1
|
Cimen A, Bilgic A, Bayrak M. Fabrication and characterization of new Fe 3O 4@SiO 2@TiO 2-CPTS-HBAP (FST-CH) nanoparticles for photocatalytic degradation and adsorption removal of rhodamine B dye in the aquatic environment. Heliyon 2024; 10:e29355. [PMID: 38623186 PMCID: PMC11016715 DOI: 10.1016/j.heliyon.2024.e29355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/16/2024] [Accepted: 04/05/2024] [Indexed: 04/17/2024] Open
Abstract
In this study, Fe3O4@SiO2@TiO2-CPTS-HBAP (FST-CH) nanoparticle was prepared for the simultaneous adsorption and photocatalytic degradation of aromatic chemical pollutants (Rhodamine B dye) in aqueous solution. FST-CH nanoparticle was characterized using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), Energy Dispersive X-Ray (EDX) Fluorescence Spectrometer and X-Ray Diffraction (XRD) spectroscopy. The photocatalytic activity of rhodamine B dye (RhB) was evaluated with a Kerman UV 8/18 vertical roller photoreactor. About 56% of RhB in aqueous medium was adsorbed by FST-CH nanoparticles with only 45 min of stirring in the dark, and about 77.01% was degraded or converted to other structures under the photoreactor for 120 min. The photocatalytic degradation of RhB (apparent rate constant: 0.0026 mg dm-3 min-1) occurred by a pseudo-second order reaction. In addition, the recovery of the prepared magnetic FST-CH nanoparticle by an external magnetic field, exhibiting good magnetic response and reusability, shows that the obtained magnetic FST-CH nanoparticle is stable and maintains high degradation ratio and catalyst recovery even after four cycles. Thus, the prepared FST-CH nanoparticle can be highly recommended for its use in potential applications of water decontamination.
Collapse
Affiliation(s)
- Aysel Cimen
- Department of Chemistry, Kamil Ozdag Science Faculty, Karamanoglu Mehmetbey University, 70100, Karaman, Turkey
| | - Ali Bilgic
- Vocational School of Technical Sciences, Karamanoglu Mehmetbey University, 70100, Karaman, Turkey
| | - Melike Bayrak
- Department of Chemistry, Kamil Ozdag Science Faculty, Karamanoglu Mehmetbey University, 70100, Karaman, Turkey
| |
Collapse
|
2
|
Zhang BT, Yan Z, Zhao J, Chen Z, Liu Y, Fan M, Du W. Peroxymonocarbonate activation via Co nanoparticles confined in metal-organic frameworks for efficient antibiotic degradation in different actual water matrices. WATER RESEARCH 2023; 243:120340. [PMID: 37480599 DOI: 10.1016/j.watres.2023.120340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/29/2023] [Accepted: 07/11/2023] [Indexed: 07/24/2023]
Abstract
Traditional advanced oxidation processes suffer from low availability of ultrashort lifetime radicals and declining stability of catalysts. Co nanoparticles in hollow bimetallic metal-organic frameworks (Co@MOFs) were synthesized via a solvothermal method. Nanoconfinement and peroxymonocarbonate (PMC) degradation system endows Co@MOFs with high catalytic activity and stability even in the actual water matrices. The nanocomposites exhibited 100-200 nm polyhedron structure with irregular nanocavity between the 20 nm shell and multicores. Co nanoparticles were completely encapsulated by the FeIII-MOF-5 shell according to the X-ray diffraction and photoelectron spectra. Both 0.8 nm micropores and 3.6 nm mesopores were proven to be present. The yolk-shell Co@MOFs exhibited higher catalytic performance than that of Co nanoparticles, hollow FeIII-MOF-5 and its core-shell counterpart toward PMC activation during sulfamethoxazole degradation. The catalytic activities of Co@MOFs for the activation of unsymmetrical peroxides (PMC and peroxymonosulfate) were much higher than those for the symmetrical peroxides (H2O2 and persulfate) and the heterogeneous catalysis was dominant in the Co@MOFs activated H2O2 and PMC systems. The MOF stability was the highest and metal leakages were the least in the activated PMC system among the four peroxides because of mild reaction conditions and the alkalescent solution (pH = 8.3-8.4). Furthermore, the high removal efficiencies (>94%) and degradation rates could be maintained in the different actual water matrices due to the confinement effects. The contributions of carbonate and hydroxyl radicals were primary for sulfamethoxazole degradation, and superoxide anion and singlet oxygen also played essential roles according to scavenging experiments and time-series spin-trapping electron spin resonance spectra. Six degradation pathways were proposed according to 26 intermediate identification and the pharmacophores of more than 80% intermediates were destroyed, which would benefit subsequent biological treatment. Successful combination of nanoconfinement and PMC might provide a new effective solution for pollution remediation.
Collapse
Affiliation(s)
- Bo-Tao Zhang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Zihan Yan
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Juanjuan Zhao
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Zhuo Chen
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yuchun Liu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Maohong Fan
- College of Engineering and Physical Sciences, University of Wyoming, Laramie, WY 82071, United States.
| | - Wei Du
- Agilent Technologies (China) Co., Ltd., Beijing 100102, China
| |
Collapse
|
3
|
Kasraee M, Dehghani MH, Hamidi F, Mubarak NM, Karri RR, Rajamohan N, Solangi NH. Adsorptive removal of acid red 18 dye from aqueous solution using hexadecyl-trimethyl ammonium chloride modified nano-pumice. Sci Rep 2023; 13:13833. [PMID: 37620506 PMCID: PMC10449924 DOI: 10.1038/s41598-023-41100-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/22/2023] [Indexed: 08/26/2023] Open
Abstract
Discharging untreated dye-containing wastewater gives rise to environmental pollution. The present study investigated the removal efficiency and adsorption mechanism of Acid Red 18 (AR18) utilizing hexadecyl-trimethyl ammonium chloride (HDTMA.Cl) modified Nano-pumice (HMNP), which is a novel adsorbent for AR18 removal. The HDTMA.Cl is characterized by XRD, XRF, FESEM, TEM, BET and FTIR analysis. pH, contact time, initial concentration of dye and adsorbent dose were the four different parameters for investigating their effects on the adsorption process. Response surface methodology-central composite design was used to model and improve the study to reduce expenses and the number of experiments. According to the findings, at the ideal conditions (pH = 4.5, sorbent dosage = 2.375 g/l, AR18 concentration = 25 mg/l, and contact time = 70 min), the maximum removal effectiveness was 99%. The Langmuir (R2 = 0.996) and pseudo-second-order (R2 = 0.999) models were obeyed by the adsorption isotherm and kinetic, respectively. The nature of HMNP was discovered to be spontaneous, and thermodynamic investigations revealed that the AR18 adsorption process is endothermic. By tracking the adsorption capacity of the adsorbent for five cycles under ideal conditions, the reusability of HMNP was examined, which showed a reduction in HMNP's adsorption effectiveness from 99 to 85% after five consecutive recycles.
Collapse
Affiliation(s)
- Mahboobeh Kasraee
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Dehghani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
- Center for Solid Waste Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran.
| | - Farshad Hamidi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Rama Rao Karri
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam
| | | | - Nadeem Hussain Solangi
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi, 74800, Pakistan
| |
Collapse
|
4
|
Wang T, Qu H, Ravindra AV, Ma S, Hu J, Zhang H, Le T, Zhang L. Treatment of complex sulfur-containing solutions in ammonia desulfurization ammonium sulfate production by ultrasonic-assisted ozone technology. ULTRASONICS SONOCHEMISTRY 2023; 95:106386. [PMID: 37003211 PMCID: PMC10457592 DOI: 10.1016/j.ultsonch.2023.106386] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/10/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
In this work, the cause of abnormal color in ammonium sulfate products formed by flue gas desulfurization is revealed by investigating the conversion relationship between different sulfur-containing ions and their behavior in a sulfuric acid medium. Both thiosulfate (S2O32-) and sulfite (SO32- & HSO3-) impurities affect the quality of ammonium sulfate. The S2O32- is the main reason for the yellowing of the product due to the formation of sulfur impurities in concentrated sulfuric acid. To address the yellowing of ammonium sulfate products, a unified technology (US/O3), using ozone (O3) and ultrasonic waves (US) simultaneously, is exploited to remove both thiosulfate and sulfite impurities from the mother liquor. The effect of different reaction parameters on the degree of removal of thiosulfate and sulfite is investigated. The synergistic effect of ultrasound and ozone on ion oxidation is further explored and demonstrated by the comparative experiments with O3 and US/O3. Under the optimized conditions, the thiosulfate and sulfite concentration in the solution is 2.07 and 5.93 g/L, respectively, and the degree of removal is 91.39 and 90.83%, respectively. The product obtained after evaporation and crystallization is pure white and meets the national standard requirements for ammonium sulfate products. Under the same conditions, the US/O3 process has apparent advantages, such as saving reaction time compared with the O3 process alone. Introducing an ultrasonically intensified field improves the generation of oxidation radicals ·OH, 1O2, and ·O2- in the solution. Furthermore, the effectiveness of different oxidation components in the decolorization process is studied by adding other radical shielding agents using the US/O3 process supplemented with EPR analysis. The order of the different oxidation components is O3(86.04%) > 1O2(6.53%) > •OH(4.45%) > •O2-(2.97%) for the oxidation of thiosulfate, and it is O3(86.28%) > •OH(7.49%) > 1O2(4.99%) > •O2-(1.25%) for the oxidation of sulfite.
Collapse
Affiliation(s)
- Tian Wang
- State Key Laboratory of Complex Non-ferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Hongtao Qu
- Yunnan Chihong Zinc and Germanium Co., Ltd., Qujing 655011, Yunnan, China
| | - A V Ravindra
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu 603203, India
| | - Shaobin Ma
- Yunnan Chihong Zinc and Germanium Co., Ltd., Qujing 655011, Yunnan, China
| | - Jue Hu
- State Key Laboratory of Complex Non-ferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Hong Zhang
- Yunnan Chihong Zinc and Germanium Co., Ltd., Qujing 655011, Yunnan, China
| | - Thiquynhxuan Le
- State Key Laboratory of Complex Non-ferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China.
| | - Libo Zhang
- State Key Laboratory of Complex Non-ferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China.
| |
Collapse
|
5
|
Patil DJ, Behera SN. Synthesizing nanoparticles of zinc and copper ferrites and examining their potential to remove various organic dyes through comparative studies of kinetics, isotherms, and thermodynamics. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:591. [PMID: 37079140 DOI: 10.1007/s10661-023-11177-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 03/29/2023] [Indexed: 05/03/2023]
Abstract
Nanoparticles of zinc ferrite (ZnFe2O4) and copper ferrite (CuFe2O4) were synthesized, and characterized, and these materials were applied for removal of organic dyes of alizarin yellow R (AYR), thiazole yellow G (TYG), Congo red (CR), and methyl orange (MO) from industrial wastewater through adsorption technique. Synthesis of ZnFe2O4 and CuFe2O4 was achieved through chemical co-precipitation method. These nanomaterials were characterized for physicochemical properties using XRD, FTIR, BET, VSM, DLS, Zeta-potential, and FESEM-EDX analytical instruments. BET surface areas of ZnFe2O4 and CuFe2O4 were 85.88 m2/g and 41.81 m2/g, respectively. Adsorption-influencing parameters including effect of solution pH, adsorbent quantity, initial concentration of dye pollutant, and contact time were examined. Acidic medium of the solution favored higher percentage of removal of dyes in wastewater. Out of different isotherms, Langmuir equilibrium isotherm showed the best fit with experimental data, indicating monolayer adsorption in the treatment process. The maximum monolayer adsorption capacities were found as 54.58, 37.01, 29.81, and 26.83 mg/g with ZnFe2O4, and 46.38, 30.06, 21.94, and 20.83 mg/g with CuFe2O4 for AYR, TYG, CR, and MO dyes, respectively. From kinetics analysis of the results, it was inferred that pseudo-second-order kinetics were fitting well with better values of coefficient of determination (R2). The removal of four organic dyes from wastewater through adsorption technique using nanoparticles of ZnFe2O4 and CuFe2O4 was observed to be spontaneous and exothermic. From this experimental investigation, it has been inferred that magnetically separable ZnFe2O4 and CuFe2O4 could be a viable option in removal of organic dyes from industrial wastewater.
Collapse
Affiliation(s)
- Dharmaraj J Patil
- Department of Civil Engineering, Shiv Nadar Institution of Eminence Deemed to be University, Delhi-NCR, Greater Noida, Uttar Pradesh, 201314, India
| | - Sailesh N Behera
- Department of Civil Engineering, Shiv Nadar Institution of Eminence Deemed to be University, Delhi-NCR, Greater Noida, Uttar Pradesh, 201314, India.
| |
Collapse
|
6
|
Urbina-Suarez NA, Rivera-Caicedo C, González-Delgado ÁD, Barajas-Solano AF, Machuca-Martínez F. Bicarbonate-Hydrogen Peroxide System for Treating Dyeing Wastewater: Degradation of Organic Pollutants and Color Removal. TOXICS 2023; 11:366. [PMID: 37112593 PMCID: PMC10146205 DOI: 10.3390/toxics11040366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/25/2023] [Accepted: 04/07/2023] [Indexed: 06/19/2023]
Abstract
The textile industry is a global economic driving force; however, it is also one of the most polluting industries, with highly toxic effluents which are complex to treat due to the recalcitrant nature of some compounds present in these effluents. This research focuses on the removal of Chemical Oxygen Demand (COD), color, Total Organic Carbon (TOC), and Ammoniacal Nitrogen (N-NH3) on tannery wastewater treatment through an advanced oxidation process (AOPs) using sodium bicarbonate (NaHCO3), hydrogen peroxide (H2O2) and temperature using a central composite non-factorial design with a surface response using Statistica 7.0 software. All experiments used a 500 mL reactor with 300 mL of tannery wastewater from a company in Cúcuta, Colombia. The physicochemical characterization was done to determine the significant absorbance peaks about the color in the wavelengths between 297 and 669 nm. Statistical analysis found that the concentration of NaHCO3 affects the removal of color and N-NH3; however, it did not affect COD and TOC. The optimal process conditions for removing the different compounds under study were: NaHCO3 1 M, H2O2 2 M, and 60 °C, with efficiencies of 92.35%, 31.93%, 68.85%, and 35.5% N-NH3, COD, color, and TOC respectively. It can be concluded that AOPs using H2O2 and NaHCO3 are recommended to remove color and N-NH3.
Collapse
Affiliation(s)
- Néstor A. Urbina-Suarez
- Department of Environmental Sciences, Universidad Francisco de Paula Santander, Av. Gran Colombia No. 12E-96, Cucuta 540003, Colombia
- School of Natural Resources and Environment, Universidad del Valle, Ciudad Universitaria Meléndez, Calle 13 # 100-00, Cali 760015, Colombia
| | - Christian Rivera-Caicedo
- Biotechnological Engineering Program, Universidad Francisco de Paula Santander, Av. Gran Colombia No. 12E-96, Cucuta 540003, Colombia
| | - Ángel Darío González-Delgado
- Nanomaterials and Computer Aided Process Engineering Research Group (NIPAC), Chemical Engineering Department, Faculty of Engineering, Universidad de Cartagena, Av. Del Consulado Calle 30 No. 48-152, Cartagena 130015, Colombia
| | - Andrés F. Barajas-Solano
- Department of Environmental Sciences, Universidad Francisco de Paula Santander, Av. Gran Colombia No. 12E-96, Cucuta 540003, Colombia
| | - Fiderman Machuca-Martínez
- School of Chemical Engineering, Center of Excellence in New Materials (CENM), Universidad del Valle Ciudad Universitaria Meléndez, Calle 13 # 100-00, Cali 760015, Colombia
| |
Collapse
|
7
|
Madima N, Kefeni KK, Mishra SB, Mishra AK, Kuvarega AT. Fabrication of magnetic recoverable Fe3O4/TiO2 heterostructure for photocatalytic degradation of rhodamine B dye. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109966] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Characterization of chitinase from Exiguobacterium antarcticum and its bioconversion of crayfish shell into chitin oligosaccharides. Food Res Int 2022; 158:111517. [DOI: 10.1016/j.foodres.2022.111517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/31/2022] [Accepted: 06/13/2022] [Indexed: 11/22/2022]
|
9
|
Wang T, Le T, Hu J, Ravindra AV, Xv H, Zhang L, Wang S, Yin S. Ultrasonic-assisted ozone degradation of organic pollutants in industrial sulfuric acid. ULTRASONICS SONOCHEMISTRY 2022; 86:106043. [PMID: 35598512 PMCID: PMC9127698 DOI: 10.1016/j.ultsonch.2022.106043] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/03/2022] [Accepted: 05/15/2022] [Indexed: 05/25/2023]
Abstract
In this work, a combination of ozone (O3) and ultrasound (US) has been firstly used to decolorize black concentrated sulfuric acid with high organic content. The effect of different reaction factors on the transparency, extent of decolorization, H2SO4 mass fraction, and organic pollutants removal is studied. In addition, the systematic interaction between ultrasound and ozone on the decolorization process is reviewed through comparative experiments of O3, US and US/O3. A sulfuric acid product that meets the requirements for first-class products in national standards, with an extent of decolorization of 74.07%, transparency of 70 mm, and a mass fraction of 98.04%, is obtained under the optimized conditions. Under the same conditions, it has been established that the treatment time can be saved by 25% using the US/O3 process compared to using O3. Further, the production of oxidative free radicals (•OH) in a concentrated sulfuric acid system is enhanced using the US/O3 process compared with O3. In addition, the degree of effectiveness of different oxidizing components on the decolorization process is revealed by adding different free radical shielding agents when the US/O3 process is used.
Collapse
Affiliation(s)
- Tian Wang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Thiquynhxuan Le
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China.
| | - Jue Hu
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Annavarapu V Ravindra
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu 603203, India
| | - Haoran Xv
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Libo Zhang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China.
| | - Shixing Wang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Shaohua Yin
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| |
Collapse
|
10
|
Hamidi F, Dehghani MH, Kasraee M, Salari M, Shiri L, Mahvi AH. Acid red 18 removal from aqueous solution by nanocrystalline granular ferric hydroxide (GFH); optimization by response surface methodology & genetic-algorithm. Sci Rep 2022; 12:4761. [PMID: 35306520 PMCID: PMC8934340 DOI: 10.1038/s41598-022-08769-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/10/2022] [Indexed: 12/07/2022] Open
Abstract
The need for fresh water is more than before by population growth, and industrial development have affected the quality of water supplies, one of the important reason for water contamination is synthetic dyes and their extensive use in industries. Adsorption has been considered as a common methods for dye removal from waters. In this study, Acid Red18 removal in batch mode by using Granular Ferric Hydroxide (GFH) was investigated. The GFH characterized by XRD, FESEM and FTIR analysis. Experiments were designed using RSM-CCD method. The maximum removal efficiency was obtained 78.59% at pH = 5, GFH dosage = 2 g/l, AR18 concentration = 77.5 mg/l and 85 min of contact time. Optimization with RSM and Genetic Algorithm carried out and is similar together. The non-linear adsorption Isotherm and kinetic fitted with Freundlich (R2 = 0.978) and pseudo-second-order (R2 = 0.989) models, respectively. Thermodynamic studies showed that the AR18 adsorption is endothermic process and GFH nature was found spontaneous.
Collapse
|
11
|
Enhanced performance of Fe(III)/persulfate for the degradation of DEET: Working mechanism of ascorbic acid. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Removal of toxic methyl orange by a cost-free and eco-friendly adsorbent: mechanism, phytotoxicity, thermodynamics, and kinetics. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1016/j.sajce.2022.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
13
|
Rani M, Shanker U. Efficient degradation of organic pollutants by novel titanium dioxide coupled bismuth oxide nanocomposite: Green synthesis, kinetics and photoactivity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 300:113777. [PMID: 34649309 DOI: 10.1016/j.jenvman.2021.113777] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/25/2021] [Accepted: 09/17/2021] [Indexed: 05/14/2023]
Abstract
Herein, a green and facile methodology was used for the structural design of semiconductor nanomaterials and employed as efficient photocatalyst to resolve the environmental issues of water pollutants. Titanium oxide coupled with bismuth oxide (TiO2@Bi2O3) nanocomposite was synthesized by employing the seed extract of Sapindus mukorossi (commonly found plant in India) and subsequently used for the elimination of toxic, and persistence industrial pollutants namely bisphenol A (BPA) and methylene blue (MB). Microscopic and spectroscopic techniques revealed particle size of synthesized nanocomposite found less than 50 nm along with high crystallinity. Appearance of stretching vibrations at 459 cm-1 for Bi-O-Ti in the IR spectra of nanocomposite has established the coupling of TiO2 with Bi2O3. The parameters of degradation were optimized by varying the pollutant concentration, catalytic amount and pH in the presence of natural sunlight. The nanocomposite TiO2@Bi2O3 showed maximum degradation (MB: 94% and BPA: 91%) at a minimum concentration of pollutant (50 mgL-1) with catalyst amount (35 mg), neutral pH and reduces half-life of pollutants (BPA: 1h, MB: 0.5h). Owing of higher surface area (80 m2g-1), lower band gap (2.5 eV), and more negative zeta potential value (-40.3 mV) results into excellent photocatalytic properties. The breakage of S-N conjugated system in MB results into rapid degradation as compare to BPA. The degradation followed first-order kinetics and Langmuir adsorption in both the cases. Presence of active radicals during the photocatalysis process was responsible for quick degradation and strongly supported by scavenger analysis. GC-MS analysis revealed the degradation of toxic pollutants into safer metabolites and finally mineralized. Multiple times (n = 8) reusability of green photocatalyst advocated sustainability and appropriate for industrial applications.
Collapse
Affiliation(s)
- Manviri Rani
- Department of Chemistry Malaviya National Institute of Technology Jaipur, Jaipur, Rajasthan, 302017, India.
| | - Uma Shanker
- Department of Chemistry Dr B R Ambedkar National Institute of Technology Jalandhar, Jalandhar, Punjab, 144011, India.
| |
Collapse
|
14
|
Dong H, Feng X, Guo Y, Jia Z, Zhang X, Xu A, Li X. Bicarbonate activated hydrogen peroxide with cobalt nanoparticles embedded in nitrogen-doped carbon nanotubes for highly efficient organic dye degradation. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
de Andrade FV, Augusti R, de Lima GM. Ultrasound for the remediation of contaminated waters with persistent organic pollutants: A short review. ULTRASONICS SONOCHEMISTRY 2021; 78:105719. [PMID: 34450413 PMCID: PMC8387924 DOI: 10.1016/j.ultsonch.2021.105719] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 05/14/2023]
Abstract
The rising amount of persistent organic contaminants released into water reservoirs in the last years became a cause of concern for the industry, academy, and public administration, due to their bioaccumulation, mutagenicity, and photosynthesis reduction. Therefore, the search for processes that efficiently remove such contaminants became of primary importance. In this context, ultrasound (US) is one of the most promising and economically viable alternatives to degrade organic pollutants in varied environments. Whereas the use of other advanced oxidation processes (AOPs), such as Fenton and photocatalysis, has been widely reported for this purpose, only a few papers deal with ultrasound application as a possible AOP. In this review, a general overview of ultrasound is provided, covering the last twenty years. It includes fundamental aspects of ultrasound and applications, individually or combined with other AOPs, to deplete organic pollutants from various classes in an aqueous environment. Finally, the review concludes by indicating that additional research should be conducted worldwide to explore the full potential of ultrasound as a useful AOP.
Collapse
Affiliation(s)
- F V de Andrade
- Universidade Federal de Itajubá - Campus Itabira, Advanced Ceramic Materials Laboratory - LCAv, Research Group in Materials and Nanoscience - GPMN, Rua Irmã Ivone Drumond, 200 - Distrito Industrial II, 35903-087 Itabira, MG, Brazil.
| | - R Augusti
- Universidade Federal de Minas Gerais, Department of Chemistry, Av. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte MG, Brazil
| | - G M de Lima
- Universidade Federal de Minas Gerais, Department of Chemistry, Av. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte MG, Brazil
| |
Collapse
|
16
|
Rehman R, Lahiri SK, Islam A, Wei P, Xu Y. Self-Assembled Hierarchical Cu x O@C 18H 36O 2 Nanoflakes for Superior Fenton-like Catalysis over a Wide Range of pH. ACS OMEGA 2021; 6:22188-22201. [PMID: 34497910 PMCID: PMC8412932 DOI: 10.1021/acsomega.1c02881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
A novel copper-based catalyst supported by a long-chain hydrocarbon stearic acid (Cu x O@C18H36O2) was synthesized by a hydrothermal method and double replacement reactions. The as-prepared catalyst is shown as self-assembled hierarchical nanoflakes with an average size of ∼22 nm and a specific surface area of 51.4 m2 g-1. The catalyst has a good performance on adsorption as well as Fenton-like catalytic degradation of Rhodamine B (RhB). The catalyst (10 mg/L) showed an excellent adsorption efficiency toward RhB (20 mg/L) for pH ranging from 5 to 13, with the highest adsorption rate (99%) exhibited at pH 13. The Fenton-like catalytic degradation reaction of RhB (20 mg/L) by Cu x O@C18H36O2 nanoflakes was effective over a wide range of pH of 3-11, and •OH radicals were generated via Cu2O/H2O2 interactions in acidic conditions and CuO/H2O2 reactions in a neutral solution. The highest efficiency catalytic degradation of RhB (20 mg/L) was 99.2% under acidic conditions (pH = 3, H2O2 = 0.05 M), with an excellent reusability of 96% at the 6th cycle. The results demonstrated that the as-prepared Cu x O@C18H36O2 nanoflakes are an efficient candidate for wastewater treatment, with excellent adsorption capacity and superior Fenton-like catalytic efficiency and stability for RhB.
Collapse
Affiliation(s)
- Ratul Rehman
- School
of Materials Science and Engineering and State Key Laboratory for
Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
| | - Sudip Kumar Lahiri
- School
of Materials Science and Engineering and State Key Laboratory for
Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
| | - Ashraful Islam
- State
Key Laboratory of Environmental Aquatic Chemistry, Research Center
for Eco-Environmental Sciences, University
of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Peng Wei
- School
of Materials Science and Engineering and State Key Laboratory for
Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
| | - Yue Xu
- School
of Materials Science and Engineering and State Key Laboratory for
Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
| |
Collapse
|
17
|
Sourkouni G, Kalogirou C, Moritz P, Gödde A, Pandis PK, Höfft O, Vouyiouka S, Zorpas AA, Argirusis C. Study on the influence of advanced treatment processes on the surface properties of polylactic acid for a bio-based circular economy for plastics. ULTRASONICS SONOCHEMISTRY 2021; 76:105627. [PMID: 34130189 PMCID: PMC8209739 DOI: 10.1016/j.ultsonch.2021.105627] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
New biotechnological processes using microorganisms and/or enzymes to convert carbonaceous resources, either biomass or depolymerized plastics into a broad range of different bioproducts are recognized for their high potential for reduced energy consumption and reduced GHG emissions. However, the hydrophobicity, high molecular weight, chemical and structural composition of most of them hinders their biodegradation. A solution to reduce the impact of non-biodegradable polymers spread in the environment would be to make them biodegradable. Different approaches are evaluated for enhancing their biodegradation. The aim of this work is to develop and optimize the ultrasonication (US) and UV photodegradation and their combination as well as dielectric barrier discharge (DBD) plasma as pre-treatment technologies, which change surface properties and enhance the biodegradation of plastic by surface oxidation and thus helping bacteria to dock on them. Polylactic acid (PLA) has been chosen as a model polymer to investigate its surface degradation by US, UV, and DBD plasma using surface characterization methods like X-ray Photoelectron Spectroscopy (XPS) and Confocal Laser Microscopy (CLSM), Atomic Force Microscopy (AFM) as well as FT-IR and drop contour analysis. Both US and UV affect the surface properties substantially by eliminating the oxygen content of the polymer but in a different way, while plasma oxidizes the surface.
Collapse
Affiliation(s)
- Georgia Sourkouni
- Clausthal Centre for Materials Technology (CZM), Clausthal University of Technology, Leibnizstr. 9, 38678 Clausthal-Zellerfeld, Germany
| | - Charalampia Kalogirou
- Clausthal Centre for Materials Technology (CZM), Clausthal University of Technology, Leibnizstr. 9, 38678 Clausthal-Zellerfeld, Germany; School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechneiou St., Zografou Campus, 15780 Athens, Greece
| | - Philipp Moritz
- Clausthal Centre for Materials Technology (CZM), Clausthal University of Technology, Leibnizstr. 9, 38678 Clausthal-Zellerfeld, Germany
| | - Anna Gödde
- Clausthal Centre for Materials Technology (CZM), Clausthal University of Technology, Leibnizstr. 9, 38678 Clausthal-Zellerfeld, Germany
| | - Pavlos K Pandis
- School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechneiou St., Zografou Campus, 15780 Athens, Greece
| | - Oliver Höfft
- Institute for Electrochemistry, Clausthal University of Technology, 38678 Clausthal-Zellerfeld, Germany
| | - Stamatina Vouyiouka
- School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechneiou St., Zografou Campus, 15780 Athens, Greece
| | - Antonis A Zorpas
- Open University of Cyprus, Faculty of Pure and Applied Sciences, Environmental Conservation and Management, Laboratory of Chemical Engineering and Engineering Sustainability, P.O.Box 12794, 2252 Latsia, Nicosia, Cyprus
| | - Christos Argirusis
- Clausthal Centre for Materials Technology (CZM), Clausthal University of Technology, Leibnizstr. 9, 38678 Clausthal-Zellerfeld, Germany; School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechneiou St., Zografou Campus, 15780 Athens, Greece.
| |
Collapse
|
18
|
Zhang BT, Kuang L, Teng Y, Fan M, Ma Y. Application of percarbonate and peroxymonocarbonate in decontamination technologies. J Environ Sci (China) 2021; 105:100-115. [PMID: 34130827 DOI: 10.1016/j.jes.2020.12.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/26/2020] [Accepted: 12/27/2020] [Indexed: 05/21/2023]
Abstract
Sodium percarbonate (SPC) and peroxymonocarbonate (PMC) have been widely used in modified Fenton reactions because of their multiple superior features, such as a wide pH range and environmental friendliness. This broad review is intended to provide the fundamental information, status and progress of SPC and PMC based decontamination technologies according to the peer-reviewed papers in the last two decades. Both SPC and PMC can directly decompose various pollutants. The degradation efficiency will be enhanced and the target contaminants will be expanded after the activation of SPC and PMC. The most commonly used catalysts for SPC activation are iron compounds while cobalt compositions are applied to activate PMC in homogenous and heterogeneous catalytical systems. The generation and participation of hydroxyl, superoxide and/or carbonate radicals are involved in the activated SPC and PMC system. The reductive radicals, such as carbon dioxide and hydroxyethyl radicals, can be generated when formic acid or methanol is added in the Fe(II)/SPC system, which can reduce target contaminants. SPC can also be activated by energy, tetraacetylethylenediamine, ozone and buffered alkaline to generate different reactive radicals for pollutant decomposition. The SPC and activated SPC have been assessed for application in-situ chemical oxidation and sludge dewatering treatment. The challenges and prospects of SPC and PMC based decontamination technologies are also addressed in the last section.
Collapse
Affiliation(s)
- Bo-Tao Zhang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Lulu Kuang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yanguo Teng
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| | - Maohong Fan
- Department of Chemical and Petroleum Engineering, University of Wyoming, Laramie, WY 82071, United States.
| | - Yan Ma
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| |
Collapse
|
19
|
Chai X, Cui Y, Xu W, Kong L, Zuo Y, Yuan L, Chen W. Degradation of malathion in the solution of acetyl peroxyborate activated by carbonate: Products, kinetics and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124808. [PMID: 33338811 DOI: 10.1016/j.jhazmat.2020.124808] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/05/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
The degradation process of malathion in the acetyl peroxyborate (APB) solution of different APB/malathion molar ratio and in the carbonate-activated APB (APB/CO32-) solution of different pH was studied by 31P NMR technology. In the APB solution, all malathion could be degraded in 47.5 min when the molar ratio of APB/malathion was 60. CO32- could effectively activate APB to degrade all malathion in 10 min at pH of 10 when APB/malathion was 10, which was obviously higher than in APB solution. 1O2, •O2-, •OH and carbon-centered radicals (RC•) could be produced in the APB/CO32- solution, and the degradation of malathion was mainly affected by RC•. The degradation mechanism of malathion in the APB/CO32- solution was proposed based on the research results of malathion degradation process by 31P NMR and active species quenching test, which involves two steps: the first step is the oxidation of malathion to malaoxon by RC•, and the second step is the hydrolysis of malaoxon to dimethyl phosphate via hydroxyl anions nucleophilic addition.
Collapse
Affiliation(s)
- Xiaojie Chai
- Research Institute of Chemical Defense, Academy of Military Sciences, Beijing 102205, China
| | - Yan Cui
- Research Institute of Chemical Defense, Academy of Military Sciences, Beijing 102205, China; State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Wencai Xu
- Research Institute of Chemical Defense, Academy of Military Sciences, Beijing 102205, China; State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Lingce Kong
- Research Institute of Chemical Defense, Academy of Military Sciences, Beijing 102205, China; State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Yanjun Zuo
- Research Institute of Chemical Defense, Academy of Military Sciences, Beijing 102205, China; State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Ling Yuan
- Research Institute of Chemical Defense, Academy of Military Sciences, Beijing 102205, China; State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Wenming Chen
- Research Institute of Chemical Defense, Academy of Military Sciences, Beijing 102205, China; State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| |
Collapse
|
20
|
Maroudas A, Pandis PK, Chatzopoulou A, Davellas LR, Sourkouni G, Argirusis C. Synergetic decolorization of azo dyes using ultrasounds, photocatalysis and photo-fenton reaction. ULTRASONICS SONOCHEMISTRY 2021; 71:105367. [PMID: 33125964 PMCID: PMC7786534 DOI: 10.1016/j.ultsonch.2020.105367] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 09/30/2020] [Accepted: 10/05/2020] [Indexed: 05/20/2023]
Abstract
In the present work, ultrasound irradiation, photocatalysis with TiO2, Fenton/Photo-Fenton reaction, and the combination of those techniques were investigated for the decolorization of industrial dyes in order to study their synergy. Three azo dyes were selected from the weaving industry. Their degradation was examined via UV illumination, Fenton and Photo-Fenton reaction as well as ultrasound irradiation at low (20 kHz) and high frequencies (860 kHz). In these experiments, we investigated the simultaneous action of the ultrasound and UV irradiation by varying parameters like the duration of photocatalysis and ultrasound irradiation frequency. At the same time, US power, temperature, amount of TiO2 photocatalyst and amount of Fenton reagent remained constant. Due to their diverse structure, each azo dye showed different degradation levels using different combinations of the above-mentioned Advanced Oxidation Processes (AOPs). The Photo-Fenton reagent is more effective with US 20 kHz and US 860 kHz for the azo dyes originated from the weaving industry at pH = 3 as compared to pH = 6.8. The combination of the Photo-Fenton reaction with 860 kHz ultrasound irradiation for the same dye gave an 80% conversion at the same time. Experiments have shown a high activity during the first two hours. After that threshold, the reaction rate is decreased. FT-IR and TOC measurements prove the decolorization due to the destruction of the chromophore groups but not complete mineralization of the dyes.
Collapse
Affiliation(s)
- Antonis Maroudas
- School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechneiou St., Zografou Campus, 15780 Athens, Greece
| | - Pavlos K Pandis
- School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechneiou St., Zografou Campus, 15780 Athens, Greece
| | - Anastasia Chatzopoulou
- School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechneiou St., Zografou Campus, 15780 Athens, Greece
| | - Lambros-Roland Davellas
- School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechneiou St., Zografou Campus, 15780 Athens, Greece
| | - Georgia Sourkouni
- Clausthal Centre for Materials Technology (CZM), Clausthal University of Technology, Leibnizstr. 9, 38678 Clausthal-Zellerfeld, Germany
| | - Christos Argirusis
- School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechneiou St., Zografou Campus, 15780 Athens, Greece; Clausthal Centre for Materials Technology (CZM), Clausthal University of Technology, Leibnizstr. 9, 38678 Clausthal-Zellerfeld, Germany.
| |
Collapse
|
21
|
Lu J, Ayele BA, Liu X, Chen Q. Electrochemical removal of RRX-3B in residual dyeing liquid with typical engineered carbonaceous cathodes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 280:111669. [PMID: 33234317 DOI: 10.1016/j.jenvman.2020.111669] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/05/2020] [Accepted: 11/08/2020] [Indexed: 06/11/2023]
Abstract
Electro-catalytic activities of carbonaceous cathodes including graphite plate, graphite felt, carbon felt, activated carbon felt (ACF) and carbon fiber felt (CFF) for degradation of Reactive Red X-3B (RRX-3B) in residual dyeing liquid were compared. The best electrochemical performance was obtained using dimensional stable anode (DSA) and CFF cathode due to the higher capacity for electro-generation of H2O2 by selective two-electron oxygen reduction. The CFF/DSA electrolysis system realized 78.2% COD removal and complete decolorization over a wide pH range. The efficacy of RRX-3B degradation was found to be dependent on the nature of carbonaceous materials. Electrochemical measurements showed that CFF possessed higher electrochemical surface area and hydrogen evolution reaction over-potential. Furthermore, the intrinsic graphitic N in CFF was proved to be catalytic active site by DFT calculations. Reactive Red X-3B degradation intermediates with benzene structures and carboxylic acids via hydroxylation in RRX-3B oxidation were identified by GC-MS. It was found that S/Cl/N-containing groups in RRX-3B molecule were mineralized to SO42-, NO3- and Cl- ions in the electrolysis.
Collapse
Affiliation(s)
- Jun Lu
- School of Environment Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Befkadu A Ayele
- School of Environment Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Xiaochen Liu
- School of Environment Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Quanyuan Chen
- School of Environment Science and Engineering, Donghua University, Shanghai, 201620, PR China; Shanghai Institution of Pollution Control and Ecological Security, Shanghai, 200092, PR China; State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, PR China.
| |
Collapse
|
22
|
Xiao Y, Liu X, Huang Y, Kang W, Wang Z, Zheng H. Roles of hydroxyl and carbonate radicals in bisphenol a degradation via a nanoscale zero-valent iron/percarbonate system: influencing factors and mechanisms. RSC Adv 2021; 11:3636-3644. [PMID: 35424279 PMCID: PMC8694019 DOI: 10.1039/d0ra08395j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/19/2020] [Indexed: 01/15/2023] Open
Abstract
In this work, nanoscale-zero-valent iron (nZVI) was applied to activate sodium percarbonate (SPC) to eliminate bisphenol A (BPA), which poses a risk to ecological and human health as a typical endocrine disruptor. The influence of nZVI loading, SPC dosing, initial pH, and the presence of inorganic anions (including Cl-, HPO4 2-, NO3 - and NO2 -) and humic acid on BPA removal by the nZVI/SPC system were investigated. Based on the scavenger test results, ˙OH and CO3˙- participated in the degradation of BPA, and ˙OH was illustrated to be the dominant radical. The X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analysis suggested that surface iron oxide generation, electron transfer and Fe2+ release were the main processes of the SPC activation by nZVI. Moreover, BPA transformation products were detected by LC-MS allowing the proposal of a possible degradation pathway of BPA. Along with the degradation of the parent compound BPA, the total organic carbon (TOC) gradually decreased, while the bio-toxicity increased at the initial stage of the reaction (0-3 min) and then decreased to a lower level rapidly at 20 min. Overall, this study evidenced the feasibility of the nZVI/SPC system to efficiently degrade BPA, broadening the applications of nZVI in wastewater treatment.
Collapse
Affiliation(s)
- Yulun Xiao
- Faculty of Science, Monash University Clayton VIC 3800 Australia
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Hubei Polytechnic University Huangshi 435003 China +86-0714-6348286 +86-0714-6348671
| | - Xiang Liu
- School of Environmental Studies, China University of Geosciences Wuhan 430074 China
| | - Ying Huang
- College of Chemical and Biological Engineering, Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University Hangzhou 310027 China
| | - Wei Kang
- School of Environmental Science and Engineering, Hubei Polytechnic University Huangshi 435003 China
| | - Zhen Wang
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Hubei Polytechnic University Huangshi 435003 China +86-0714-6348286 +86-0714-6348671
- School of Environmental Studies, China University of Geosciences Wuhan 430074 China
| | - Han Zheng
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Hubei Polytechnic University Huangshi 435003 China +86-0714-6348286 +86-0714-6348671
| |
Collapse
|
23
|
Lan J, Sun Y, Huang P, Du Y, Zhan W, Zhang TC, Du D. Using Electrolytic Manganese Residue to prepare novel nanocomposite catalysts for efficient degradation of Azo Dyes in Fenton-like processes. CHEMOSPHERE 2020; 252:126487. [PMID: 32220714 DOI: 10.1016/j.chemosphere.2020.126487] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/02/2020] [Accepted: 03/12/2020] [Indexed: 06/10/2023]
Abstract
In this study, Electrolytic Manganese Residue (EMR) was treated by EDTA-2Na/NaOH, ultrasonic etching, and hydrothermal reaction to obtain a novel nanocomposite catalyst (called N-EMR), which then was used, together with H2O2, to treat synthetic textile wastewater containing Reactive Red X-3B, Methyl Orange, Methylene blue and Acid Orange 7. Results indicated that the N-EMR had a nano-sheet structure in sizes of 100-200 nm; new iron and manganese oxides with high activity were produced. The mixture of a small amount of N-EMR (40 mg/L) and H2O2 (0.4 × 10-3 M) could removal about 99% of azo dyes (at 100 mg/L in 100 mL) within 6-15 min, much faster than many advanced oxidation processes (AOPs) reported in the literature. The elucidation of the associated mechanism for azo dyes degradation indicates that azo dyes were attacked by superoxide radicals, hydroxyl radicals, and electron holes generated within system. N-EMR was found to be reusable and showed limited inhibition by co-existing anions and cations. Moreover, high removal efficiency of azo dyes could happen in the system with a wide range of pH (1-8.5) and temperatures (25-45 °C), indicating that the process developed in this study may have broad application potential in treatment of azo dyes contaminated wastewater.
Collapse
Affiliation(s)
- Jirong Lan
- Key Laboratory of Catalysis Conversion and Energy Materials Chemistry, Ministry of Education, PR China; Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, 430074, PR China
| | - Yan Sun
- Key Laboratory of Catalysis Conversion and Energy Materials Chemistry, Ministry of Education, PR China; Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, 430074, PR China
| | - Ping Huang
- Key Laboratory of Catalysis Conversion and Energy Materials Chemistry, Ministry of Education, PR China; Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, 430074, PR China
| | - Yaguang Du
- Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, 430074, PR China
| | - Wei Zhan
- Key Laboratory of Catalysis Conversion and Energy Materials Chemistry, Ministry of Education, PR China; Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, 430074, PR China.
| | - Tian C Zhang
- Civil and Environmental Engineering Department, College of Engineering, University of Nebraska-Lincoln, Omaha, NE, 68182, USA
| | - Dongyun Du
- Key Laboratory of Catalysis Conversion and Energy Materials Chemistry, Ministry of Education, PR China; Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, 430074, PR China.
| |
Collapse
|
24
|
Qian H, Hou Q, Duan E, Niu J, Nie Y, Bai C, Bai X, Ju M. Honeycombed Au@C-TiO 2-Xcatalysts for enhanced photocatalytic mineralization of Acid red 3R under visible light. JOURNAL OF HAZARDOUS MATERIALS 2020; 391:122246. [PMID: 32059162 DOI: 10.1016/j.jhazmat.2020.122246] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
The mineralization of organic pollutants under visible light is challenging, limiting the practical application of photocatalytic technology in wastewater treatment. To achieve the efficient mineralization of Acid red 3R (AR3R), a series of honeycombed catalysts (TiO2, C-TiO2-X, Au@TiO2 and Au@C-TiO2-X) were prepared via a facile in situ synthetic method and characterized by XRD, TEM, BET, XPS and DRS, respectively. The introduction of C and Au species promote the simultaneous generation of •O2- and •OH over Au@C-TiO2-X under visible light radiation. The Au@C-TiO2-X catalyst showed superior performance for the deep mineralization of AR3R, affording a TOC removal rate larger than 90 % within 240 min under visible light (> 420 nm). The photocatalytic degradation mechanism of AR3R is proposed according to UV-vis and in situ DRIFTS analysis. The superior photocatalytic activity of Au@C-TiO2-X is attributed to the synergistic effect of •O2- and •OH owing to C doping and Au deposition.
Collapse
Affiliation(s)
- Hengli Qian
- Tianjin Engineering Research Center of Biomass Solid Waste Resources Technology, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; National & Local Joint Engineering Research Center of Biomass Resource Utilization, Tianjin 300350, China
| | - Qidong Hou
- Tianjin Engineering Research Center of Biomass Solid Waste Resources Technology, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; National & Local Joint Engineering Research Center of Biomass Resource Utilization, Tianjin 300350, China.
| | - Erhong Duan
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei, 050018, China
| | - Jianrui Niu
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei, 050018, China
| | - Yifan Nie
- Tianjin Engineering Research Center of Biomass Solid Waste Resources Technology, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; National & Local Joint Engineering Research Center of Biomass Resource Utilization, Tianjin 300350, China
| | - Chuanyunlong Bai
- Tianjin Engineering Research Center of Biomass Solid Waste Resources Technology, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; National & Local Joint Engineering Research Center of Biomass Resource Utilization, Tianjin 300350, China
| | - Xinyu Bai
- Tianjin Engineering Research Center of Biomass Solid Waste Resources Technology, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; National & Local Joint Engineering Research Center of Biomass Resource Utilization, Tianjin 300350, China
| | - Meiting Ju
- Tianjin Engineering Research Center of Biomass Solid Waste Resources Technology, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; National & Local Joint Engineering Research Center of Biomass Resource Utilization, Tianjin 300350, China.
| |
Collapse
|
25
|
Hassaan MA, El Nemr A, Madkour FF, Idris AM, Said TO, Sahlabji T, Alghamdi MM, El-Zahhar AA. Advanced oxidation of acid yellow 11 dye; detoxification and degradation mechanism. TOXIN REV 2020. [DOI: 10.1080/15569543.2020.1736098] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Mohamed A. Hassaan
- Environmental Division, National Institute of Oceanography and Fisheries, Kayet Bey, El-Anfoushy, Egypt
| | - Ahmed El Nemr
- Environmental Division, National Institute of Oceanography and Fisheries, Kayet Bey, El-Anfoushy, Egypt
| | - Fedekar F. Madkour
- Marine Science Department, Faculty of Science – Port Said University, Port Said, Egypt
| | - Abubakr M. Idris
- Environmental Monitoring, Assessment & Treatment (EMAT) Research Group, Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
| | - Tarek O. Said
- Environmental Division, National Institute of Oceanography and Fisheries, Kayet Bey, El-Anfoushy, Egypt
- Environmental Monitoring, Assessment & Treatment (EMAT) Research Group, Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Taher Sahlabji
- Environmental Monitoring, Assessment & Treatment (EMAT) Research Group, Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Majed M. Alghamdi
- Environmental Monitoring, Assessment & Treatment (EMAT) Research Group, Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Adel A. El-Zahhar
- Environmental Monitoring, Assessment & Treatment (EMAT) Research Group, Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia
- Nuclear Chemistry Department, Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
26
|
|
27
|
Kinetic analysis of azo dye decolorization during their acid–base equilibria: photocatalytic degradation of tartrazine and sunset yellow. REACTION KINETICS MECHANISMS AND CATALYSIS 2019. [DOI: 10.1007/s11144-019-01654-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
28
|
Liu SH, Cao CR, Lin WC, Shu CM. Experimental and numerical simulation study of the thermal hazards of four azo compounds. JOURNAL OF HAZARDOUS MATERIALS 2019; 365:164-177. [PMID: 30419463 DOI: 10.1016/j.jhazmat.2018.11.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 06/09/2023]
Abstract
Azo compounds (azos) possess diverse exothermic properties that enable their application in numerous industrial processes, but these properties also engender a corresponding diversity of thermal hazard profiles. This study employed an innovative approach to determine the specific thermal reactions and decomposition hazard profiles of azos. Four typical azos (AIBN, AMBN, ABVN, and AIBME) were assessed using three thermal calorimetry techniques, and results were subsequently analyzed using a nonlinear optimization model. Thermal hazard analysis of small-scale experiments indicated that AIBN had a heat decomposition of 1247 J/g and a maximum pressure increase of 367 psig and thus exhibited more hazardous characteristics than did AMBN, ABVN, and AIBME. This study also obtained the relevant process safety parameters, time to maximum rate, onset and peak temperature, adiabatic temperature rise, and rate of pressure increase to use for later scaled-up applications. The findings of this study can be used to develop a predictive model for the thermal behavior of azos and to provide the necessary basis for the design and selection of precise treatment and appropriate safety systems.
Collapse
Affiliation(s)
- Shang-Hao Liu
- School of Chemical Engineering, Anhui University of Science and Technology, Anhui 232001, China.
| | - Chen-Rui Cao
- Graduate School of Engineering Science and Technology, National Yunlin University of Science and Technology (YunTech), Yunlin 64002, Taiwan
| | - Wei-Cheng Lin
- Graduate School of Engineering Science and Technology, National Yunlin University of Science and Technology (YunTech), Yunlin 64002, Taiwan
| | - Chi-Min Shu
- Center for Process Safety and Industrial Disaster Prevention, Department and Graduate School of Safety, Health, and Environmental Engineering, YunTech, Yunlin 64002, Taiwan.
| |
Collapse
|
29
|
Ahmad M, Yousaf M, Nasir A, Bhatti IA, Mahmood A, Fang X, Jian X, Kalantar-Zadeh K, Mahmood N. Porous Eleocharis@MnPE Layered Hybrid for Synergistic Adsorption and Catalytic Biodegradation of Toxic Azo Dyes from Industrial Wastewater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:2161-2170. [PMID: 30673285 DOI: 10.1021/acs.est.8b05866] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The effective treatment of industrial wastewater to protect freshwater reserves for the survival of life is a primary focus of current research. Herein, a multicomponent Eleocharis-manganese peroxidase enzyme (Eleocharis@MnPE) layered hybrid with high surface area (1200 m2/m3), with a strong synergistic adsorption and catalytic biodegradation (SACB), has been developed through a facile method. A combination of outer porous (Eleocharis) and inner catalytically active (MnPE) components of the hybrid resulted in highly efficient SACB system, evidenced by high removal rate of 15 kg m-3 day-1 (100%) and complete degradation of toxic Orange II (OR) azo dye into nontoxic products (gases and weak acids). The Eleocharis@MnPE layered hybrid efficiently degraded both OR in synthetic wastewater and also other azo dyes (red, pink, and yellow dyes) present in three different textile industrial effluents. For the industrial effluents, these were evidenced by the color disappearance and reduction in biological oxygen demand (BOD), chemical oxygen demand (COD), and total organic carbon (TOC) of up to 97%, 92%, and 76%, respectively. Furthermore, reduced toxicity of treated wastewater was confirmed by decreased cell toxicity to 0.1%-1% and increased cell viability to 90%. We believe that designing a hybrid system with strong ability of SACB could be highly effective for industrial-scale treatment of wastewater.
Collapse
Affiliation(s)
- Muhammad Ahmad
- Department of Structure and Environmental Engineering , University of Agriculture Faisalabad , Faisalabad , Punjab 38040 , Pakistan
- Department of Environmental Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education , Peking University , Beijing 100871 , China
| | - Maryam Yousaf
- Department of Chemistry , University of Agriculture Faisalabad , Faisalabad , Punjab 38040 , Pakistan
| | - Abdul Nasir
- Department of Structure and Environmental Engineering , University of Agriculture Faisalabad , Faisalabad , Punjab 38040 , Pakistan
| | - Ijaz Ahmad Bhatti
- Department of Chemistry , University of Agriculture Faisalabad , Faisalabad , Punjab 38040 , Pakistan
| | - Asif Mahmood
- Department of Physics , South University of Sciences and Technology , Shenzhen 518055 , People's Republic of China
| | - Xiaocui Fang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , People's Republic of China
| | - Xian Jian
- School of Materials and Energy, National Engineering Research Centre of Electromagnetic Radiation Control Materials, Center for Applied Chemistry, University of Electronic Science and Technology , Chengdu 611731 , People's Republic of China
| | - Kourosh Kalantar-Zadeh
- School of Chemical Engineering , University of New South Wales (UNSW) , 2052 Kensington , New South Wales , Australia
| | - Nasir Mahmood
- School of Engineering , RMIT University , 124 La Trobe Street , 3001 Melbourne , Victoria , Australia
| |
Collapse
|
30
|
Acosta-Rangel A, Sánchez-Polo M, Polo AMS, Rivera-Utrilla J, Berber-Mendoza MS. Sulfonamides degradation assisted by UV, UV/H 2O 2 and UV/K 2S 2O 8: Efficiency, mechanism and byproducts cytotoxicity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 225:224-231. [PMID: 30092549 DOI: 10.1016/j.jenvman.2018.06.097] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/15/2018] [Accepted: 06/30/2018] [Indexed: 06/08/2023]
Abstract
The objective of this study was to analyze the effectiveness of UVC, UVC/H2O2 and UVC/K2S2O8 on the degradation of SAs. Rate constant values increased in the order SMZ < SDZ < SML and showed the higher photodegradation of sulfonamides with a penta-heterocycle. Quantum yields were 1.72 × 10-5 mol E-1, 3.02 × 10-5 mol E-1, and 6.32 × 10-5 mol E-1 for SMZ, SDZ and SML, respectively, at 60 min of treatment. R254 values show that the dose habitually utilized for water disinfection is inadequate to remove this type of antibiotic. The initial sulfonamide concentration has a major impact on the degradation rate. The degradation rates were higher at pH 12 for SMZ and SML. SMZ and SML photodegradation kλ values are higher in tap versus distilled water. The presence of radical promoters generates a greater increase in the degradation rate, UVC/K2S2O8 cost less energy, a mechanism was proposed, and the degradation by-products are less toxic than the original product.
Collapse
Affiliation(s)
- A Acosta-Rangel
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, 18071 Granada, Spain; Center of Postgraduate Research and Studies, Faculty of Engineering, University Autonomous of San Luis Potosí, Av. Dr. M. Nava No. 8, San Luis Potosí, S.L.P., 78290, Mexico.
| | - M Sánchez-Polo
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, 18071 Granada, Spain
| | - A M S Polo
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, 18071 Granada, Spain
| | - J Rivera-Utrilla
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, 18071 Granada, Spain
| | - M S Berber-Mendoza
- Center of Postgraduate Research and Studies, Faculty of Engineering, University Autonomous of San Luis Potosí, Av. Dr. M. Nava No. 8, San Luis Potosí, S.L.P., 78290, Mexico
| |
Collapse
|
31
|
Zhou H, Zhou J, Wang T, Zeng J, Liu L, Jian J, Zhou Z, Zeng L, Liu Q, Liu G. In-situ preparation of silver salts/collagen fiber hybrid composites and their photocatalytic and antibacterial activities. JOURNAL OF HAZARDOUS MATERIALS 2018; 359:274-280. [PMID: 30041120 DOI: 10.1016/j.jhazmat.2018.07.043] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 06/23/2018] [Accepted: 07/09/2018] [Indexed: 06/08/2023]
Abstract
To promote the utilization of collagen fiber, silver salts/collagen fiber hybrid composites with photocatalytic and antibacterial activities were successfully prepared in this study via the in-situ organic-inorganic process. The surface morphology, chemical composition and structure were discussed. Scanning electron microscopy (SEM) observation showed that the silver salts/collagen fiber hybrid composites were successfully prepared with silver salt particles (300-500 nm) distributing evenly on the surface of collagen fiber. X-ray diffraction (XRD) patterns and Fourier transform infrared spectroscopy (FTIR) analysis provided strong evidence for the successful coating of silver salts on the surface of collagen fiber and the hybrid mechanism was subsequently discussed. The photocatalytic activity was evaluated by degrading methyl orange (MO) under ultraviolet (UV) light and visible light, respectively. The results indicated that AgCl/Collagen Fiber showed the most efficient photocatalytic activity under UV and visible light irradiation. Furthermore, the introduction of Ag+ endowed the photocatalysts with antibacterial performance, which was investigated by measuring the width of the bacteriostatic belts. The results indicated the antibacterial activity of the composites, proving that the photocatalysts were durable and reusable.
Collapse
Affiliation(s)
- Hu Zhou
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincal Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Jie Zhou
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincal Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Taofen Wang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincal Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Jianxian Zeng
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincal Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Lihua Liu
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincal Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Jian Jian
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincal Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Zhihua Zhou
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincal Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Lingwei Zeng
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincal Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Qingquan Liu
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincal Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Guoqing Liu
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincal Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| |
Collapse
|