1
|
Liu C, Guo H, Li G, Hu J, Xu H, Cui W. Poor/rich dual electron reaction centers promoting photo-Fenton synergistic removal of organic pollutants: Graphite carbon-modified copper ferrite. J Colloid Interface Sci 2025; 678:545-558. [PMID: 39260302 DOI: 10.1016/j.jcis.2024.08.266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/08/2024] [Accepted: 08/31/2024] [Indexed: 09/13/2024]
Abstract
Controlling high recombination of photogenerated carriers and optimizing low cycling of metal valence states are the two key control steps in enhancing photo-Fenton oxidation. To achieve multiscale synergy of photo-Fenton degradation, graphite carbon-modified copper ferrite composites (C/CFO) with poor/rich dual electron reaction centers were synthesized through direct carbonization of Fe/Cu bimetallic organic frameworks. A novel photo-Fenton catalytic system was constructed by irradiating the Fenton reaction with visible light. The photo-Fenton degradation efficiency of C/CFO for tetracycline (100 mg‧L-1) was 93.69% ± 0.02%, and the degradation rate constant was 4.84 times higher than that of the control. Optimized preparation and catalytic conditions, ensured good cyclic stability and broad applicability of C/CFO. This excellent stability performance improvement can be attributed to the following main factors: (1) The introduction of graphite carbon not only increases the specific surface area of C/CFO, but also acts as a bridge between the dual electron reaction centers, facilitating the transfer of photogenerated electrons. (2) On the one hand, the electron-poor reaction centers Fe and Cu capture photogenerated electrons, accelerate the Fenton reaction, and realize the valence cycling of Fe and Cu. On the other hand, the electron-rich reaction centers (oxygen vacancies) act as active sites for H2O2 adsorption, which greatly accelerate the decomposition of H2O2. Overall, the synergy of dual electron reaction centers effectively promoted photo-Fenton oxidation.
Collapse
Affiliation(s)
- Chang Liu
- College of Chemical Engineering, Hebei Key Laboratory for Environment Photocatalytic and Electrocatalytic Materials, North China University of Science and Technology, Tangshan 063210, PR China
| | - Hongxia Guo
- College of Chemical Engineering, Hebei Key Laboratory for Environment Photocatalytic and Electrocatalytic Materials, North China University of Science and Technology, Tangshan 063210, PR China
| | - Guojiang Li
- College of Chemical Engineering, Hebei Key Laboratory for Environment Photocatalytic and Electrocatalytic Materials, North China University of Science and Technology, Tangshan 063210, PR China
| | - Jinshan Hu
- College of Chemical Engineering, Hebei Key Laboratory for Environment Photocatalytic and Electrocatalytic Materials, North China University of Science and Technology, Tangshan 063210, PR China.
| | - Haijun Xu
- Innovation Center of Aromatics Transformation and Separation Technology of Hebei Province, Tangshan Risun Chemical Co., Ltd, Tangshan 063000, PR China
| | - Wenquan Cui
- College of Chemical Engineering, Hebei Key Laboratory for Environment Photocatalytic and Electrocatalytic Materials, North China University of Science and Technology, Tangshan 063210, PR China.
| |
Collapse
|
2
|
Li C, Tan J, Wang W, Xiang M, Li H. S-Fe/Co@GC reduction-oxidation sequential reaction system for the high-efficiency mineralization of tetrabromobisphenol a in water. ENVIRONMENTAL RESEARCH 2024; 263:120186. [PMID: 39427940 DOI: 10.1016/j.envres.2024.120186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/08/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
The lipophilic, bioaccumulative, persistent nature of Tetrabromobisphenol A (TBBPA) contributes to its widespread detection in various environmental media, posing significant negative implications for the living environment and human health. In this study, a reduction system and a reduction-oxidation sequential reaction system were developed using a magnetic core-shell bimetallic amendment (S-Fe/Co@GC) to investigate the degradation and mineralization properties of TBBPA. Additionally, the degradation mechanism and degradation pathway of TBBPA in various systems were analyzed. In the sole S-Fe/Co@GC reduction system, sulfurized nano-zero-valent iron (S-Fe) and Co0 exhibited remarkable reductive capabilities towards TBBPA. The reaction of S-Fe/Co@GC gradually facilitated the debromination of TBBPA, ultimately leading to its conversion into bisphenol A. The reaction process demonstrated the synergistic effect among S-Fe, Co0, and graphite carbon, leading to a remarkable enhancement in the reduction performance of the material. Consequently, TBBPA removal efficiency reached 97.5% within a time frame of 10 h. In the reduction-oxidation sequential reaction system, the debromination of TBBPA during the reduction stage enhanced the subsequent oxidation stage's total organic carbon (TOC) removal rate. During the oxidation stage (0.03 mmol of PMS added at 30 min), TBBPA underwent attack by sulfate radical (SO4·-), hydroxyl radical (·OH), superoxide radical (O2·-), and singlet oxygen (1O2), leading to cleavage and opening of its structure. This process resulted in the conversion of TBBPA into short-chain fatty acids, ultimately mineralizing it into CO2 and H2O. Thus, this degradation pathway mitigated potential environmental risk associated with intermediates. The final TOC removal rate significantly increased to 72.7% when the dose of composite material was set at 1.0 g/L, surpassing that achieved by the conventional advanced oxidation system. Hence, the S-Fe/Co@GC reduction-oxidation sequential reaction system provides a new strategy for treating high-concentration TBBPA-contaminated water.
Collapse
Affiliation(s)
- Chunyang Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Jiajia Tan
- Zhejiang Ecological Environment Group, Hangzhou, Zhejiang, 310000, PR China
| | - Wenbing Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Minghui Xiang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China.
| | - Hui Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China.
| |
Collapse
|
3
|
Kayani KF. Bimetallic metal-organic frameworks (BMOFs) for dye removal: a review. RSC Adv 2024; 14:31777-31796. [PMID: 39380644 PMCID: PMC11459228 DOI: 10.1039/d4ra06626j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/03/2024] [Indexed: 10/10/2024] Open
Abstract
Safe drinking water and a clean living environment are essential for good health. However, the extensive and growing use of hazardous chemicals, particularly carcinogenic dyes like methylene blue, methyl orange, rhodamine B, and malachite green, in both domestic and industrial settings, has led to a scarcity of potable water and environmental challenges. This trend poses a serious threat to human society, sustainable global development, and marine ecosystems. Consequently, researchers are exploring more advanced methods beyond traditional wastewater treatment to address the removal or degradation of these toxic dyes. Conventional approaches are often inadequate for effectively removing dyes from industrial wastewater. In this study, we investigated bimetallic metal-organic frameworks (BMOFs) as a solution to these limitations. BMOFs demonstrated outstanding dye removal and degradation capabilities due to their multifunctionality, water stability, large surface area, adjustable pore size, and recyclability. This review provides a comprehensive overview of research on dye removal from wastewater using BMOFs, including their synthesis methods, types of dyes, and processes involved in dye removal, such as degradation and adsorption. Finally, the review discusses the future potential and emerging opportunities for BMOFs in sustainable water treatment.
Collapse
Affiliation(s)
- Kawan F Kayani
- Department of Chemistry, College of Science, Charmo University Chamchamal Sulaimani 46023 Kurdistan Region Iraq
- Department of Chemistry, College of Science, University of Sulaimani Qlyasan Street Sulaymaniyah Kurdistan Regional Government 46001 Iraq
| |
Collapse
|
4
|
Wan C, Li R, Wang J, Cheng DG, Chen F, Xu L, Gao M, Kang Y, Eguchi M, Yamauchi Y. Silica Confinement for Stable and Magnetic Co-Cu Alloy Nanoparticles in Nitrogen-Doped Carbon for Enhanced Hydrogen Evolution. Angew Chem Int Ed Engl 2024; 63:e202404505. [PMID: 38598471 DOI: 10.1002/anie.202404505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 04/12/2024]
Abstract
Ammonia borane (AB) with 19.6 wt % H2 content is widely considered a safe and efficient medium for H2 storage and release. Co-based nanocatalysts present strong contenders for replacing precious metal-based catalysts in AB hydrolysis due to their high activity and cost-effectiveness. However, precisely adjusting the active centers and surface properties of Co-based nanomaterials to enhance their activity, as well as suppressing the migration and loss of metal atoms to improve their stability, presents many challenges. In this study, mesoporous-silica-confined bimetallic Co-Cu nanoparticles embedded in nitrogen-doped carbon (CoxCu1-x@NC@mSiO2) were synthesized using a facile mSiO2-confined thermal pyrolysis strategy. The obtained product, an optimized Co0.8Cu0.2@NC@mSiO2 catalyst, exhibits enhanced performance with a turnover frequency of 240.9 molH2 ⋅ molmetal ⋅ min-1 for AB hydrolysis at 298 K, surpassing most noble-metal-free catalysts. Moreover, Co0.8Cu0.2@NC@mSiO2 demonstrates magnetic recyclability and extraordinary stability, with a negligible decline of only 0.8 % over 30 cycles of use. This enhanced performance was attributed to the synergistic effect between Co and Cu, as well as silica confinement. This work proposes a promising method for constructing noble-metal-free catalysts for AB hydrolysis.
Collapse
Affiliation(s)
- Chao Wan
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, 243002, China
- College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Rong Li
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, 243002, China
| | - Jiapei Wang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, 243002, China
| | - Dang-Guo Cheng
- College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Fengqiu Chen
- College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Lixin Xu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, 243002, China
| | - Mingbin Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yunqing Kang
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science Zhengzhou, Henan, 451163, China
| | - Miharu Eguchi
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo, 169-8555, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, 4072, Australia
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, South Korea
| |
Collapse
|
5
|
Hamza A, Ho KC, Chan MK. Recent development of substrates for immobilization of bimetallic nanoparticles for wastewater treatment: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:40873-40902. [PMID: 38839740 DOI: 10.1007/s11356-024-33798-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/20/2024] [Indexed: 06/07/2024]
Abstract
Bimetallic nanoparticles (BMNPs) have gained considerable attention due to their remarkable catalytic properties, making them invaluable in wastewater treatment applications. One of these challenges lies in the propensity of BMNPs to aggregate due to Van der Waals interactions, which can reduce their overall performance. Additionally, retrieving exhausted NPs from the treated solution for subsequent reuse remains a significant hurdle. Moreover, the leaching of NPs into the discharged wastewater can have harmful effects on humans as well as aquatic life. To overcome these issues, various substrates have been researched to maximize the efficiency and stability of the NPs. This review paper delves into the pivotal role of various substrates in immobilizing BMNPs, providing a comprehensive analysis of their performances, advantages, and drawbacks. The substrates encompass a diverse range of materials, including organic, inorganic, organic-inorganic, beads, fibers, and membranes. Each substrate type offers unique attributes, influencing the stability, efficiency, and recyclability of BMNPs. This review paper aims to provide an up-to-date and detailed analysis and comparison of the substrates used for the immobilization of BMNPs. This work further reviews the underlying mechanisms of the composites involved in treating pollutants from wastewater and how these mechanisms are enhanced by the synergistic effects produced by the substrate and BMNPs. Furthermore, the reusability and sustainability of these composites are discussed. Also, high-performing substrates are highlighted to give direction to future research focusing on the immobilization of BMNPs in the application of wastewater treatment.
Collapse
Affiliation(s)
- Ali Hamza
- Centre for Water Research, Faculty of Engineering and the Built Environment, SEGi University, Jalan Teknologi, Kota Damansara, 47810, Petaling Jaya, Selangor, Malaysia
| | - Kah Chun Ho
- School of Engineering, Faculty of Innovation and Technology, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia.
- Clean Technology Impact Lab, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia.
| | - Mieow Kee Chan
- Centre for Water Research, Faculty of Engineering and the Built Environment, SEGi University, Jalan Teknologi, Kota Damansara, 47810, Petaling Jaya, Selangor, Malaysia
| |
Collapse
|
6
|
Thirumurugan S, Dash P, Sakthivel R, Lin YC, Sun YS, Lin CP, Wang AN, Liu X, Dhawan U, Chung RJ. Gold nanoparticles decorated on MOF derived Cu 5Zn 8 hollow porous carbon nanocubes for magnetic resonance imaging guided tumor microenvironment-mediated synergistic chemodynamic and photothermal therapy. BIOMATERIALS ADVANCES 2024; 158:213778. [PMID: 38325029 DOI: 10.1016/j.bioadv.2024.213778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 01/06/2024] [Accepted: 01/15/2024] [Indexed: 02/09/2024]
Abstract
Combining chemodynamic therapy (CDT) with photothermal therapy (PTT) has developed as a promising approach for cancer treatment, as it enhances therapeutic efficiency through redox reactions and external laser induction. In this study, we designed metal organic framework (MOF) -derived Cu5Zn8/HPCNC through a carbonization process and decorated them with gold nanoparticles (Au@Cu5Zn8/HPCNC). The resulting nanoparticles were employed as a photothermal agent and Fenton catalyst. The Fenton reaction facilitated the conversation of Cu2+ to Cu+ through reaction with local H2O2, generating reactive hydroxyl radicals (·OH) with potent cytotoxic effects. To enhance the Fenton-like reaction and achieve combined therapy, laser irradiation of the Au@Cu5Zn8/HPCNC induced efficient photothermal therapy by generating localized heat. With a significantly increased absorption of Au@Cu5Zn8/HPCNC at 808 nm, the photothermal efficiency was determined to be 57.45 %. Additionally, Au@Cu5Zn8/HPCNC demonstrated potential as a contrast agent for magnetic resonance imaging (MRI) of cancers. Furthermore, the synergistic combination of PTT and CDT significantly inhibited tumor growth. This integrated approach of PTT and CDT holds great promise for cancer therapy, offering enhanced CDT and modulation of the tumor microenvironment (TME), and opening new avenues in the fight against cancer.
Collapse
Affiliation(s)
- Senthilkumar Thirumurugan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
| | - Pranjyan Dash
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
| | - Rajalakshmi Sakthivel
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
| | - Yu-Chien Lin
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
| | - Ying-Sui Sun
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ching-Po Lin
- Institute of Neuroscience, National Yang-Ming University, Taipei 11221, Taiwan
| | | | - Xinke Liu
- College of Materials Science and Engineering, Chinese Engineering and Research Institute of Microelectronics, Shenzhen University, Shenzhen 518060, China; Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Udesh Dhawan
- Centre for the Cellular Microenvironment, Division of Biomedical Engineering, James Watt School of Engineering, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow G116EW, UK
| | - Ren-Jei Chung
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan; High-value Biomaterials Research and Commercialization Center, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan.
| |
Collapse
|
7
|
Ma J, Zhao Q, Ye Z. An eco-friendly self-assembled catalyst preparation and study of tetracycline degradation: Performance, mechanism to application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171768. [PMID: 38499103 DOI: 10.1016/j.scitotenv.2024.171768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/25/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
Chloromethyl styrene resin can undergo specific chemical modifications and is an excellent adsorbent material for treating difficult-to-degrade substances in wastewater. In this study, chloromethyl styrene resin will be used as a carrier, and polystyrene chloromethyl resin (PS-Cl) was converted into PS-NH2 by amino modification. The self-assembly of cobalt-based metal-organic framework (CoMOF) was induced on the surface of PS-NH2 by using a novel preparation technique. The performance of the prepared PS-NH2@CoMOF self-assembled catalysts with core-shell-like structures in degrading the target pollutant, tetracycline (TC), was evaluated. The catalysts effectively induced rapid OH radical production from H2O2, had a degradation rate of as high as 88.3 % for 20 mg/L TC solution, and were highly stable and adaptable to aqueous environments. Free radicals and intermediates in the catalytic degradation process were detected by electron paramagnetic resonance and high-performance liquid chromatography mass spectrometry, and possible catalytic degradation pathways were analyzed. The catalytic dissociation behavior of H2O2 in the presence of different catalysts was studied in depth and compared with that of similar metal-organic framework materials through density-functional theory calculations. Results demonstrated the excellent performance of the PS-NH2@CoMOF catalysts. Finally, the catalysts' potential for use in practical engineering applications was evaluated with a flow column experimental model, and the results were more than satisfactory. Therefore, the use of the catalysts to degrade TC has great potential.
Collapse
Affiliation(s)
- Jinmao Ma
- Department of Environmental Engineering, Peking University, the Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China.
| | - Quanlin Zhao
- Department of Environmental Engineering, Peking University, the Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China.
| | - Zhengfang Ye
- Department of Environmental Engineering, Peking University, the Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China.
| |
Collapse
|
8
|
Xin J, Pang H, Gómez-García CJ, Sun W, Wu Q, Au CM, Ma H, Wang X, Yang G, Yu WY. One-Step Synthesis of Hollow CoS 2 Spheres Derived from Polyoxometalate-Based Metal-Organic Frameworks with Peroxidase-like Activity. Inorg Chem 2024; 63:860-869. [PMID: 38141027 DOI: 10.1021/acs.inorgchem.3c03890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
In this work, hollow CoS2 particles were prepared by a one-step sulfurization strategy using polyoxometalate-based metal-organic frameworks as the precursor. The morphology and structure of CoS2 have been monitored by scanning electron microscopy, X-ray photoelectron spectroscopy, and X-ray powder diffraction. The mechanism for the formation of CoS2 is discussed. The reaction time and sulfur content are found to be important factors that affect the morphology and pure phase formation of CoS2, and a hollow semioctahedral morphology of CoS2 with open voids was obtained when the sulfur source was twice as large as the precursor and the reaction time was 24 h. The CoS2 (24 h) particles show an excellent peroxidase-like activity for the oxidation of colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue oxidized (oxTMB) by hydrogen peroxide. The polyoxometalate used as a precursor helps to stabilize oxTMB during catalytic oxidation, forming a stable curve platform for at least 8 min. Additionally, the colorimetric detection of hydroquinone is developed with a low detection limit of 0.42 μM. This research provides a new strategy to design hollow materials with high peroxidase-mimicking activity.
Collapse
Affiliation(s)
- Jianjiao Xin
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
- Center of Teaching Experiment and Equipment Management, Qiqihar University, Qiqihar 161006, P. R. China
| | - Haijun Pang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
| | - Carlos J Gómez-García
- Departamento de Química Inorgánica, Universidad de Valencia, C/Dr. Moliner 50, Burjasot 46100, Spain
| | - Wenlong Sun
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Qiong Wu
- Department of Chemical Science and Technology, Kunming University, Kunming 650214, Yunnan, China
| | - Chi-Ming Au
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong
| | - Huiyuan Ma
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
| | - Xinming Wang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
| | - Guixin Yang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
| | - Wing-Yiu Yu
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong
| |
Collapse
|
9
|
Yang C, Ou H, Mo L, Lin W. Fe/Cu-AuNP nanocomposites as enzyme-like catalysts to modulate the tumor microenvironment for enhanced synergistic cancer therapy. J Mater Chem B 2023; 11:11310-11318. [PMID: 37982342 DOI: 10.1039/d3tb02149a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
The intensive investigation of chemodynamic therapy (CDT) for tumor eradication revealed that the therapeutic effects of this ROS-mediated therapy are limited by endogenous reductants and inefficient Fenton-like reactions. In this study, we developed a new Fe/Cu-AuNP-PEG nanocomposite to enhance CDT and provide a synergistic treatment for tumors. The Fe/Cu-AuNP-PEG nanocomposite demonstrated effective ˙OH production and high photothermal conversion efficiency under 808 nm illumination, which promoted the ˙OH production, thereby enhancing the CDT efficacy and exhibiting a synergistic treatment for cancer. More importantly, the Fe/Cu-AuNP-PEG nanocomposite showed the ability to deplete GSH and catalyze glucose to generate H2O2, which facilitated the Fenton-like reaction and reduced the antioxidant properties of tumors, further improving the efficacy of CDT. Therefore, the Fe/Cu-AuNP-PEG nanocomposite, with horseradish peroxidase-like, glutathione peroxidase-like, and glucose oxidase-like activities, is a promising anti-tumor agent for integrating enhanced CDT and photothermal therapy (PTT) with the enhancement of synergistic therapeutic effects.
Collapse
Affiliation(s)
- Chan Yang
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China.
| | - Huan Ou
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China.
| | - Liuting Mo
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China.
| | - Weiying Lin
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China.
| |
Collapse
|
10
|
Qian L, Li H, Zhang D, Guo L, Pan W, Zhang J, Xiang M. Prussian blue analogues derived magnetic FeCo@GC material as high-performance metallic peroxymonosulfate activators to degrade tetrabromobisphenol A over a wide pH range. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:105897-105911. [PMID: 37718365 DOI: 10.1007/s11356-023-29840-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/07/2023] [Indexed: 09/19/2023]
Abstract
Metal-organic frame (MOF) materials can effectively degrade organic pollutants, whereas the MOF is rapidly hydrolysed in water and has poor stability and low reusability. However, in the current advanced oxidation process (AOP) system, the removal effect of pollutants under alkaline condition is not ideal. In this study, a magnetic composite material derived from MOF was synthesised and used as a new catalyst for rapid degradation of tetrabromobisphenol A (TBBPA). Compared to precarbonisation, FeCo@GC formed a conductive graphite carbon skeleton, retained the complete rhombododecahedron structure, had a larger specific surface area and provided more active sites for peroxymonosulfate (PMS) activation. The target pollutant TBBPA (20 mg/L) was completely degraded within 30 min, and the mineralisation rate reached 40.98% in the FeCo@GC (150 mg/L) and PMS (1 mM) systems, owing to the synergistic interaction between Fe, Co and graphite carbon. The reactive oxygen species (ROS) involved in the reaction were determined to be SO4•-, ·OH, 1O2 and O2•- by electron paramagnetic resonance and free radical scavenging experiments, and the 1O2 played a dominant role. Based on the results of LC-MS analysis results, the main degradation pathways of TBBPA involve three mechanisms: the debromination reaction, hydroxylation and cleavage of the benzene ring. In addition, compared with previous AOP systems, FeCo@GC/PMS overcomes the disadvantage of poor degradation effect of TBPPA under alkaline conditions, has a wide range pH (3-11) application and has the best effect on TBBPA degradation under alkaline conditions. FeCo@GC has an excellent cycle performance, with a removal rate of re-calcined material of 88.52% after five cycles. Therefore, FeCo@GC can be used as a promising and efficient catalyst for removing environmental organic pollutants.
Collapse
Affiliation(s)
- Liu Qian
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Hui Li
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Dengsong Zhang
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Lin Guo
- Institute for Shanghai Academy of Environmental Sciences, No. 508 Qinzhou Road, Xuhui District, Shanghai, People's Republic of China
| | - Wenxue Pan
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Jin Zhang
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Minghui Xiang
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China.
| |
Collapse
|
11
|
Gu YY, Wu Z, Shen Y, Lu C, Lu L, Bian Z, Zhang X, Zhao C, Fu R, Li H. Efficient Fenton-like degradation of tetracycline by stalactite-like CuCo-LDO/CN catalysts: The overlooked contribution of dissolved oxygen. CHEMOSPHERE 2023; 338:139540. [PMID: 37480960 DOI: 10.1016/j.chemosphere.2023.139540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 05/30/2023] [Accepted: 07/15/2023] [Indexed: 07/24/2023]
Abstract
In the Fenton-like processes, the resources that exist in the system itself (e.g., dissolved oxygen, electron-rich pollutants) are often overlooked. Herein, a novel CuCo-LDO/CN composite catalyst with a strong "metal-π" effect was fabricated by in situ calcination which could activate dissolved oxygen to generate active oxygen species and degrade the electron-rich pollutants directly. The CuCo-LDO/CN (1:10) with the largest specific surface aera, most C-O-M bonds and least oxygen vacancies exhibited the best catalytic performance for tetracycline (TC)degradation (TC removal efficiency 93.2% and mineralization efficiency 40%, respectively, after 40 min at neutral pH) compared to CuCo-LDO and other CuCo-LDO/CN composite catalysts. In the absence of H2O2, dissolved oxygen could be activated by the catalyst to generate O2·-and ·OH, which contributed to approximately 20.7% of TC degradation, providing a faster and cost-effective way for TC removal from wastewater. While in the presence of H2O2, it was activated by CuCo-LDO/CN to generate·OH as the dominant reactive oxygen species and meanwhile TC transferred electrons to H2O2 through C-O-M bonds, accelerating the Cu+/Cu2+ and Co2+/Co3+ redox cycles. The possible degradation pathways of TC were proposed, and the environmental hazard of TC is greatly mitigated according to toxicity prediction.
Collapse
Affiliation(s)
- Ying-Ying Gu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Zuzhao Wu
- Changzhou Institute of Building Science, Changzhou, 213000, China
| | - Yuanyuan Shen
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Chen Lu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Liuli Lu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Zengxin Bian
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiuxia Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Chaocheng Zhao
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Rongbing Fu
- Centre for Environmental Risk Management & Remediation of Soil & Groundwater, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Hongjiang Li
- Qingdao Engineering Vocational College, Qingdao, 266112, China
| |
Collapse
|
12
|
Teng P, Liu Y, Sun Z, Meng H, Han Y, Zhang X. Co-adsorption and Fenton-like oxidation in the efficient removal of methylene blue by MIL-88B@UiO-66 nanoflowers. Dalton Trans 2023. [PMID: 37439682 DOI: 10.1039/d3dt01413d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Development of binary MOF-on-MOF heterostructures is a research hotspot in MOFs chemistry due to the advantages elicited by a closely connected interface, which may endow more abundant functionality and even broader applications in interface chemistry. A MOF-on-MOF heterostructure was constructed by in situ growth of MIL-88B on the outer surface of UiO-66. The resultant MIL-88B@UiO-66 produced had an interesting flower-like morphology composed of MIL-88B (petal) on tetrahedral UiO-66 (core). The MIL-88B@UiO-66 heterostructure showed adsorption and Fenton-like oxidation abilities, with distinctly improved structural stability in aqueous solution compared with that of single MIL-88B. Methylene blue (MB) was selected as the target molecule to evaluate the adsorption and Fenton-like oxidation activities. The efficiency of total removal of MB was studied systematically under various operating conditions and the influencing factors were optimized. The kinetics of adsorption and catalytic oxidation were simulated to explore the interactions between MB and MIL-88B@UiO-66. The mechanisms of enhanced adsorption and Fenton-like oxidation were suggested. The cyclic removal performance and structural stability of MIL-88B@UiO-66 were also determined.
Collapse
Affiliation(s)
- Pingping Teng
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
| | - Ying Liu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
| | - Zhongqiao Sun
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
| | - Hao Meng
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
| | - Yide Han
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
| | - Xia Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
| |
Collapse
|
13
|
Gamboa-Savoy F, Onfray C, Hassan N, Salazar C, Thiam A. Enhanced catalytic reduction of emerging contaminant by using magnetic CuFe 2O 4@MIL-100(Fe) in Fenton-based electrochemical processes. CHEMOSPHERE 2023:139231. [PMID: 37354958 DOI: 10.1016/j.chemosphere.2023.139231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/26/2023]
Abstract
Fenton-based electrochemical processes (FEPs) using newly engineered 3D photocatalyst nanocomposites have garnered significant attention owing to their ability to remove emerging contaminants. Despite the development of numerous materials, there is still a need to enhance their efficiency, stability, and recyclability to address the limitations of FEPs. This study seeks to address this issue by investigating sustainable methods to engineer novel 3D core-shell photocatalyst composites for application in FEPs. These materials can update the photo-assisted PEFs activity, and magnetism can be helpful for the easy recyclability of the catalyst. Herein, we successfully synthesized a magnetic and photoactive CuFe2O4@MIL-100(Fe) (CM) composite through sustainable methods and assessed its morphological structure and physicochemical and photocatalytic properties. The catalytic performance of CM was investigated in an undivided RuO2/air-diffusion cell to treat Cefadroxil. The results show that heterogeneous photoelectro-Fenton (HPEF) (100% in 120 min) has higher degradation efficiency than electro-Fenton (100% in 210 min) and electrooxidation (73.3% in 300 min) processes. The superior degradation efficiency of HPEF is attributed to the formation of a large amount of hydroxyl radicals indicating the excellent photocatalytic activity of the material due to the direct excitation of the Fe-O cluster, which boosts the redox reaction of Fe2+/Fe3+. Key operational parameters such as pH, catalyst concentration, current density, and CuFe2O4 proportion on MIL-100(Fe) in the composite were optimized in the HPEF process. The optimized composite exhibited good stability and easy recyclability, allowing high removal efficiency, which can be kept up after five cycles of 90 min. High degradation performance was observed using natural sunlight radiations. Additionally, possible catalytic degradation mechanisms in HPEFs were proposed based on radical quenching experiments. This study has significant potential to contribute to the development of more sustainable and effective water treatment strategies.
Collapse
Affiliation(s)
- Felipe Gamboa-Savoy
- Facultad de Ciencias Naturales, Matemáticas y del Medioambiente, UTEM, Chile
| | - Christian Onfray
- Programa Institucional de Fomento a la I+D+i, Universidad Tecnológica Metropolitana, Chile
| | - Natalia Hassan
- Programa Institucional de Fomento a la I+D+i, Universidad Tecnológica Metropolitana, Chile; Millenium Nucleus in NanoBiophysics, Chile
| | - Claudio Salazar
- Centro de Investigación de Polímeros Avanzados, CIPA, Concepción, 4030000, Chile
| | - Abdoulaye Thiam
- Programa Institucional de Fomento a la I+D+i, Universidad Tecnológica Metropolitana, Chile.
| |
Collapse
|
14
|
Jia W, Song J, Wang J, Li J, Li X, Wang Q, Chen X, Liu G, Yan Q, Zhou C, Xin S, Xin Y. Fenton oxidation treatment of oxytetracycline fermentation residues: Harmless performance and bioresource properties. CHEMOSPHERE 2023:139201. [PMID: 37348618 DOI: 10.1016/j.chemosphere.2023.139201] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/30/2023] [Accepted: 06/11/2023] [Indexed: 06/24/2023]
Abstract
The pharmaceutical factories of oxytetracycline (OTC) massively produce OTC fermentation residues (OFRs). The high content of residual OTC and antibiotic resistance genes in OFRs must to be considered and controlled at an acceptable level. This study therefore investigated the applicability of Fenton oxidation in OTC degradation and resistant gene inactivation of OFRs. The results revealed that Fe2+ as catalyzer could very rapidly activate H2O2 to produce HO•, leading to instantaneous degradation of OTC. The optimum conditions for OTC removal were 60 mM H2O2 and 140 mg/L Fe2+ under pH 7. After Fenton oxidation treatment, the release of water-soluble polysaccharides, NO3-N, and PO4-P was enhanced, whereas for proteins and NH3-N were reduced. Three soluble fluorescence components (humic, tryptophan-like, and humic acid-like substances) were identified through fluorescence spectra with parallel factor analysis, and their reduction exceeded 50% after Fenton oxidation. There were twelve intermediates and three degradation pathways of OTC in OFRs during Fenton process. According to toxicity prediction, the comprehensive toxicity of OTC in OFRs was alleviated via Fenton oxidation treatment. In addition, Fenton oxidation showed the ability to reduce antibiotic resistance genes and mobile genetic elements, and even tetO, tetG, intI1, and intI2 were eliminated completely. These results suggested that Fenton oxidation treatment could be an efficient strategy for removing OTC and resistance genes in OFRs.
Collapse
Affiliation(s)
- Wenqiang Jia
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266109, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jiaying Song
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jian Wang
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266109, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jinying Li
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xue Li
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qianwen Wang
- Instrumental Analysis Center of Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiang Chen
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Guocheng Liu
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Qinghua Yan
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chengzhi Zhou
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shuaishuai Xin
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Yanjun Xin
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| |
Collapse
|
15
|
Shang D, Zheng W, Zhao P, Li Y, Xie L, Zhang J, Zhan S, Hu W. Investigation on the reaction kinetic mechanism of polydopamine-loaded copper as dual-functional catalyst in heterogeneous electro-Fenton process. CHEMOSPHERE 2023; 325:138339. [PMID: 36893871 DOI: 10.1016/j.chemosphere.2023.138339] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/20/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Heterogeneous electro-Fenton (HEF) process has been regarded as a promising method in environmental remediation. However, the reaction kinetic mechanism of the HEF catalyst for simultaneous production and activation of H2O2 remained confounded. Herein, the copper supported on polydopamine (Cu/C) was synthesized by a facile method and employed as a bifunctional HEFcatalyst, and the catalytic kinetic pathways were deeply investigated by using rotating ring-disk electrode (RRDE) voltammetry based on the Damjanovic model. Experimental results substantiated that a two-electron oxygen reduction reaction (2e- ORR) and a sequential Fenton oxidation reaction were proceeded on 1.0-Cu/C, where metallic copper played a crucial role in the fabrication of 2e- active sites as well as utmost H2O2 activation to produce highly reactive oxygen species (ROS), resulting in the high H2O2 productivity (52.2%) and the almost complete removal of contaminant ciprofloxacin (CIP) after 90 min. The work not only expanded the idea of reaction mechanism on Cu-based catalyst in HEF process but also provided a promising catalyst for pollutants degradation in wastewater treatment.
Collapse
Affiliation(s)
- Denghui Shang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Wenwen Zheng
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Peng Zhao
- China National Offshore Oil Corporation, Tianjin Branch, Tianjin, 300452, China
| | - Yi Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China; Joint School of National University of Singapore and Tianjin University, Fuzhou International Campus, Tianjin University, Binhai New City, Fuzhou, 350207, China.
| | - Liangbo Xie
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Jinlong Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Sihui Zhan
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China; Joint School of National University of Singapore and Tianjin University, Fuzhou International Campus, Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
16
|
Tan Y, Chen K, Zhu J, Sun F, Peng H, Zhan T, Lyu J. Gravity-driven rattan-based catalytic filter for rapid and highly efficient organic pollutant removal. J Colloid Interface Sci 2023; 643:124-136. [PMID: 37058888 DOI: 10.1016/j.jcis.2023.03.158] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/06/2023] [Accepted: 03/24/2023] [Indexed: 04/05/2023]
Abstract
Metal organic frameworks hold great promise as heterogeneous catalysts in sulfate radical (SO4∙-) based advanced oxidation. However, the aggregation of powdered MOF crystals and the complicated recovery procedure largely hinder their large-scale practical applications. It is important to develop eco-friendly and adaptable substrate-immobilized metal organic frameworks. Based on the hierarchical pore structure of the rattan, gravity-driven metal organic frameworks loaded rattan-based catalytic filter was designed to degrade organic pollutants by activating PMS at high liquid fluxes. Inspired by the water transportation of rattan, ZIF-67 was in-situ grown uniformly on the rattan channels inner surface using the continuous flow method. The intrinsically aligned microchannels in the vascular bundles of rattan acted as reaction compartments for the immobilization and stabilization of ZIF-67. Furthermore, the rattan-based catalytic filter exhibited excellent gravity-driven catalytic activity (up to 100 % treatment efficiency for a water flux of 10173.6 L·m-2·h-1), recyclability, and stability of organic pollutant degradation. After ten cycles, the TOC removal of ZIF-67@rattan was 69.34 %, maintaining a stable mineralisation capacity for pollutants. The inhibitory effect of the micro-channel promoted the interaction between active groups and contaminants, increasing the degradation efficiency and improving the stability of the composite. The design of a gravity-driven rattan-based catalytic filter for wastewater treatment provides an effective strategy for developing renewable and continuous catalytic systems.
Collapse
Affiliation(s)
- Yujing Tan
- College of Materials Science and Engineering, Nanjing Forestry University, 210037 Nanjing, PR China
| | - Kaiwen Chen
- College of Materials Science and Engineering, Nanjing Forestry University, 210037 Nanjing, PR China
| | - Jianyi Zhu
- College of Materials Science and Engineering, Nanjing Forestry University, 210037 Nanjing, PR China
| | - Fengze Sun
- College of Materials Science and Engineering, Nanjing Forestry University, 210037 Nanjing, PR China
| | - Hui Peng
- College of Materials Science and Engineering, Nanjing Forestry University, 210037 Nanjing, PR China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 210037 Nanjing, PR China
| | - Tianyi Zhan
- College of Materials Science and Engineering, Nanjing Forestry University, 210037 Nanjing, PR China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 210037 Nanjing, PR China
| | - Jianxiong Lyu
- College of Materials Science and Engineering, Nanjing Forestry University, 210037 Nanjing, PR China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 210037 Nanjing, PR China; Research Institute of Wood Industry of Chinese Academy of Forestry, 100091 Beijing, PR China.
| |
Collapse
|
17
|
Wang S, Wang J. Bimetallic and nitrogen co-doped biochar for peroxymonosulfate (PMS) activation to degrade emerging contaminants. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
18
|
Wu Q, Siddique MS, Wang H, Cui L, Wang H, Pan M, Yan J. Visible-light-driven iron-based heterogeneous photo-Fenton catalysts for wastewater decontamination: A review of recent advances. CHEMOSPHERE 2023; 313:137509. [PMID: 36495983 DOI: 10.1016/j.chemosphere.2022.137509] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/23/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Visible-light-driven heterogeneous photo-Fenton process has emerged as the most promising Fenton-derived technology for wastewater decontamination, owing to its prominent superiorities including the potential utilization of clean energy (solar light), and acceleration of ≡Fe(II)/≡Fe(III) dynamic cycle. As the core constituent, catalysts play a pivotal role in the photocatalytic activation of H2O2 to yield reactive oxidative species (ROS). To date, all types of iron-based heterogeneous photo-Fenton catalysts (Fe-HPFCs) have been extensively reported by the scientific community, and exhibited satisfactory catalytic performance towards pollutants decomposition, sometimes even exceeding the homogeneous counterparts (Fe(II)/H2O2). However, the relevant reviews on Fe-HPFCs, especially from the viewpoint of catalyst-self design are extremely limited. Therefore, this state-of-the-art review focuses on the available Fe-HPFCs in literatures, and gives their classification based on their self-characteristics and modification strategies for the first time. Two classes of representative Fe-HPFCs, conventional inorganic semiconductors of Fe-containing minerals and newly emerging Fe-based metal-organic frameworks (Fe-MOFs) are comprehensively summarized. Moreover, three universal strategies including (i) transition metal (TMs) doping, (ii) construction of heterojunctions with other semiconductors or plasmonic materials, and (iii) combination with supporters were proposed to tackle their inherent defects, viz., inferior light-harvesting capacity, fast recombination of photogenerated carriers, slow mass transfer and low exposure and uneven dispersion of active sites. Lastly, a critical emphasis was also made on the challenges and prospects of Fe-HPFCs in wastewater treatment, providing valuable guidance to researchers for the reasonable construction of high-performance Fe-HPFCs.
Collapse
Affiliation(s)
- Qiangshun Wu
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China.
| | - Muhammad Saboor Siddique
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100086, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huijuan Wang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Liqiang Cui
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Hui Wang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Mei Pan
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Jinlong Yan
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China.
| |
Collapse
|
19
|
Sakthivel R, Liu TY, Chung RJ. Bimetallic Cu 5Zn 8 alloy-embedded hollow porous carbon nanocubes derived from 3D-Cu/ZIF-8 as efficient electrocatalysts for environmental pollutant detection in water bodies. ENVIRONMENTAL RESEARCH 2023; 216:114609. [PMID: 36272591 DOI: 10.1016/j.envres.2022.114609] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Excessive use of nitrofurantoin (NFT) and its residues can be harmful to the ecosystem, and to mitigate this, rapid and cost-effective detection of NFT in water bodies is needed. In this regard, we prepared a three-dimensional (3D) copper-zeolitic imidazole framework (Cu/ZIF-8)-derived bimetallic Cu5Zn8 alloy-embedded hollow porous carbon nanocubes (Cu5Zn8/HPCNC) for electrochemical detection of NFT. The resultant material is characterized using suitable spectrophotometry and voltammetry methods. Cu5Zn8/HPCNC is an effective electrocatalyst with high electrical conductivity and a fast electron transfer rate. It also has more catalytic active sites for improved electrochemical reduction of NFT. Fabricated Cu5Zn8/HPCNC-modified screen-printed electrode (SPE) for NFT reduction have a wide linear range with a low detection limit, and high sensitivity (15.343 μA μМ-1 cm-2), appreciable anti-interference ability with related nitro compounds, storage stability, reproducibility, and repeatability. Also, the practicability of Cu5Zn8/HPCNC/SPE can be successfully employed in NFT monitoring in water bodies (drinking water, pond water, river water, and tap water) with satisfactory recoveries.
Collapse
Affiliation(s)
- Rajalakshmi Sakthivel
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan
| | - Ting-Yu Liu
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 243303, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan City, 32003, Taiwan
| | - Ren-Jei Chung
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan.
| |
Collapse
|
20
|
Zheng Y, Du X, Song G, Gu J, Guo J, Zhou M. Degradation of carbamazepine over MOFs derived FeMn@C bimetallic heterogeneous electro-Fenton catalyst. CHEMOSPHERE 2023; 312:137353. [PMID: 36423717 DOI: 10.1016/j.chemosphere.2022.137353] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/23/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
A highly efficient heterogeneous electro-Fenton (Hetero-EF) catalyst with core-shell structure was successfully prepared by calcination of Mn-doped Mil-53 (Fe) precursor at high temperature. FeMn@C-800/2 prepared at pyrolysis temperature of 800 °C and Fe:Mn molar doping ratio of 2:1 showed the best catalytic performance for the degradation of carbamazepine (CBZ). The characterization, properties and stability of FeMn@C-800/2 were systematically investigated, obtaining the apparent first-order reaction rate of Hetero-EF was 8.9 and 17.8 times higher than that on Fe@C-800 and Mn@C-800 at the optimized conditions of current density 10 mA cm-2, catalyst dosage of 50 mg L-1 and initial pH 4.0, respectively. The incorporation of Mn promoted the generation of more Fe0 and Fe3C during the pyrolysis process, and enhanced the internal micro-electrolysis between Fe0 and carbon shell. At the same time, the presence of Mn0 also promoted the regeneration of Fe2+, and improved the activity of iron-carbon heterogeneous catalysis in the EF process, so as to degrade organic pollutants more effectively. This work would help to gain insight into the design of MOFs derived Fe-Mn bimetal catalyst and its mechanism for enhanced heterogeneous electro-Fenton.
Collapse
Affiliation(s)
- Yang Zheng
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Xuedong Du
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Ge Song
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Jinyu Gu
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Jieru Guo
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
21
|
Wan J, Wang L, Xu W, Xu Z, Yuan J, Zhang G. Preparation of N and Ce Co-doped MIL-101(Fe) Heterogeneous Catalysts for Efficient Electro-Fenton Oxidation. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Jiakang Wan
- Center for Membrane and Water Science &Technology, Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou310014, P. R. China
| | - Ling Wang
- Hangzhou Special Equipments Inspection and Research Institute, Hangzhou310014, China
| | - Wentao Xu
- College of Chemical Engineering and Material Science, Quanzhou Normal University, Quanzhou362000, China
| | - Zehai Xu
- Center for Membrane and Water Science &Technology, Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou310014, P. R. China
| | - Junsheng Yuan
- College of Chemical Engineering and Material Science, Quanzhou Normal University, Quanzhou362000, China
| | - Guoliang Zhang
- Center for Membrane and Water Science &Technology, Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou310014, P. R. China
- College of Chemical Engineering and Material Science, Quanzhou Normal University, Quanzhou362000, China
| |
Collapse
|
22
|
Wang Z, Shi Y, Shi Y, Zhang J, Hao R, Zhang G, Zeng L. Ultrasmall Gold-Coated Mesoporous Polydopamine Nanoprobe to Enhance Chemodynamic Therapy by Self-Supplying H 2O 2 and Photothermal Stimulation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54478-54487. [PMID: 36448730 DOI: 10.1021/acsami.2c14031] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Tumor microenvironment (TME) responsive chemodynamic therapy (CDT) showed an important application in inhibiting tumor growth by producing the highly toxic hydroxyl radical (·OH), but insufficient hydrogen peroxide (H2O2) and overexpressed glutathione (GSH) limited its application. Herein, by integrating photothermal therapy (PTT) and CDT, a new kind of mesoporous polydopamine (MPDA)-based cascade-reaction nanoplatform (MPDA@AuNPs-Cu) was designed for enhanced antitumor therapy, in which ultrasmall gold nanoparticles (AuNPs) with glucose oxidase (GOx)-like activity were deposited on MPDA for providing H2O2, and Cu2+ was chelated for GSH-responsive Fenton-like reaction. It was demonstrated that the MPDA@AuNPs-Cu nanoprobe showed high photothermal conversion efficiency and excellent biocompatibility. Moreover, the MPDA@AuNPs-Cu nanoprobe exhibited strong ·OH generation because of H2O2 self-generation and photothermal stimulation. Importantly, compared with MPDA-Cu, MPDA@AuNPs-Cu exhibited enhanced in vitro and in vivo CDT/PTT performance, by which the tumor growth was completely inhibited, achieving TME-responsive antitumor efficacy.
Collapse
Affiliation(s)
- Zhaoyang Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green development, Chemical Biology Key Laboratory of Hebei Province, Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, P. R. China
| | - Yuehua Shi
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green development, Chemical Biology Key Laboratory of Hebei Province, Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, P. R. China
| | - Yu Shi
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green development, Chemical Biology Key Laboratory of Hebei Province, Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, P. R. China
| | - Jiahe Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green development, Chemical Biology Key Laboratory of Hebei Province, Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, P. R. China
| | - Ran Hao
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green development, Chemical Biology Key Laboratory of Hebei Province, Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, P. R. China
| | - Gangwan Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green development, Chemical Biology Key Laboratory of Hebei Province, Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, P. R. China
| | - Leyong Zeng
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green development, Chemical Biology Key Laboratory of Hebei Province, Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, P. R. China
| |
Collapse
|
23
|
Pan K, Hou H, Hu J, Yang J, Xiang J, Li C, Xu C, Chen S, Liang S, Yang J. Ca and Cu doped LaFeO 3 to promote coupling of photon carriers and redox cycling for facile photo-Fenton degradation of bisphenol A. CHEMOSPHERE 2022; 308:136325. [PMID: 36084826 DOI: 10.1016/j.chemosphere.2022.136325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Enhancements in the light response and hydrogen peroxide utilization are critical to the catalytic performance of heterogeneous Fenton-like perovskites. Here, in this research, oxygen vacancy-enriched La0.9Ca0.1Cu0.5Fe0.5O3-δ was prepared by a co-precipitation method with Cu substitution and Ca doping and demonstrated excellent performance for the degradation of bisphenol A. Both total organic carbon (TOC) removal and hydrogen peroxide utilization were close to 90% within 120 min at pH 3-7, where the TOC removal and hydrogen peroxide utilization were 2.5 times and 5.5 times of LaFeO3 in the absence of Ca and Cu doping. It demonstrated excellent stability to light irradiation and oxidation with respect to cycling and metal ion leaching. This revealed that oxygen vacancies were enriched in the catalyst with the substitution of Ca and Cu and contributed to the recombination of photogenerated electrons, thereby increasing the reduction efficiency of copper ions and accelerating the redox cycling of iron ions.
Collapse
Affiliation(s)
- Keliang Pan
- Hubei Institute of Geosciences, Wuhan, Hubei 430034, PR China; School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Key Laboratory of Resource and Ecological Environment Geology, Wuhan, Hubei, 430034, PR China
| | - Huijie Hou
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China
| | - Jingping Hu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China.
| | - Jun Yang
- Hubei Institute of Geosciences, Wuhan, Hubei 430034, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China
| | - Jianqiao Xiang
- Hubei Institute of Geosciences, Wuhan, Hubei 430034, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China
| | - Chuncheng Li
- Hubei Institute of Geosciences, Wuhan, Hubei 430034, PR China
| | - Chunyan Xu
- Hubei Institute of Geosciences, Wuhan, Hubei 430034, PR China
| | - Sijing Chen
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China
| | - Sha Liang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China
| | - Jiakuan Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China
| |
Collapse
|
24
|
CuOx-MnOy@biochar nanocatalyst synthesis for heterogeneous visible-light-driven Fenton-like: A resistant antibiotic degradation. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2022.106517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
25
|
Shen Z, Xu D, Wang G, Geng L, Xu R, Wang G, Guo Y, Sun X. Novel colorimetric aptasensor based on MOF-derived materials and its applications for organophosphorus pesticides determination. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129707. [PMID: 35986944 DOI: 10.1016/j.jhazmat.2022.129707] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/14/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
For the visual detection of four organophosphorus pesticides (OPs), a colorimetric aptasensor was developed based on aptamer-mediated bimetallic metal-organic frameworks (MOFs) nano-polymers. Fe-Co magnetic nanoparticles (MNPs) and Fe-N-C nanozymes were prepared based on pyrolytic reaction, and were labeled with broad spectrum aptamers and complementary chains of organophosphorus pesticides respectively. The hybridization of aptamers and complementary chains led to the formation of nano-polymers. In the presence of target pesticides, they competed with complementary chains for aptamers on Fe-Co MNPs, resulting in a large number of Fe-N-C nanozymes signal labels being released into the supernatant. Fe-N-C nanozymes showed similar activity to peroxidase and catalyzed the 3,3',5,5'-tetramethylbenzidine-hydrogen peroxide (TMB-H2O2) color system to turn the solution blue-green under mild conditions. The magnetic probes had good selectivity and sensitivity, and were easily separated by magnetic absorption. The sensor functioned well under optimal conditions, demonstrating good stability and specificity for four pesticides: phorate, profenofos, isocarbophos and omethoate, and the detection limits of four pesticides were as low as 0.16 ng/mL, 0.16 ng/mL, 0.03 ng/mL and 1.6 ng/mL respectively, and the recovery rate of OPs residue in vegetable samples was satisfactory. The work described here provided a simple, rapid and sensitive way to construct a biosensor.
Collapse
Affiliation(s)
- Zheng Shen
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Deyan Xu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Guangxian Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Lingjun Geng
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Rui Xu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Guanjie Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Yemin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China.
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China.
| |
Collapse
|
26
|
Gupta R, Rahi Alhachami F, Khalid I, Majdi HS, Nisar N, Mohamed Hasan Y, Sivaraman R, Romero Parra RM, Al Mashhadani ZI, Fakri Mustafa Y. Recent Progress in Aptamer-Functionalized Metal-Organic Frameworks-Based Optical and Electrochemical Sensors for Detection of Mycotoxins. Crit Rev Anal Chem 2022; 54:1707-1728. [PMID: 36197710 DOI: 10.1080/10408347.2022.2128634] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Abstract
Mycotoxin contamination in foodstuffs and agricultural products has posed a serious hazard to human health and raised international concern. The progress of cost-effective, facile, rapid and reliable analytical tools for mycotoxin determination is in urgent need. In this regard, the potential utility of metal-organic frameworks (MOFs) as a class of crystalline porous materials has sparked immense attention due to their large specific surface area, adjustable pore size, nanoscale framework structure and good chemical stability. The amalgamation of MOFs with high-affinity aptamers has resulted in the progress of advanced aptasensing methods for clinical and food/water safety diagnosis. Aptamers have many advantages over classical approaches as exceptional molecular recognition constituents for versatile bioassays tools. The excellent sensitivity and selectivity of the MOF-aptamer biocomposite nominate them as efficient lab-on-chip tools for portable, label-free, cost-effective and real-time screening of mycotoxins. Current breakthroughs in the concept, progress and biosensing applications of aptamer functionalized MOFs-derived electrochemical and optical sensors for mycotoxins have been discussed in this study. We first highlighted an overview part, which provides some insights into the functionalization mechanisms of MOFs with aptamers, offering a foundation to create MOFs-based aptasensors. Then, we discuss various strategies to design high-performance MOFs-based aptamer scaffolds, which serve as either signal nanoprobe carriers or signal nanoprobes and their applications. We perceived that applications of optical aptamers are in their infancy in comparison with electrochemical MOFs-derived aptasensors. Finally, current challenges and prospective trends of MOFs-aptamer sensors are discussed.
Collapse
Affiliation(s)
- Reena Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Firas Rahi Alhachami
- Radiology Department, College of Health and Medical Technololgy, Al-Ayen University, Thi-Qar, Iraq
| | - Imran Khalid
- Department of Agriculture Extension Education, The Islamia University of Bahawalpur, Pakistan
| | - Hasan Sh Majdi
- Department of Chemical Engineering and Petroleum Industries, Al-Mustaqbal University College, Hilla, Iraq
| | - Nazima Nisar
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | - R Sivaraman
- Dwaraka Doss Goverdhan Doss Vaishnav College, University of Madras Chennai, Arumbakkam, India
| | | | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| |
Collapse
|
27
|
Sakthivel R, Prasanna SB, Tseng CL, Lin LY, Duann YF, He JH, Chung RJ. A Sandwich-Type Electrochemical Immunosensor for Insulin Detection Based on Au-Adhered Cu 5 Zn 8 Hollow Porous Carbon Nanocubes and AuNP Deposited Nitrogen-Doped Holey Graphene. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202516. [PMID: 35950565 DOI: 10.1002/smll.202202516] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Rapid, accurate, and sensitive insulin detection is crucial for managing and treating diabetes. A simple sandwich-type electrochemical immunosensor is engineered using gold nanoparticle (AuNP)-adhered metal-organic framework-derived copper-zinc hollow porous carbon nanocubes (Au@Cu5 Zn8 /HPCNC) and AuNP-deposited nitrogen-doped holey graphene (NHG) are used as a dual functional label and sensing platform. The results show that identical morphology and size of Au@Cu5 Zn8 /HPCNC enhance the electrocatalytic active sites, conductivity, and surface area to immobilize the detection antibodies (Ab2 ). In addition, AuNP/NHG has the requisite biocompatibility and electrical conductivity, which facilitates electron transport and increases the surface area of the capture antibody (Ab1 ). Significantly, Cu5 Zn8 /HPCNC exhibits necessary catalytic activity and sensitivity for the electrochemical reduction of H2 O2 using (i-t) amperometry and improves the electrochemical response in differential pulse voltammetry. Under optimal conditions, the immunosensor for insulin demonstrates a wide linear range with a low detection limit and viable specificity, stability, and reproducibility. The platform's practicality is evaluated by detecting insulin in human serum samples. All these characteristics indicate that the Cu5 Zn8 /HPCNC-based biosensing strategy may be used for the point-of-care assay of diverse biomarkers.
Collapse
Affiliation(s)
- Rajalakshmi Sakthivel
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan
| | - Sanjay Ballur Prasanna
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan
| | - Ching-Li Tseng
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- Research Center of Biomedical Device, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Lu-Yin Lin
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan
| | - Yeh-Fang Duann
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan
| | - Jr-Hau He
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Ren-Jei Chung
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan
| |
Collapse
|
28
|
Zhangsun H, Wang Q, Xu Z, Wang J, Wang X, Zhao Y, Zhang H, Zhao S, Li L, Li Z, Wang L. NiCu nanoalloy embedded in N-doped porous carbon composite as superior electrochemical sensor for neonicotinoid determination. Food Chem 2022; 384:132607. [DOI: 10.1016/j.foodchem.2022.132607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 11/04/2022]
|
29
|
Wang Z, Ren D, Huang Y, Zhang S, Zhang X, Chen W. Degradation mechanism and pathway of 2,4-dichlorophenol via heterogeneous activation of persulfate by using Fe-Cu-MOF@C nanocatalyst. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Zhang J, Ma Y, Sun Y, Zhu Y, Wang L, Lin F, Ma Y, Ji W, Li Y, Wang L. Enhancing deep mineralization of refractory benzotriazole via carbon nanotubes-intercalated cobalt copper bimetallic oxide nanosheets activated peroxymonosulfate process: Mechanism, degradation pathway and toxicity. J Colloid Interface Sci 2022; 628:448-462. [DOI: 10.1016/j.jcis.2022.07.162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/12/2022] [Accepted: 07/26/2022] [Indexed: 10/16/2022]
|
31
|
Li L, Cheng M, Qin L, Almatrafi E, Yang X, Yang L, Tang C, Liu S, Yi H, Zhang M, Fu Y, Zhou X, Xu F, Zeng G, Lai C. Enhancing hydrogen peroxide activation of CuCo layered double hydroxide by compositing with biochar: Performance and mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154188. [PMID: 35240166 DOI: 10.1016/j.scitotenv.2022.154188] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/07/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
In this study, CuCo layered double hydroxide/biochar composite (CuCo LDH/BC) was prepared and employed for activating H2O2 to degrade ciprofloxacin (CIP), a common fluroquinolone antibiotic detected in water environment. The as-synthesized catalysts were also comprehensively characterized to study the physiochemical properties. For the catalytic activity, the degradation rate of CuCo LDH/BC to CIP was approximately 1.5 times higher than that of CuCo LDH. The improved catalytic activity can be ascribed to the synergistic effect between CuCo LDH and BC, such as more functional groups, accelerated electron transfer, and varied charge distribution. Meanwhile, CuCo LDH/BC/H2O2 could degrade CIP efficiently in a wider pH range comparing with CuCo LDH/H2O2, and the efficiency was approximately 84.7% at neutral pH within 90 min. The generation of OH, O2- and 1O2 in CuCo LDH/BC/H2O2 system were then verified by electron spin resonance (ESR) technology. The quenching experiments indicated that both non-radical pathway (1O2) and radical pathway (OH, O2-) led to CIP degradation, in which O2- and 1O2 made major contribution. Then, the intermediate products of CIP during catalytic reaction were monitored by high-performance liquid chromatography-mass spectrometry (HPLC-MS), and the environmental risk of these degradation intermediates was tested through seed germination experiments. This study tends to provide valuable information for LDH/BC application in heterogeneous Fenton-like reaction.
Collapse
Affiliation(s)
- Ling Li
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Min Cheng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Lei Qin
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Eydhah Almatrafi
- Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Xiaofeng Yang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Lu Yang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Chensi Tang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Shiyu Liu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Huan Yi
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Mingming Zhang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Yukui Fu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Xuerong Zhou
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Fuhang Xu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China; Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Cui Lai
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China.
| |
Collapse
|
32
|
Zou Y, Qi H, Sun Z. In-situ catalytic degradation of sulfamethoxazole with efficient CuCo-O@CNTs/NF cathode in a neutral electro-Fenton-like system. CHEMOSPHERE 2022; 296:134072. [PMID: 35216983 DOI: 10.1016/j.chemosphere.2022.134072] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/17/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
In this paper, a CuCo-O@CNTs/NF electrode was successfully prepared and used for in-situ degradation of sulfamethoxazole (SMX) in an electro-Fenton-like system. Carbon nanotubes (CNTs) and coral-like copper-cobalt oxides were successively loaded on nickel foam (NF). CNTs contributed to improving the dispersibility and stability of copper-cobalt oxides, and the coral-like copper-cobalt oxide catalyst was anchored on CNTs without any adhesive. In the electro-Fenton-like system, dissolved oxygen can be reduced to superoxide anions in a one-electron step, which could be further transformed into hydrogen peroxide and then reacted with the active components on the electrode to generate reactive oxygen species (ROS) to participate in the degradation of SMX. Almost 100% SMX removal was obtained within 60 min in a wide near-neutral pH range (5.6-9.0), and the electrode could still achieve a 90.4% removal rate after ten recycle runs. Radical-quenching results showed that superoxide anions were the main species in the degradation of SMX. In addition, a possible degradation pathway of SMX was proposed. According to the result of toxicological simulations, the toxicity of the pollutant solution during the degradation process exhibited a decreasing trend. This study provides new insights for in-situ catalysis of electrodes with bimetallic active components to generate ROS for high-efficiency degradation of refractory organic pollutants.
Collapse
Affiliation(s)
- Yelong Zou
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China.
| | - Haiqiang Qi
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China.
| | - Zhirong Sun
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China.
| |
Collapse
|
33
|
Highly efficient removal of tetracycline hydrochloride by CuNi-C MOF: Activation of oxygen via radical and non-radical pathways. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Wang L, Yang H, Kang L, Wu M, Yang Y. Highly dispersed of Ag/AgCl nanoparticles on exfoliated FeOCl nanosheets as photo-Fenton catalysts for pollutants degradation via accelerating Fe(II)/Fe(III) cycle. CHEMOSPHERE 2022; 296:134039. [PMID: 35189188 DOI: 10.1016/j.chemosphere.2022.134039] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
In this work, Ag/AgCl/FeOCl (Ag-Fe) catalysts were successfully prepared via multistep routes in which Ag was uniformly anchored to the enriched Cl sites provided by exfoliated FeOCl nanosheets. Among these Ag-Fe catalysts, 5% Ag-Fe exhibited the highest pseudo first-order kinetic constant 0.1056 min-1 for photo-Fenton degradation of Rhodamine B (RhB), which was 11 times higher than that of FeOCl (0.0096 min-1). Ag-Fe catalysts exposed more coordinatively unsaturated Fe active sites to coordinate with H2O2 due to the cleavage of Fe-Cl bond. The exposed coordinatively unsaturated Fe(III) active sites could capture the photoinduced electrons and reduce them to Fe(II), which boosted the separation efficiency of photogenerated charge carriers. Meanwhile, the photogenerated electrons of Ag0 transferred to the FeOCl, promoting the reduction of Fe(III) to Fe(II). In addition, the intensified visible light adsorption (SPR effect) was achieved after introducing Ag/AgCl nanoparticles on exfoliated FeOCl. Hydroxyl radicals (·OH) and holes (h+) were determined as the main reactive oxidative species (ROS) in the photo-Fenton degradation process.
Collapse
Affiliation(s)
- Lina Wang
- Key Laboratory of Integrated Regulation and Resource Development, on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Hanpei Yang
- Key Laboratory of Integrated Regulation and Resource Development, on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Li Kang
- Key Laboratory of Integrated Regulation and Resource Development, on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Mi Wu
- Key Laboratory of Integrated Regulation and Resource Development, on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Yuankun Yang
- Key Laboratory of Integrated Regulation and Resource Development, on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
35
|
Kumar OP, Ahmad M, Nazir MA, Anum A, Jamshaid M, Shah SSA, Rehman A. Strategic combination of metal-organic frameworks and C 3N 4 for expeditious photocatalytic degradation of dye pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:35300-35313. [PMID: 35048343 DOI: 10.1007/s11356-021-17366-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/31/2021] [Indexed: 06/14/2023]
Abstract
The potential of fabricated silver and bismuth Co-N-doped imidazolate embedded into graphitic nitride BiO-Ag(0)/C3N4@ZIF-67 for the degradation of Methylene blue (MB) and Congo red (CR) dyes have been reported. The synthesized materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy photoluminescence (PL) spectroscopy, and electrochemical impedance spectroscopy (EIS). The band gaps of ZIF-67, C3N4 and composites were calculated using Tauc plot. Besides, it was revealed that incorporation of silver, bismuth, and C3N4 reduced the band gap energy to 2.2 eV. The introduction of metallic species in the precursors promoted better charge separation behavior towards photogenerated electron and hole in the heterojunction composite. Two perilous organic dyes; MB and CR were degraded under natural sunlight irradiation. The photocatalytic efficiency of BiO-Ag(0)/C3N4@ZIF-67 for the removal of CR and MB significantly increased compared to bare ZIF-67. The enhanced photocatalytic activity of BiO-Ag(0)/C3N4@ZIF-67 is attributed to the higher surface area and Plasmon effect of noble silver metal. The solar light-triggered degradation of MB and CR yielded efficient efficiency of 96.5 and 90% for 10 mg/L of dye solution each. Additionally, the effect of pH was evaluated for optimizing degradation of CR and MB dyes. The kinetics studies of both CR and MB were clarified according to Langmuir model. The reusability and quenching investigation of active species were carried out to discover find catalytic potential of the composite. Besides, possible dye degradation mechanism was proposed for BiO-Ag(0)/C3N4@ZIF-67. The obtained results indicated that solar-light triggered photocatalyst BiO-Ag(0)/C3N4@ZIF-67 can be employed as a promising approach for photocatalytic elimination of organic pollutants.
Collapse
Affiliation(s)
- Ome Parkash Kumar
- Institute of Chemistry, The Islamia University of Bahawalpur, Baghdad Campus, Bahawalpur, 63100, Pakistan
| | | | - Muhammad Altaf Nazir
- Institute of Chemistry, The Islamia University of Bahawalpur, Baghdad Campus, Bahawalpur, 63100, Pakistan
| | - Aqsa Anum
- Institute of Chemistry, The Islamia University of Bahawalpur, Baghdad Campus, Bahawalpur, 63100, Pakistan
| | - Muhammad Jamshaid
- Institute of Chemistry, The Islamia University of Bahawalpur, Baghdad Campus, Bahawalpur, 63100, Pakistan
| | - Syed Shoaib Ahmad Shah
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Aziz Rehman
- Institute of Chemistry, The Islamia University of Bahawalpur, Baghdad Campus, Bahawalpur, 63100, Pakistan.
| |
Collapse
|
36
|
Du X, Wang S, Ye F, Qingrui Z. Derivatives of metal-organic frameworks for heterogeneous Fenton-like processes: From preparation to performance and mechanisms in wastewater purification - A mini review. ENVIRONMENTAL RESEARCH 2022; 206:112414. [PMID: 34808127 DOI: 10.1016/j.envres.2021.112414] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Organic pollution is an ever-growing issue in aquatic environment, Fenton-like processes have gained widespread acceptance due to their high oxidative potential and environmental compatibility. Derivatives of metal-organic frameworks (MOFs) are emerging heterogeneous Fenton-like catalysts, which have advantages of large surface area, diversity of structures, and abundant active sites. This work focuses on the recent advances in MOFs derivatives including metal compounds and metal incorporated carbons for Fenton-like processes. First, preparation strategies, structures and compositions are introduced. And then, the removal of organic pollutant in Fenton, electro-Fenton, and photo-Fenton process catalyzed by MOFs derivative is summarized, respectively. The contents particularly devote efforts to build connections among preparation, structures, compositions, and performance. Furthermore, the mechanisms of improving performance are discussed in detail. Finally, the perspectives of MOFs derivatives toward Fenton-like applications are proposed.
Collapse
Affiliation(s)
- Xuedong Du
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China
| | - Shuo Wang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China
| | - Fei Ye
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China
| | - Zhang Qingrui
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China; State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, PR China; Qinhuangdao Tianda Environmental Protection Research Institute Co., China.
| |
Collapse
|
37
|
Magnetic core–shell S-Fe@MOF derivative hybrids to activate peroxymonosulfate for highly efficient degradation of tetrabromobisphenol A. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
38
|
Li X, Wu D, Hua T, Lan X, Han S, Cheng J, Du KS, Hu Y, Chen Y. Micro/macrostructure and multicomponent design of catalysts by MOF-derived strategy: Opportunities for the application of nanomaterials-based advanced oxidation processes in wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150096. [PMID: 34798724 DOI: 10.1016/j.scitotenv.2021.150096] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 05/24/2023]
Abstract
Advanced oxidation processes (AOPs) have demonstrated an effective wastewater treatment method. But the application of AOPs using nanomaterials as catalysts is challenged with a series of problems, including limited mass transfer, surface fouling, poor stability, and difficult recycling. Recently, metal-organic frameworks (MOFs) with high tunability and ultrahigh porosity are emerging as excellent precursors for the delicate design of the structure/composition of catalysts and many MOF-derived catalysts with distinct physicochemical characteristics have shown optimized performance in various AOPs. Herein, to elucidate the structure-composition-performance relationship, a review on the performance optimization of MOF-derived catalysts to overcome the existing problems in AOPs by micro/macrostructure and multicomponent design is given. Impressively, MOF-derived strategy for the design of catalyst materials from the aspects of microstructure, macrostructure, and multicomponent (polymetallic, heteroatom doping, M/C hybrids, etc.) is firstly presented. Moreover, important advances of MOF-derived catalysts in the application of various AOPs (Fenton, persulfate-based AOPs, photocatalysis, electrochemical processes, hybrid AOPs) are summarized. The relationship between the unique micro/macrostructure and/or multicomponent features and performance optimization in mass transfer, catalytic efficiency, stability, and recyclability is clarified. Furthermore, the challenges and future work directions for the practical application of MOF-derived catalysts in AOPs for wastewater treatment are provided.
Collapse
Affiliation(s)
- Xiaoman Li
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Danhui Wu
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Tao Hua
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xiuquan Lan
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Shuaipeng Han
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jianhua Cheng
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China; South China Institute of Collaborative Innovation, Dongguan 523808, China.
| | - Ke-Si Du
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| | - Yongyou Hu
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yuancai Chen
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
39
|
Enhanced Catalytic Performance of Fenton-Like Reaction: Dependence on Meso-Structure and Cu-Ce Interaction. Catal Letters 2022. [DOI: 10.1007/s10562-021-03878-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
40
|
Ou J, Luo K, Tan H, Li N, Hu B, Yu G. Fe 3O 4@N-doped carbon derived from dye wastewater flocculates as a heterogeneous catalyst for degradation of methylene blue. NEW J CHEM 2022. [DOI: 10.1039/d2nj02905g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The study used wastewater to mitigate pollution, wherein the catalyst was derived from MG dye wastewater flocculates produced by electrocoagulation.
Collapse
Affiliation(s)
- Jinhua Ou
- School of Materials Science and Engineering, Hunan Institute of Technology, Hengyang, 421002, China
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Kejun Luo
- Changsha Research Institute of Mining and Metallurgy Co., Ltd, Changsha, 410012, China
| | - Hong Tan
- School of Materials Science and Engineering, Hunan Institute of Technology, Hengyang, 421002, China
| | - Ni Li
- School of Materials Science and Engineering, Hunan Institute of Technology, Hengyang, 421002, China
| | - Bonian Hu
- School of Materials Science and Engineering, Hunan Institute of Technology, Hengyang, 421002, China
| | - Gang Yu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
41
|
Zhao Y, Sun Q, Liu X, Li D, Xing S. Cu/Co/CoS2 embedded in S,N doped carbon as highly-efficient oxygen reduction and evolution electrocatalyst for rechargeable zinc-air batteries. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01605a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In order to improve the retarded oxygen reduction and evolution reaction (ORR/OER) in rechargeable metal-air cells in electrochemical energy conversion systems, constructing multiphase nanostructured catalysts is an alternative strategy, where...
Collapse
|
42
|
Chen Y, Zhao J, Hu L, Tian J, Liu Y. Degradation of sulfamerazine by a novel Cu xO@C composite derived from Cu-MOFs under air aeration. CHEMOSPHERE 2021; 280:130678. [PMID: 33971422 DOI: 10.1016/j.chemosphere.2021.130678] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/04/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Most metal-organic frameworks (MOFs) are synthesized from carboxylate and metal precursors by hydrothermal process, which will consume a large amount of solvent and carboxylate. To address this issue, a new strategy for Cu-based MOFs was developed, in which the Cu-based MOFs was obtained by using abundant natural polymer (tannic acid) as one of the precursors and using high-energy ball milling to achieve a self-assembly of tannic acid and copper sulfate. Based on this strategy, a novel Cu-based MOFs derivative (CuxO@C composite) was synthesized by high-temperature sintering of Cu-based MOFs and used for sulfamerazine (SMR) removal via O2 activation. The BET specific surface area and average pore size of CuxO@C composite were 110.34 m2 g-1 and 21.06 nm, respectively, which made CuxO@C composite had the maximum adsorption capacity (Qmax) for SMR of 104.65 mg g-1 and favored the subsequent degradation of SMR. The results from XRD and XPS indicated that CuxO@C composite contained a lot of Cu0 and Cu2O with the sizes of 76.6 nm and 9.8 nm, respectively, which led to its high performance of O2 activation. The removal efficiency of SMR and 90.2% TOC achieved 100% and 90.2%, respectively in the CuxO@C/air system at initial pH of 4.0, air flow rate of 100 mL min-1, CuxO@C dosage of 1 g L-1 and reaction time of 30 min. Reactive species, including H2O2, OH and O2- radicals were detected in the CuxO@C/air system, and OH and O2- were mainly responsible for the degradation of SMR.
Collapse
Affiliation(s)
- Yong Chen
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Junfeng Zhao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China.
| | - Lu Hu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Jing Tian
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China; Key Laboratory of Treatment for Special Wastewater of Sichuan Province Higher Education System, Sichuan, Chengdu, 610066, China
| | - Yong Liu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China; Key Laboratory of Treatment for Special Wastewater of Sichuan Province Higher Education System, Sichuan, Chengdu, 610066, China.
| |
Collapse
|
43
|
Wu X, Liu X, Wu Z, Zhu W, Qian J, Chen F, Chen Z. Acidity-regulated synthesis of a bifunctional mesoporous silica composite with simultaneously enhanced adsorption and catalytic performance. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
44
|
Chen J, Gu A, Miensah ED, Liu Y, Wang P, Mao P, Gong C, Jiao Y, Chen K, Yang Y. Cu-Zn bimetal ZIFs derived nanowhisker zero-valent copper decorated ZnO nanocomposites induced oxygen activation for high-efficiency iodide elimination. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126097. [PMID: 34492905 DOI: 10.1016/j.jhazmat.2021.126097] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 06/13/2023]
Abstract
Studies on the elimination of iodide anions (I-) by Cu-based adsorbents have been conducted for decades, however its unsatisfactory adsorption performance and its non-reusability are still the main obstacles for large-scale practical applications. Here, an efficient technique was proposed for the elimination of iodide using nanowhisker zero-valent copper (nwZVC) decorated ZnO nanocomposites obtained by two steps pyrolysis of Cu-Zn bimetal ZIFs precursors. The as-synthesized materials were extensively characterized and the results clearly revealed that nanoscale ZVC were well-dispersed in the ZnO matrix, and the morphology and the amount of nanoscale ZVC could be tuned by adjusting the molar ratio of Cu/Zn in ZIF precursors. The following batch adsorption experiments demonstrated that the resultant materials exhibited high adsorption capacity of 270.8 mg g-1 under condition of adequate oxygen, as well as high selectivity, strong acidity resistance and an excellent reusability. The mechanism investigations revealed that the elimination of I- by as-fabricated materials involved adsorption process coupled with oxidation, and the existence of nwZVC was responsible for this since nwZVC could activate molecular oxygen to generate H2O2 accompanied by the release of Cu+, thus leading to I- adsorbed by the released Cu+ and oxidized by the H2O2.
Collapse
Affiliation(s)
- Jiuyu Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Aotian Gu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Elvis Djam Miensah
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Ying Liu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Peng Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Ping Mao
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Chunhui Gong
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yan Jiao
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Kai Chen
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yi Yang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Nanjing University of Information Science & Technology, Nanjing 210044, China.
| |
Collapse
|
45
|
ZIF-8 assisted synthesis of magnetic core–shell Fe3O4@CuS nanoparticles for efficient sulfadiazine degradation via H2O2 activation: Performance and mechanism. J Colloid Interface Sci 2021; 594:502-512. [DOI: 10.1016/j.jcis.2021.03.057] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 01/13/2023]
|
46
|
Silver-decorated ZIF-8 derived ZnO concave nanocubes for efficient photooxidation-adsorption of iodide anions: An in-depth experimental and theoretical investigation. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122039] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
47
|
Song Y, He L, Zhang S, Liu X, Chen K, Jia Q, Zhang Z, Du M. Novel impedimetric sensing strategy for detecting ochratoxin A based on NH 2-MIL-101(Fe) metal-organic framework doped with cobalt phthalocyanine nanoparticles. Food Chem 2021; 351:129248. [PMID: 33640766 DOI: 10.1016/j.foodchem.2021.129248] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/10/2020] [Accepted: 01/09/2021] [Indexed: 01/10/2023]
Abstract
Iron-based metal-organic framework, NH2-MIL-101(Fe), was doped with different dosages of cobalt phthalocyanine nanoparticles (CoPc) to synthesize a series of NH2-MIL-101(Fe)@CoPc nanocomposites. The NH2-MIL-101(Fe)@CoPc nanocomposites were then employed to construct novel impedimetric aptasensors for the detection of ochratoxin A (OTA). Combining the intrinsic advantages of NH2-MIL-101(Fe) (highly porous structure and excellently electrochemical activity) and CoPc (good physiochemical stability and strong bioaffinity), the NH2-MIL-101(Fe)@CoPc nanocomposites show promising properties, which are beneficial for immobilizing OTA-targeted aptamer strands. Amongst, the developed impedimetric aptasensor based on NH2-MIL-101(Fe)@CoPc6:1, prepared using the mass ratio of NH2-MIL-101(Fe):CoPc of 6:1, exhibits the best amplified electrochemical signal and highest sensitivity for detecting OTA. The detection limitation is 0.063 fg·mL-1 within the OTA concentration of 0.0001-100 pg·mL-1, accompanying with high selectivity, good reproducibility and stability, acceptable regenerability, and wide applicability in diverse real samples. Consequently, the proposed sensing strategy can be applied for detecting OTA to cope with food safety.
Collapse
Affiliation(s)
- Yingpan Song
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China; Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Lina He
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Shuai Zhang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Xiao Liu
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Kun Chen
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Qiaojuan Jia
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Zhihong Zhang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China.
| | - Miao Du
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China.
| |
Collapse
|
48
|
Kim SE, Muthurasu A. Highly Oriented Nitrogen‐doped Carbon Nanotube Integrated Bimetallic Cobalt Copper Organic Framework for Non‐enzymatic Electrochemical Glucose and Hydrogen Peroxide Sensor. ELECTROANAL 2021. [DOI: 10.1002/elan.202060566] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- So eun Kim
- Department of Emergency Medicine Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital Jeonju Korea
- Department of Nano Convergence Engineering Jeonbuk National University Republic Korea Jeonju 561-756, Republic of Korea
| | - Alagan Muthurasu
- Department of Nano Convergence Engineering Jeonbuk National University Republic Korea Jeonju 561-756, Republic of Korea
| |
Collapse
|
49
|
Bimetal cobalt-Iron based organic frameworks with coordinated sites as synergistic catalyst for fenton catalysis study and antibacterial efficiency. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125683] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
50
|
Wang Y, Xue Y, Zhang C. Copper embedded in nitrogen-doped carbon matrix derived from metal-organic frameworks for boosting peroxide production and electro-Fenton catalysis. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137643] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|