.18- and 38.66-fold among different soils, while for SIR they varied by 391.21- and 16.31-fold, respectively. Regression model analysis indicated that for PNR, CEC as a single factor explained 27% of the variation in EC10, with soil clay being the key factor explaining 47.3% of the variation in EC50. For SIR, organic matter and pH were found to be the most vital predictors for EC10 and EC50, explaining 34% and 61.1% of variation, respectively. In addition, extended aging time was found to significantly attenuate the toxicity of Cr on PNR. SIR was mainly driven by total bacteria rather than fungi, while PNR was driven by both AOA and AOB. These results were helpful in deriving soil Cr toxicity threshold based on microbial processes, and provided a theoretical foundation for ecological risk assessments and establishing a soil environmental quality criteria for Cr.
Collapse
Affiliation(s)
- Xuemeng Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Linfeng Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China
| | - Gengxue Fu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China
| | - Xiaoying Liu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China
| | - Shuping Xing
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiyan Feng
- School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China
| | - Baodong Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
11
|
Zhou Y, Duan J, Jiang J, Yang Z. Effect of TOC Concentration of Humic Substances as an Electron Shuttle on Redox Functional Groups Stimulating Microbial Cr(VI) Reduction. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19052600. [PMID: 35270293 PMCID: PMC8909944 DOI: 10.3390/ijerph19052600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/29/2022] [Accepted: 01/30/2022] [Indexed: 11/16/2022]
Abstract
Humic substances as an electron shuttle play an essential role in the biogeochemistry processes. However, the influence of total organic carbon (TOC) concentrations of humic substances on microbial Cr(VI) reduction remains unclear. In this study, the rates and extents of Cr(VI) reduction by Shewanella oneidensis MR-1 in the presence of Leonardite humic acids (LHA) and Pahokee peat humic acids (PPHA) with different TOC concentrations were evaluated. We found that the enhanced reduction in Cr(VI) was associated with TOC concentrations of 2.5-50 mg C/L of HA samples. The result shows that HA as an electron shuttle impacted both rates and extents of microbial Cr (VI) reduction, which delivered differently in terms of low TOC concentration range of 2.5 to 15 mg C/L and high concentration range of 15-50 mg C/L. The rates of Cr(VI) reduction significantly enhanced in the low TOC concentration range of HA compared to a high concentration range. The highest acceleration rate of Cr(VI) reduction was achieved at 15 mg C/L of HA. The quinone-like fluorophore was responsible for the main redox-active functional groups of HA by the three-dimensional excitation-emission spectroscopy. The fluorescence intensity of quinone-like fluorophore of HA in the low TOC concentration range was positively correlated with its acceleration coefficient, corresponding to the highest microbial Cr(VI) reduction rate obtained in 15 mg C/L of HA. These findings highlighted the effect of the TOC concentration of HA on microbial Cr(VI) reduction processes. It emphasized that the low TOC concentration of HA contributed to the high rates of Cr(VI) reduction, which is critical for better understanding the fate of Cr(VI) and evaluating the effectiveness of Cr(VI) restoration strategies in the future.
Collapse
Affiliation(s)
- Yi Zhou
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; (Y.Z.); (J.D.)
| | - Jingtao Duan
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; (Y.Z.); (J.D.)
| | - Jie Jiang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; (Y.Z.); (J.D.)
- Correspondence: (J.J.); (Z.Y.)
| | - Zhen Yang
- College of Urban and Environmental Science, Peking University, Beijing 100871, China
- Correspondence: (J.J.); (Z.Y.)
| |
Collapse
|
12
|
Wang G, Xiao H, Zhu J, Zhao H, Liu K, Ma S, Zhang S, Komarneni S. Simultaneous removal of Zn 2+ and p-nitrophenol from wastewater using nanocomposites of montmorillonite with alkyl-ammonium and complexant. ENVIRONMENTAL RESEARCH 2021; 201:111496. [PMID: 34139221 DOI: 10.1016/j.envres.2021.111496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/11/2021] [Accepted: 06/04/2021] [Indexed: 06/12/2023]
Abstract
Three types of alkyl-ammonium with different branching chains and three complexants with different functional groups were used to prepare alkyl-ammonium or complexant intercalated montmorillonite nanocomposite (A-Mt or C-Mt). In addition, synergistic intercalated montmorillonite nanocomposites (A/C-Mt) with alkyl-ammonium along with complexant were also prepared. The adsorption performance of the various nanocomposites toward Zn2+ and p-nitrophenol (PNP) from simulated binary wastewater containing both Zn2+ and PNP were systematically investigated. Characterization of Mt nanocomposites showed that both alkyl-ammoniums and complexants were successfully intercalated into the interlayers of Mt. The surfactant loading amounts of the various nanocomposites were also determined and correlated with the resulting expansion of the interlayer spacing. It was found that intercalation of alkane (OTAC) and -SH (CSH) were conducive to the adsorption of Zn2+ while -C2H4NH (TETA) and all alkyl-ammoniums were beneficial for PNP adsorption. The extent of adsorption was found to be controlled primarily by pH, i.e., the higher pH had a good effect on the adsorption of both Zn2+ and PNP. The adsorption process of Zn2+ onto Mt nanocomposites was more in line with the Freundlich model (R2 = 0.99), while the Langmuir model described the adsorption of PNP well (R2 = 0.99). The adsorption kinetics could be well described by the Elovich equation (R2 = 0.98) and the double-constant model (R2 = 0.89). Chemical adsorption was determined to be the dominant process between the contaminant and Mt nanocomposite surfaces.
Collapse
Affiliation(s)
- Guifang Wang
- School of Chemistry and Chemical Engineering, School of Resources, Environment and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning, 530004, China; State Key Laboratory of Mineral Processing, BGRIMM Technology Group, Beijing, 100160, China.
| | - Huizhen Xiao
- School of Chemistry and Chemical Engineering, School of Resources, Environment and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning, 530004, China
| | - Jinliang Zhu
- School of Chemistry and Chemical Engineering, School of Resources, Environment and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning, 530004, China
| | - Hongyuan Zhao
- Xinxiang Engineering Technology Research Center for Advanced Materials Preparation and Surface Strengthening, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Kun Liu
- School of Chemistry and Chemical Engineering, School of Resources, Environment and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning, 530004, China
| | - Shaojian Ma
- School of Chemistry and Chemical Engineering, School of Resources, Environment and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning, 530004, China
| | - Shuai Zhang
- Sinosteel Mining Company Limited, Sinosteel Corporation, Beijing, 100080, China
| | - Sridhar Komarneni
- Department of Ecosystem Science and Management and Materials Research Institute, 204EEL, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
13
|
Ou JH, Sheu YT, Chang BK, Verpoort F, Surampalli RY, Kao CM. Application of zeolitic imidazolate framework for hexavalent chromium removal: A feasibility and mechanism study. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:1995-2009. [PMID: 33835627 DOI: 10.1002/wer.1571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 03/13/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
The mechanisms and effectiveness of using zeolitic imidazolate framework (ZIF-8) [a sub-family of metal-organic framework (MOF)] particles on hexavalent chromium [Cr(VI)] removal were evaluated. The ultrasonic mixing method was applied for the preparation of ZIF-8, and chemicals used for ZIF-8 synthesis included ammonium hydroxide, zinc nitrate hexahydrate, and 2-methylimidazole. ZIF-8 particle had a clear rhombic dodecahedron morphology shape and a strong peak intensity with high crystallinity. The adsorption capacity (AC) of ZIF-8 was 30.3 mg of Cr(VI)/g of ZIF-8 [Cr(VI) = 50 mg/L]. The AC of Cr(VI) raised to 34.3 mg/g under acidic conditions (pH = 5), and the AC dropped to below 13.7 mg/g with a pH range from 7 to 11. It could be because of the competitive effects between CrO4 2- and hydroxide ions for adsorption locations of ZIF-8. Cr(VI) removal relied on the amount of Cr(VI) adsorbed on the particles of ZIF-8, and the mechanisms of Cr(VI) adsorption by ZIF-8 included chemical/physical processes and the rate-limiting step was the chemical adsorption. A fraction of sorbed Cr(VI) was reduced to Cr(III), and thus, ZIF-8 could serve as a reducing agent during Cr(VI) reduction. Cr(VI) was removed effectively from the water phase by ZIF-8 via adsorption and reduction mechanisms. PRACTITIONER POINTS: ZIF-8 particles had an adsorption capacity of 30.33 mg of Cr(VI)/g of ZIF-8. Cr(VI) sorption by ZIF-8 has chemical (rate-limiting step) and physical processes. ZIF-8 can serve as a reducing agent for Cr(VI) reduction. Cr(VI) can be removed by ZIF-8 via the adsorption and reduction mechanisms.
Collapse
Affiliation(s)
- Jiun-Hau Ou
- Institute of Environmental Engr., National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Yih-Terng Sheu
- Institute of Environmental Engr., National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Bor Kae Chang
- Department of Chemical and Materials Engineering, National Central University, Taoyuan, Taiwan
| | - Francis Verpoort
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
| | - Rao Y Surampalli
- Global Institute for Energy, Environment and Sustainability, Lenexa, KS, USA
| | - Chih-Ming Kao
- Institute of Environmental Engr., National Sun Yat-Sen University, Kaohsiung, Taiwan
| |
Collapse
|
14
|
Itankar N, Patil Y. Employing waste to manage waste: Utilizing waste biomaterials for the elimination of hazardous contaminant [Cr(VI)] from aqueous matrices. JOURNAL OF CONTAMINANT HYDROLOGY 2021; 239:103775. [PMID: 33631524 DOI: 10.1016/j.jconhyd.2021.103775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/31/2020] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
Pollution caused due to discharge of toxic and hazardous chemical contaminants from industrial processes is an issue of major environmental concern. Hexavalent chromium [Cr(VI)] is one such known toxic heavy metal contaminant emanated largely from various industrial processes. Since physical-chemical treatment techniques are beset with several problems, there is an increased attention on the use of waste biomaterials/biomass as sorbents for the elimination of heavy metals from aqueous matrices. The main purpose of this study was to evaluate the effectiveness of some low-cost waste biomaterials such as fruit wastes, agricultural and industrial waste/byproducts, waste parts of photosynthetic plants, aquatic plants and fungal biomass collected from different sources for the biosorption of Cr(VI) from aqueous matrices. Amid the tested biomaterials, wood apple shell (WAS) biomass (Limonia acidissima) was found to be highly efficient biosorbent for Cr(VI) sorption. In majority of biomass, it was observed that biosorption of Cr(VI) took place at acidic pH with optimum pH ranging from 2.0 to 5.0. Loading capacity of WAS biomass (29.37 mg/g) was higher than that of conventional adsorbent activated charcoal (26.56 mg/g), which was used as control. Cr(VI) treated biomass (WAS) was characterized using instrumental techniques such as Scanned Electron Microscopy (SEM) and Energy Dispersive X-ray (EDX) confirmed the adsorption of Cr(VI). Boehm titration and FTIR studies were conducted to ascertain the presence of functional groups responsible for Cr(VI) sorption by WAS biomass. The WAS biomass removed Cr(VI) from industrial wastewater with an efficiency of >99.9% thus complying with the statutory limits. Considering the economical aspect, the selected biomass can be viewed as a potential candidate for the elimination of toxic contaminant from wastewater.
Collapse
Affiliation(s)
- Nilisha Itankar
- Symbiosis Institute of Technology, Symbiosis International (Deemed University), Lavale, Pune, India
| | - Yogesh Patil
- Symbiosis Center for Research and Innovation, Symbiosis International (Deemed University), Lavale, Pune, India.
| |
Collapse
|
15
|
Zhang Z, Fan Z. Morphological analysis of chromium in carbon quantum dots pairs Co-doped with zirconium and nitrogen and their applications in imaging of living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 250:119248. [PMID: 33288432 DOI: 10.1016/j.saa.2020.119248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/13/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
As a new nanomaterial in the biochemistry field, carbon quantum dots (CDs) have been widely applied by scientists. In this study, CDs co-doped with zirconium and nitrogen (Zr-N-CDs) were synthesized quickly with lemon, ethylenediamine, and zirconium chloride through a hydrothermal method. The yield of Zr-N-CDs reached as high as 82.7%. The Zr-N-CDs showed outstanding water solubility in aqueous solution. The formation of Zr-N-CDs was verified by characterization technologies, such as high-resolution transmission electron microscopy (HRTEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Moreover, the optical properties of Zr-N-CDs were investigated through fluorophotometer and ultraviolet spectroscopy. The synthesized Zr-N-CDs were applied to test hexavalent chromium (Cr (VI)), which showed a good linear relationship with the fluorescence quenching of Zr-N-CDs. The limit of detection was 0.52 µM. An analytical method for Cr morphology in natural water areas was developed in this experiment. The sensor showed good stability. The results demonstrate that the sensor detected 98.35%-100.9% Cr (VI) recovery rate in water samples. Based on the cytotoxicity of Zr-N-CDs to human cervical cancer cells (HeLa cells), the Zr-N-CDs had no evident cytotoxicity. The applications of Zr-N-CDs in bioimaging of cells were determined through laser scanning confocal microscopy.
Collapse
Affiliation(s)
- Ziting Zhang
- School of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004, PR China
| | - Zhefeng Fan
- School of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004, PR China.
| |
Collapse
|
16
|
Madri RK, Tiwari D, Sinha I. Efficient removal of chromate ions from aqueous solution using a highly cost-effective ferric coordinated [3-(2-aminoethylamino)propyl]trimethoxysilane-MCM-41 adsorbent. RSC Adv 2021; 11:11204-11214. [PMID: 35423642 PMCID: PMC8695815 DOI: 10.1039/d0ra07425j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 10/19/2020] [Indexed: 01/14/2023] Open
Abstract
The present investigation involves synthesis and characterization of MCM-41-AEAPTMS-Fe(iii)Cl using coordinated Fe(iii) on MCM-41-AEAPTMS for efficient removal of hazardous Cr(vi) ions from aqueous solution. The adsorbent MCM-41-AEAPTMS-Fe(iii)Cl was characterized using small-angle X-ray diffraction (SAX), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), Fourier-transform infrared (FT-IR) and Brunauer-Emmett-Teller (BET) surface analyzer techniques. The BET surface area was found to be 87.598 m2 g-1. The MCM-41-AEAPTMS-Fe(iii)Cl effectively adsorbs Cr(vi) with an adsorption capacity acquiring the maximum value of 84.9 mg g-1 at pH 3 at 298 K. The data followed pseudo-second-order kinetics and obeyed the Langmuir isotherm model. The thermodynamic data proved the exothermic and spontaneous nature of Cr(vi) ion adsorption on MCM-41-AEAPTMS-Fe(iii). Further, the higher value of ΔH° (-64.339 kJ mol-1) indicated that the adsorption was chemisorption in nature.
Collapse
Affiliation(s)
- Rakesh Kumar Madri
- Department of Chemistry, Indian Institute of Technology, Banaras Hindu University Varanasi-221005 India +91-9415992174
| | - Dhanesh Tiwari
- Department of Chemistry, Indian Institute of Technology, Banaras Hindu University Varanasi-221005 India +91-9415992174
| | - Indrajit Sinha
- Department of Chemistry, Indian Institute of Technology, Banaras Hindu University Varanasi-221005 India +91-9415992174
| |
Collapse
|
17
|
Microbial Mechanisms for Remediation of Hexavalent Chromium and their Large-Scale Applications; Current Research and Future Directions. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.1.32] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The increase of anthropogenic activities has led to the pollution of the environment by heavy metals, including chromium (Cr). There are two common oxidative states of Cr that can be found in industrial effluents the trivalent chromium Cr(III) and the hexavalent chromium Cr(VI). While the hexavalent chromium Cr(VI) is highly toxic and can trigger serious human health issues, its reduced form, the trivalent chromium Cr(III), is less toxic and insoluble. Leather tanning is an important industry in many developing countries and serves as a major source of Cr(VI) contamination. Globally, tannery factories generate approximately 40 million m3 of Cr-containing wastewater annually. While the physico-chemical treatments of tannery wastewater are not safe, produce toxic chemicals and require large amounts of chemical inputs, bioremediation using chromium-resistant bacteria (CRB) is safer, efficient and does not produce toxic intermediates. Chromium-resistant bacteria (CRB) utilise three mechanisms for Cr(VI) removal: biotransformation, biosorption and bioaccumulation. This review will evaluate the three Cr(VI) detoxification mechanisms used by bacteria, their limitations and assess their applications for large-scale remediation of Cr(VI). This can be helpful for understanding the nature of Cr(VI) remediation mechanisms used by bacteria, therefore, bridging the gap between laboratory findings and industrial application of microorganisms for Cr(VI) removal.
Collapse
|
18
|
Niu A, Bian WP, Feng SL, Pu SY, Wei XY, Yang YF, Song LY, Pei DS. Role of manganese superoxide dismutase (Mn-SOD) against Cr(III)-induced toxicity in bacteria. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123604. [PMID: 32781281 DOI: 10.1016/j.jhazmat.2020.123604] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/21/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
The toxicity of Cr(VI) was widely investigated, but the defense mechanism against Cr(III) in bacteria are seldom reported. Here, we found that Cr(III) inhibited bacterial growth and induced reactive oxygen species (ROS). After exposure to Cr(III), loss of sodA not only led to the excessive generation of ROS, but also enhanced the level of lipid peroxidation and reduced the GSH level, indicating that the deficiency of Mn-SOD decreased the bacterial resistance ability against Cr(III). The adverse effects of oxidative stress caused by Cr(III) could be recovered by the rescue of Mn-SOD in the sodA-deficient strain. Besides the oxidative stress, Cr(III) could cause the bacterial morphology variation, which was distinct between the wild-type and the sodA-deficient strains due to the differential expressions of Z-ring division genes. Moreover, Mn-SOD might prevent Cr(III) from oxidation on the bacterial surface by combining with Cr(III). Taken together, our results indicated that the Mn-SOD played a vital role in regulating the stress resistance, expression of cell division-related genes, bacterial morphology, and chemistry valence state of Cr. Our findings firstly provided a more in-depth understanding of Cr(III) toxicity and bacterial defense mechanism against Cr(III).
Collapse
Affiliation(s)
- Aping Niu
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; College of Resources and Environmental Engineering, Guizhou University, Guizhou, 550025, China
| | - Wan-Ping Bian
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Shuang-Long Feng
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Shi-Ya Pu
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xing-Yi Wei
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Yi-Fan Yang
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Li-Yan Song
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - De-Sheng Pei
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; College of Life Science, Henan Normal University, Xinxiang, 453007, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
19
|
Singh P, Itankar N, Patil Y. Biomanagement of hexavalent chromium: Current trends and promising perspectives. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 279:111547. [PMID: 33190974 DOI: 10.1016/j.jenvman.2020.111547] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 08/27/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
Chromium (Cr) is most widely used heavy metal with vast applications in industrial sectors such as metallurgy, automobile, leather, electroplating, etc. Subsequently, these industries discharge large volumes of toxic Cr containing industrial wastewaters without proper treatment/management into the environment, causing severe damage to human health and ecology. This review gives some novel insights on the existing, successful and promising bio-based approaches for Cr remediation. In lieu of the multiple limitations of the physical and chemical methods for remediation, various biological means have been deciphered, wherein dead and live biomass have shown immense capabilities of removing/reducing and/or remediating Cr from polluted environmental niches. Adsorption of Cr by various agro-based waste and reduction/precipitation by different microbial groups have shown promising results in chromium removal/recovery. Various microbial based agents and aquatic plants like duckweeds are emerging as efficient adsorbents of metals and their role in chromium bioremediation is an effective green technology that needs to be harnessed effectively. The role of iron and sulphur reducing bacteria have shown potential for enhanced Cr remediation. Biosurfactants have revealed immense scope as enhancers of microbial metal bioremediation and have been reported to have potential for use in chromium recovery as well. The authors also explore the combined use of biochar and biosurfactants as a potential strategy for chromium bioremediation for the development of technology worth adopting. Cr is non-renewable and finite resource, therefore its safe removal/recovery from wastes is of major significance for achieving social, economic and environmental sustainability.
Collapse
Affiliation(s)
- Pooja Singh
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Nilisha Itankar
- Symbiosis Institute of Technology, Symbiosis International (Deemed University), Pune, India
| | - Yogesh Patil
- Symbiosis Centre for Research and Innovation, Symbiosis International (Deemed University), Pune, India.
| |
Collapse
|
20
|
Javid A, Roudbari A, Yousefi N, Fard MA, Barkdoll B, Talebi SS, Nazemi S, Ghanbarian M, Ghadiri SK. Modeling of chromium (VI) removal from aqueous solution using modified green-Graphene: RSM-CCD approach, optimization, isotherm, and kinetic studies. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2020; 18:515-529. [PMID: 33312580 PMCID: PMC7721790 DOI: 10.1007/s40201-020-00479-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 04/14/2020] [Indexed: 05/07/2023]
Abstract
BACKGROUND The aim of this study was to investigate the removal of Cr (VI) using Green-Graphene Nanosheets (GGN) synthesized from rice straw. METHODS Synthesis of the GGN was optimized using response surface methodology and central composite design (CCD). The effect of two independent variables including KOH-to-raw rice ash (KOH/RRA) ratio and temperature on the specific surface area of the GGN was determined. To have better removal of Cr (VI), GGN was modified using the grafting amine group method. In the Cr (VI) removal process, the effects of four independent variables including initial Cr (VI) concentration, adsorbent dosage, contact time, and initial solution pH were studied. RESULTS The results of this study showed that the optimum values of the KOH/RRA ratio and temperature for the preparation of GGN were 10.85 and 749.61 °C, respectively. The maximum amount of SSA obtained at optimum conditions for GGN was 551.14 ± 3.83 m 2 /g. The optimum conditions for Cr (VI) removal were 48.35 mg/L, 1.46 g/L, 44.30 min, and 6.87 for Cr (VI) concentration, adsorbent dosage, contact time, and pH, respectively. Based on variance analysis, the adsorbent dose was the most sensitive factor for Cr (VI) removal. Langmuir isotherm (R2 = 0.991) and Pseudo-second-order kinetic models (R2 = 0.999) were the best fit for the study results and the Q max was 138.89 mg/g. CONCLUSIONS It can be concluded that the predicted conditions from the GGN synthesis model and the optimum conditions from the Cr (VI) removal model both agreed with the experimental findings.
Collapse
Affiliation(s)
- Allahbakhsh Javid
- Department of Environmental Health Engineering, School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Aliakbar Roudbari
- Department of Environmental Health Engineering, School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Nader Yousefi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Alizadeh Fard
- Department of Civil and Environmental Engineering, Michigan Technological University, Houghton, MI USA
| | - Brian Barkdoll
- Department of Civil and Environmental Engineering, Michigan Technological University, Houghton, MI USA
| | - Seyedeh Solmaz Talebi
- Department of Epidemiology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Saeed Nazemi
- Department of Environmental Health Engineering, School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Marjan Ghanbarian
- Department of Environmental Health Engineering, School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Seid Kamal Ghadiri
- Department of Environmental Health Engineering, School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
21
|
Rahman MO, Rahman N, Ahmed GMF, Hasan MS, Dafader NC, Alam MJ, Sultana S, Ahmed FT. Synthesis and implication of grafted polymeric adsorbent for heavy metal removal. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2908-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
22
|
Upadhyay S, Tarafdar A, Sinha A. Assessment of Serratia sp. isolated from iron ore mine in hexavalent chromium reduction: kinetics, fate and variation in cellular morphology. ENVIRONMENTAL TECHNOLOGY 2020; 41:1117-1126. [PMID: 30198414 DOI: 10.1080/09593330.2018.1521875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 08/06/2018] [Indexed: 06/08/2023]
Abstract
Serratia sp. strain SU.ISM.1 was isolated from Noamundi iron ore mines for the first time and was observed for hexavalent chromium reduction, and growth kinetics modelling was applied for bacterial chromium reduction. For 4-8 ppm of hexavalent chromium concentration, complete reduction was observed within 36 h when the selected isolate was applied, and for 12-20 ppm chromium concentration, complete reduction was achieved within 48 h. The viable biomass concentration increased up to 36 h of treatment time, after which the biomass concentration gradually declined. The Aiba model of product inhibition growth kinetics best described the growth of biomass in the presence of hexavalent chromium. The total mass conversion of Cr(VI) to Cr(III) for 4, 8, 12, 16 and 20 ppm was found to be 94.9%, 88.5%, 74.66%, 70.75% and 78.8%, respectively. The AFM and FESEM studies showed that the roughness of the cell surface increased with increasing concentration of hexavalent chromium, probably due to adsorption of chromium.
Collapse
Affiliation(s)
- Shivangi Upadhyay
- Department of Environmental Science & Engineering, Indian Institute of Technology (ISM), Dhanbad, India
| | - Abhrajyoti Tarafdar
- Department of Environmental Science & Engineering, Indian Institute of Technology (ISM), Dhanbad, India
| | - Alok Sinha
- Department of Environmental Science & Engineering, Indian Institute of Technology (ISM), Dhanbad, India
| |
Collapse
|
23
|
New highly-percolating alginate-PEI membranes for efficient recovery of chromium from aqueous solutions. Carbohydr Polym 2019; 225:115177. [DOI: 10.1016/j.carbpol.2019.115177] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/10/2019] [Accepted: 08/06/2019] [Indexed: 02/02/2023]
|
24
|
Truskewycz A, Beker SA, Ball AS, Murdoch B, Cole I. Incorporation of quantum carbon dots into a PVP/ZnO hydrogel for use as an effective hexavalent chromium sensing platform. Anal Chim Acta 2019; 1099:126-135. [PMID: 31986269 DOI: 10.1016/j.aca.2019.11.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 11/14/2019] [Accepted: 11/20/2019] [Indexed: 12/20/2022]
Abstract
Hydrogels offer a unique medium for sensing applications as they can draw upon the benefits of both solid and liquid sensing platforms. Incorporation of functionalised fluorescent nanoparticles within the hydrogel matrix results in a three-dimensional nanocomposite capable of interacting with water-soluble analytes, facilitating quantitative sensing applications. Here, we report the solvothermal synthesis of a novel Polyvinylpyrrolidone assembled hydrogel stabilised with zinc oxide quantum dots which does not require additional organic crosslinkers. Functionalization of these hydrogel with novel, brightly photoluminescent 2-amino-2-methyl-1-propanol quantum carbon dots (quantum yield of 62.5%) results in a composite capable of specific interaction with hexavalent chromium. Quantitative fluorescence quenching measurements of the hydrogel composite in the presence of hexavalent chromium shows a limit of detection of 1.2 μM Cr6+ which is below maximum allowable concentrations for drinking water. The hydrogel composite is cheap to manufacture and can be injected into 96 well plates for high throughput analysis of environmental water samples. These results are encouraging for the development of hydrogels and polymetric films to be used as novel fluorescent sensing platforms for environmental diagnostic applications.
Collapse
Affiliation(s)
- Adam Truskewycz
- School of Science, RMIT University, Melbourne, Victoria, 3083, Australia; Advanced Manufacturing and Fabrication, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia.
| | - Sabrina A Beker
- School of Science, RMIT University, Melbourne, Victoria, 3083, Australia; Advanced Manufacturing and Fabrication, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia
| | - Andrew S Ball
- School of Science, RMIT University, Melbourne, Victoria, 3083, Australia
| | - Billy Murdoch
- RMIT Microscopy and Microanalysis Facility, Melbourne, Victoria, 3001, Australia
| | - Ivan Cole
- Advanced Manufacturing and Fabrication, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia
| |
Collapse
|
25
|
Li D, Gui C, Ji G, Hu S, Yuan X. An interpretation to Cr(Ⅵ) leaching concentration rebound phenomenon with time in ferrous-reduced Cr(Ⅵ)-bearing solid matrices. JOURNAL OF HAZARDOUS MATERIALS 2019; 378:120734. [PMID: 31203121 DOI: 10.1016/j.jhazmat.2019.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 05/21/2019] [Accepted: 06/04/2019] [Indexed: 06/09/2023]
Abstract
Toxicity characteristic leaching procedure (TCLP) is a prevalent way to evaluate the treatment effectiveness for Cr(Ⅵ)-bearing solid matrices (CBSM). But when a certain amount of residual reductants are present in the treated CBSM, Cr(Ⅵ) leaching concentration rebound phenomenon (CLCRP) occurs, which invalidates the TCLP. This study explores the microstructure of ferrous-reduced CBSM and proves that the residual Cr(Ⅵ), FexCr1-x(OH)3 precipitate and residual ferrous are separately distributed in a three-layer structure. In natural scenarios, the residual ferrous in the out-layer is firstly flushed away by rainfall and groundwater or oxidized by dissolved oxygen, resulting in the decrease of ferrous with time. Residual Cr(Ⅵ), due to being blocked by precipitate layer, is less flushed away. While in TCLP, all of released residual ferrous and Cr(Ⅵ) are in the leachate and react till one of them is almost exhausted, resulting in the underestimation of Cr(Ⅵ) leaching concentrations. The longer the samples experience the natural scenarios, the less of the residual ferrous, resulting in the decline of underestimation of Cr(Ⅵ) leaching concentrations with time. This study also provides a pretreatment which can effectively reduce the residual ferrous, achieving more accurate Cr(Ⅵ) leaching concentrations and eliminating CLCRP.
Collapse
Affiliation(s)
- Dong Li
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, PR China; School of Resources and Environmental Science, Chongqing University, Chongqing, 400044, PR China; Key Laboratory of Southwest Resources Exploitation and Environmental Hazards Controlling Engineering of Education Ministry, Chongqing University, Chongqing, 400030, PR China.
| | - Chenxin Gui
- School of Resources and Environmental Science, Chongqing University, Chongqing, 400044, PR China
| | - Guozhu Ji
- School of Resources and Environmental Science, Chongqing University, Chongqing, 400044, PR China
| | - Siyang Hu
- School of Resources and Environmental Science, Chongqing University, Chongqing, 400044, PR China
| | - Xingzhong Yuan
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, PR China; School of Resources and Environmental Science, Chongqing University, Chongqing, 400044, PR China; Key Laboratory of Southwest Resources Exploitation and Environmental Hazards Controlling Engineering of Education Ministry, Chongqing University, Chongqing, 400030, PR China
| |
Collapse
|
26
|
Demarchi CA, Michel BS, Nedelko N, Ślawska-Waniewska A, Dłużewski P, Kaleta A, Minikayev R, Strachowski T, Lipińska L, Dal Magro J, Rodrigues CA. Preparation, characterization, and application of magnetic activated carbon from termite feces for the adsorption of Cr(VI) from aqueous solutions. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2019.06.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Zhao X, Su Y, Li S, Bi Y, Han X. A green method to synthesize flowerlike Fe(OH) 3 microspheres for enhanced adsorption performance toward organic and heavy metal pollutants. J Environ Sci (China) 2018; 73:47-57. [PMID: 30290871 DOI: 10.1016/j.jes.2018.01.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 06/08/2023]
Abstract
Dyestuffs and heavy metal ions in water are seriously harmful to the ecological environment and human health. Three-dimensional (3D) flowerlike Fe(OH)3 microspheres were synthesized through a green yet low-cost injection method, for the removal of organic dyes and heavy metal ions. The Fe(OH)3 microspheres were characterized by thermal gravimetric analysis (TGA), Fourier transform infrared (FT-IR), and transmission electron microscopy (TEM) techniques. The adsorption kinetics of Congo Red (CR) on Fe(OH)3 microspheres obeyed the pseudo-second-order model. Cr6+ and Pb2+ adsorption behaviors on Fe(OH)3 microspheres followed the Langmuir isotherm model. The maximum adsorption capacities of the synthesized Fe(OH)3 were 308, 52.94, and 75.64mg/g for CR, Cr6+, and Pb2+ respectively. The enhanced adsorption performance originated from its surface properties and large specific surface area of 250m2/g. The microspheres also have excellent adsorption stability and recyclability. Another merit of the Fe(OH)3 material is that it also acts as a Fenton-like catalyst. These twin functionalities (both as adsorbent and Fenton-like catalyst) give the synthesized Fe(OH)3 microspheres great potential in the field of water treatment.
Collapse
Affiliation(s)
- Xiaole Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yingchun Su
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Shubin Li
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yajun Bi
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
28
|
Fernández PM, Viñarta SC, Bernal AR, Cruz EL, Figueroa LIC. Bioremediation strategies for chromium removal: Current research, scale-up approach and future perspectives. CHEMOSPHERE 2018; 208:139-148. [PMID: 29864705 DOI: 10.1016/j.chemosphere.2018.05.166] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/16/2018] [Accepted: 05/27/2018] [Indexed: 05/25/2023]
Abstract
Industrial applications and commercial processes release a lot of chromium into the environment (soil, surface water or atmosphere) and resulting in serious human diseases because of their toxicity. Biological Cr-removal offers an alternative to traditional physic-chemical methods. This is considered as a sustainable technology of lower impact on the environment. Resistant microorganisms (e.g. bacteria, fungi, and algae) have been most extensively studied from this characteristic. Several mechanisms were developed by microorganisms to deal with chromium toxicity. These tools include biotransformation (reduction or oxidation), bioaccumulation and/or biosorption, and are considered as an alternative to remove the heavy metal. The aim of this review is summarizes Cr(VI)-bioremediation technologies oriented on practical applications at larger scale technologies. In the same way, the most relevant results of several investigations focused on process feasibility and the robustness of different systems (reactors and pilot scale) designed for chromium-removal capacity are highlighted.
Collapse
Affiliation(s)
- Pablo M Fernández
- Planta Piloto de Procesos Industriales Microbiológicos PROIMI-CONICET, Av. Belgrano y Caseros, T4001MVB San Miguel de Tucumán, Tucumán, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Catamarca, Av. Belgrano 300, 4700 San Fernando del Valle de Catamarca, Catamarca, Argentina.
| | - Silvana C Viñarta
- Planta Piloto de Procesos Industriales Microbiológicos PROIMI-CONICET, Av. Belgrano y Caseros, T4001MVB San Miguel de Tucumán, Tucumán, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Catamarca, Av. Belgrano 300, 4700 San Fernando del Valle de Catamarca, Catamarca, Argentina.
| | - Anahí R Bernal
- Planta Piloto de Procesos Industriales Microbiológicos PROIMI-CONICET, Av. Belgrano y Caseros, T4001MVB San Miguel de Tucumán, Tucumán, Argentina.
| | - Elías L Cruz
- Planta Piloto de Procesos Industriales Microbiológicos PROIMI-CONICET, Av. Belgrano y Caseros, T4001MVB San Miguel de Tucumán, Tucumán, Argentina.
| | - Lucía I C Figueroa
- Planta Piloto de Procesos Industriales Microbiológicos PROIMI-CONICET, Av. Belgrano y Caseros, T4001MVB San Miguel de Tucumán, Tucumán, Argentina; Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 450, 4000 San Miguel de Tucumán, Tucumán, Argentina.
| |
Collapse
|
29
|
Investigation of the mechanism of chromium removal in (3-aminopropyl)trimethoxysilane functionalized mesoporous silica. Sci Rep 2018; 8:12078. [PMID: 30104735 PMCID: PMC6089875 DOI: 10.1038/s41598-018-29679-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/16/2018] [Indexed: 11/08/2022] Open
Abstract
We are proposed that a possible mechanism for Cr(VI) removal by functionalized mesoporous silica. Mesoporous silica was functionalized with (3-aminopropyl)trimethoxysilane (APTMS) using the post-synthesis grafting method. The synthesized materials were characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), N2 adsorption-desorption analysis, Fourier-transform infrared (FT-IR), thermogravimetric analyses (TGA), and X-ray photoelectron spectroscopy (XPS) to confirm the pore structure and functionalization of amine groups, and were subsequently used as adsorbents for the removal of Cr(VI) from aqueous solution. As the concentration of APTMS increases from 0.01 M to 0.25 M, the surface area of mesoporous silica decreases from 857.9 m2/g to 402.6 m2/g. In contrast, Cr(VI) uptake increases from 36.95 mg/g to 83.50 mg/g. This indicates that the enhanced Cr(VI) removal was primarily due to the activity of functional groups. It is thought that the optimum concentration of APTMS for functionalization is approximately 0.05 M. According to XPS data, NH3+ and protonated NH2 from APTMS adsorbed anionic Cr(VI) by electrostatic interaction and changed the solution pH. Equilibrium data are well fitted by Temkin and Sips isotherms. This research shows promising results for the application of amino functionalized mesoporous silica as an adsorbent to removal Cr(VI) from aqueous solution.
Collapse
|
30
|
Selvaraj R, Santhanam M, Selvamani V, Sundaramoorthy S, Sundaram M. A membrane electroflotation process for recovery of recyclable chromium(III) from tannery spent liquor effluent. JOURNAL OF HAZARDOUS MATERIALS 2018; 346:133-139. [PMID: 29253752 DOI: 10.1016/j.jhazmat.2017.11.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/26/2017] [Accepted: 11/27/2017] [Indexed: 06/07/2023]
Abstract
A two-compartment membrane electroflotation reactor has been demonstrated for recovery of recyclable chromium(III) from tannery spent liquor effluent. Dimensionally stable RuO2/TiO2-Ti and Ti were used as anode and cathode, respectively. The spent liquor effluent was used as catholyte and 0.01 N H2SO4 used as anolyte which was separated by Nafion 117 membrane. About 98% of chromium(III) was recovered and the removal efficiency correlated with the presence of organics in the effluent. The advantage of two-compartment membrane electroflotation process is capable of removing chromium(III) without oxidising it into chromium(VI) in chloride containing tannery spent liquor effluent. The mechanism of chromium(III) removal has been discussed. The recovered Cr(OH)3 was successfully demonstrated for tanning of cowhide.
Collapse
Affiliation(s)
- Rajeswari Selvaraj
- Corrosion and Material Protection Division, CSIR - Central Electrochemical Research Institute (CSIR - CECRI), Karaikudi, 630 006, India; Academy of Scientific and Innovative Research (AcSIR), CSIR - CECRI, Karaikudi, 630 006, India.
| | - Manikandan Santhanam
- Corrosion and Material Protection Division, CSIR - Central Electrochemical Research Institute (CSIR - CECRI), Karaikudi, 630 006, India; Academy of Scientific and Innovative Research (AcSIR), CSIR - CECRI, Karaikudi, 630 006, India
| | - Vidhya Selvamani
- Corrosion and Material Protection Division, CSIR - Central Electrochemical Research Institute (CSIR - CECRI), Karaikudi, 630 006, India
| | - Sundarapandiyan Sundaramoorthy
- Regional Centre for Extension and Development (RCED) - Kanpur, CSIR - Central Leather Research Institute (CSIR - CLRI), Chennai, 600 020, India
| | - Maruthamuthu Sundaram
- Corrosion and Material Protection Division, CSIR - Central Electrochemical Research Institute (CSIR - CECRI), Karaikudi, 630 006, India; Academy of Scientific and Innovative Research (AcSIR), CSIR - CECRI, Karaikudi, 630 006, India
| |
Collapse
|
31
|
Lu F, Huang C, You L, Yin Y, Zhang Q. Cross-linked amino konjac glucomannan as an eco-friendly adsorbent for adsorption of Cr(VI) from aqueous solution. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.09.107] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|