1
|
Maâroufi L, Hofmann D, Zarfl C, Hüben M, Pütz T, Amelung W. Non-extractable residues of perfluorooctanoic acid (PFOA) in soil. CHEMOSPHERE 2024; 366:143422. [PMID: 39343318 DOI: 10.1016/j.chemosphere.2024.143422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/05/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
PER: and polyfluoroalkyl substances have gained increased attention due to their persistence, ubiquitous presence in the environment, and toxicity. We hypothesised that the formation of non-extractable residues [NER] occurs in soils and contributes to the overall persistence of these priority pollutants, and that NER formation is controlled by temperature. To test these hypotheses, we used 14C-labelled perfluorooctanoic acid [PFOA] as target compound, added it to two arable soils (Cambisol, Luvisol), and incubated them at 10 °C and 20 °C in the dark. To support potential co-metabolic decomposition, some samples were additionally fed with glucose to enhance microbial activity. The PFOA residues were then sequentially extracted using 0.01 M CaCl2, followed by accelerated solvent extraction (ASE) with methanol or methanol/acetic acid after 0, 1, 3, 9, 30, 62, and 90 days of incubation. In addition, we monitored the release of 14C into the gas phase as well as [14C]-PFOA-NER after dry combustion and liquid scintillation counting. After 90 days, we found that the [14C]-PFOA content declined in the extraction order of CaCl2 ((bio)available fraction) > ASE (residual fraction) > NER > gas fraction), with most rapid changes occurring in the first 9 days of incubation. NER formation was different in the two soils and reached 5-9% of the applied amount in the Cambisol and Luvisol, respectively. Noteworthy the proportion of 14C-PFOA in the (bio)available fraction remained relatively stable over time at 56-62% of the applied amount, indicating the reversible transfer into this fraction from a bi-exponentially declining residual (ASE) pool. These dissipation patterns were neither influenced by temperature nor by the addition of glucose. We conclude that NER exist for PFOA, but that the majority of PFOA remains in (bio)available form, thus maintaining toxicity and mobility in soil for prolonged periods of time.
Collapse
Affiliation(s)
- Lucie Maâroufi
- Institute of Bio- and Geosciences, IBG-3: Agrosphere, Forschungszentrum Jülich GmbH, 152425 Jülich, Germany; Institute of Crop Science and Resource Conservation (INRES), Soil Science and Soil Ecology, Nussallee 13, University of Bonn, 53115 Bonn, Germany.
| | - Diana Hofmann
- Institute of Bio- and Geosciences, IBG-3: Agrosphere, Forschungszentrum Jülich GmbH, 152425 Jülich, Germany.
| | - Christiane Zarfl
- Department of Geosciences, University of Tübingen, Schnarrenbergstr. 94-96, 72074 Tübingen, Germany.
| | - Michael Hüben
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Auf dem Aberg 1, 57392 Schmallenberg, Germany.
| | - Thomas Pütz
- Institute of Bio- and Geosciences, IBG-3: Agrosphere, Forschungszentrum Jülich GmbH, 152425 Jülich, Germany.
| | - Wulf Amelung
- Institute of Bio- and Geosciences, IBG-3: Agrosphere, Forschungszentrum Jülich GmbH, 152425 Jülich, Germany; Institute of Crop Science and Resource Conservation (INRES), Soil Science and Soil Ecology, Nussallee 13, University of Bonn, 53115 Bonn, Germany.
| |
Collapse
|
2
|
Xie J, Liu S, Su L, Zhao X, Wang Y, Tan F. Elucidating per- and polyfluoroalkyl substances (PFASs) soil-water partitioning behavior through explainable machine learning models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176575. [PMID: 39343411 DOI: 10.1016/j.scitotenv.2024.176575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/15/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
In this study, an optimized random forest (RF) model was employed to better understand the soil-water partitioning behavior of per- and polyfluoroalkyl substances (PFASs). The model demonstrated strong predictive performance, achieving an R2 of 0.93 and an RMSE of 0.86. Moreover, it required only 11 easily obtainable features, with molecular weight and soil pH being the predominant factors. Using three-dimensional interaction analyses identified specific conditions associated with varying soil-water partitioning coefficients (Kd). Results showed that soils with high organic carbon (OC) content, cation exchange capacity (CEC), and lower soil pH, especially when combined with PFASs of higher molecular weight, were linked to higher Kd values, indicating stronger adsorption. Conversely, low Kd values (< 2.8 L/kg) typically observed in soils with higher pH (8.0), but lower CEC (8 cmol+/kg), lesser OC content (1 %), and lighter molecular weight (380 g/mol), suggested weaker adsorption capacities and a heightened potential for environmental migration. Furthermore, the model was used to predict Kd values for 142 novel PFASs in diverse soil conditions. Our research provides essential insights into the factors governing PFASs partitioning in soil and highlights the significant role of machine learning models in enhancing the understanding of environmental distribution and migration of PFASs.
Collapse
Affiliation(s)
- Jiaxing Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shun Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Lihao Su
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xinting Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yan Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Feng Tan
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
3
|
Usman M, Chaudhary A, Hanna K. Efficient PFAS removal from contaminated soils through combined washing and adsorption in soil effluents. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135118. [PMID: 38981229 DOI: 10.1016/j.jhazmat.2024.135118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/01/2024] [Accepted: 07/04/2024] [Indexed: 07/11/2024]
Abstract
This study investigates soil washing as a viable strategy to remove poly- and perfluoroalkyl substances (PFAS) from contaminated soils using various washing agents including water, methanol, ethanol, and cyclodextrin ((2-Hydroxypropyl)-β-cyclodextrin HPCD)). Water was less effective (removing only 30 % of PFAS), especially for long-chain hydrophobic PFAS. Methanol (50 % v/v) or HPCD (10 mg g-1 soil) achieved > 95 % PFAS removal regardless of PFAS type, soil size fraction (0-400 µm or 400-800 µm), or experimental setups (batch or column, at liquid/solid (L/S) = 1). Column optimization studies revealed improved efficiency at L/S = 10 with diluted washing solutions, where HPCD exhibited rapid PFAS mobilization even at lower concentrations (1 mg mL-1). We then applied a first-order decay model to effectively predict PFAS breakthrough curves and mobilization within soil columns. Subsequent treatment of wash effluents by activated carbon and biochar effectively reduced PFAS concentrations below detection limits. The performance of both soil washing and subsequent adsorption was found to depend strongly on the specific characteristics of PFAS compounds. These findings highlight the significant potential of methanol and HPCD in soil washing and the effectiveness of integrated soil washing and adsorption for optimizing PFAS removal.
Collapse
Affiliation(s)
- Muhammad Usman
- Université de Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France.
| | - Aaifa Chaudhary
- Université de Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France; Environmental Mineralogy & Chemistry, Center for Applied Geosciences, University of Tübingen, 72074 Tübingen, Germany
| | - Khalil Hanna
- Université de Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France.
| |
Collapse
|
4
|
Lasters R, Groffen T, Eens M, Bervoets L. Per- and polyfluoroalkyl substances (PFAS) in homegrown crops: Accumulation and human risk assessment. CHEMOSPHERE 2024; 364:143208. [PMID: 39214403 DOI: 10.1016/j.chemosphere.2024.143208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Homegrown crops can present a significant exposure source of per- and polyfluoroalkyl substances (PFAS) to humans. Field studies studying PFAS accumulation in multiple vegetable food categories and examining the potential influence of soil characteristics on vegetable bioavailability under realistic exposure conditions are very scarce. Crop PFAS accumulation depends on a complex combination of factors. The physicochemical differences among the numerous PFAS makes risk assessment very challenging. Thus, simplification of this complexity into key factors that govern crop PFAS accumulation is critical. This study analyzed 29 targeted legacy, precursor and emerging PFAS in the vertical soil profile (0-45 cm depth), rainwater and edible crop parts of 88 private gardens, at different distances from a major fluorochemical plant. Gardens closer to the plant site showed higher soil concentrations which could be linked with historical and recent industrial emissions. Most compounds showed little variation along the soil depth profile, regardless of the distance from the plant site, which could be due to gardening practices. Annual crops consistently accumulated higher sum PFAS concentrations than perennials. Highest concentrations were observed in vegetables, followed by fruits and walnuts. Single soil-crop relationships were weak, which indicated that other factors (e.g., porewater) may be better measures of bioavailability in homegrown crop accumulation. Regression models, which additionally considered soil characteristics showed limited predictive power (all R2 ≤ 35%), possibly due to low variability in crop concentrations. Human intake estimations revealed that the PFAS exposure risk via crop consumption was similar nearby and remotely from the plant site, although the contribution to the overall dietary exposure can be relatively large. The tolerable weekly intake was frequently exceeded with respect to fruit and vegetable consumption, thus potential health risks cannot be ruled out.
Collapse
Affiliation(s)
- Robin Lasters
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium; Behavioural Ecology and Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| | - Thimo Groffen
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium; Behavioural Ecology and Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| | - Marcel Eens
- Behavioural Ecology and Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| | - Lieven Bervoets
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| |
Collapse
|
5
|
Khan K, Younas M, Ali J, Shah NS, Kavil YN, Assiri MA, Cao X, Sher H, Maryam A, Zhou Y, Yaseen M, Xu L. Population exposure to emerging perfluoroalkyl acids (PFAAs) via drinking water resources: Application of multivariate statistics and risk assessment models. MARINE POLLUTION BULLETIN 2024; 203:116415. [PMID: 38723552 DOI: 10.1016/j.marpolbul.2024.116415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/19/2024] [Accepted: 04/21/2024] [Indexed: 06/06/2024]
Abstract
This study assessed the occurrence, origins, and potential risks of emerging perfluoroalkyl acids (PFAAs) for the first time in drinking water resources of Khyber Pakhtunkhwa, Pakistan. In total, 13 perfluoroalkyl carboxylic acids (PFCAs) with carbon (C) chains C4-C18 and 4 perfluoroalkyl sulfonates (PFSAs) with C chains C4-C10 were tested in both surface and ground drinking water samples using a high-performance liquid chromatography system (HPLC) equipped with an Agilent 6460 Triple Quadrupole liquid chromatography-mass spectrometry (LC-MS) system. The concentrations of ∑PFCAs, ∑PFSAs, and ∑PFAAs in drinking water ranged from 1.46 to 72.85, 0.30-8.03, and 1.76-80.88 ng/L, respectively. Perfluorobutanoic acid (PFBA), perfluorohexanoic acid (PFHxA), and perfluoropentanoic acid (PFPeA) were the dominant analytes in surface water followed by ground water, while the concentration of perfluorobutane sulfonate (PFBS), perfluorooctanoic acid (PFOA), perfluoroheptanoic acid (PFHpA), perfluorooctane sulfonate (PFOS), perfluorohexane sulfonate (PFHxS), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnDA), and perfluorododecanoic acid (PFDoDA) were greater than long-chain PFOA and PFOS. The correlation statistics, which showed a strong correlation (p < 0.05) between the PFAA analytes, potentially indicated the fate of PFAAs in the area's drinking water sources, whereas the hierarchical cluster analysis (HCA) and principal component analysis (PCA) statistics identified industrial, domestic, agricultural, and commercial applications as potential point and non-point sources of PFAA contamination in the area. From risk perspectives, the overall PFAA toxicity in water resources was within the ecological health risk thresholds, where for the human population the hazard quotient (HQ) values of individual PFAAs were < 1, indicating no risk from the drinking water sources; however, the hazard index (HI) from the ∑PFAAs should not be underestimated, as it may significantly result in potential chronic toxicity to exposed adults, followed by children.
Collapse
Affiliation(s)
- Kifayatullah Khan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Environmental and Conservation Sciences, University of Swat, Swat 19120, Pakistan.
| | - Muhammad Younas
- Department of Environmental and Conservation Sciences, University of Swat, Swat 19120, Pakistan
| | - Jafar Ali
- Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, China
| | - Noor Samad Shah
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan
| | - Yasar N Kavil
- Marine Chemistry Department, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, Jeddah 21589, Saudi Arabia; Stockholm Convention Regional Center for Capacity-Building and the Transfer of Technology for West Asia (SCRC-Kuwait), P.O. Box: 24885, Safat 13109, Kuwait
| | - Mohammed A Assiri
- Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Xianghui Cao
- China Institute of Geo-Environment Monitoring, Beijing 100081, China
| | - Hassan Sher
- Center for Plant Sciences and Biodiversity, University of Swat, Swat 19120, Pakistan
| | - Afsheen Maryam
- Department of Environmental and Conservation Sciences, University of Swat, Swat 19120, Pakistan; Department of Environmental Science -ACES-b (Institutionen för miljövetenskap), Stockholm University, Stockholm 106 91, Sweden
| | - Yunqiao Zhou
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Muhammad Yaseen
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan
| | - Li Xu
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100095, China
| |
Collapse
|
6
|
Wells MR, Coggan TL, Stevenson G, Singh N, Askeland M, Lea MA, Philips A, Carver S. Per- and polyfluoroalkyl substances (PFAS) in little penguins and associations with urbanisation and health parameters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169084. [PMID: 38056658 DOI: 10.1016/j.scitotenv.2023.169084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Per- and Polyfluoroalkyl substances (PFAS) are increasingly detected in wildlife and present concerning and unknown health risks. While there is a growing body of literature describing PFAS in seabird species, knowledge from temperate Southern Hemisphere regions is lacking. Little penguins (Eudyptula minor) can nest and forage within heavily urbanised coastal environments and hence may be at risk of exposure to pollutants. We analysed scat contaminated nesting soils (n = 50) from 17 colonies in lutruwita/Tasmania for 16 PFAS, plasma samples (n = 45) from nine colonies, and three eggs for 49 PFAS. We detected 14 PFAS across the sample types, with perfluorooctanesulfonic acid (PFOS) and perfluorohexanesulfonic acid (PFHxS) most commonly detected. Mean concentration of PFOS in plasma was 2.56 ± 4.3 ng/mL (
Collapse
Affiliation(s)
- Melanie R Wells
- Department of Biological Sciences, School of Natural Sciences, University of Tasmania, Hobart 7001, Tasmania, Australia; Institute for Marine and Antarctic Studies, Battery Point 7004, Tasmania, Australia.
| | - Timothy L Coggan
- Environment Protection Authority Victoria, 200 Victoria Street, Carlton 3053, Victoria, Australia; ADE Consulting Group, U 4/95 Salmon Street, Port Melbourne 3207, Victoria, Australia
| | - Gavin Stevenson
- Australian Ultra-Trace Laboratory, National Measurement Institute, North Ryde 2113, New South Wales, Australia
| | - Navneet Singh
- ADE Consulting Group, U 4/95 Salmon Street, Port Melbourne 3207, Victoria, Australia
| | - Matthew Askeland
- ADE Consulting Group, U 4/95 Salmon Street, Port Melbourne 3207, Victoria, Australia
| | - Mary-Anne Lea
- Institute for Marine and Antarctic Studies, Battery Point 7004, Tasmania, Australia; Centre for Marine Socioecology, University of Tasmania, Hobart 7001, Tasmania, Australia
| | - Annie Philips
- Wildlife Veterinary Consultant, Hobart 7000, Tasmania, Australia
| | - Scott Carver
- Department of Biological Sciences, School of Natural Sciences, University of Tasmania, Hobart 7001, Tasmania, Australia; Odum School of Ecology, University of Georgia, GA, USA 30602; Center for the Ecology of Infectious Diseases, University of Georgia, GA, USA 30602
| |
Collapse
|
7
|
Lasters R, Van Sundert K, Groffen T, Buytaert J, Eens M, Bervoets L. Prediction of perfluoroalkyl acids (PFAAs) in homegrown eggs: Insights into abiotic and biotic factors affecting bioavailability and derivation of potential remediation measures. ENVIRONMENT INTERNATIONAL 2023; 181:108300. [PMID: 37926061 DOI: 10.1016/j.envint.2023.108300] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
Homegrown eggs from free-ranging laying hens often contain elevated concentrations of perfluoroalkyl acids (PFAAs). However, it is unclear which factors contribute to these relatively large exposure risk scenarios. Moreover, existing bioavailability and modeling concepts of conventional organic pollutants cannot be generalized to PFAAs due to their different physicochemical soil interactions. Therefore, there is an urgent need for empirical models, based on real-world data, to provide insights into how (a)biotic factors affect the bioavailability to eggs. To this end, 17 targeted analytes were analyzed in abiotic (i.e. rainwater, soil; both N = 101) matrices and homegrown eggs (N = 101), which were sampled in 101 private gardens across Flanders (Belgium) in 2019, 2021 and 2022. Various soil characteristics were measured to evaluate their role in affecting PFAA bioavailability to the eggs. Finally, PFAAs were measured in potential feed sources (i.e. homegrown vegetable and earthworm pools; respectively N = 49 and N = 34) of the laying hens to evaluate their contribution to the egg burden. Modeling suggested that soil was a major exposure source to laying hens, accounting for 16-55% of the total variation in egg concentrations for dominant PFAAs. Moreover, concentrations in vegetables and earthworms for PFBA and PFOS, respectively, were significantly positively related with corresponding egg concentrations. Predictive models based on soil concentrations, total organic carbon (TOC), pH, clay content and exchangeable cations were successfully developed for major PFAAs, providing possibilities for time- and cost-effective risk assessment of PFAAs in homegrown eggs. Among other soil characteristics, TOC and clay content were related with lower and higher egg concentrations for most PFAAs, respectively. This suggests that bioavailability of PFAAs to the eggs is driven by complex physicochemical interactions of PFAAs with TOC and clay. Finally, remediation measures were formulated that are readily applicable to lower PFAA exposure via homegrown eggs.
Collapse
Affiliation(s)
- Robin Lasters
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; Behavioural Ecology and Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Kevin Van Sundert
- Research group of Plants and Ecosystems, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Climate and Ecology Lab, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 15 Vassar St, Cambridge, MA 02142, USA; Biobased Sustainability Solutions research group, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | - Thimo Groffen
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; Behavioural Ecology and Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Jodie Buytaert
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | - Marcel Eens
- Behavioural Ecology and Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Lieven Bervoets
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| |
Collapse
|
8
|
Gkika IS, Xie G, van Gestel CAM, Ter Laak TL, Vonk JA, van Wezel AP, Kraak MHS. Research Priorities for the Environmental Risk Assessment of Per- and Polyfluorinated Substances. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:2302-2316. [PMID: 37589402 DOI: 10.1002/etc.5729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/24/2023] [Accepted: 08/08/2023] [Indexed: 08/18/2023]
Abstract
Per- and polyfluorinated substances (PFAS) are a group of thousands of ubiquitously applied persistent industrial chemicals. The field of PFAS environmental research is developing rapidly, but suffers from substantial biases toward specific compounds, environmental compartments, and organisms. The aim of our study was therefore to highlight current developments and to identify knowledge gaps and subsequent research needs that would contribute to a comprehensive environmental risk assessment for PFAS. To this end, we consulted the open literature and databases and found that knowledge of the environmental fate of PFAS is based on the analysis of <1% of the compounds categorized as PFAS. Moreover, soils and suspended particulate matter remain largely understudied. The bioavailability, bioaccumulation, and food web transfer studies of PFAS also focus on a very limited number of compounds and are biased toward aquatic biota, predominantly fish, and less frequently aquatic invertebrates and macrophytes. The available ecotoxicity data revealed that only a few PFAS have been well studied for their environmental hazards, and that PFAS ecotoxicity data are also strongly biased toward aquatic organisms. Ecotoxicity studies in the terrestrial environment are needed, as well as chronic, multigenerational, and community ecotoxicity research, in light of the persistency and bioaccumulation of PFAS. Finally, we identified an urgent need to unravel the relationships among sorption, bioaccumulation, and ecotoxicity on the one hand and molecular descriptors of PFAS chemical structures and physicochemical properties on the other, to allow predictions of exposure, bioaccumulation, and toxicity. Environ Toxicol Chem 2023;42:2302-2316. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Ioanna S Gkika
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Ge Xie
- Amsterdam Institute for Life and Environment, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Cornelis A M van Gestel
- Amsterdam Institute for Life and Environment, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Thomas L Ter Laak
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
- KWR Water Research Institute, Nieuwegein, The Netherlands
| | - J Arie Vonk
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Annemarie P van Wezel
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Michiel H S Kraak
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Broadbent E, Gravesen C, Choi YJ, Lee L, Wilson PC, Judy JD. Effects of drinking water treatment residual amendments to biosolids on plant uptake of per- and polyfluoroalkyl substances. JOURNAL OF ENVIRONMENTAL QUALITY 2023:10.1002/jeq2.20511. [PMID: 37682019 PMCID: PMC10920399 DOI: 10.1002/jeq2.20511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023]
Abstract
Drinking water treatment residuals (DWTRs), solid by-products of drinking water treatment, are dominated by calcium (Ca), iron (Fe), or aluminum (Al), depending on the coagulant used. DWTRs are often landfilled, but current research is exploring options for beneficial reuse. Previous studies have shown that Al- and Fe-rich materials have potential to reduce the mobility of per- and polyfluoroalkyl substances (PFAS). Here, we investigated how amending biosolids with 5% wt/wt DWTRs affected plant bioavailable PFAS in two different simulated scenarios: (1) agricultural scenario with Solanum lycopersicum (tomato) grown in soil amended with an agronomically relevant rate of DWTR-amended biosolids (0.9% w/w, resulting in 0.045% w/w DWTR in the biosolids-amended soil) and (2) mine reclamation scenario examining PFAS uptake by Lolium perenne (perennial ryegrass) grown in soil that received DWTR-amended biosolids amendment at a rate consistent with the mine remediation (13% w/w, resulting in 0.65% w/w DWTR in the biosolids-amended soil). Amending biosolids with Ca-DWTR significantly reduced perfluorobutanoic acid (PFBA) uptake in ryegrass and perfluorohexanoic acid uptake in tomatoes, possibly due to DWTR-induced pH elevation, while Fe-DWTR amendment reduced PFBA bioaccumulation in ryegrass. The Al-DWTR did not induce a significant reduction in accumulated PFAS compared to controls. Although the reasons for this finding are unclear, the relatively low PFAS concentrations in the biosolids and relatively high Al content in the biosolids and soil may be partially responsible.
Collapse
Affiliation(s)
- Emma Broadbent
- Soil and Water Sciences Department, University of Florida, Gainesville, Florida, USA
| | - Caleb Gravesen
- Soil and Water Sciences Department, University of Florida, Gainesville, Florida, USA
| | - Youn Jeong Choi
- Department of Agronomy, Purdue University, West Lafayette, Indiana, USA
| | - Linda Lee
- Department of Agronomy, Purdue University, West Lafayette, Indiana, USA
- Ecological Sciences & Engineering Interdisciplinary Graduate Program, Environmental and Ecological Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Patrick C. Wilson
- Soil and Water Sciences Department, University of Florida, Gainesville, Florida, USA
| | - Jonathan D. Judy
- Soil and Water Sciences Department, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
10
|
Liu X, Xie H, Xu Y, Liu R. Two halogenated flame retardants and cadmium in the soil-rice system: sorption, root uptake, and translocation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:97688-97699. [PMID: 37596478 DOI: 10.1007/s11356-023-29316-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 08/09/2023] [Indexed: 08/20/2023]
Abstract
The migration and transformation of Tetrabromobisphenol A (TBBPA), DechloranePlus (DP), and cadmium in soil-rice system was investigated, and the influence on the quality of two varieties of rice was studied. The degradation half-lives of TBBPA, BBPAs, syn-DP, and anti-DP were 23.18 ~ 26.36 days, 30.14 ~ 36.10 days, 72.96-81.55 days, and 169.06-198.04 days in the soil. TBBPA was gradually degraded to tri-BBPA, di-BBPA, mono-BBPA, and bisphenol A by the debromination. TBBPA and its bromide metabolites could be bioaccumulated in different tissues of rice; mono-BBPA and bisphenol A was easy to accumulate in the stems, and bisphenol A was easy to bioaccumulate in the grain. Comparing with single and compound pollution, there was no significant difference in bioaccumulation factors of two rice species. The grain of NO7 had stronger bioaccumulation ability to mono-BBPA and BPA than NO1, and there is no significant difference in TBBPA. Residual level of DP in the rice: roots > stems > grain; there was no significant difference in bioaccumulation of two varieties of rice. Cadmium was easily bioaccumulated in the roots of rice and translocated to the rice stems and grains. NO7 rice had stronger bioaccumulation and transport capacity than NO1. The effects of the three pollutants on the quality of two varieties of rice varied significantly; cadmium had the greatest effect on the iodine blue value (BV) and amylase activity of the grain. This study proved that selecting rice varieties with low bioaccumulation to polluters can effectively reduce the risk of the food chain harming human health.
Collapse
Affiliation(s)
- Xin Liu
- College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China
| | - Hui Xie
- College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China.
| | - Yuxin Xu
- College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China
| | - Ruiyuan Liu
- College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China
| |
Collapse
|
11
|
Saritha VK, Krishnan KP, Mohan M. Perfluorooctanoic acid in the sediment matrices of Arctic fjords, Svalbard. MARINE POLLUTION BULLETIN 2023; 192:115061. [PMID: 37187001 DOI: 10.1016/j.marpolbul.2023.115061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/17/2023]
Abstract
Per- and polyfluorinated chemicals (PFASs) are very toxic industrial compounds, and fewer studies have been conducted on their presence in the sedimentary environment of the polar region. The present study is a preliminary assessment of the concentration and distribution of PFOA (Perfluorooctanoic acid) in selected fjord systems of the Svalbard archipelago, Norwegian Arctic. The ∑PFOA observed for Smeerenburgfjorden, Krossfjorden, Kongsfjorden Hotmiltonbuktafjorden, Raudfjorden and Magdalenefjorden were 1.28 ng/g, 0.14 ng/g, 0.68 ng/g, 6.54 ng/g, 0.41 ng/g and BDL respectively. Of the twenty-three fjord samples studied, the sediments from Hotmiltonbuktafjorden exhibited the presence of a higher concentration of PFOA in the sediment matrices. More studies are needed to understand their fate in the sedimentary environment with respect to the physio-chemical properties of the sediments.
Collapse
Affiliation(s)
- V K Saritha
- School of Environmental Sciences, Mahatma Gandhi University, Kerala 686560, India
| | - K P Krishnan
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Goa 403802, India
| | - Mahesh Mohan
- School of Environmental Sciences, Mahatma Gandhi University, Kerala 686560, India; International Centre for Polar Studies, Mahatma Gandhi University, Kerala 686560, India.
| |
Collapse
|
12
|
Xiao HM, Zhao S, Hussain D, Chen JL, Luo D, Wei F, Wang X. Fluoro-cotton assisted non-targeted screening of organic fluorine compounds from rice (Oryza sativa L.) grown in perfluoroalkyl substance polluted soil. ENVIRONMENTAL RESEARCH 2023; 216:114801. [PMID: 36375504 DOI: 10.1016/j.envres.2022.114801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/05/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
The toxicity and environmental persistence of perfluorooctanoic acid (PFOA), and perfluorooctane sulfonate (PFOS) are of great concern for food intake in humans. However, PFASs conversion or conjugation to other substances in rice grown on PFASs polluted soil has not been explored clearly. These unknown transformed or conjugated products of PFOA and PFOS could be harmful to human health. The restriction factor in evaluating the possible transformation of PFOA and PFOS is mainly attributed to the lack of an efficient method for screening PFOA and PFOS and their related metabolites. To circumvent this challenge, we established a non-targeted screening method by combining a fluoro-cotton fiber-based solid phase extraction (FC-SPE) and liquid chromatography-high resolution mass spectrometry (LC-HRMS) to monitor the formation of possible organic fluorine compounds from rice (Oryza sativa L.) grown on PFASs. We synthesized fluoro-cotton fibers to serve as the FC-SPE packing material and characterized by field-emission scanning electron-microscope, Fourier transform infrared, and X-ray photoelectron spectroscopy measurements. The optimal extraction conditions for the prepared FC-SPE were investigated. The performance of FC-SPE in LC-MS analysis was validated by linearity, precision, recovery, and matrix effect. Then the FC-SPE combined with LC-HRMS was used to specifically capture organic fluorine compounds from complex matrices via F-F interaction, including rice seedlings grown in PFOA and PFOS polluted soil and soil samples. By the established FC-SPE LC-HRMS method, in total 429 features were found as the possible organic fluorine compounds from rice seedlings grown in PFOA polluted soil among the 1781 features from the rice seedlings. Finally, we employed a13C metabolic tracing analysis of organic fluorine compounds in combination with the FC-SPE LC-HRMS method to further identify the features that detected from rice seedlings grown in PFOA polluted soil. The final result indicated that there were not any new organic fluorine metabolites screened out from rice grown in PFOA or PFOS polluted soil.
Collapse
Affiliation(s)
- Hua-Ming Xiao
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central Minzu University, Wuhan, 430074, China.
| | - Shuai Zhao
- School of Pharmacy, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Dilshad Hussain
- HEJ Research Institute of Chemistry, International Centre for Chemical and Biological Sciences, University of Karachi, Pakistan
| | - Jian-Li Chen
- Shimadzu (China) Co., LTD. Wuhan Branch, Wuhan, 430060, China
| | - Dan Luo
- Shimadzu (China) Co., LTD. Wuhan Branch, Wuhan, 430060, China
| | - Fang Wei
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Xian Wang
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central Minzu University, Wuhan, 430074, China
| |
Collapse
|
13
|
Liu Y, Bahar MM, Samarasinghe SVAC, Qi F, Carles S, Richmond WR, Dong Z, Naidu R. Ecological risk assessment for perfluorohexanesulfonic acid (PFHxS) in soil using species sensitivity distribution (SSD) approach. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129667. [PMID: 36104899 DOI: 10.1016/j.jhazmat.2022.129667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/09/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Perfluorohexanesulfonic acid (PFHxS) is one of the persistent organic pollutants that has been recommended to be listed in Annex A of the Stockholm Convention. It has gained increasing attention in recent years due to its toxic effects. The guideline values of PFHxS are commonly associated with PFOS in various countries and regulatory agencies. In this study, multispecies bioassays were conducted to determine the ecological toxic effects of PFHxS, including plants, soil invertebrates, and soil microorganisms, which indicated the EC10/NOEC values ranged from 2.9 to 250 mg/kg. Where possible, logistic models were used to calculate the EC30 values for various endpoints. The species sensitivity distributions were employed to estimate the ecological investigation levels for PFHxS contamination in soils using toxicity results from literature and this study. The calculation using EC10/NOEC values from both literature and this study indicated a most conservative HC5 as 1.0 mg/kg (hazardous concentration for 5 % of the species being impacted). However, utilisation of EC30 values derived from this study resulted in a much higher HC5 for PFHxS in contaminated soils (13.0 mg/kg) which is at the higher end of the existing guideline values for PFOS for protecting ecological systems. The results obtained in this study can be useful in risk assessment processes to minimize any uncertainty using combined values with PFOS.
Collapse
Affiliation(s)
- Yanju Liu
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia; CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), Callaghan, NSW 2308, Australia.
| | - Md Mezbaul Bahar
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia; CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), Callaghan, NSW 2308, Australia.
| | - S V A Chamila Samarasinghe
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia; CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), Callaghan, NSW 2308, Australia.
| | - Fangjie Qi
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia; CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), Callaghan, NSW 2308, Australia.
| | | | - William R Richmond
- Department of Water and Environmental Regulation, Government of Western Australia, 8 Davidson Terrace, Joondalup WA 6027, Australia.
| | - Zhaomin Dong
- School of Space and Environment, Beihang University, Beijging 100191, China.
| | - Ravi Naidu
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia; CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), Callaghan, NSW 2308, Australia.
| |
Collapse
|
14
|
Zhong H, Liu W, Li N, Ma D, Zhao C, Li J, Wang Y, Jiang G. Assessment of perfluorohexane sulfonic acid (PFHxS)-related compounds degradation potential: Computational and experimental approaches. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129240. [PMID: 35739759 DOI: 10.1016/j.jhazmat.2022.129240] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Perfluorohexane sulfonic acid (PFHxS) and PFHxS-related compounds are listed in Annex A of the Stockholm Convention without specific exemptions. Substances that potentially degrade to PFHxS are considered as their related compounds. Unfortunately, the degradation behavior of PFHxS precursors, an important basis for the corresponding chemical regulation, remains unclear. Herein, based on the hypothesis that bond dissociation enthalpy (BDE) is the determining factor for the degradation of PFHxS precursors, the BDE of PFHxS-related precursors to produceC6F13SO2-groups was calculated. In addition, quantitative structure-activity relationship models based on partial least squares, partial least squares discrimination analysis, and support vector machine algorithms were developed to predict the BDE of 48 PFHxS precursors and distinguish the precursors with different degradation potential. Subsequent photodegradation experiments demonstrated that the order of degradation rates was consistent with that predicted by theoretical models. Importantly, perfluorohexanoic acid (PFHxA) and perfluorobutanoic acid, and not PFHxS, were detected as the degradation products of potential PFHxS precursors. Sulfonamides, phenyl unit, and other radicals in the non-nucleus part of PFHxS precursors were identified as the critical molecular segments that affect their degradation potential. Ultimately, by comparing BDE values, it was theoretically speculated that PFHxS related compounds exhibit a greater potential to generate PFHxA than PFHxS. Results in this study indicated for the first time that not all the compounds containing C6F13SO2- groups were guaranteed to degrade into PFHxS under natural conditions.
Collapse
Affiliation(s)
- Huifang Zhong
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wencheng Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Ningqi Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Donghui Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chunyan Zhao
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Juan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
15
|
Nguyen TMH, Bräunig J, Kookana RS, Kaserzon SL, Knight ER, Vo HNP, Kabiri S, Navarro DA, Grimison C, Riddell N, Higgins CP, McLaughlin MJ, Mueller JF. Assessment of Mobilization Potential of Per- and Polyfluoroalkyl Substances for Soil Remediation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10030-10041. [PMID: 35763608 DOI: 10.1021/acs.est.2c00401] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This study investigated the mobilization of a wide range of per- and polyfluoroalkyl substances (PFASs) present in aqueous film-forming foams (AFFFs) in water-saturated soils through one-dimensional (1-D) column experiments with a view to assessing the feasibility of their remediation by soil desorption and washing. Results indicated that sorption/desorption of most of the shorter-carbon-chain PFASs (C ≤ 6) in soil reached greater than 99% rapidly─after approximately two pore volumes (PVs) and were well predicted by an equilibrium transport model, indicating that they will be readily removed by soil washing technologies. In contrast, the equilibrium model failed to predict the mobilization of longer-chain PFASs (C ≥ 7), indicating the presence of nonequilibrium sorption/desorption (confirmed by a flow interruption experiment). The actual time taken to attain 99% sorption/desorption was up to 5 times longer than predicted by the equilibrium model (e.g., ∼62 PVs versus ∼12 PVs predicted for perfluorooctane sulfonate (PFOS) in loamy sand). The increasing contribution of hydrophobic interactions over the electrostatic interactions is suggested as the main driving factor of the nonequilibrium processes. The inverse linear relationship (R2 = 0.6, p < 0.0001) between the nonequilibrium mass transfer rate coefficient and the Freundlich sorption coefficient could potentially be a useful means for preliminary evaluation of potential nonequilibrium sorption/desorption of PFASs in soils.
Collapse
Affiliation(s)
- Thi Minh Hong Nguyen
- QAEHS, Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Jennifer Bräunig
- QAEHS, Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Rai S Kookana
- CSIRO, The Commonwealth Scientific and Industrial Research Organisation Land and Water, PMB 2, Glen Osmond, SA 5064, Australia
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB 1, Glen Osmond, SA 5064, Australia
| | - Sarit L Kaserzon
- QAEHS, Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Emma R Knight
- QAEHS, Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Hoang Nhat Phong Vo
- QAEHS, Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Shervin Kabiri
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB 1, Glen Osmond, SA 5064, Australia
| | - Divina A Navarro
- CSIRO, The Commonwealth Scientific and Industrial Research Organisation Land and Water, PMB 2, Glen Osmond, SA 5064, Australia
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB 1, Glen Osmond, SA 5064, Australia
| | | | - Nicole Riddell
- Wellington Laboratories Inc., 345 Southgate Drive, Guelph, Ontario N1G 3M5, Canada
| | - Christopher P Higgins
- QAEHS, Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, QLD 4102, Australia
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Michael J McLaughlin
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB 1, Glen Osmond, SA 5064, Australia
| | - Jochen F Mueller
- QAEHS, Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, QLD 4102, Australia
| |
Collapse
|
16
|
Huang H, Guo B, Wang D, Kang Y, Cao D, Geng F, Rao Z, Lv J, Wen B. Bioaccumulation and biotransformation of tetrabromoethylcyclohexane (TBECH) in maize (Zea mays L.): Stereoselective driving roles of plant biomacromolecules. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127610. [PMID: 34775311 DOI: 10.1016/j.jhazmat.2021.127610] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/21/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
The bioaccumulation and biotransformation of tetrabromoethylcyclohexane (TBECH) in maize were investigated. Furthermore, the roles of plant biomacromolecules such as lipid transfer proteins (LTPs), CYP and GST enzymes in driving the biological processes of TBECH stereoisomers were explored. The uptake and translocation of TBECH in maize were diastereo- and enantio-selective. Isomerization from α- to δ-TBECH and β- to γ-TBECH, and metabolites of debromination, hydroxylation and TBECH-GSH adducts were identified in maize roots. The gene expressions of LTPs, CYPs and GSTs were extensively changed in maize after exposure to technical TBECH. CYP and GST enzyme activities as well as GST31 and CYP71C3v2 gene expressions were selectively induced or inhibited by TBECH diastereomers over time. TBECH was able to dock into the active sites and bind with specific residues of the typical biomacromolecules ZmLTP1.6, GST31 and CYP71C3v2, indicating their roles in the bioaccumulation and metabolization of TBECH. Binding modes and affinities to biomacromolecules were significantly different between α- and β-TBECH, which contributed to their stereo-selectivity. This study provided a deep understanding of the biological fate of TBECH, and revealed the driving molecular mechanisms of the selectivity of TBECH stereoisomers in plants.
Collapse
Affiliation(s)
- Honglin Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China.
| | - Bin Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Yunshui Haorui Environmental Technology Co. LTD, Beijing 100195, China
| | - Yuehui Kang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Dong Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Fanglan Geng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Ziyu Rao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Jitao Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Bei Wen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Liu Z, Xu C, Johnson AC, Sun X, Ding X, Ding D, Liu S, Liang X. Source apportionment and crop bioaccumulation of perfluoroalkyl acids and novel alternatives in an industrial-intensive region with fluorochemical production, China: Health implications for human exposure. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127019. [PMID: 34523491 DOI: 10.1016/j.jhazmat.2021.127019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/09/2021] [Accepted: 08/21/2021] [Indexed: 06/13/2023]
Abstract
Due to their great environmental hazards, the widely used legacy perfluoroalkyl acids (PFAAs) are gradually restricted, and novel alternatives are being developed and applied. For efficient control of emerging environmental risks in agricultural production, we systematically studied the source apportionment in field soils and bioaccumulation characteristics in multiple crops of 12 PFAAs and five novel alternatives in an industrial-intensive region of China, followed by human exposure estimation and health risk assessment. Compared with perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), shorter-chained PFAAs and novel alternatives have become the dominant components in local soils and crops, indicating their wide application. A positive matrix factorization (PMF) model coupled with multivariate analysis identified fluoropolymer manufacturing and textile treatment as the principal sources. The bioaccumulation factors (BAFs) of individual PFAAs and alternatives in crops decreased with increasing carbon chain lengths. As a novel alternative of PFOA, hexafluoropropylene oxide dimer acid (GenX) exhibited much higher BAFs; for the alternative of PFOS, 6:2 chlorinated polyfluorinated ether sulfonic acid (6:2 Cl-PFESA) showed lower BAFs. The bioaccumulation capacities of PFAAs and alternatives were also associated with soil organic matter and crop species. Through crop consumption, short-chained PFAAs and novel alternatives might pose emerging human health threats.
Collapse
Affiliation(s)
- Zhaoyang Liu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Chang Xu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Andrew C Johnson
- Centre for Ecology & Hydrology, Maclean Building, Crowmarsh Gifford Wallingford, Oxon, OX 10 8BB, UK
| | - Xiaoyan Sun
- Jiangxi Engineering and Technology Research Center for Ecological Remediation of Heavy Metal Pollution, Institute of Microbe, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Xiaoyan Ding
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Da Ding
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sitao Liu
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, USA
| | - Xiaoyu Liang
- Department of Civil & Environmental Engineering, Imperial College London, London SW72BU, UK
| |
Collapse
|
18
|
Lei X, Yao L, Lian Q, Zhang X, Wang T, Holmes W, Ding G, Gang DD, Zappi ME. Enhanced adsorption of perfluorooctanoate (PFOA) onto low oxygen content ordered mesoporous carbon (OMC): Adsorption behaviors and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126810. [PMID: 34365231 DOI: 10.1016/j.jhazmat.2021.126810] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/26/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
The pollution of perfluorooctanoic acid (PFOA) in water bodies has been a serious threat to environment and human health. Ordered mesoporous carbons (OMCs) with different oxygen contents were prepared and first used for adsorbing PFOA from aqueous solutions. The OMC-900 with a lower oxygen content has a higher PFOA adsorption capacity than the oxygen-rich OMC-700. OMCs require a much shorter time to reach the adsorption equilibrium comparing with other adsorbents reported in literature. The mesopores play an important role in this rapid adsorption kinetics. The pseudo-second-order model better fitted the kinetic data. The multilayers adsorption was proposed for the adsorption of PFOA onto OMCs since the Freundlich isotherm model fits the experimental data well. The micelle or hemi-micelle structures may be formed during the adsorption. Various background salts showed a positive effect on PFOA adsorption due to the salting-out and divalent bridge effects. The humic acid can lead to a discernible reduction in PFOA adsorption by competing for adsorption sites on OMCs. The hydrophobic interaction and electrostatic interaction adsorption mechanisms were proposed and verified by the adsorption data. The high adsorption capacity and fast adsorption kinetics of the OMC make it a potential adsorbent for PFOA removal in engineering applications.
Collapse
Affiliation(s)
- Xiaobo Lei
- Department of Civil Engineering, University of Louisiana at Lafayette, Lafayette, LA 70504, USA; Center for Environmental Technology, The Energy Institute of Louisiana, University of Louisiana at Lafayette, P. O. Box 43597, Lafayette, LA 70504, USA
| | - Lunguang Yao
- Henan Key Laboratory of Ecological Security, Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang Normal University, 1638 Wolong Rd, Nanyang, Henan, PR China
| | - Qiyu Lian
- Department of Civil Engineering, University of Louisiana at Lafayette, Lafayette, LA 70504, USA; Center for Environmental Technology, The Energy Institute of Louisiana, University of Louisiana at Lafayette, P. O. Box 43597, Lafayette, LA 70504, USA
| | - Xu Zhang
- Department of Civil Engineering, University of Louisiana at Lafayette, Lafayette, LA 70504, USA; Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance genes, School of Civil Engineering, Beijing Jiaotong University, 3 Shangyuancun, Beijing 100044, PR China
| | - Tiejun Wang
- Department of Civil Engineering, University of Louisiana at Lafayette, Lafayette, LA 70504, USA; Nanyang Vocational College of Agriculture, Nanyang 473000, PR China
| | - William Holmes
- Center for Environmental Technology, The Energy Institute of Louisiana, University of Louisiana at Lafayette, P. O. Box 43597, Lafayette, LA 70504, USA; Department of Chemical Engineering, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| | - Guoyu Ding
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Civil Engineering, Beijing Jiatong University, Beijing 100044, PR China
| | - Daniel Dianchen Gang
- Department of Civil Engineering, University of Louisiana at Lafayette, Lafayette, LA 70504, USA; Center for Environmental Technology, The Energy Institute of Louisiana, University of Louisiana at Lafayette, P. O. Box 43597, Lafayette, LA 70504, USA.
| | - Mark E Zappi
- Center for Environmental Technology, The Energy Institute of Louisiana, University of Louisiana at Lafayette, P. O. Box 43597, Lafayette, LA 70504, USA; Department of Chemical Engineering, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| |
Collapse
|
19
|
Zhang Y, Zhang L, Bao J, Liu L, Wang X. Perfluorooctanoic acid exposure in early pregnancy induces oxidative stress in mice uterus and liver. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:66355-66365. [PMID: 34331232 DOI: 10.1007/s11356-021-15453-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 07/11/2021] [Indexed: 06/13/2023]
Abstract
This study aimed to explore the mechanism of perfluorooctanoic acid (PFOA) toxicity on the uterus and liver of mice during early pregnancy. Pregnant mice were given 0, 1, 5, 10, 20, and 40 mg/kg PFOA daily by gavage from gestational day (GD) 1-7 and sacrificed on GD 9. Subsequently, several toxicity parameters were evaluated, including the uterus and liver weights, liver and uterine indexes, histopathological changes of the liver and uterus, and levels of malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) in the liver. We also determined the expressions of FAS, FASL, Bax, Bcl-2, and Caspase-3 in decidual cells by immunohistochemistry and the TUNEL assay to detect apoptosis uterine cells. The results showed that PFOA increased the liver weights and reduced the uterus index in a dose-dependent manner. With increasing doses of PFOA, the levels of SOD and GSH-Px were significantly decreased, and MDA increased substantially in liver tissue. 20 mg/kg and 40 mg/kg of PFOA caused more substantial harm to the uterus, thus a higher probability for congestion and resorption. The expression of FAS, FASL, Bax, and Caspase-3 in decidual cells of the uterus in the PFOA treatment groups significantly increased in a dose-dependent manner. The expression of Bcl-2 was downregulated, decreasing the Bcl-2/Bax ratio. At gestation day 9, the control group had significantly fewer apoptotic cells in the uterus and shallower staining than the 40 mg/kg PFOA group. The findings of this study suggest that oxidative damage may be one of the mechanisms by which PFOA induces liver toxicity, and a subsequent increase in uterine cell apoptosis may cause embryo loss or damage.
Collapse
Affiliation(s)
- Yan Zhang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, China
| | - Linchao Zhang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, China
| | - Jialu Bao
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, China
| | - Liantao Liu
- College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Xiaodan Wang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
20
|
Cai Y, Wang Q, Zhou B, Yuan R, Wang F, Chen Z, Chen H. A review of responses of terrestrial organisms to perfluorinated compounds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148565. [PMID: 34174603 DOI: 10.1016/j.scitotenv.2021.148565] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Perfluorinated compounds (PFCs) are a class of persistent organic pollutants with widespread distribution in the environment. Since the soil environment has become a significant sink for PFCs, the toxicological assessment about their potential effects on terrestrial organisms is necessary. This review compiles the toxicity researches of regular and emerging PFCs on classical terrestrial biota i.e. microorganisms, earthworms, and plants. In the soil environment, the bioavailability of PFCs much depends on their adsorption in soil, which is affected by soil properties and PFCs structure. By the exploration of bacterial community richness and structure, the gene expression, the influences of PFCs on soil microorganisms were revealed; while the plants and earthworms manifested the PFCs disruption not only through macroscopic indicators, but also from molecular and metabolite responses. Basically, the addition of PFCs would accelerate the production of reactive oxygen species (ROS) in terrestrial organisms, while the excessive ROS could not be eliminated by the defense system causing oxidative damage. Nowadays, the PFCs toxic mechanisms discussed are limited to a single strain, Escherichia coli; thus, the complexity of the soil environment demands further in-depth researches. This review warrants studies focus on more potential quantitative toxicity indicators, more explicit elaboration on toxicity influencing factors, and environmentally relevant concentrations to obtain a more integrated picture of PFCs toxicity on terrestrial biota.
Collapse
Affiliation(s)
- Yanping Cai
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Qianyu Wang
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Beihai Zhou
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Rongfang Yuan
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Fei Wang
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhongbing Chen
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic
| | - Huilun Chen
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
21
|
Lacruz A, Salvador M, Blanco M, Vidal K, Goitandia AM, Martinková L, Kyselka M, de Ilarduya AM. Biobased Waterborne Polyurethane-Ureas Modified with POSS-OH for Fluorine-Free Hydrophobic Textile Coatings. Polymers (Basel) 2021; 13:polym13203526. [PMID: 34685285 PMCID: PMC8537187 DOI: 10.3390/polym13203526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/23/2022] Open
Abstract
Waterborne polyurethane-urea dispersions (WPUD), which are based on fully biobased amorphous polyester polyol and isophorone diisocyanate (IPDI), have been successfully synthesized obtaining a finishing agent that provides textiles with an enhanced hydrophobicity and water column. Grafting of trans-cyclohexanediol isobutyl POSS (POSS-OH) to the biobased polymer backbone has also been investigated for the first time and its properties compared to a standard chain extender, 1,3-propanediol (PDO). The chemical structure of WPUD has been characterized by Fourier-transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR). The thermal properties have been evaluated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Mechanical properties have been studied by tensile stress–strain analysis. Moreover, the particle size, particle size distribution (PSD), and stability of developed waterborne dispersions have been assessed by dynamic light scattering (DLS), Z-potential, storage aging tests, and accelerated aging tests by analytical centrifuge (LUM). Subsequently, selected fabrics have been face-coated by the WPUD using the knife coating method and their properties have been assessed by measuring the water contact angle (WCA), oil contact angle (OCA), water column, fabric stiffness, air permeability, and water vapor resistance (breathability). Finally, the surface morphology and elemental composition of uncoated and coated fabrics have been studied by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS), respectively. All of the synthesized polyurethane-ureas provided the coated substrates with a remarkable hydrophobicity and water column, resulting in a more sustainable alternative to waterproof coatings based on fluoropolymers, such as PTFE. Grafting POSS-OH to the polymeric backbone has led to textile coatings with enhanced hydrophobicity, maintaining thermal, mechanical, and water column properties, giving rise to multifunctional coatings that are highly demanded in protective workwear and technical textiles.
Collapse
Affiliation(s)
- Amado Lacruz
- Color Center, S.A. Ptge. Marie Curie 3, Nau 6, 08223 Terrassa, Spain;
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, ETSEIB, Diagonal 647, 08028 Barcelona, Spain;
- Correspondence: or ; Tel.: +34-9378-61113
| | - Mireia Salvador
- Color Center, S.A. Ptge. Marie Curie 3, Nau 6, 08223 Terrassa, Spain;
| | - Miren Blanco
- Tekniker, Basque Research and Technology Alliance (BRTA), Surface Chemistry and Nanotechnology Unit, Iñaki Goenaga 5, 20600 Eibar, Spain; (M.B.); (K.V.); (A.M.G.)
| | - Karmele Vidal
- Tekniker, Basque Research and Technology Alliance (BRTA), Surface Chemistry and Nanotechnology Unit, Iñaki Goenaga 5, 20600 Eibar, Spain; (M.B.); (K.V.); (A.M.G.)
| | - Amaia M. Goitandia
- Tekniker, Basque Research and Technology Alliance (BRTA), Surface Chemistry and Nanotechnology Unit, Iñaki Goenaga 5, 20600 Eibar, Spain; (M.B.); (K.V.); (A.M.G.)
| | - Lenka Martinková
- Inotex Spol. s r.o, Stefanikova 1208, 54401 Dvůr Králové nad Labem, Czech Republic; (L.M.); (M.K.)
| | - Martin Kyselka
- Inotex Spol. s r.o, Stefanikova 1208, 54401 Dvůr Králové nad Labem, Czech Republic; (L.M.); (M.K.)
| | - Antxon Martínez de Ilarduya
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, ETSEIB, Diagonal 647, 08028 Barcelona, Spain;
| |
Collapse
|
22
|
Rijnders J, Bervoets L, Prinsen E, Eens M, Beemster GTS, AbdElgawad H, Groffen T. Perfluoroalkylated acids (PFAAs) accumulate in field-exposed snails (Cepaea sp.) and affect their oxidative status. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148059. [PMID: 34102443 DOI: 10.1016/j.scitotenv.2021.148059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Perfluoroalkyl acids (PFAAs) are a group of synthetic persistent chemicals with distinctive properties, such as a high thermal and chemical stability, that make them suitable for a wide range of applications. They have been produced since the 1950s, resulting in a global contamination of the environment and wildlife. They are resistant to biodegradation and have the tendency to bio-accumulate in organisms and bio-magnify in the food chain. However, little is known about the bioaccumulation of PFAAs in terrestrial invertebrates, including how they affect the physiology and particularly oxidative status. Therefore, we studied the bioaccumulation of PFAAs in snails that were exposed for 3 and 6 weeks along a distance gradient radiating from a well-known fluorochemical hotspot (3M). In addition, we examined the potential effects of PFAAs on the oxidative status of these snails. Finally, we tested for relationships between the concentrations of PFAAs in snails with those in soil and nettles they were feeding on and the influence of soil physicochemical properties on these relationships. Our results showed higher concentrations of PFOA and/or PFOS in almost every matrix at the 3M site, but no concentration gradient along the distance gradient. The PFOS concentrations in snails were related to those in the nettles and soil, and were affected by multiple soil properties. For PFOA, we observed no relationships between soil and biota concentrations. Short-chained PFAAs were dominant in nettles, whereas in soil and snails long-chained PFAAs were dominant. We found a significant positive correlation between peroxidase, catalase and peroxiredoxins and PFAA concentrations, suggesting that snails, in terms of oxidative stress (OS) response, are possibly susceptible to PFAAs pollution. CAPSULE: We observed a positive correlation between the levels of PFAAs and the antioxidants peroxidase, catalase and peroxiredoxins in snails, exposed on nettles grown at contaminated sites.
Collapse
Affiliation(s)
- Jet Rijnders
- Systemic Physiological and Ecotoxicologal Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | - Lieven Bervoets
- Systemic Physiological and Ecotoxicologal Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | - Els Prinsen
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | - Marcel Eens
- Behavioural Ecology and Ecophysiology Group (BECO), Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Gerrit T S Beemster
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt.
| | - Thimo Groffen
- Systemic Physiological and Ecotoxicologal Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; Behavioural Ecology and Ecophysiology Group (BECO), Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| |
Collapse
|
23
|
Hemida M, Ghiasvand A, Gupta V, Coates LJ, Gooley AA, Wirth HJ, Haddad PR, Paull B. Small-Footprint, Field-Deployable LC/MS System for On-Site Analysis of Per- and Polyfluoroalkyl Substances in Soil. Anal Chem 2021; 93:12032-12040. [PMID: 34436859 DOI: 10.1021/acs.analchem.1c02193] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are emerging environmental pollutants of global concern. For rapid field site evaluation, there are very few sensitive, field-deployable analytical techniques. In this work, a portable lightweight capillary liquid chromatography (capLC) system was coupled with a small footprint portable mass spectrometer and configured for field-based applications. Further, an at-site ultrasound-assisted extraction (pUAE) methodology was developed and applied with a portable capLC/mass spectrometry (MS) system for on-site analysis of PFASs in real soil samples. The influential variables on the integration of capLC with MS and on the resolution and signal intensity of the capLC/MS setup were investigated. The important parameters affecting the efficiency of the pUAE method were also studied and optimized using the response surface methodology based on a central composite design. The mean recovery for 11 PFASs ranged between 70 and 110%, with relative standard deviations ranging from 3 to 12%. In-field method sensitivity for 12 PFASs ranged from 0.6 to 0.1 ng/g, with wide dynamic ranges (1-600 ng/g) and excellent linearities (R2 > 0.991). The in-field portable system was benchmarked against a commercial lab-based LC-tandem MS (MS/MS) system for the analysis of PFASs in real soil samples, with the results showing good agreement. When deployed to a field site, 12 PFASs were detected and identified in real soil samples at concentrations ranging from 8.1 ng/g (for perfluorooctanesulfonic acid) to 2935.0 ng/g (perfluorohexanesulfonic acid).
Collapse
Affiliation(s)
- Mohamed Hemida
- ARC Training Centre for Portable Analytical Separation Technologies (ASTech), School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia.,Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Alireza Ghiasvand
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia.,ARC Centre of Excellence for Electromaterials Science (ACES), School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Vipul Gupta
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia.,ARC Centre of Excellence for Electromaterials Science (ACES), School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Lewellwyn J Coates
- ARC Training Centre for Portable Analytical Separation Technologies (ASTech), School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia.,Trajan Scientific and Medical, 7 Argent Place, Ringwood, Victoria 3134, Australia
| | - Andrew A Gooley
- ARC Training Centre for Portable Analytical Separation Technologies (ASTech), School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia.,Trajan Scientific and Medical, 7 Argent Place, Ringwood, Victoria 3134, Australia
| | - Hans-Jürgen Wirth
- ARC Training Centre for Portable Analytical Separation Technologies (ASTech), School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia.,Trajan Scientific and Medical, 7 Argent Place, Ringwood, Victoria 3134, Australia
| | - Paul R Haddad
- ARC Training Centre for Portable Analytical Separation Technologies (ASTech), School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia.,Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Brett Paull
- ARC Training Centre for Portable Analytical Separation Technologies (ASTech), School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia.,Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia.,ARC Centre of Excellence for Electromaterials Science (ACES), School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
| |
Collapse
|
24
|
Ouyang W, Zhang Y, Lin C, Wang A, Tysklind M, Wang B. Metabolic process and spatial partition dynamics of Atrazine in an estuary-to-bay system, Jiaozhou bay. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125530. [PMID: 33667800 DOI: 10.1016/j.jhazmat.2021.125530] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 01/18/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
The spatial distributions of atrazine and six types of metabolites in water, suspended particulate sediment (SPS), and surface sediment in an estuary-to-bay system were analyzed. The water distance of metabolites demonstrated that degradation was more active in coastal zone and the Desisopropylatrazine had the shortest half-distance of 1.6 Km from the river mouth. The dechlorination-hydroxylation metabolites were the dominant pollutants in the bay and the Didealkyl-atrazine (DDA), Deisopropylhydroxy-atrazine (DIHA), and Deethylhydroxy-atrazine (DEHA) had higher concentrations in all three mediums. The DDA had the biggest content (6.58 ng/g) in the coastal sediment. The DIHA was the only pollutant had bigger concentration during the transport, and the others continually degraded with smaller value. The spatial distributions of pollutants in sediment had different patterns in water with SPS. The water-particle phase partition coefficient (Kp) analysis indicated that the partition process was more active in the estuary than the bay, and the metabolites had stronger capacity than atrazine. The correlations between Kp with octanol-water partitioning coefficient showed their physic-chemical properties were the important factors for vertical partition between seawater with sediment. The correlations with marine environmental factors demonstrated that the metabolite type was the direct factor for the redistributions during the transport.
Collapse
Affiliation(s)
- Wei Ouyang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Yu Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Aihua Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Mats Tysklind
- Environmental Chemistry, Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Baodong Wang
- The First Institute of Oceanography, Ministry of Natural Resources, 6 Xianxialing Road, Qingdao 266061, China
| |
Collapse
|
25
|
Nguyen TMH, Bräunig J, Thompson K, Thompson J, Kabiri S, Navarro DA, Kookana RS, Grimison C, Barnes CM, Higgins CP, McLaughlin MJ, Mueller JF. Influences of Chemical Properties, Soil Properties, and Solution pH on Soil-Water Partitioning Coefficients of Per- and Polyfluoroalkyl Substances (PFASs). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15883-15892. [PMID: 33249833 DOI: 10.1021/acs.est.0c05705] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The aim of this study was to assess the soil-water partitioning behavior of a wider range of per- and polyfluoroalkyl substances (PFASs) onto soils covering diverse soil properties. The PFASs studied include perfluoroalkyl carboxylates (PFCAs), perfluoroalkane sulfonates (PFSAs), fluorotelomer sulfonates (FTSs), nonionic perfluoroalkane sulfonamides (FASAs), cyclic PFAS (PFEtCHxS), per- and polyfluoroalkyl ether acids (GenX, ADONA, 9Cl-PF3ONS), and three aqueous film-forming foam (AFFF)-related zwitterionic PFASs (AmPr-FHxSA, TAmPr-FHxSA, 6:2 FTSA-PrB). Soil-water partitioning coefficients (log Kd values) of the PFASs ranged from less than zero to approximately three, were chain-length-dependent, and were significantly linearly related to molecular weight (MW) for PFASs with MW > 350 g/mol (R2 = 0.94, p < 0.0001). Across all soils, the Kd values of all short-chain PFASs (≤5 -CF2- moieties) were similar and varied less (<0.5 log units) compared to long-chain PFASs (>0.5 to 1.5 log units) and zwitterions AmPr- and TAmPr-FHxSA (∼1.5 to 2 log units). Multiple soil properties described sorption of PFASs better than any single property. The effects of soil properties on sorption were different for anionic, nonionic, and zwitterionic PFASs. Solution pH could change both PFAS speciation and soil chemistry affecting surface complexation and electrostatic processes. The Kd values of all PFASs increased when solution pH decreased from approximately eight to three. Short-chain PFASs were less sensitive to solution pH than long-chain PFASs. The results indicate the complex interactions of PFASs with soil surfaces and the need to consider both PFAS type and soil properties to describe mobility in the environment.
Collapse
Affiliation(s)
- Thi Minh Hong Nguyen
- QAEHS, Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, Queensland 4102, Australia
| | - Jennifer Bräunig
- QAEHS, Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, Queensland 4102, Australia
| | - Kristie Thompson
- QAEHS, Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, Queensland 4102, Australia
| | - Jack Thompson
- QAEHS, Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, Queensland 4102, Australia
| | - Shervin Kabiri
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB1, Glen Osmond, South Australia 5064, Australia
| | - Divina A Navarro
- CSIRO, The Commonwealth Scientific and Industrial Research Organisation Land and Water, PMB 2, Glen Osmond, South Australia 5064, Australia
| | - Rai S Kookana
- CSIRO, The Commonwealth Scientific and Industrial Research Organisation Land and Water, PMB 2, Glen Osmond, South Australia 5064, Australia
| | | | - Craig M Barnes
- Airservices Australia, 25 Constitution Avenue, Canberra, Australian Capital Territory 2601, Australia
| | - Christopher P Higgins
- QAEHS, Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, Queensland 4102, Australia
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Michael J McLaughlin
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB1, Glen Osmond, South Australia 5064, Australia
| | - Jochen F Mueller
- QAEHS, Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, Queensland 4102, Australia
| |
Collapse
|