1
|
Su K, Zheng L, Liu M, Gao J, Shi Z, Chen C, Li Y, He J, Peng M. Oxygen Vacancies Regulated S-Scheme Charge Transport Route in BiVO 4-OVs/g-C 3N 4 Heterojunction for Enhanced Photocatalytic Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405551. [PMID: 39358957 DOI: 10.1002/smll.202405551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/13/2024] [Indexed: 10/04/2024]
Abstract
Oxygen vacancies (OVs) are widely considered as active sites in photocatalytic reactions, yet the crucial role of OVs in S-scheme heterojunction photocatalysts requires deeper understanding. In this work, OVs at hetero-interface regulated S-scheme BiVO4-OVs/g-C3N4 photocatalysts are constructed. The Fermi-level structures of BiVO4 and g-C3N4 lead to a redistribution of charges at the heterojunction interface, inducing an internal electric field at the interface, which tends to promote the recombination of photogenerated carriers at the interface. Importantly, the introduction of OVs induces defect electronic states in the BiVO4 bandgap, creating indirect recombination energy level that serves as crucial intermediator for photogenerated carrier recombination in the S-scheme heterojunction. As a result, the photocatalytic degradation rate on Rhodamine B (RhB) and tetracyclines (TCs) for the optimal sample is 10.7 and 11.8 times higher than the bare one, the photocatalytic hydrogen production rate is also improved to 558 µmol g-1 h-1. This work shows the importance of OVs in heterostructure photocatalysis from both thermodynamic and kinetic aspects and may provide new insight into the rational design of S-scheme photocatalysts.
Collapse
Affiliation(s)
- Kangrui Su
- School of Mechanics and Photoelectric Physics, Anhui University of Science and Technology, Huainan, 232001, P. R. China
| | - Lingcheng Zheng
- School of Mechanics and Photoelectric Physics, Anhui University of Science and Technology, Huainan, 232001, P. R. China
- The First Affiliated Hospital of Anhui University of Science and Technology (Huainan First People's Hospital), Huainan, 232001, P. R. China
| | - Mei Liu
- School of Mechanics and Photoelectric Physics, Anhui University of Science and Technology, Huainan, 232001, P. R. China
| | - Juan Gao
- School of Mechanics and Photoelectric Physics, Anhui University of Science and Technology, Huainan, 232001, P. R. China
- The First Affiliated Hospital of Anhui University of Science and Technology (Huainan First People's Hospital), Huainan, 232001, P. R. China
| | - Zeyu Shi
- School of Mechanics and Photoelectric Physics, Anhui University of Science and Technology, Huainan, 232001, P. R. China
| | - Changzhao Chen
- School of Mechanics and Photoelectric Physics, Anhui University of Science and Technology, Huainan, 232001, P. R. China
| | - Yang Li
- School of Mechanics and Photoelectric Physics, Anhui University of Science and Technology, Huainan, 232001, P. R. China
| | - Jie He
- Tianjin Key Laboratory of Film Electronic & Communication Devices, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Mao Peng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| |
Collapse
|
2
|
Shi J, Yang T, Zhao T, Pu K, Shi J, Zhou A, Li H, Wang S, Xue J. Insights on the efficiency and contribution of single active species in photocatalytic degradation of tetracycline: Priority attack active sites, intermediate products and their toxicity evaluation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:121970. [PMID: 39106792 DOI: 10.1016/j.jenvman.2024.121970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 08/09/2024]
Abstract
Photocatalysis has been proven to be an excellent technology for treating antibiotic wastewater, but the impact of each active species involved in the process on antibiotic degradation is still unclear. Therefore, the S-scheme heterojunction photocatalyst Ti3C2/g-C3N4/TiO2 was successfully synthesized using melamine and Ti3C2 as precursors by a one-step calcination method using mechanical stirring and ultrasound assistance. Its formation mechanism was studied in detail through multiple characterizations and work function calculations. The heterojunction photocatalyst not only enabled it to retain active species with strong oxidation and reduction abilities, but also significantly promoted the separation and transfer of photo-generated carriers, exhibiting an excellent degradation efficiency of 94.19 % for tetracycline (TC) within 120 min. Importantly, the priority attack sites, degradation pathways, degradation intermediates and their ecological toxicity of TC under the action of each single active species (·O2-, h+, ·OH) were first positively explored and evaluated through design experiments, Fukui function theory calculations, HPLC-MS, Escherichia coli toxicity experiments, and ECOSAR program. The results indicated that the preferred attack sites of ·O2- on TC were O20, C7, C11, O21, and N25 atoms with high f+ value. The toxicity of intermediates produced by ·O2- was also lower than those produced by h+ and ·OH.
Collapse
Affiliation(s)
- Jianhui Shi
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, PR China.
| | - Tiantian Yang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Ting Zhao
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Kaikai Pu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Jiating Shi
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Aijuan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Houfen Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Sufang Wang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Jinbo Xue
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan, 030024, PR China
| |
Collapse
|
3
|
Miri A, Shih YH, Chen WL. The highly efficient photodegradation of 4-bromophenol by TiO 2/g-C 3N 4 nano photocatalyst with LED visible light. CHEMOSPHERE 2024; 362:142658. [PMID: 38901706 DOI: 10.1016/j.chemosphere.2024.142658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/03/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Since traditional photocatalysts have suffered from higher charge carrier recombination and moderate photocatalytic efficiency, developing photocatalysts is crucial for water treatment objectives. Hence, the various ratios of TiO2 on g-C3N4 (CN) to form nano photocatalysts were synthesized by the solvothermal method. The 30%TiO2/CN showed the best performance to degradation and debromination of 4-bromophenol (4-BP) solution completely (kobs = 6.6 × 10-2 min-1) under visible light emitted by LED (420 nm) in 30 min. Remarkably, the photocatalyst showed superior stability and reusability, maintaining its efficiency after four cycles of 4-BP degradation. The dominant ROS participating in 4-BP degradation were ●O-2 and photogenerated holes (h+), as investigated by free radical scavenging tests. The optical properties analysis revealed that the introduction of TiO2 to the bulk CN decreases electron-hole recombination and improve photocatalytic performance by facilitating electrons transfer through the TiO2 nanoparticles in a chain. The findings of this study showed that the TiO2/CN photocatalyst is a promising catalyst for the degradation of 4-BP. It exhibits a higher rate constant and photocatalytic efficiency compared with previous studies conducted under visible light irradiation.
Collapse
Affiliation(s)
- Ashkan Miri
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan
| | - Yang-Hsin Shih
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan.
| | - Wen-Ling Chen
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan; Institute of Food Safety and Health, College of Public Health, National Taiwan University, 17 Xuzhou Rd., Taipei, 100, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, 17 Xuzhou Rd., Taipei, 100, Taiwan
| |
Collapse
|
4
|
Wang R, Wang A, Pan Y, Ni J, Deng Y, Tao Z, Liang X, Tang J, Tian X, Zha T, Liu D, Ma J. Construction of an S-scheme electron transfer channel in Cu 0/CuFe 2O 4 magnetic plate column reactor for the LEV degradation: New strategy of visible Photo-Fenton system application. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135173. [PMID: 39003812 DOI: 10.1016/j.jhazmat.2024.135173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/31/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
The complicated loading process and easy falling off of powder catalysts still restrict the wide application of Photo-Fenton technology in practical water treatment. In this study, a magnetic fixed film plate column water treatment equipment is designed as a visible Photo-Fenton reactor to remove levofloxacin (LEV). The effect of magnetic force can ensure that the catalyst is firmly fixed, and the multi-level shallow column plate structure achieves full contact and efficient reaction between the catalyst and wastewater. Simultaneously, the Cu0/CuFe2O4 (STCCF) utilizes Cu0 to construct an S-scheme electron transfer channel, which improves the separation efficiency of photo-generated carriers and provides sufficient photo-generated electrons for the reduction of Fe (Ⅲ) and Cu (Ⅱ). The pseudo-first-order reaction kinetic constant k for the degradation of LEV in the visible Photo-Fenton system is 0.0349 min-1, which is 15.9 times that of the photocatalytic system and 4.8 times that of the Fenton system. After continuous operation for 72 h, the magnetic fixed film plate column reactor can still remove more than 90 % of LEV and 82 % of COD in the secondary effluent of simulated antibiotic pharmaceutical wastewater treatment process, and the effluent is stable and meets the standard. The magnetic fixed film plate column reactor can be used for advanced treatment of antibiotic pharmaceutical wastewater. This study provides a new insight into the application of the Photo-Fenton process.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Aiwen Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Yunhao Pan
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jiaxin Ni
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Yingjie Deng
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Zhe Tao
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xiongying Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jingrui Tang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xunming Tian
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Tiancheng Zha
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Dongmei Liu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
5
|
Zhang X, Li W, Hu L, Gao M, Feng J. A Tight-Connection g-C 3N 4/BiOBr (001) S-Scheme Heterojunction Photocatalyst for Boosting Photocatalytic Degradation of Organic Pollutants. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1071. [PMID: 38998676 PMCID: PMC11243395 DOI: 10.3390/nano14131071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024]
Abstract
The efficient separation of photogenerated charge carriers and strong oxidizing properties can improve photocatalytic performance. Here, we combine the construction of a tightly connected S-scheme heterojunction with the exposure of an active crystal plane to prepare g-C3N4/BiOBr for the degradation of high-concentration organic pollutants. This strategy effectively improves the separation efficiency of photogenerated carriers and the number of active sites. Notably, the synthesized g-C3N4/BiOBr displays excellent photocatalytic degradation activity towards various organic pollutants, including methylene blue (MB, 90.8%), congo red (CR, 99.2%), and tetracycline (TC, 89%). Furthermore, the photocatalytic degradation performance of g-C3N4/BiOBr for MB maintains 80% efficiency under natural water quality (tap water, lake water, river water), and a wide pH range (pH = 4-10). Its excellent photocatalytic activity is attributed to the tight connection between g-C3N4 and BiOBr in the S-scheme heterojunction interface, as well as the exposure of highly active (001) crystal planes. These improve the efficiency of the separation of photogenerated carriers, and maintain their strong oxidation capability. This work presents a simple approach to improving the separation of electrons and holes by tightly combining two components within a heterojunction.
Collapse
Affiliation(s)
- Xinyi Zhang
- Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, China
| | - Weixia Li
- Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, China
| | - Liangqing Hu
- Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, China
| | - Mingming Gao
- Qilu Institute of Technology, College of Biological and Chemical Engineering, Jinan 250200, China
| | - Jing Feng
- Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, China
| |
Collapse
|
6
|
Ma S, Qin Y, Sun K, Ahmed J, Tian W, Ma Z. Round-the-Clock Adsorption-Degradation of Tetracycline Hydrochloride by Ag/Ni-TiO 2. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2930. [PMID: 38930299 PMCID: PMC11205127 DOI: 10.3390/ma17122930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
The synergy of adsorption and photocatalysis is a good method to remove organic pollutants in wastewater. In recent decades, persistent photocatalysis has gained considerable interest for its ability to sustain the catalytic degradation of organic pollutants in the dark. Herein, we report three different TiO2 nanomaterials to remove tetracycline hydrochloride (TCH) in solution. We found that the removal ability of TiO2, Ni-TiO2, and Ag/Ni-TiO2 is 8.8 mg/g, 13.9 mg/g and 23.4 mg/g, respectively, when the initial concentration of TCH is 50 mg/L. Chemical adsorption could be the rate-determining step in the TCH adsorption process. Moreover, Ag nanoparticles dispersed on Ni doped TiO2 surface act as traps to capture photo-generated electrons upon illumination with indoor light. The holes in Ag/Ni-TiO2 serve as critical oxidative species in TCH degradation under dark conditions. This work provides new insights into the design of persistent photocatalysts that can be activated by weak illumination and degrade organic pollutants in wastewater after sunset.
Collapse
Affiliation(s)
- Siyu Ma
- College of Chemistry & Environment, Southwest Minzu University, Chengdu 610225, China; (S.M.); (Y.Q.); (K.S.)
| | - Yiying Qin
- College of Chemistry & Environment, Southwest Minzu University, Chengdu 610225, China; (S.M.); (Y.Q.); (K.S.)
| | - Kongyuan Sun
- College of Chemistry & Environment, Southwest Minzu University, Chengdu 610225, China; (S.M.); (Y.Q.); (K.S.)
| | - Jahangeer Ahmed
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Wei Tian
- School of Physical Science and Technology, Soochow University, Suzhou 215006, China;
| | - Zhaoxia Ma
- College of Chemistry & Environment, Southwest Minzu University, Chengdu 610225, China; (S.M.); (Y.Q.); (K.S.)
| |
Collapse
|
7
|
Shao W, Yu M, Xu X, Han X, Chen Y, Han J, Wu G, Xing W. Design of a Single-Atom In-N 3-S site to Modulate Exciton Behavior in Carbon Nitride for Enhanced Photocatalytic Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306567. [PMID: 38161262 DOI: 10.1002/smll.202306567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/05/2023] [Indexed: 01/03/2024]
Abstract
Rational tailoring of the local coordination environment of single atoms has demonstrated a significant impact on the electronic state and catalytic performance, but the development of catalysts beyond noble/transition metals is profoundly significant and highly desired. Herein, the main-group metal indium (In) single atom is immobilized on sulfur-doped porous carbon nitride nanosheets (In@CNS) in the form of three nitrogen atoms coordinated with one sulfur atom (In-N3-S). Both theoretical calculations and advanced characterization investigations clearly elucidated that the single-atomic In-N3-S structures on In@CNS are powerful in promoting the dissociation of excitons into more free carriers as well as the charge separation, synergistically elevating electron concentration by 2.19 times with respect to pristine CNS. Meanwhile, the loading of In single atoms on CNS is responsible for altering electronic structure and lowering the Gibbs free energy for hydrogen adsorption. Consequently, the optimized In@CNS-5.0 exhibited remarkable photocatalytic performance, remarkable water-splitting and tetracycline hydrochloride degradation. The H2 production achieved to 10.11 mmol h-1g-1 with a notable apparent quantum yield of 19.70% at 400 nm and remained at 10.40% at 420 nm. These findings open a new perspective for in-depth comprehending the effect of the main-group metal single-atom coordination environment on promoting photocatalytic performance.
Collapse
Affiliation(s)
- Weifan Shao
- College of Ecology and Environment, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Mengjiao Yu
- College of Ecology and Environment, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Xusheng Xu
- College of Ecology and Environment, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Xinrui Han
- College of Ecology and Environment, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Yuwen Chen
- College of Ecology and Environment, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Jiangang Han
- College of Ecology and Environment, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, 223100, China
| | - Guangyu Wu
- College of Ecology and Environment, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, 223100, China
| | - Weinan Xing
- College of Ecology and Environment, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, 223100, China
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Normal University, Wuhu, 241000, China
| |
Collapse
|
8
|
Wang R, Zhang W, Liang W, Wang X, Li L, Wang Z, Li M, Li J, Ma C. Molecularly Imprinted Heterostructure-Assisted Laser Desorption Ionization Mass Spectrometry Analysis and Imaging of Quinolones. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17377-17392. [PMID: 38551391 DOI: 10.1021/acsami.3c16277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Quinolone residues resulting from body metabolism and waste discharge pose a significant threat to the ecological environment and to human health. Therefore, it is essential to monitor quinolone residues in the environment. Herein, an efficient and sensitive matrix-assisted laser desorption/ionization mass spectrometry (MALDI/MS) method was devised by using a novel molecularly imprinted heterojunction (MIP-TNs@GCNs) as the matrix. Molecularly imprinted titanium dioxide nanosheets (MIP-TNs) and graphene-like carbon nitrides (GCNs) were associated at the heterojunction interface, allowing for the specific, rapid, and high-throughput ionization of quinolones. The mechanism of MIP-TNs@GCNs was clarified using their adsorption properties and laser desorption/ionization capability. The prepared oxygen-vacancy-rich MIP-TNs@GCNs heterojunction exhibited higher light absorption and ionization efficiencies than TNs and GCNs. The good linearity (in the quinolone concentration range of 0.5-50 pg/μL, R2 > 0.99), low limit of detection (0.1 pg/μL), good reproducibility (n = 8, relative standard deviation [RSD] < 15%), and high salt and protein resistance for quinolones in groundwater samples were achieved using the established MIP-TNs@GCNs-MALDI/MS method. Moreover, the spatial distributions of endogenous compounds (e.g., amino acids, organic acids, and flavonoids) and xenobiotic quinolones from Rhizoma Phragmitis and Rhizoma Nelumbinis were visualized using the MIP-TNs@GCNs film as the MALDI/MS imaging matrix. Because of its superior advantages, the MIP-TNs@GCNs-MALDI/MS method is promising for the analysis and imaging of quinolones and small molecules.
Collapse
Affiliation(s)
- Ruya Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan250014, China
| | - Weidong Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Weiqiang Liang
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong Province 250014, P. R. China
| | - Xiao Wang
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan250014, China
| | - Lili Li
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan250014, China
| | - Zhenhua Wang
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan250014, China
| | - Miaomiao Li
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan250014, China
| | - Jun Li
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan250014, China
| | - Chunxia Ma
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan250014, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 1007002, China
| |
Collapse
|
9
|
Ruan X, Li S, Huang C, Zheng W, Cui X, Ravi SK. Catalyzing Artificial Photosynthesis with TiO 2 Heterostructures and Hybrids: Emerging Trends in a Classical yet Contemporary Photocatalyst. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305285. [PMID: 37818725 DOI: 10.1002/adma.202305285] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/21/2023] [Indexed: 10/13/2023]
Abstract
Titanium dioxide (TiO2) stands out as a versatile transition-metal oxide with applications ranging from energy conversion/storage and environmental remediation to sensors and optoelectronics. While extensively researched for these emerging applications, TiO2 has also achieved commercial success in various fields including paints, inks, pharmaceuticals, food additives, and advanced medicine. Thanks to the tunability of their structural, morphological, optical, and electronic characteristics, TiO2 nanomaterials are among the most researched engineering materials. Besides these inherent advantages, the low cost, low toxicity, and biocompatibility of TiO2 nanomaterials position them as a sustainable choice of functional materials for energy conversion. Although TiO2 is a classical photocatalyst well-known for its structural stability and high surface activity, TiO2-based photocatalysis is still an active area of research particularly in the context of catalyzing artificial photosynthesis. This review provides a comprehensive overview of the latest developments and emerging trends in TiO2 heterostructures and hybrids for artificial photosynthesis. It begins by discussing the common synthesis methods for TiO2 nanomaterials, including hydrothermal synthesis and sol-gel synthesis. It then delves into TiO2 nanomaterials and their photocatalytic mechanisms, highlighting the key advancements that have been made in recent years. The strategies to enhance the photocatalytic efficiency of TiO2, including surface modification, doping modulation, heterojunction construction, and synergy of composite materials, with a specific emphasis on their applications in artificial photosynthesis, are discussed. TiO2-based heterostructures and hybrids present exciting opportunities for catalyzing solar fuel production, organic degradation, and CO2 reduction via artificial photosynthesis. This review offers an overview of the latest trends and advancements, while also highlighting the ongoing challenges and prospects for future developments in this classical yet rapidly evolving field.
Collapse
Affiliation(s)
- Xiaowen Ruan
- School of Energy and Environment, City Universitsy of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Shijie Li
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, China
| | - Chengxiang Huang
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, China
| | - Weitao Zheng
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, China
| | - Xiaoqiang Cui
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, China
| | - Sai Kishore Ravi
- School of Energy and Environment, City Universitsy of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| |
Collapse
|
10
|
Guo L, Liu YL, Zeng Q, Zhang C, Wen Y, Zhang Q, Tang G, Zhang Q, Zeng Q. A self-driven solar coupling system with TiO 2@MXene cathode for effectively eliminating uranium and organics from complex wastewater accompanying with electricity generation. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133415. [PMID: 38185087 DOI: 10.1016/j.jhazmat.2023.133415] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/16/2023] [Accepted: 12/29/2023] [Indexed: 01/09/2024]
Abstract
The inevitable organic matters in radioactive wastewater and contaminated waters pose great challenge in uranium recycling by traditional techniques. Here, a self-driven solar coupling system (SSCS), which was assembled by a TiO2 @MXene/CF cathode and a monolithic photoanode, was proposed for synergistically recycling uranium and degrading organics from complex radioactive wastewater, combining with electricity production. The TiO2 @MXene/CF was prepared via a simple annealing process with in-situ derived TiO2 nanoparticles decorated Ti3C2 MXene coated on carbon felt (CF). Under sunlight illumination, the photoanode captured electrons of organics, and drove electrons to the TiO2 @MXene/CF, which exhibited an exceptional UO22+ adsorption and reduction capacity because TiO2 nanoparticles provided plenty of surface hydroxyl groups for UO22+ adsorption, and the unique two-dimensional MXene facilitated the charge transfer. The SSCS with TiO2 @MXene/CF removed almost 100% UO22+ and organics with rate constants of ∼21 and ∼6.9 times those of the system with CF, accompanying with excellent power output (∼1000 μW·cm-2). The fixed uranium on TiO2 @MXene/CF was effectively reduced into insoluble UO2 (91.1%), and no obvious decay was observed after 15 repeated uses. This study proposes a multi-functional and easy-operated way for remediating radioactive wastewater and contaminated waters, and gives valuable insights in designing cathode materials for uranium reduction.
Collapse
Affiliation(s)
- Lulin Guo
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Yi-Lin Liu
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China; School of Mechanical Engineering, University of South China, Hengyang, Hunan 421001, China.
| | - Qingming Zeng
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Chao Zhang
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Yanjun Wen
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Qingyan Zhang
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Guolong Tang
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China; School of Mechanical and Electrical Engineering, Qingdao Qiushi College, Qingdao, Shandong 266108, China
| | - Qingsong Zhang
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Qingyi Zeng
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
11
|
Rezaei M, Nezamzadeh-Ejhieh A, Massah AR. A Comprehensive Review on the Boosted Effects of Anion Vacancy in the Heterogeneous Photocatalytic Degradation, Part II: Focus on Oxygen Vacancy. ACS OMEGA 2024; 9:6093-6127. [PMID: 38371849 PMCID: PMC10870278 DOI: 10.1021/acsomega.3c07560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/20/2024]
Abstract
Environmental problems, including the increasingly polluted water and the energy crisis, have led to a need to propose novel strategies/methodologies to contribute to sustainable progress and enhance human well-being. For these goals, heterogeneous semiconducting-based photocatalysis is introduced as a green, eco-friendly, cost-effective, and effective strategy. The introduction of anion vacancies in semiconductors has been well-known as an effective strategy for considerably enhancing the photocatalytic activity of such photocatalytic systems, giving them the advantages of promoting light harvesting, facilitating photogenerated electron-hole pair separation, optimizing the electronic structure, and enhancing the yield of reactive radicals. This Review will introduce the effects of anion vacancy-dominated photodegradation systems. Then, their mechanism will illustrate how an anion vacancy changes the photodegradation pathway to enhance the degradation efficiency toward pollutants and the overall photocatalytic performance. Specifically, the vacancy defect types and the methods of tailoring vacancies will be briefly illustrated, and this part of the Review will focus on the oxygen vacancy (OV) and its recent advances. The challenges and development issues for engineered vacancy defects in photocatalysts will also be discussed for practical applications and to provide a promising research direction. Finally, some prospects for this emerging field will be proposed and suggested. All permission numbers for adopted figures from the literature are summarized in a separate file for the Editor.
Collapse
Affiliation(s)
- Mahdieh Rezaei
- Department
of Chemistry, Shahreza Branch, Islamic Azad
University, P.O. Box 311-86145, Shahreza, Isfahan 86139-74183, Iran
| | - Alireza Nezamzadeh-Ejhieh
- Department
of Chemistry, Shahreza Branch, Islamic Azad
University, P.O. Box 311-86145, Shahreza, Isfahan 86139-74183, Iran
- Department
of Chemistry, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Isfahan 81551-39998, Iran
| | - Ahmad Reza Massah
- Department
of Chemistry, Shahreza Branch, Islamic Azad
University, P.O. Box 311-86145, Shahreza, Isfahan 86139-74183, Iran
- Department
of Chemistry, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Isfahan 81551-39998, Iran
| |
Collapse
|
12
|
Deng Q, Li R, Chen A, Zhong Y, Yin X, Zhang Y, Yang R. Green synthesis of rectangular hollow tubular carbon nitride via in-situ self-assembly strategy to enhance the degradation of tetracycline hydrochloride under visible light irradiation. ENVIRONMENTAL RESEARCH 2023; 238:117252. [PMID: 37783322 DOI: 10.1016/j.envres.2023.117252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/07/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023]
Abstract
It has been an urgent requirement for materials with remarkable performance in the photocatalytic degradation of organic contaminants by photocatalytic technology. Limited surface area and speedy recombination rate of photogenerated charge carriers seriously restrain the application of g-C3N4. Morphology control is a powerful approach to enhance the photocatalytic efficiency of g-C3N4. Herein, we reported a method to attain graphitic carbon nitride with rectangular hollow tubular morphology and asperous surface (TUM-CN-2) which is prepared from urea-melamine hydrothermal products and trithiocyanuric acid by self-assembling without using organic solvents or template agents. The specific surface area, photocatalytic activity, and photo-generated carriers migration and separation rate of the obtained photocatalyst TUM-CN-2 are vastly improved. Contrasted with pure g-C3N4, the degradation rate of tetracycline hydrochloride (TCH) and Rhodamine B (RhB) was enhanced about 3.04 and 13.96 times in visible light irradiation, respectively. Moreover, the interference parameters, active free radicals, potential degradation mechanism, and degradation paths of TCH were researched systematically. This work provides a green way to acquire the modified g-C3N4 with splendid catalytic activity through the self-assembly method.
Collapse
Affiliation(s)
- Qunfen Deng
- School of Chemistry and Chemical Engineering, Southwest University, No.2 Tiansheng Road, Chongqing 400715, People's Republic of China
| | - Renjie Li
- School of Chemistry and Chemical Engineering, Southwest University, No.2 Tiansheng Road, Chongqing 400715, People's Republic of China
| | - Anli Chen
- School of Chemistry and Chemical Engineering, Southwest University, No.2 Tiansheng Road, Chongqing 400715, People's Republic of China
| | - Yujia Zhong
- School of Chemistry and Chemical Engineering, Southwest University, No.2 Tiansheng Road, Chongqing 400715, People's Republic of China
| | - Xinghang Yin
- School of Chemistry and Chemical Engineering, Southwest University, No.2 Tiansheng Road, Chongqing 400715, People's Republic of China
| | - Yu Zhang
- School of Chemistry and Chemical Engineering, Southwest University, No.2 Tiansheng Road, Chongqing 400715, People's Republic of China
| | - Rui Yang
- School of Chemistry and Chemical Engineering, Southwest University, No.2 Tiansheng Road, Chongqing 400715, People's Republic of China.
| |
Collapse
|
13
|
Wang Z, Jin X, Chen F, Kuang X, Min J, Duan H, Li J, Chen J. Oxygen vacancy induced interaction between Pt and TiO 2 to improve the oxygen reduction performance. J Colloid Interface Sci 2023; 650:901-912. [PMID: 37453314 DOI: 10.1016/j.jcis.2023.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/10/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
In proton exchange membrane fuel cells (PEMFCS), a Pt-based catalyst has been plagued by activity and durability, making it difficult to implement in large-scale commercial applications. In this paper, a composite material formed by titanium dioxide and carbon black containing oxygen vacancies (TiO2(OV)-C) was used as a functional support to successfully load Pt nanoparticles (NPS). The introduction of oxygen vacancies induces the formation of a connection between Pt and TiO2, which not only strengthens the fixation of Pt by the composite support but also optimizes the local charge density of Pt. Compared with Pt/C (0.842 V) and Pt/TiO2-C (0.841 V), the half-wave potential (E1/2) of Pt/TiO2(OV)-C (0.862 V) is increased by 20 mV and 21 mV, respectively. After a long-term durability test, the E1/2 of Pt/TiO2(OV)-C is only attenuated by 5 mV. In addition, the mass activity (MA) and specific activity (SA) decreased from 183.4 mA mg-1 and 0.565 mA cm-2 to 144.4 mA mg-1 and 0.483 mA cm-2 at 0.85 V, only decreasing by 21% and 17 %, showing good stability. X-ray photoelectron spectroscopies (XPS) and density functional theory (DFT) calculations show that the interaction between Pt and TiO2 reduces the d-band center of Pt, thereby improving the desorption of intermediates *OH, which in turn promotes the activity of alkaline ORR. This study not only shows that OV plays a key role in the process of inducing interaction, but also deeply studies the influence of this interaction on the active site Pt, which provides more choices for the design of excellent multiphase catalysts.
Collapse
Affiliation(s)
- Ziyu Wang
- Key Laboratory of Solid State Physics and Devices Autonomous Region, School of Physics Science and Technology, Xinjiang University, Urumqi 830046, Xinjiang, PR China; Key Laboratory of Energy Materials Chemistry, Ministry of Education, Institute of Applied Chemistry, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Xuekun Jin
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Fengjuan Chen
- Key Laboratory of Solid State Physics and Devices Autonomous Region, School of Physics Science and Technology, Xinjiang University, Urumqi 830046, Xinjiang, PR China; Key Laboratory of Energy Materials Chemistry, Ministry of Education, Institute of Applied Chemistry, Xinjiang University, Urumqi, Xinjiang 830046, China.
| | - Xuanyu Kuang
- Key Laboratory of Solid State Physics and Devices Autonomous Region, School of Physics Science and Technology, Xinjiang University, Urumqi 830046, Xinjiang, PR China; Key Laboratory of Energy Materials Chemistry, Ministry of Education, Institute of Applied Chemistry, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Junyong Min
- Key Laboratory of Solid State Physics and Devices Autonomous Region, School of Physics Science and Technology, Xinjiang University, Urumqi 830046, Xinjiang, PR China; Key Laboratory of Energy Materials Chemistry, Ministry of Education, Institute of Applied Chemistry, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Haiming Duan
- Key Laboratory of Solid State Physics and Devices Autonomous Region, School of Physics Science and Technology, Xinjiang University, Urumqi 830046, Xinjiang, PR China; Key Laboratory of Energy Materials Chemistry, Ministry of Education, Institute of Applied Chemistry, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Junhua Li
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jianjun Chen
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
14
|
Ding Y, Qin F, Guo J, Gong D, Li Q, Wang X, Tan X, Liu H, Huang Z. Visible-light-driven Oxygen Vacancy and Carbon Doping of C@TiO 2-x Photocatalyst for Enhanced Pollutants Degradation Performance. Chemphyschem 2023; 24:e202300183. [PMID: 37285235 DOI: 10.1002/cphc.202300183] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/09/2023]
Abstract
Oxygen Vacancy (OVs) and carbon doping of the photocatalyst body will significantly enhance the photocatalytic efficiency. However, synchronous regulation of these two aspects is challenging. In this paper, a novel C@TiO2-x photocatalyst was designed by coupling the surface defect and doping engineering of titania, which can effectively remove rhodamine B (RhB) and has a relatively high performance with wide pH range, high photocatalytic activity and good stability. Within 90 minutes, the photocatalytic degradation rate of RhB by C@TiO2-x (94.1 % at 20 mg/L) is 28 times higher than that of pure TiO2 . Free radical trapping experiments and electron spin resonance techniques reveal that superoxide radicals (⋅O2- ) and photogenerated holes (h+ ) play key roles in the photocatalytic degradation of RhB. This study demonstrates the possibility of regulating photocatalysts to degrade pollutants in wastewater based on an integrated strategy.
Collapse
Affiliation(s)
- Yifan Ding
- School of Chemistry and Chemical Engineering, Guangxi University, Key Laboratory of Guangxi Biorefinery, Nanning, 530004, P. R. China
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Nanning, 530006, P. R. China
| | - Fanghong Qin
- School of Chemistry and Chemical Engineering, Guangxi University, Key Laboratory of Guangxi Biorefinery, Nanning, 530004, P. R. China
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Nanning, 530006, P. R. China
| | - Jialin Guo
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Nanning, 530006, P. R. China
| | - Danming Gong
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Nanning, 530006, P. R. China
| | - Qiufei Li
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Nanning, 530006, P. R. China
| | - Xiangyi Wang
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Nanning, 530006, P. R. China
| | - Xiuniang Tan
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Nanning, 530006, P. R. China
| | - Haibo Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Key Laboratory of Guangxi Biorefinery, Nanning, 530004, P. R. China
| | - Zaiyin Huang
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Nanning, 530006, P. R. China
| |
Collapse
|
15
|
Zhang X, Li X, Yu P, Yu Y, Fan X, Zhang J, Yu Y, Zheng H, Sun Y. Photocatalytic O 2 activation by metal-free carbon nitride nanotube for rapid reactive species generation and organic contaminants degradation. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131715. [PMID: 37245367 DOI: 10.1016/j.jhazmat.2023.131715] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 05/09/2023] [Accepted: 05/24/2023] [Indexed: 05/30/2023]
Abstract
Advanced oxidation processes (AOPs) using oxygen (O2) as an oxidant represent a low-cost and sustainable wastewater treatment process. Herein, a metal-free nanotubular carbon nitride photocatalyst (CN NT) was prepared to activate O2 to degrade organic contaminants. The nanotube structure allowed for sufficient O2 adsorption, while the optical and photoelectrochemical properties enabled photogenerated charge to be efficiently transferred to the adsorbed O2 to trigger the activation process. The developed CN NT/Vis-O2 system based on O2 aeration degraded various organic contaminants and mineralized 40.7% of chloroquine phosphate within 100 min. In addition, the toxicity and environmental risk of treated contaminants were reduced. Mechanistic studies suggested that the enhanced O2 adsorption capacity and fast charge transfer behavior on CN NT surface led to reactive·O2-, 1O2 and h+ generation, each of which played a distinct role in contaminants degradation. Importantly, the proposed process could overcome the interference from water matrices and outdoor sunlight, and the energy and chemical reagent savings reduced the operating cost to about 1.63 US$·m-3. Altogether, this work provides insights into the potential application of metal-free photocatalysts and green O2 activation for wastewater treatment.
Collapse
Affiliation(s)
- Xiao Zhang
- Jiangsu Key Laboratory of Industrial Pollution Control and Resource Reuse, School of Environmental Engineering, Xuzhou University of Technology, Xuzhou 221018, China.
| | - Xi Li
- School of Environmental Sciences and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Peng Yu
- School of Environmental Sciences and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ying Yu
- Jiangsu Key Laboratory of Industrial Pollution Control and Resource Reuse, School of Environmental Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Xiulei Fan
- Jiangsu Key Laboratory of Industrial Pollution Control and Resource Reuse, School of Environmental Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Jiankun Zhang
- Jiangsu Key Laboratory of Industrial Pollution Control and Resource Reuse, School of Environmental Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Yang Yu
- Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Huaili Zheng
- Key laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Yongjun Sun
- College of Urban Construction, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
16
|
Xing J, Huang J, Wang X, Yang F, Bai Y, Li S, Zhang X. Removal of low-concentration tetracycline from water by a two-step process of adsorption enrichment and photocatalytic regeneration. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 343:118210. [PMID: 37229865 DOI: 10.1016/j.jenvman.2023.118210] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
Developing a high-performance method that can effectively control pollution caused by low concentrations of antibiotics is urgently needed. Herein, a novel three-dimensional PPy/Zn3In2S6 nanoflower composites were prepared for the comprehensive treatment of low-concentration tetracycline (Tc) hydrochloride in wastewater based on the adsorption/photocatalysis of Zn3In2S6 and the conductivity of PPy. In this preparation method, adsorption enrichment and photocatalytic regeneration were conducted in two steps, eliminating the dilution and dispersion effects of aqueous solvents on photocatalytic species and antibiotics. Results showed that Zn3In2S6 could effectively adsorb 87.85% of Tc at pH of 4.5 and photocatalytically degrade Tc at pH of 10.5. Although the adsorption capacity of Zn3In2S6 was slightly reduced after being combined with PPy, its photocatalytic efficiency was substantially enhanced. Specifically, 0.5%PPy/Zn3In2S6 could degrade 99.92% of the surface-enriched Tc in 1 h and induce the regeneration of the adsorption sites. Furthermore, the adsorption capacity remained above 85% even after recycling PPy/Zn3In2S6 ten times. The photocatalytic degradation mechanism analysis revealed that the enrichment of Tc on 0.5%PPy/Zn3In2S6 negatively impacts the photocatalytic efficiency, while •O2- and •OH radicals were the main oxidative species that played an important role in the photoregeneration process.
Collapse
Affiliation(s)
- Jianyu Xing
- School of Water and Environment, Chang'an University, Xi'an, Shaanxi, 710054, PR China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Xi'an, 710054, China.
| | - Jumei Huang
- School of Water and Environment, Chang'an University, Xi'an, Shaanxi, 710054, PR China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Xi'an, 710054, China
| | - Xi Wang
- SINO Shaanxi Nuclear Industry Comprehensive Analysis Testing CO., LTD., Xi'an, Shaanxi, 710024, PR China
| | - Feiying Yang
- SINO Shaanxi Nuclear Industry Comprehensive Analysis Testing CO., LTD., Xi'an, Shaanxi, 710024, PR China
| | - Yuehao Bai
- School of Water and Environment, Chang'an University, Xi'an, Shaanxi, 710054, PR China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Xi'an, 710054, China
| | - Sha Li
- School of Water and Environment, Chang'an University, Xi'an, Shaanxi, 710054, PR China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Xi'an, 710054, China
| | - Xinhao Zhang
- School of Water and Environment, Chang'an University, Xi'an, Shaanxi, 710054, PR China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Xi'an, 710054, China
| |
Collapse
|
17
|
Yao X, Jiang X, Zhang D, Lu S, Wang M, Pan S, Pu X, Liu J, Cai P. Achieving improved full-spectrum responsive 0D/3D CuWO 4/BiOBr:Yb 3+,Er 3+ photocatalyst with synergetic effects of up-conversion, photothermal effect and direct Z-scheme heterojunction. J Colloid Interface Sci 2023; 644:95-106. [PMID: 37094476 DOI: 10.1016/j.jcis.2023.04.072] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 04/26/2023]
Abstract
The key to obtain effective photocatalysts is to increase the efficiency of light energy conversion, and thus the design and implementation of full-spectrum photocatalysts is a potential approach to solve this problem especially by extending the absorption range to near-infrared (NIR) light. Herein, the improved full-spectrum responsive CuWO4/BiOBr:Yb3+,Er3+ (CW/BYE) direct Z-scheme heterojunction was prepared. The CW/BYE with CW mass ratio of 5% had the best degradation performance, and the removal rate of tetracycline reached 93.9% in 60 min and 69.4% in 12 h under visible (Vis) and NIR light, respectively, which were 5.2 and 3.3 times of BYE. According to the outcome of experimental, the reasonable mechanism of improved photoactivity was put forward on the basis of (i) the up-conversion (UC) effect of Er3+ ion to convert NIR photon to ultraviolet or visible light, which can be used by CW and BYE, (ii) the photothermal effect of CW to absorb the NIR light, increasing the local temperature of photocatalyst particle to accelerate the photoreaction, and (iii) the formed direct Z-scheme heterojunction between BYE and CW to boost the separation of photogenerated electron-hole pairs. Additionally, the excellent photostability of the photocatalyst was verified by cycle degradation experiments. This work opens up a promising technique for designing and synthesizing full-spectrum photocatalysts by utilizing synergetic effects of UC, photothermal effect and direct Z-scheme heterojunction.
Collapse
Affiliation(s)
- Xintong Yao
- School of Materials Science and Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, PR China
| | - Xue Jiang
- School of Materials Science and Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, PR China
| | - Dafeng Zhang
- School of Materials Science and Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, PR China.
| | - Shuya Lu
- School of Materials Science and Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, PR China
| | - Mengyao Wang
- School of Materials Science and Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, PR China
| | - Sihan Pan
- School of Materials Science and Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, PR China
| | - Xipeng Pu
- School of Materials Science and Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, PR China.
| | - Junchang Liu
- School of Materials Science and Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, PR China
| | - Peiqing Cai
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, PR China
| |
Collapse
|
18
|
Bi R, Liu J, Zhou C, Shen Y, Liu Z, Wang Z. In situ synthesis of g-C 3N 4/TiO 2 heterojunction by a concentrated absorption process for efficient photocatalytic degradation of tetracycline hydrochloride. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:55044-55056. [PMID: 36882657 DOI: 10.1007/s11356-023-26265-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
The construction of heterojunctions between semiconductors is a preferred route to improve overall photocatalytic activity. In this work, a facile and feasible method was innovatively developed to one-step prepare g-C3N4/TiO2 heterojunctions via an absorption-calcination process using nitrogen and titanium precursors directly. This method can effectively avoid interfacial defects and establish a tight interfacial connection between g-C3N4 and TiO2. The resultant g-C3N4/TiO2 composites exhibited prominent photodegradation efficiency for tetracycline hydrochloride (TC-HCl) under visible light and simulated-sunlight irradiation. The optimal g-C3N4/TiO2 composite (urea content of 4 g) showed the highest photocatalytic efficiency, which can degrade 90.1% TC-HCl under simulated-sunlight irradiation within 30 min, achieving 3.9 and 2 times increases compared to pure g-C3N4 and TiO2, respectively. Besides, photodegradation pathways based on the role of active species ·O2- and ·OH were identified, indicating that a direct Z-scheme heterojunction was formed over the g-C3N4/TiO2 photocatalyst. The enhanced photocatalytic performance can be attributed to the close-knit interface contact and the formation of Z-scheme heterojunction between g-C3N4 and TiO2, which can accelerate the photo-induced charge carrier separation, broaden the spectra absorption range, and retain a higher redox potential. This one-step synthesis method may provide a new strategy for the construction of Z-scheme heterojunction photocatalysts consisting of g-C3N4 and TiO2 for environmental remediation and solar energy utilization.
Collapse
Affiliation(s)
- Renke Bi
- State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jialong Liu
- State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Chutong Zhou
- State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yijie Shen
- State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhe Liu
- State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhiyu Wang
- State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
19
|
Liu X, Wang Y, Wang Q, Yang W. Chloroplast inspired Z-scheme photocatalyst for efficient degradation of antibiotics: synergistic effect of full-visible light response, multi-channel electron transport and enhanced molecular oxygen activation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
20
|
Yu Y, Chen F, Jin X, Min J, Duan H, Li J, Wu Z, Cao B. Oxygen Vacancies-Rich S-Cheme BiOBr/CdS Heterojunction with Synergetic Effect for Highly Efficient Light Emitting Diode-Driven Pollutants Degradation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:830. [PMID: 36903708 PMCID: PMC10005353 DOI: 10.3390/nano13050830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/14/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Recently, the use of semiconductor-based photocatalytic technology as an effective way to mitigate the environmental crisis attracted considerable interest. Here, the S-scheme BiOBr/CdS heterojunction with abundant oxygen vacancies (Vo-BiOBr/CdS) was prepared by the solvothermal method using ethylene glycol as a solvent. The photocatalytic activity of the heterojunction was investigated by degrading rhodamine B (RhB) and methylene blue (MB) under 5 W light-emitting diode (LED) light. Notably, the degradation rate of RhB and MB reached 97% and 93% in 60 min, respectively, which were better than that of BiOBr, CdS, and BiOBr/CdS. It was due to the construction of the heterojunction and the introduction of Vo, which facilitated the spatial separation of carriers and enhanced the visible-light harvest. The radical trapping experiment suggested that superoxide radicals (·O2-) acted as the main active species. Based on valence balance spectra, Mott-Schottky(M-S) spectra, and DFT theoretical calculations, the photocatalytic mechanism of the S-scheme heterojunction was proposed. This research provides a novel strategy for designing efficient photocatalysts by constructing S-scheme heterojunctions and introducing oxygen vacancies for solving environmental pollution.
Collapse
Affiliation(s)
- Yang Yu
- Key Laboratory of Solid State Physics and Devices Autonomous Region, School of Physics Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Fengjuan Chen
- Key Laboratory of Solid State Physics and Devices Autonomous Region, School of Physics Science and Technology, Xinjiang University, Urumqi 830046, China
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Institute of Applied Chemistry, Xinjiang University, Urumqi 830046, China
| | - Xuekun Jin
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Junyong Min
- Key Laboratory of Solid State Physics and Devices Autonomous Region, School of Physics Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Haiming Duan
- Key Laboratory of Solid State Physics and Devices Autonomous Region, School of Physics Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Jin Li
- Key Laboratory of Solid State Physics and Devices Autonomous Region, School of Physics Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Zhaofeng Wu
- Key Laboratory of Solid State Physics and Devices Autonomous Region, School of Physics Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Biaobing Cao
- Key Laboratory of Solid State Physics and Devices Autonomous Region, School of Physics Science and Technology, Xinjiang University, Urumqi 830046, China
| |
Collapse
|
21
|
Noureen L, Wang Q, Humayun M, Shah WA, Xu Q, Wang X. Recent advances in structural engineering of photocatalysts for environmental remediation. ENVIRONMENTAL RESEARCH 2023; 219:115084. [PMID: 36535396 DOI: 10.1016/j.envres.2022.115084] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Photocatalysis appears to be an appealing approach for environmental remediation including pollutants degradation in water, air, and/or soil, due to the utilization of renewable and sustainable source of energy, i.e., solar energy. However, their broad applications remain lagging due to the challenges in pollutant degradation efficiency, large-scale catalyst production, and stability. In recent decades, massive efforts have been devoted to advance the photocatalysis technology for improved environmental remediation. In this review, the latest progress in this aspect is overviewed, particularly, the strategies for improved light sensitivity, charge separation, and hybrid approaches. We also emphasize the low efficiency and poor stability issues with the current photocatalytic systems. Finally, we provide future suggestions to further enhance the photocatalyst performance and lower its large-scale production cost. This review aims to provide valuable insights into the fundamental science and technical engineering of photocatalysis in environmental remediation.
Collapse
Affiliation(s)
- Laila Noureen
- School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Qian Wang
- School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Muhammad Humayun
- School of Optical and Electronics Information, Wuhan National Laboratory for Optoelectronic, Huazhong University of Science and Technology, Wuhan, 430074, China
| | | | - Qiyong Xu
- School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China.
| | - Xinwei Wang
- School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China.
| |
Collapse
|
22
|
Yu J, Zhang C, Yang Y, Su T, Yi G, Zhang X. 3D chrysanthemum-like g-C 3N 4/TiO 2 as an efficient visible-light-driven Z-scheme hybrid photocatalyst for tetracycline degradation. Phys Chem Chem Phys 2023; 25:3848-3858. [PMID: 36645197 DOI: 10.1039/d2cp05073k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Utilization of a solar-driven semiconductor as a photocatalyst to degrade antibiotic pollutants is a feasible and environmentally friendly technology. In this paper, 3D chrysanthemum-like g-C3N4/TiO2 as a visible-light-driven hybrid photocatalyst with a Z-scheme heterostructure was firstly synthesized by the in situ hydrothermal synthesis method. Experiments proved that this 3D chrysanthemum-like g-C3N4/TiO2 had better degradation performance toward tetracycline than TiO2 and g-C3N4. In particular, when optimized g-C3N4/TiO2-2 was applied for tetracycline removal (200 ml, 10 mg L-1), the corresponding degradation efficiency could reach nearly 100% within 60 min. The improved photocatalytic activity was the result of better utilization of the heterostructure-induced visible light, more efficient charge transfer in the Z-scheme heterojunction as well as stronger redox capability. The Z-scheme degradation mechanism was supported by the trapping experiments of active species and ESR radical detection, and the whole photocatalytic process was controlled by the combined action of ˙O2-, h+ and ˙OH radicals. This study may be beneficial for the design of more efficient sunlight-driven hybrid photocatalysts and their applications in wastewater treatment.
Collapse
Affiliation(s)
- Jia Yu
- Hami Vocational and Technical College, Hami, 839000, P. R. China. .,Henan Key Laboratory of Coal Green Conversion, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454003, P. R. China.
| | - Chuanxiang Zhang
- Henan Key Laboratory of Coal Green Conversion, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454003, P. R. China.
| | - Yulin Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Ting Su
- Green Chemistry Centre, College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| | - Guiyun Yi
- Henan Key Laboratory of Coal Green Conversion, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454003, P. R. China.
| | - Xiuxiu Zhang
- Henan Key Laboratory of Coal Green Conversion, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454003, P. R. China.
| |
Collapse
|
23
|
Enhancement of Visible-Light Photocatalytic Degradation of Tetracycline by Co-Doped TiO 2 Templated by Waste Tobacco Stem Silk. Molecules 2023; 28:molecules28010386. [PMID: 36615581 PMCID: PMC9822450 DOI: 10.3390/molecules28010386] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/26/2022] [Accepted: 12/26/2022] [Indexed: 01/04/2023] Open
Abstract
In this study, Co-doped TiO2 was synthesized using waste tobacco stem silk (TSS) as a template via a one-pot impregnation method. These samples were characterized using various physicochemical techniques such as N2 adsorption/desorption analysis, diffuse reflectance UV-visible spectroscopy, X-ray diffraction, field-emission scanning electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, photoluminescence spectroscopy, and electron paramagnetic resonance spectroscopy. The synthesized material was used for the photodegradation of tetracycline hydrochloride (TCH) under visible light (420-800 nm). No strong photodegradation activity was observed for mesoporous TiO2 synthesized using waste TSS as a template, mesoporous Co-doped TiO2, or TiO2. In contrast, Co-doped mesoporous TiO2 synthesized using waste TSS as a template exhibited significant photocatalytic degradation, with 86% removal of TCH. Moreover, owing to the unique chemical structure of Ti-O-Co, the energy gap of TiO2 decreased. The edge of the absorption band was redshifted, such that the photoexcitation energy for generating electron-hole pairs decreased. The electron-hole separation efficiency improved, rendering the microstructured biotemplated TiO2 a much more efficient catalyst for the visible-light degradation of TCH.
Collapse
|
24
|
Balakrishnan A, Chinthala M, Polagani RK, Vo DVN. Removal of tetracycline from wastewater using g-C 3N 4 based photocatalysts: A review. ENVIRONMENTAL RESEARCH 2023; 216:114660. [PMID: 36368373 DOI: 10.1016/j.envres.2022.114660] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/19/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Tetracycline is currently one of the most consumed antibiotics for human therapy, veterinary purpose, and agricultural activities. Tetracycline worldwide consumption is expected to rise by about more than 30% by 2030. The persistence of tetracycline has necessitated implementing and adopting strategies to protect aquatic systems and the environment from noxious pollutants. Here, graphitic carbon nitride-based photocatalytic technology is considered because of higher visible light photocatalytic activity, low cost, and non-toxicity. Thus, this review highlights the recent progress in the photocatalytic degradation of tetracycline using g-C3N4-based photocatalysts. Additionally, properties, worldwide consumption, occurrence, and environmental impacts of tetracycline are comprehensively addressed. Studies proved the occurrence of tetracycline in all water matrices across the world with a maximum concentration of 54 μg/L. Among different g-C3N4-based materials, heterojunctions exhibited the maximum photocatalytic degradation of 100% with the reusability of 5 cycles. The photocatalytic membranes are found to be feasible due to easiness in recovery and better reusability. Limitations of g-C3N4-based wastewater treatment technology and efficient solutions are also emphasized in detail.
Collapse
Affiliation(s)
- Akash Balakrishnan
- Process Intensification Laboratory, Department of Chemical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, 769 008, India
| | - Mahendra Chinthala
- Process Intensification Laboratory, Department of Chemical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, 769 008, India.
| | - Rajesh Kumar Polagani
- Department of Chemical Engineering, Bheemanna Khandre Institute of Technology, Bhalki, India
| | - Dai-Viet N Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
25
|
Li J, Zhang B, Lu J, Guo Z, Zhang M, Li D, Zhao Z, Song S, Liu Y, Qin L. A CQD/CdS/g-C3N4 photocatalyst for dye and antibiotic degradation: Dual carrier driving force and tunable electron transfer pathway. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
26
|
Gao J, Xing Z, Liu M, Wang Y, Zhang N, Li Z, Chen P, Zhou W. Na-doped g-C 3N 4/NiO 2D/2D laminated p-n heterojunction nanosheets toward optimized photocatalytic performance. Dalton Trans 2022; 51:18480-18488. [PMID: 36421058 DOI: 10.1039/d2dt03197c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Na-doped g-C3N4/NiO 2D/2D laminated p-n heterojunction nanosheets are fabricated by facile calcination and hydrothermal methods. The average thickness of g-C3N4 nanosheets is ∼1.388 nm, and the ultrathin structure allows for a high specific surface area and enough surface active sites, increasing the surface reactivity. The flower ball like structure of NiO increases the light utilization rate. Na doping accelerates charge separation and transport by increasing the electrical conductivity. The g-C3N4 and NiO nanosheets form 2D/2D laminated structures, and the spherical structure can suppress the agglomeration of 2D nanosheets, which could realize adequate interface contact and form efficient p-n heterojunctions. The p-n heterostructure builds an internal electric field to accelerate spatial charge separation. Under visible light irradiation, the photocatalytic degradation efficiency for ciprofloxacin and the hydrogen production rate of Na-doped g-C3N4/NiO are up to 99.0%, and 2299.32 μmol h-1 g-1, respectively, which are several times higher than those of the pristine one. The fabrication strategy for 2D/2D laminated heterojunctions may provide new insights for the preparation of novel laminated photocatalysts with high performance.
Collapse
Affiliation(s)
- Jiapeng Gao
- Department of Environmental Science, School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| | - Zipeng Xing
- Department of Environmental Science, School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| | - Meijie Liu
- Department of Environmental Science, School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| | - Yichao Wang
- Department of Environmental Science, School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| | - Na Zhang
- Department of Environmental Science, School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| | - Zhenzi Li
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Peng Chen
- Department of Environmental Science, School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| | - Wei Zhou
- Department of Environmental Science, School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China. .,Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| |
Collapse
|
27
|
Zhao J, Chen Y, Guan R, Cheng X, Wu Z, Zhao N, Shang Q, Sun Y. Enhancement of water soluble PDI-NapSO3H on the photocatalytic performance of Fe-TiO2 under visible light. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Gan W, Guo J, Fu X, Zhang M, Ding C, Hai Y, Lu Y, Li J, Li Z, Sun Z. Dual-defects modified ultrathin 2D/2D TiO2/g-C3N4 heterojunction for efficient removal of levofloxacin: performance, degradation pathway, and mechanism. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
29
|
Wolde GS, Kuo DH, Abdullah H. Solar-light-driven ternary MgO/TiO 2/g-C 3N 4 heterojunction photocatalyst with surface defects for dinitrobenzene pollutant reduction. CHEMOSPHERE 2022; 307:135939. [PMID: 35940421 DOI: 10.1016/j.chemosphere.2022.135939] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/26/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Defect engineering and heterojunction are promising strategies to improve the photocatalytic performance of particular catalyst through effective charge carrier separation and transport. Herein, we developed Z-scheme MgO/TiO2/g-C3N4 ternary heterojunction photocatalyst with surface defects and effective charge separation for reduction of recalcitrant dinitrobenzene isomers under simulated solar light irradiation. Mott-Schottky (MS) plot analysis and electron spin resonance (ESR) radical trapping experiment suggested the formation of Z-scheme heterojunction at the interface of TiO2/g-C3N4, which played a crucial role in the electron-hole separation. Incorporating MgO into the structure further enhances charge separation via Ti3+ and oxygen vacancy (OV) defects formation at the TiO2/MgO interface as confirmed by electron paramagnetic resonance (EPR) and X-ray photoelectron spectroscopy (XPS) analyses. Besides, the surface basicity of MgO enhanced conversion of dinitrobenzene (DNB) isomers through formation of nitrophenylhydroxylamine intermediate which can easily be reduced to phenylenediamines (PDAs). As confirmed by high performance liquid chromatography (HPLC) analysis, excellent selectivity for PDAs (95-98%) was achieved in 90 min with ternary MgO/TiO2/g-C3N4 composite compared to the binary MgO/TiO2 and TiO2/g-C3N4. A possible reaction pathway and photocatalytic reduction mechanism were proposed and elucidated. This work demonstrated an effective strategy to reduce recalcitrant dinitrobenzene isomers using efficient, low-cost, and environmental benign photocatalyst with a facile identification of reaction intermediates.
Collapse
Affiliation(s)
- Girma Sisay Wolde
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, No.43, Sec. 4, Keelung Road, Taipei, 10607, Taiwan
| | - Dong-Hau Kuo
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, No.43, Sec. 4, Keelung Road, Taipei, 10607, Taiwan.
| | - Hairus Abdullah
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, No.43, Sec. 4, Keelung Road, Taipei, 10607, Taiwan
| |
Collapse
|
30
|
Shen H, Zhang W, Guo C, Zhu J, Cui J, Xue Z, Chen P. Natural Cotton Cellulose-Supported TiO 2 Quantum Dots for the Highly Efficient Photocatalytic Degradation of Dyes. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3130. [PMID: 36144916 PMCID: PMC9504825 DOI: 10.3390/nano12183130] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/24/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
The artificial photocatalytic degradation of organic pollutants has emerged as a promising approach to purifying the water environment. The core issue of this ongoing research is to construct efficient but easily recyclable photocatalysts without quadratic harm. Here, we report an eco-friendly photocatalyst with in situ generated TiO2 quantum dots (TQDs) on natural cotton cellulose (CC) by a simple one-step hydrothermal method. The porous fine structure and abundant hydroxyl groups control the shape growth and improve the stability of nanoparticles, making natural CC suitable for TQDs. The TQDs/CC photocatalyst was synthesized without the chemical modification of the TQDs. FE-SEM and TEM results showed that 5-6 nm TQDs are uniformly decorated on the CC surface. The long-term stability in photocatalytic activity and structure of more than ten cycles directly demonstrates the stability of CC on TQDs. With larger CC sizes, TQDs are easier to recycle. The TQDs/CC photocatalysts show impressive potential in the photocatalytic degradation of anionic methyl orange (MO) dyes and cationic rhodamine B (RhB) dyes.
Collapse
Affiliation(s)
| | | | | | - Jing Zhu
- Correspondence: (J.Z.); (Z.X.); (P.C.)
| | | | | | | |
Collapse
|
31
|
Ni S, Fu Z, Li L, Ma M, Liu Y. Step-scheme heterojunction g-C3N4/TiO2 for efficient photocatalytic degradation of tetracycline hydrochloride under UV light. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129475] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
32
|
Ma ZP, Zhang L, Ma X, Shi FN. A dual strategy for synthesizing crystal plane/defect co-modified BiOCl microsphere and photodegradation mechanism insights. J Colloid Interface Sci 2022; 617:73-83. [DOI: 10.1016/j.jcis.2022.02.082] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/16/2022] [Accepted: 02/19/2022] [Indexed: 12/26/2022]
|
33
|
Yin Z, Zhang Q, Li S, Cagnetta G, Huang J, Deng S, Yu G. Mechanochemical synthesis of catalysts and reagents for water decontamination: Recent advances and perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:153992. [PMID: 35192815 DOI: 10.1016/j.scitotenv.2022.153992] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
This paper aims to provide insights on mechanochemistry as a green and versatile tool to synthesize advanced materials for water remediation. In particular, mechanochemical methodologies for preparation of reagents and catalysts for the removal of organic pollutants are reviewed and discussed, focusing on those materials that, directly or indirectly, induce redox reactions in the contaminants (i.e., photo-, persulfate-, ozone-, and Fenton-catalysts, as well as redox reagents). Methods reported in the literature include surface reactivity enhancement for single-component materials, as well as multi-component material design to obtain synergistic effects in catalytic efficiency and/or reactivity. It was also amply demonstrated that mechanochemical surface activation or the incorporation of catalytic/reactive components boost the generation of reactive species in water by accelerating charge transfer, increasing superficial active sites, and developing pollutant absorption. Finally, indications for potential future developments in this field are debated.
Collapse
Affiliation(s)
- Zhou Yin
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), Beijing Laboratory for Environmental Frontier Technologies (BLEFT), School of Environment, Tsinghua University, Beijing 100084, China
| | - Qianxin Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), Beijing Laboratory for Environmental Frontier Technologies (BLEFT), School of Environment, Tsinghua University, Beijing 100084, China
| | - Shangyi Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), Beijing Laboratory for Environmental Frontier Technologies (BLEFT), School of Environment, Tsinghua University, Beijing 100084, China
| | - Giovanni Cagnetta
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), Beijing Laboratory for Environmental Frontier Technologies (BLEFT), School of Environment, Tsinghua University, Beijing 100084, China.
| | - Jun Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), Beijing Laboratory for Environmental Frontier Technologies (BLEFT), School of Environment, Tsinghua University, Beijing 100084, China.
| | - Shubo Deng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), Beijing Laboratory for Environmental Frontier Technologies (BLEFT), School of Environment, Tsinghua University, Beijing 100084, China
| | - Gang Yu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), Beijing Laboratory for Environmental Frontier Technologies (BLEFT), School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
34
|
N-TiO2-δ/g-C3N4 Dual Photocatalysts for Efficient Oxytetracycline Hydrochloride Photodegradation and CO2 Photoreduction. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/3057189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A series of
(wt) N-TiO2-δ/g-C3N4 composites was synthesized by calcination and hydrothermal methods (labeled
TiCN,
: 5, 10, and 15). All composites were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, UV-vis diffuse reflectance spectroscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. The photocatalytic activity of these composites was evaluated through oxytetracycline hydrochloride (denoted as OTC) photodegradation and CO2 photoreduction. The
TiCN composites exhibited higher OTC photodegradation than bulk g-C3N4. 10TiCN was slightly more active than 5TiCN and 15TiCN, with a photodegradation yield of 97% after 5 h of light irradiation and constant rate of 0.647 h-1. For CO2 photoreduction, it was observed that 5TiCN exhibited the highest activity among the synthesized composites, with 7.0 ppm CH4 formed. This CH4 concentration was 7.8 times higher than the concentration formed by bulk g-C3N4 (0.9 ppm). A
-scheme mechanism was proposed to explain the enhanced photocatalysis by
(wt) N-TiO2-δ/g-C3N4 composites. The
-scheme structure increased redox ability, caused better separation of photogenerated electron-hole pairs, and broadened the light absorption zone of the photocatalysts.
Collapse
|
35
|
Liu J, Ma M, Yu X, Xin C, Li M, Li S. Constructing Ag decorated ZnS1-x quantum dots/Ta2O5-x nanospheres for boosted tetracycline removal: Synergetic effects of structural defects, S-scheme heterojunction, and plasmonic effects. J Colloid Interface Sci 2022. [DOI: 10.1016/j.jcis.2022.05.079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
Graphitic carbon nitride embedded Ni3(VO4)2/ZnCr2O4 Z-scheme photocatalyst for efficient degradation of p-chlorophenol and 5-fluorouracil. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Rehman ZU, Bilal M, Hou J, Butt FK, Ahmad J, Ali S, Hussain A. Photocatalytic CO 2 Reduction Using TiO 2-Based Photocatalysts and TiO 2 Z-Scheme Heterojunction Composites: A Review. Molecules 2022; 27:molecules27072069. [PMID: 35408467 PMCID: PMC9000641 DOI: 10.3390/molecules27072069] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 12/03/2022] Open
Abstract
Photocatalytic CO2 reduction is a most promising technique to capture CO2 and reduce it to non-fossil fuel and other valuable compounds. Today, we are facing serious environmental issues due to the usage of excessive amounts of non-renewable energy resources. In this aspect, photocatalytic CO2 reduction will provide us with energy-enriched compounds and help to keep our environment clean and healthy. For this purpose, various photocatalysts have been designed to obtain selective products and improve efficiency of the system. Semiconductor materials have received great attention and have showed good performances for CO2 reduction. Titanium dioxide has been widely explored as a photocatalyst for CO2 reduction among the semiconductors due to its suitable electronic/optical properties, availability at low cost, thermal stability, low toxicity, and high photoactivity. Inspired by natural photosynthesis, the artificial Z-scheme of photocatalyst is constructed to provide an easy method to enhance efficiency of CO2 reduction. This review covers literature in this field, particularly the studies about the photocatalytic system, TiO2 Z-scheme heterojunction composites, and use of transition metals for CO2 photoreduction. Lastly, challenges and opportunities are described to open a new era in engineering and attain good performances with semiconductor materials for photocatalytic CO2 reduction.
Collapse
Affiliation(s)
- Zia Ur Rehman
- School of Physics, College of Physical Science and Technology, Yangzhou University, Yangzhou 225000, China; (Z.U.R.); (M.B.); (A.H.)
- School of Environmental Science and Engineering, College of Physical Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Muhammad Bilal
- School of Physics, College of Physical Science and Technology, Yangzhou University, Yangzhou 225000, China; (Z.U.R.); (M.B.); (A.H.)
- School of Environmental Science and Engineering, College of Physical Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Jianhua Hou
- School of Physics, College of Physical Science and Technology, Yangzhou University, Yangzhou 225000, China; (Z.U.R.); (M.B.); (A.H.)
- School of Environmental Science and Engineering, College of Physical Science and Technology, Yangzhou University, Yangzhou 225000, China
- Guangling College, Yangzhou University, Yangzhou 225009, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
- Correspondence: (J.H.); (F.K.B.)
| | - Faheem K. Butt
- Department of Physics, Division of Science and Technology, University of Education Lahore, Lahore 54000, Pakistan; (J.A.); (S.A.)
- Correspondence: (J.H.); (F.K.B.)
| | - Junaid Ahmad
- Department of Physics, Division of Science and Technology, University of Education Lahore, Lahore 54000, Pakistan; (J.A.); (S.A.)
| | - Saif Ali
- Department of Physics, Division of Science and Technology, University of Education Lahore, Lahore 54000, Pakistan; (J.A.); (S.A.)
| | - Asif Hussain
- School of Physics, College of Physical Science and Technology, Yangzhou University, Yangzhou 225000, China; (Z.U.R.); (M.B.); (A.H.)
- School of Environmental Science and Engineering, College of Physical Science and Technology, Yangzhou University, Yangzhou 225000, China
| |
Collapse
|
38
|
Zhang X, Xu B, Wang S, Li X, Liu B, Xu Y, Yu P, Sun Y. High-density dispersion of CuN x sites for H 2O 2 activation toward enhanced Photo-Fenton performance in antibiotic contaminant degradation. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127039. [PMID: 34481385 DOI: 10.1016/j.jhazmat.2021.127039] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
In this study, a copper-based catalyst (CuCN) with CuNx active sites highly dispersed in a porous carbon nitride matrix was synthesized and applied to a heterogeneous photo-assisted Photo-Fenton (PF) system to degrade tetracycline (TET). The results showed that the CuCN/PF system degraded up to 93.6% of TET within 60 min for ultrapure water matrix under the best experimental conditions, and more than 70% of TET for both river and lake water matrix. Toxicological tests suggested that the environmental risk caused by TET can be effectively inhibited by the CuCN/PF system. The good visible-light response and charge transport abilities of CuCN catalyst were identified in photoelectrochemical experiments. Free radical scavenging experiments and electron paramagnetic resonance (EPR) spectroscopy indicated that the active species in the degradation process were·OH, h+,·O2- and 1O2. Density functional theory (DFT) calculations revealed the positive effect of CuNx sites in CuCN on the formation of hydroxyl radicals by activating H2O2. This work will provide a new insight for the development of high-efficiency heterogeneous catalysts in wastewater environmental remediation.
Collapse
Affiliation(s)
- Xiao Zhang
- School of Environmental Sciences and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Baokang Xu
- School of Environmental Sciences and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Shiwen Wang
- School of Environmental Sciences and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xi Li
- School of Environmental Sciences and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Biming Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yanhua Xu
- School of Environmental Sciences and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Peng Yu
- School of Environmental Sciences and Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Yongjun Sun
- College of Urban Construction, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
39
|
Ma ZP, Zhang L, Ma X, Zhang YH, Shi FN. Design of Z-scheme g-C 3N 4/BC/Bi 25FeO 40 photocatalyst with unique electron transfer channels for efficient degradation of tetracycline hydrochloride waste. CHEMOSPHERE 2022; 289:133262. [PMID: 34906528 DOI: 10.1016/j.chemosphere.2021.133262] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/28/2021] [Accepted: 12/10/2021] [Indexed: 05/27/2023]
Abstract
High electron transfer rates and a higher number of electron transfer active sites play important roles in inhibiting the recombination of photogenerated electron-hole pairs. In the experiments described in this article, the g-C3N4/BC/Bi25FeO40 composite material was prepared to use biochar (BC) as the conductive channel. The presence of BC significantly increases the electron transfer rate due to its excellent electrical conductivity and can provide more electron transfer active sites. At the same time, BC provides a larger surface area and has a loose porous structure, which lead to excellent adsorption performance. Based on various characterization results, it was confirmed that the Z-scheme heterojunction was successfully constructed between g-C3N4 and Bi25FeO40. The photocatalytic experiment results showed that the degradation efficiency of g-C3N4/BC/Bi25FeO40 on the tetracycline hydrochloride (TCH) could reach 92.2% within 60 min. Parameters such as circulation stability, pH value of the solution and the amount of composite materials were studied. The synthesized composite material has good reusability and high efficiency in a wide pH range of 3-11. Its excellent photocatalytic activity is attributed to the formation of an effective Z-scheme heterostructure, as well as the rapid photoelectron transfer and excellent adsorption capacity of BC. This work provides a way to design new photocatalysts using semiconductor composite materials and BC materials.
Collapse
Affiliation(s)
- Zhi-Peng Ma
- Key Laboratory of Polymer and Catalyst Synthesis Technology of Liaoning Province, School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang, 110870, China
| | - Linnan Zhang
- Key Laboratory of Polymer and Catalyst Synthesis Technology of Liaoning Province, School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang, 110870, China.
| | - Xue Ma
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Yu-Hang Zhang
- Key Laboratory of Polymer and Catalyst Synthesis Technology of Liaoning Province, School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang, 110870, China
| | - Fa-Nian Shi
- Key Laboratory of Polymer and Catalyst Synthesis Technology of Liaoning Province, School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang, 110870, China.
| |
Collapse
|
40
|
Zhang B, Wu M, Chen Z, Dong L, Li B, Tao L, Wang H, Li D. Fabrication of novel direct Z-scheme + isotype heterojunction photocatalyst g-C 3N 4/TiO 2 with peroxymonosulfate (PMS) activation synergy and 2D/0D structure. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01387h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A novel strategy for fabricating C3N4/TiO2 Z-scheme heterojunctions based on C3N4 isotype heterojunctions is presented. This scheme exploits the structural plasticity of C3N4 to achieve a breakthrough in activity without adding new materials.
Collapse
Affiliation(s)
- Bowen Zhang
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Mingkun Wu
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Zhengjun Chen
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Lihui Dong
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Bin Li
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Lin Tao
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Haonan Wang
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Danyang Li
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| |
Collapse
|
41
|
2D/2D Heterojunction systems for the removal of organic pollutants: A review. Adv Colloid Interface Sci 2021; 297:102540. [PMID: 34634576 DOI: 10.1016/j.cis.2021.102540] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 12/21/2022]
Abstract
Photocatalysis is considered to be an effective way to remove organic pollutants, but the key to photocatalysis is finding a high-efficiency and stable photocatalyst. 2D materials-based heterojunction has aroused widespread concerns in photocatalysis because of its merits in more active sites, adjustable band gaps and shorter charge transfer distance. Among various 2D heterojunction systems, 2D/2D heterojunction with a face-to-face contact interface is regarded as a highly promising photocatalyst. Due to the strong coupling interface in 2D/2D heterojunction, the separation and migration of photoexcited electron-hole pairs are facilitated, which enhances the photocatalytic performance. Thus, the design of 2D/2D heterojunction can become a potential model for expanding the application of photocatalysis in the removal of organic pollutants. Herein, in this review, we first summarize the fundamental principles, classification, and strategies for elevating photocatalytic performance. Then, the synthesis and application of the 2D/2D heterojunction system for the removal of organic pollutants are discussed. Finally, the challenges and perspectives in 2D/2D heterojunction photocatalysts and their application for removing organic pollutants are presented.
Collapse
|
42
|
Zhao GQ, Long X, Hu J, Zou J, Jiao FP. NiFe-Layered Double Hydroxides as a Novel Hole Repository Layer for Reinforced Visible-Light Photocatalytic Activity for Degradation of Refractory Pollutants. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02310] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Guo-Qing Zhao
- School of Chemistry and Chemical Engineering, Central South University, 405 Xiaoxiang Middle Road, Yuelu District, Changsha 410083, People’s Republic of China
| | - Xuan Long
- School of Chemistry and Chemical Engineering, Central South University, 405 Xiaoxiang Middle Road, Yuelu District, Changsha 410083, People’s Republic of China
| | - Jun Hu
- School of Chemistry and Chemical Engineering, Central South University, 405 Xiaoxiang Middle Road, Yuelu District, Changsha 410083, People’s Republic of China
| | - Jiao Zou
- School of Chemistry and Chemical Engineering, Central South University, 405 Xiaoxiang Middle Road, Yuelu District, Changsha 410083, People’s Republic of China
| | - Fei-Peng Jiao
- School of Chemistry and Chemical Engineering, Central South University, 405 Xiaoxiang Middle Road, Yuelu District, Changsha 410083, People’s Republic of China
| |
Collapse
|
43
|
He X, Kai T, Ding P. Heterojunction photocatalysts for degradation of the tetracycline antibiotic: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2021; 19:4563-4601. [PMID: 34483792 PMCID: PMC8403697 DOI: 10.1007/s10311-021-01295-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/28/2021] [Indexed: 05/20/2023]
Abstract
Antibiotic pollution is a major health issue inducing antibiotic resistance and the inefficiency of actual drugs, thus calling for improved methods to clean water and wastewater. Here we review the recent development of heterojunction photocatalysis and application in degrading tetracycline. We discuss mechanisms for separating photogenerated electron-hole pairs in different heterojunction systems such as traditional, p-n, direct Z-scheme, step-scheme, Schottky, and surface heterojunction. Degradation pathways of tetracycline during photocatalysis are presented. We compare the efficiency of tetracycline removal by various heterojunctions using quantum efficiency, space time yield, and figures of merit. Implications for the treatment of antibiotic-contaminated wastewater are discussed.
Collapse
Affiliation(s)
- Xinghou He
- Central South University Xiangya School of Public Health, Changsha, 410078 Hunan China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, 410078 Hunan China
| | - Tianhan Kai
- Central South University Xiangya School of Public Health, Changsha, 410078 Hunan China
| | - Ping Ding
- Central South University Xiangya School of Public Health, Changsha, 410078 Hunan China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, 410078 Hunan China
| |
Collapse
|
44
|
In 2O 3/oxygen doped g-C 3N 4 towards photocatalytic BPA degradation: Balance of oxygen between metal oxides and doped g-C 3N 4. J Colloid Interface Sci 2021; 602:261-273. [PMID: 34119762 DOI: 10.1016/j.jcis.2021.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 11/21/2022]
Abstract
Hybrid semi-conductor heterojunction appears to be a promising technology for pollutant removal and wastewater treatment. However, the interface modification of the heterojunction and the working mechanisms remain elusive, thus impeding the development of highly efficient photocatalysis. In this work, we highlighted the key role played by the 3D/2D In2O3/oxygen doped graphitic carbon nitrides (g-C3N4) heterojunction, named In2O3/OGCN, on the photocatalytic performance. The characteristic results showed a balance of oxygen between In2O3 and OGCN, which enabled a stable interaction in the heterojunction to specifically tune the oxidation power, and this strategy can be applied to rationally control the photocatalytic activity of organic pollutants. The optimized In2O3/OGCN heterojunction demonstrated a notable photocatalytic degradation capability for bisphenol A (BPA), which was better than that of pristine In2O3 and OGCN, respectively. This photocatalyst had a great physical stability and can be recycled for further use. Meanwhile, the exceptional photodegradation capacity was attributed to spatially separated charge carriers, fast-charge transportation characteristics, and the special band gap structure of In2O3/OGCN heterojunction. In addition, the covalent bond between In-O significantly improved oxygen stability in the lattice, thereby increasing the reliability of the material. This research presents a new opportunity to fabricate metal oxides/OGCN heterojunction photocatalysts which have potential application in wastewater treatment by adjusting the oxygen between the two compounds in heterojunction.
Collapse
|
45
|
Huang Z, Jia S, Wei J, Shao Z. A visible light active, carbon-nitrogen-sulfur co-doped TiO 2/g-C 3N 4 Z-scheme heterojunction as an effective photocatalyst to remove dye pollutants. RSC Adv 2021; 11:16747-16754. [PMID: 35479154 PMCID: PMC9032027 DOI: 10.1039/d1ra01890f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/06/2021] [Indexed: 11/25/2022] Open
Abstract
Heterojunction formation and heteroatom doping could be viewed as promising strategies for constructing composite photocatalysts with high visible light catalytic activity. In this work, we fabricated a carbon, nitrogen and sulfur co-doped TiO2/g-C3N4 (CNS-TiO2/g-C3N4) Z-scheme heterojunction photocatalyst composite via one-step hydrothermal and calcination methods. Compared with pure TiO2 and g-C3N4, the CNS-TiO2/g-C3N4 Z-scheme heterojunction photocatalyst possessed excellent degradation performance under visible light irradiation. Due to the formation of the Z-scheme heterostructure, the utilization rate of the photogenerated electrons-holes generated by the catalyst was increased, which enhanced the catalytic activity. Moreover, the heteroatom doping (C, N and S) could efficiently tailor the band gap of TiO2 and facilitate electron transition, contributing to enhancing the degradation ability under visible light. The CNS-TiO2/g-C3N4-2 exhibited a superior photocatalytic degradation efficiency (k = 0.069 min-1) for methyl orange dye (MO), which is higher than those of pure TiO2 (k = 0.001 min-1) and g-C3N4 (k = 0.012 min-1), showing excellent photocatalytic activity against organic pollutants.
Collapse
Affiliation(s)
- Zhen Huang
- Beijing Engineering Research Center of Cellulose and Its Derivatives, School of Materials Science and Engineering, Beijing Institute of Technology Beijing 100081 P. R. China
| | - Shuai Jia
- Beijing Engineering Research Center of Cellulose and Its Derivatives, School of Materials Science and Engineering, Beijing Institute of Technology Beijing 100081 P. R. China
| | - Jie Wei
- Beijing Engineering Research Center of Cellulose and Its Derivatives, School of Materials Science and Engineering, Beijing Institute of Technology Beijing 100081 P. R. China
| | - Ziqiang Shao
- Beijing Engineering Research Center of Cellulose and Its Derivatives, School of Materials Science and Engineering, Beijing Institute of Technology Beijing 100081 P. R. China
| |
Collapse
|