1
|
Zhang J, Zhang S, Lu C, Wang X, Du Z, Wang J, Li B, Wang J, Zhu L. Comparison of the combined toxicity of PFOA and emerging alternatives: A comprehensive evaluation of oxidative damage, apoptosis and immunotoxicity in embryonic and adult zebrafish. WATER RESEARCH 2025; 273:123028. [PMID: 39721502 DOI: 10.1016/j.watres.2024.123028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/27/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
Perfluorohexanoic acid (PFHxA) and perfluorobutanoic acid (PFBA) are widely used substitutes to perfluorooctanoic acid (PFOA). Whether these substitutes are less toxic than PFOA remains unclear owing to differences in the experimental methods, test organisms, and other experimental conditions in previous studies. The present study selected 0.5 and 5 μg L-1 as the test concentrations and simultaneously compared the combined toxicity of the substitutes and PFOA in terms of oxidative damage, neurotoxicity, apoptosis, and immunotoxicity in two developmental stages of zebrafish (adult and embryos) under the same test conditions. The results indicated that in both adult and embryonic zebrafish, PFHxA, PFBA, and PFOA disrupt redox homeostasis, stimulate cell proliferation, and lead to carcinogenesis. The mechanisms by which PFHxA and PFOA induce neurotoxicity and immunotoxicity were similar. Molecular docking analysis showed that the substitutes and PFOA stably attached to proteins and changed their structure and function. The obtained integrated biomarker response index values indicated that the toxicity of PFHxA, PFBA, and PFOA in zebrafish increased with increasing concentrations; PFHxA was more toxic than PFOA. The present study clarified the ecotoxicity of PFHxA and PFBA in zebrafish and simultaneously compared the differences in toxicity between the substitutes and PFOA to zebrafish, providing a robust scientific basis for the clarification and selection of safe substitutes to PFOA.
Collapse
Affiliation(s)
- Jingwen Zhang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China
| | - Shuolin Zhang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China
| | - Chengbo Lu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China
| | - Xiaole Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China
| | - Zhongkun Du
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China
| | - Jinhua Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China
| | - Bing Li
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China
| | - Jun Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China
| | - Lusheng Zhu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China.
| |
Collapse
|
2
|
Li X, Hou M, Zhang F, Ji Z, Cai Y, Shi Y. Per- and Polyfluoroalkyl Substances and Female Health Concern: Gender-based Accumulation Differences, Adverse Outcomes, and Mechanisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1469-1486. [PMID: 39803974 DOI: 10.1021/acs.est.4c08701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
The deleterious health implications of perfluoroalkyl and polyfluoroalkyl substances (PFAS) are widely recognized. Females, in contrast to males, exhibit unique pathways for PFAS exposure and excretion, leading to complex health outcomes. The health status of females is largely influenced by hormone-related processes. PFAS have been reported to be associated with various aspects of female health, including reproductive system disorders and pregnancy-related diseases. In this article, we provide insights into the correlations between PFAS and female-prevalent diseases. Current epidemiological and toxicological evidence has demonstrated that the adverse effects of PFAS on the health of the female reproductive system are primarily attributed to the disruption of the hypothalamic-pituitary-gonadal (HPG) axis and hormonal homeostasis. However, these findings do not sufficiently elucidate the intricate associations between PFAS and specific diseases. Furthermore, autoimmune disorders, another category that is more prevalent in women compared to men, require additional investigation. Immune biomarkers pertinent to autoimmune disorders have been observed to be influenced by PFAS exposure, although epidemiological evidence is insufficient to substantiate these relations. Further thorough exploration encompassing epidemiological and toxicological studies is essential to elucidating the inherent influence of PFAS on human pathologies. Additionally, comprehensive investigations into female health issues beyond their reproductive functions is essential.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minmin Hou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Zhang
- Environmental Science Research & Design Institute of Zhejiang Province and Key Laboratory of Environmental Pollution Control Technology of Zhejiang Province, HangzhouZhejiang310007, China
| | - Zhengquan Ji
- Environmental Science Research & Design Institute of Zhejiang Province and Key Laboratory of Environmental Pollution Control Technology of Zhejiang Province, HangzhouZhejiang310007, China
| | - Yaqi Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yali Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Phelps DW, Connors AM, Ferrero G, DeWitt JC, Yoder JA. Per- and polyfluoroalkyl substances alter innate immune function: evidence and data gaps. J Immunotoxicol 2024; 21:2343362. [PMID: 38712868 PMCID: PMC11249028 DOI: 10.1080/1547691x.2024.2343362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/10/2024] [Indexed: 05/08/2024] Open
Abstract
Per- and polyfluoroalkyl substances (PFASs) are a large class of compounds used in a variety of processes and consumer products. Their unique chemical properties make them ubiquitous and persistent environmental contaminants while also making them economically viable and socially convenient. To date, several reviews have been published to synthesize information regarding the immunotoxic effects of PFASs on the adaptive immune system. However, these reviews often do not include data on the impact of these compounds on innate immunity. Here, current literature is reviewed to identify and incorporate data regarding the effects of PFASs on innate immunity in humans, experimental models, and wildlife. Known mechanisms by which PFASs modulate innate immune function are also reviewed, including disruption of cell signaling, metabolism, and tissue-level effects. For PFASs where innate immune data are available, results are equivocal, raising additional questions about common mechanisms or pathways of toxicity, but highlighting that the innate immune system within several species can be perturbed by exposure to PFASs. Recommendations are provided for future research to inform hazard identification, risk assessment, and risk management practices for PFASs to protect the immune systems of exposed organisms as well as environmental health.
Collapse
Affiliation(s)
- Drake W. Phelps
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC
- Center for Environmental and Health Effects of PFAS, North Carolina State University, Raleigh, NC
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC
| | - Ashley M. Connors
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC
- Center for Environmental and Health Effects of PFAS, North Carolina State University, Raleigh, NC
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC
- Toxicology Program, North Carolina State University, Raleigh, NC
- Genetics and Genomics Academy, North Carolina State University, Raleigh, NC
| | - Giuliano Ferrero
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC
- Center for Environmental and Health Effects of PFAS, North Carolina State University, Raleigh, NC
| | - Jamie C. DeWitt
- Center for Environmental and Health Effects of PFAS, North Carolina State University, Raleigh, NC
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR
| | - Jeffrey A. Yoder
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC
- Center for Environmental and Health Effects of PFAS, North Carolina State University, Raleigh, NC
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC
- Toxicology Program, North Carolina State University, Raleigh, NC
- Genetics and Genomics Academy, North Carolina State University, Raleigh, NC
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC
| |
Collapse
|
4
|
Siwakoti RC, Harris SM, Ferguson KK, Hao W, Cantonwine DE, Mukherjee B, McElrath TF, Meeker JD. Prenatal exposure to per- and polyfluoroalkyl substances (PFAS) and their influence on inflammatory biomarkers in pregnancy: Findings from the LIFECODES cohort. ENVIRONMENT INTERNATIONAL 2024; 194:109145. [PMID: 39550829 DOI: 10.1016/j.envint.2024.109145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are fluorinated chemicals linked to adverse pregnancy and birth outcomes. However, the underlying mechanisms, specifically their effects on maternal inflammatory processes, are not well characterized. OBJECTIVE We examined associations between prenatal PFAS exposure and repeated measures of inflammatory biomarkers, including C-reactive protein (CRP) and four cytokines [Interleukin-10 (IL-10), IL-1β, IL-6, and tumor necrosis factor-α (TNF-α)]. METHODS We analyzed data from 469 pregnant women in a nested case-control study of preterm birth at Brigham and Women's Hospital in Boston, Massachusetts (2006-2008). We measured nine PFAS in early pregnancy plasma samples (median gestation: 10 weeks), with inflammatory biomarkers measured at median gestations of 10, 18, 26, and 35 weeks. We used linear mixed models for repeated measures and multivariable regression for visit-specific analysis to examine associations between each PFAS and inflammation biomarker, adjusting for maternal demographics, pre-pregnancy BMI, and parity. We examined the effects of PFAS mixture using sum of all PFAS (∑PFAS) and quantile-based g-computation approaches. RESULTS We observed consistent inverse associations between most PFAS and cytokines, specifically IL-10, IL-6, and TNF-α, in both single pollutant and mixture analyses. For example, an interquartile range increase in perfluorooctanesulfonic acid was associated with -10.87 (95% CI: -19.75, -0.99), -13.91 (95% CI: -24.11, -2.34), and -8.63 (95% CI: -14.51, -2.35) percent change in IL-10, IL-6, and TNF-α levels, respectively. Fetal sex, maternal race, and visit-specific analyses showed associations between most PFAS and cytokines were generally stronger in mid-pregnancy and among women who delivered males or identified as African American. CONCLUSIONS The observed suppression of both regulatory (IL-10) and pro-inflammatory (TNF-α) cytokines suggests that PFAS may alter maternal inflammatory processes or immune functions during pregnancy. Further research is needed to understand the effects of both legacy and newer PFAS on inflammatory pathways and their broader clinical implications.
Collapse
Affiliation(s)
- Ram C Siwakoti
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Sean M Harris
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Kelly K Ferguson
- Epidemiology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Wei Hao
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - David E Cantonwine
- Division of Maternal-Fetal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Bhramar Mukherjee
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Thomas F McElrath
- Division of Maternal-Fetal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA.
| |
Collapse
|
5
|
An Z, Li Y, Li J, Jiang Z, Duan W, Guo M, Zhu Y, Zeng X, Wang L, Liu Y, Li A, Guo H, Zhang X. Associations between co-exposure to per- and polyfluoroalkyl substances and organophosphate esters and erythrogram in Chinese adults. CHEMOSPHERE 2024; 362:142750. [PMID: 38960049 DOI: 10.1016/j.chemosphere.2024.142750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 03/31/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
Erythrogram, despite its prevalent use in assessing red blood cell (RBC) disorders and can be utilized to evaluate various diseases, still lacks evidence supporting the effects of per- and polyfluoroalkyl substances (PFASs) and organophosphate esters (OPEs) on it. A cross-sectional study involving 467 adults from Shijiazhuang, China was conducted to assess the associations between 12 PFASs and 11 OPEs and the erythrogram (8 indicators related to RBC). Three models, including multiple linear regression (MLR), sparse partial least squares regression, and Bayesian kernel machine regression (BKMR) were employed to evaluate both the individual and joint effects of PFASs and OPEs on the erythrogram. Perfluorohexane sulfonic acid (PFHxS) showed the strongest association with HGB (3.68%, 95% CI: 2.29%, 5.10%) when doubling among PFASs in MLR models. BKMR indicated that PFASs were more strongly associated with the erythrogram than OPEs, as evidenced by higher group posterior inclusion probabilities (PIPs) for PFASs. Within hemoglobin and hematocrit, PFHxS emerged as the most significant component (conditional PIP = 1.0 for both). Collectively, our study emphasizes the joint effect of PFASs and OPEs on the erythrogram and identified PFASs, particularly PFHxS, as the pivotal contributors to the erythrogram. Nonetheless, further investigations are warranted to elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Ziwen An
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yanbing Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Jing Li
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Zexuan Jiang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Wenjing Duan
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Mingmei Guo
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yiming Zhu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xiuli Zeng
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Linfeng Wang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China
| | - Yi Liu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Environment and Human Health, Hebei Province, Shijiazhuang, 050017, China
| | - Ang Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China; Hebei Key Laboratory of Environment and Human Health, Hebei Province, Shijiazhuang, 050017, China
| | - Huicai Guo
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Environment and Human Health, Hebei Province, Shijiazhuang, 050017, China.
| | - Xiaoguang Zhang
- Core Facilities and Centers of Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei Province, China.
| |
Collapse
|
6
|
Sun S, Zhang L, Li X, Zang L, Huang L, Zeng J, Cao Z, Liao X, Zhong Z, Lu H, Chen J. Hexafluoropropylene oxide trimer acid, a perfluorooctanoic acid alternative, induces cardiovascular toxicity in zebrafish embryos. J Environ Sci (China) 2024; 139:460-472. [PMID: 38105069 DOI: 10.1016/j.jes.2023.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/06/2023] [Accepted: 05/07/2023] [Indexed: 12/19/2023]
Abstract
As an increasingly used alternative to perfluorooctanoic acid (PFOA), hexafluoropropylene oxide trimer acid (HFPO-TA) has been widely detected in global water environments. However, little is known regarding its toxic effects on cardiovascular development. Here, zebrafish embryos were treated with egg water containing 0, 60, 120, or 240 mg/L HFPO-TA. Results showed that HFPO-TA treatment led to a significant reduction in both larval survival percentage and heart rate. Furthermore, HFPO-TA exposure caused severe pericardial edema and elongation of the sinus venous to bulbus arteriosus distance (SV-BA) in Tg (myl7: GFP) transgenic larvae, disrupting the expression of genes involved in heart development and thus causing abnormal heart looping. Obvious sprouting angiogenesis was observed in the 120 and 240 mg/L exposed Tg (fli: GFP) transgenic larvae. HFPO-TA treatment also impacted the mRNA levels of genes involved in the vascular endothelial growth factor (VEGF) pathway and embryonic vascular development. HFPO-TA exposure significantly decreased erythrocyte number in Tg (gata1: DsRed) transgenic embryos and influenced gene expression associated with the heme metabolism pathway. HFPO-TA also induced oxidative stress and altered the transcriptional levels of genes related to cell cycle and apoptosis, inhibiting cell proliferation while promoting apoptosis. Therefore, HFPO-TA exposure may induce abnormal development of the cardiovascular and hematopoietic systems in zebrafish embryos, suggesting it may not be a suitable or safe alternative for PFOA.
Collapse
Affiliation(s)
- Sujie Sun
- Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Li Zhang
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Center for Clinical Research Center of the Affiliated Hospital of Jinggangshan University, Ji'an 343009, China; Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Xue Li
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Center for Clinical Research Center of the Affiliated Hospital of Jinggangshan University, Ji'an 343009, China; Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Lu Zang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Sciences and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ling Huang
- Department of Interventional and Vascular Surgery, Affiliated Hospital of Jinggangshan University, Ji'an 343009, China
| | - Junquan Zeng
- Department of Internal Medicine and Hematology, Affiliated Hospital of Jinggangshan University, Ji'an 343009, China
| | - Zigang Cao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Center for Clinical Research Center of the Affiliated Hospital of Jinggangshan University, Ji'an 343009, China
| | - Xinjun Liao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Center for Clinical Research Center of the Affiliated Hospital of Jinggangshan University, Ji'an 343009, China
| | - Zilin Zhong
- Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Huiqiang Lu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Center for Clinical Research Center of the Affiliated Hospital of Jinggangshan University, Ji'an 343009, China.
| | - Jianjun Chen
- Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
| |
Collapse
|
7
|
Yoo HJ, Pyo MC, Rhee KH, Lim JM, Yang SA, Yoo MK, Lee KW. Perfluorooctanoic acid (PFOA) and hexafluoropropylene oxide-dimer acid (GenX): Hepatic stress and bile acid metabolism with different pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115001. [PMID: 37196520 DOI: 10.1016/j.ecoenv.2023.115001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/19/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) and perfluoroalkyl ether carboxylic acids (PFECAs) are organic chemicals that are widely used in the manufacture of a wide range of human-made products. Many monitoring findings revealed the presence of PFASs and PFECAs in numerous environmental sources, including water, soil, and air, which drew more attention to both chemicals. Because of their unknown toxicity, the discovery of PFASs and PFECAs in a variety of environmental sources was viewed as a cause for concern. In the present study, male mice were given orally one of the typical PFASs, perfluorooctanoic acid (PFOA), and one of the representative PFECAs, hexafluoropropylene oxide-dimer acid (HFPO-DA). The liver index showing hepatomegaly rose significantly after 90 d of exposure to PFOA and HFPO-DA, respectively. While sharing similar suppressor genes, both chemicals demonstrated unique hepatotoxic mechanisms. In different ways, these two substances altered the expression of hepatic stress-sensing genes as well as the regulation of nuclear receptors. Not only are bile acid metabolism-related genes in the liver altered, but cholesterol metabolism-related genes as well. These results indicate that PFOA and HFPO-DA both cause hepatotoxicity and bile acid metabolism impairment with distinct mechanisms.
Collapse
Affiliation(s)
- Hee Joon Yoo
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Min Cheol Pyo
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Kyu Hyun Rhee
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jae-Min Lim
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Seon-Ah Yang
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Min Ki Yoo
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Kwang-Won Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea; Department of Food Bioscience and Technology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
8
|
Baek K, Sakong J, Park C. Association of serum polyfluoroalkyl substances (PFAS) with anemia and erythrocytosis in Korean adults: Data from Korean National Environmental Health Survey cycle 4 (2018–2020). Int J Hyg Environ Health 2023. [DOI: 10.1016/j.ijheh.2023.114136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
9
|
Dong Q, Guo Y, Yuan J, Zhong S, Ni H, Liu J, Zhang M, Sun J, Yuan S, Yu H, Zhong Y, Jiang Q. Hexafluoropropylene oxide tetramer acid (HFPO-TeA)-induced developmental toxicities in chicken embryo: Peroxisome proliferator-activated receptor Alpha (PPARα) is involved. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114671. [PMID: 36822062 DOI: 10.1016/j.ecoenv.2023.114671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/07/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Hexafluoropropylene oxide tetramer acid (HFPO-TeA) is an emerging environmental contaminant, with environmental presence but limited toxicological information. To investigate its potential developmental toxicities, various doses of HFPO-TeA exposure were achieved in chicken embryos via air cell injection, and the exposed embryos were incubated until hatch. Within 24 h of hatch, the hatchling chickens were assessed with electrocardiography and histopathology for toxicological evaluation. For mechanistic investigation, in ovo silencing of PPARα was achieved via lentivirus microinjection, then the morphological/functional endpoints along with protein expression levels of PPARα-regulated genes were assessed. HFPO-TeA exposure in chicken embryo resulted in developmental cardiotoxicity and hepatotoxicity. Specifically, decreased right ventricular wall thickness, increased heart rate and hepatic steatosis were observed, whereas silencing of PPARα resulted in alleviation of observed toxicities. Western blotting for EHHADH and FABPs suggested that developmental exposure to HFPO-TeA effectively increased the expression levels of both targets in hatchling chicken heart and liver tissue samples, while PPARα silencing prevented such changes, suggesting that PPARα and its downstream genes are playing critical roles in HFPO-TeA induced developmental toxicities.
Collapse
Affiliation(s)
- Qixuan Dong
- Department of Toxicology, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao, China
| | - Yajie Guo
- Department of Toxicology, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao, China
| | - Junhua Yuan
- Department of Special Medicine, School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, China
| | - Shuping Zhong
- Department of Toxicology, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao, China
| | - Hao Ni
- Department of Toxicology, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao, China
| | - Jingyi Liu
- Department of Toxicology, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao, China
| | - Mengzhen Zhang
- Department of Toxicology, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao, China
| | - Jiaqi Sun
- Department of Toxicology, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao, China
| | - Shuqi Yuan
- Department of Toxicology, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao, China
| | - Huan Yu
- Department of Toxicology, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao, China
| | - Yuxu Zhong
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, China.
| | - Qixiao Jiang
- Department of Toxicology, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao, China.
| |
Collapse
|
10
|
Perfluorooctanoic acid induces tight junction injury of Sertoli cells by blocking autophagic flux. Food Chem Toxicol 2023; 173:113649. [PMID: 36736878 DOI: 10.1016/j.fct.2023.113649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/11/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023]
Abstract
Perfluorooctanoic acid (PFOA), a man-made chemical widely used in consumers, could cause male reproductive toxicity by disrupting blood-testis barrier (BTB) integrity. Autophagy in Sertoli cells is essential for regulation of spermatogenesis and BTB. However, it remains a mystery that whether PFOA-induced BTB injury is associated with autophagy in Sertoli cells. In this study, we found that PFOA dose-dependently disrupted tight junction (TJ) function in Sertoli cells in vivo and in vitro. Furthermore, the results from transmission electron microscopy, Western blot and immunofluorescence analysis revealed that PFOA induced the accumulation of autophagosome in testicular Sertoli cells as well as TM4 cells. Further study confirmed that autophagosome accumulation resulted from the blockage of autophagic degradation because of disruption of autophagosome and lysosome fusion via downregulation of the expression of α-SNAP. In parallel, the overexpressed MMP9 was also observed in vivo and in vitro. Conversely, overexpression of α-SNAP inhibited the expression of MMP9 in TM4 cells. In conclusion, PFOA blocks autophagic flux through downregulating the expression levels of α-SNAP in Sertoli cells, and then induces the accumulation of MMP9 leading to disruption of TJ function. This finding will provide clues for effective prevention and treatment of PFOA-induced male reproductive toxicity.
Collapse
|
11
|
Zhang P, Qi C, Ma Z, Wang Y, Zhang L, Hou X. Perfluorooctanoic acid exposure in vivo perturbs mitochondrial metabolic during oocyte maturation. ENVIRONMENTAL TOXICOLOGY 2022; 37:2965-2976. [PMID: 36029293 DOI: 10.1002/tox.23652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 05/23/2023]
Abstract
Perfluorooctanoic acid (PFOA), a member of a group of polyfluorinated and perfluorinated alkyl substances (PFAS), is associated with adverse pregnancy outcomes in mammals. However, the effects of in vivo exposure to PFOA on the female reproductive system and the underlying mechanisms remain unclear. In our study, we constructed a mouse model to investigate whether low-dose PFOA (1 mg/kg/day) or high-dose PFOA (5 mg/kg/day) affect meiosis maturation of oocytes and the potential mechanisms that may be associated with oocyte maturation disorder. Our results indicate that low-dose and high-dose PFOA can lead to impaired oocyte maturation, which is manifested by decreased rate of embryonic foam rupture and first polar body extrusion. Moreover, PFOA exposure harmed the mitochondrial metabolic, resulting in low levels of ATP contents, high reactive oxygen species, aberrant mitochondrial membrane potential. In addition, the proportion of DNA damage marker γ-H2AX was also significantly increased in PFOA exposure oocytes. These changes lead to abnormal arrangements of the spindle and chromosomes during oocyte maturation. In conclusion, our results for the first time illustrated that exposure to PFOA in vivo in female mice impaired the meiosis maturation of oocytes, which provided a basis for studying the mechanism of PFOA reproductive toxicity in female mammals.
Collapse
Affiliation(s)
- Pingping Zhang
- Department of Obstetrics and Gynecology,Yangzhou Maternal and Child Health Hospital Yangzhou University Yangzhou, Jiangsu, China
| | - Changyong Qi
- Animal Core Facility, Nanjing Medical University, Nanjing, China
| | - Zhinan Ma
- Department of Obstetrics and Gynecology,Yangzhou Maternal and Child Health Hospital Yangzhou University Yangzhou, Jiangsu, China
| | - Yixiong Wang
- Department of Obstetrics and Gynecology,Yangzhou Maternal and Child Health Hospital Yangzhou University Yangzhou, Jiangsu, China
| | - Lei Zhang
- Department of Obstetrics and Gynecology,Yangzhou Maternal and Child Health Hospital Yangzhou University Yangzhou, Jiangsu, China
| | - Xiaojing Hou
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Institute, Nanjing, China
| |
Collapse
|
12
|
Dickman RA, Aga DS. A review of recent studies on toxicity, sequestration, and degradation of per- and polyfluoroalkyl substances (PFAS). JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129120. [PMID: 35643010 DOI: 10.1016/j.jhazmat.2022.129120] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/04/2022] [Accepted: 05/07/2022] [Indexed: 05/27/2023]
Abstract
The fate, effects, and treatment of per- and polyfluoroalkyl substances (PFAS), an anthropogenic class of chemicals used in industrial and commercial production, are topics of great interest in recent research and news cycles. This interest stems from the ubiquity of PFAS in the global environment as well as their significant toxicological effects in humans and wildlife. Research on toxicity, sequestration, removal, and degradation of PFAS has grown rapidly, leading to a flood of valuable knowledge that can get swamped out in the perpetual rise in the number of publications. Selected papers from the Journal of Hazardous Materials between January 2018 and May 2022 on the toxicity, sequestration, and degradation of PFAS are reviewed in this article and made available as open-access publications for one year, in order to facilitate the distribution of critical knowledge surrounding PFAS. This review discusses routes of toxicity as observed in mammalian and cellular models, and the observed human health effects in exposed communities. Studies that evaluate of toxicity through in-silico approaches are highlighted in this paper. Removal of PFAS through modified carbon sorbents, nanoparticles, and anion exchange materials are discussed while comparing treatment efficiencies for different classes of PFAS. Finally, various biotic and abiotic degradation techniques, and the pathways and mechanisms involved are reviewed to provide a better understanding on the removal efficiencies and cost effectiveness of existing treatment strategies.
Collapse
Affiliation(s)
- Rebecca A Dickman
- Department of Chemistry, The State University of New York at Buffalo, Buffalo, NY 14260, United States
| | - Diana S Aga
- Department of Chemistry, The State University of New York at Buffalo, Buffalo, NY 14260, United States.
| |
Collapse
|
13
|
Fan Y, Xu Q, Qian H, Tao C, Wan T, Li Z, Yan W, Niu R, Huang Y, Chen M, Xu Q, Martin EM, Wang X, Qin Y, Lu C. High-fat diet aggravates prenatal low-dose DEHP exposure induced spermatogenesis disorder: Characterization of testicular metabolic patterns in mouse offspring. CHEMOSPHERE 2022; 298:134296. [PMID: 35301995 PMCID: PMC9533191 DOI: 10.1016/j.chemosphere.2022.134296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 06/02/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is a widely used plasticizer and has been identified as a male prenatal reproductive toxicant. A high fat diet (HFD) has also been suggested as another potential disruptor of male reproductive function. Despite this potential synergism between DEHP exposure and HFD, little is known about the concomitant effects of prenatal DEHP and a subsequent HFD exposure on male offspring reproductive injury. Here we established a mouse model of prenatal exposure to DEHP (0.2 mg/kg/day) to assess the testicular development and spermatogenesis in offspring subjected to obesogenic diet during the pubertal period. Gross phenotype, hormone profiles and the testicular metabolome were analyzed to determine the underlying mechanism. We found that prenatal exposure to low-dose DEHP resulted in decreased sperm density, decreased testosterone (T) levels, increased luteinizing hormone (LH) levels and testicular germ cell apoptosis. Furthermore, these injury phenotypes were aggravated by pubertal HFD treatment. Testicular riboflavin and biotin metabolites were enriched implying their roles in contributing HFD to exacerbate offspring spermatogenesis disorders due to prenatal low-dose DEHP exposure. Our findings suggest that pubertal HFD exacerbates reproductive dysfunction associated with prenatal exposure to low-dose DEHP in male adult offspring.
Collapse
Affiliation(s)
- Yun Fan
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Department of Microbes and Infection, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Qiaoqiao Xu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Hong Qian
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Chengzhe Tao
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Tingya Wan
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Zhi Li
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Wenkai Yan
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Rui Niu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yuna Huang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Minjian Chen
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Qiujin Xu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Elizabeth M Martin
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, 111 TW Alexander Drive, NC, 27707, USA
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yufeng Qin
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Department of Microbes and Infection, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Chuncheng Lu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
14
|
Lei X, Yao L, Lian Q, Zhang X, Wang T, Holmes W, Ding G, Gang DD, Zappi ME. Enhanced adsorption of perfluorooctanoate (PFOA) onto low oxygen content ordered mesoporous carbon (OMC): Adsorption behaviors and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126810. [PMID: 34365231 DOI: 10.1016/j.jhazmat.2021.126810] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/26/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
The pollution of perfluorooctanoic acid (PFOA) in water bodies has been a serious threat to environment and human health. Ordered mesoporous carbons (OMCs) with different oxygen contents were prepared and first used for adsorbing PFOA from aqueous solutions. The OMC-900 with a lower oxygen content has a higher PFOA adsorption capacity than the oxygen-rich OMC-700. OMCs require a much shorter time to reach the adsorption equilibrium comparing with other adsorbents reported in literature. The mesopores play an important role in this rapid adsorption kinetics. The pseudo-second-order model better fitted the kinetic data. The multilayers adsorption was proposed for the adsorption of PFOA onto OMCs since the Freundlich isotherm model fits the experimental data well. The micelle or hemi-micelle structures may be formed during the adsorption. Various background salts showed a positive effect on PFOA adsorption due to the salting-out and divalent bridge effects. The humic acid can lead to a discernible reduction in PFOA adsorption by competing for adsorption sites on OMCs. The hydrophobic interaction and electrostatic interaction adsorption mechanisms were proposed and verified by the adsorption data. The high adsorption capacity and fast adsorption kinetics of the OMC make it a potential adsorbent for PFOA removal in engineering applications.
Collapse
Affiliation(s)
- Xiaobo Lei
- Department of Civil Engineering, University of Louisiana at Lafayette, Lafayette, LA 70504, USA; Center for Environmental Technology, The Energy Institute of Louisiana, University of Louisiana at Lafayette, P. O. Box 43597, Lafayette, LA 70504, USA
| | - Lunguang Yao
- Henan Key Laboratory of Ecological Security, Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang Normal University, 1638 Wolong Rd, Nanyang, Henan, PR China
| | - Qiyu Lian
- Department of Civil Engineering, University of Louisiana at Lafayette, Lafayette, LA 70504, USA; Center for Environmental Technology, The Energy Institute of Louisiana, University of Louisiana at Lafayette, P. O. Box 43597, Lafayette, LA 70504, USA
| | - Xu Zhang
- Department of Civil Engineering, University of Louisiana at Lafayette, Lafayette, LA 70504, USA; Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance genes, School of Civil Engineering, Beijing Jiaotong University, 3 Shangyuancun, Beijing 100044, PR China
| | - Tiejun Wang
- Department of Civil Engineering, University of Louisiana at Lafayette, Lafayette, LA 70504, USA; Nanyang Vocational College of Agriculture, Nanyang 473000, PR China
| | - William Holmes
- Center for Environmental Technology, The Energy Institute of Louisiana, University of Louisiana at Lafayette, P. O. Box 43597, Lafayette, LA 70504, USA; Department of Chemical Engineering, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| | - Guoyu Ding
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Civil Engineering, Beijing Jiatong University, Beijing 100044, PR China
| | - Daniel Dianchen Gang
- Department of Civil Engineering, University of Louisiana at Lafayette, Lafayette, LA 70504, USA; Center for Environmental Technology, The Energy Institute of Louisiana, University of Louisiana at Lafayette, P. O. Box 43597, Lafayette, LA 70504, USA.
| | - Mark E Zappi
- Center for Environmental Technology, The Energy Institute of Louisiana, University of Louisiana at Lafayette, P. O. Box 43597, Lafayette, LA 70504, USA; Department of Chemical Engineering, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| |
Collapse
|
15
|
Weatherly LM, Shane HL, Lukomska E, Baur R, Anderson SE. Systemic toxicity induced by topical application of heptafluorobutyric acid (PFBA) in a murine model. Food Chem Toxicol 2021; 156:112528. [PMID: 34474067 DOI: 10.1016/j.fct.2021.112528] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/10/2021] [Accepted: 08/28/2021] [Indexed: 01/19/2023]
Abstract
Heptafluorobutyric acid (PFBA) is a synthetic chemical belonging to the per- and polyfluoroalkyl substances (PFAS) group that includes over 5000 chemicals incorporated into numerous products. PFBA is a short-chain PFAS (C4) labeled as a safer alternative to legacy PFAS which have been linked to numerous health effects. Despite the high potential for dermal exposure, occupationally and environmentally, dermal exposure studies are lacking. Using a murine model, this study analyzed serum chemistries, histology, immune phenotyping, and gene expression to evaluate the systemic toxicity of sub-chronic dermal PFBA 15-day (15% v/v or 375 mg/kg/dose) or 28-day (3.75-7.5% v/v or 93.8-187.5 mg/kg/dose) exposures. PFBA exposure produced significant increases in liver and kidney weights and altered serum chemistries (all exposure levels). Immune-cell phenotyping identified significant increases in draining lymph node B-cells (15%) and CD11b + cells (3.75-15%) and skin T-cells (3.75-15%) and neutrophils (7.5-15%). Histopathological and gene expression changes were observed in both the liver and skin after dermal PFBA exposure. The findings indicate PFBA induces liver toxicity and alterations of PPAR target genes, suggesting a role of a PPAR pathway. These results demonstrate that sustained dermal exposure to PFBA induces systemic effects and raise concerns of short-chain PFAS being promoted as safer alternatives.
Collapse
Affiliation(s)
- Lisa M Weatherly
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA.
| | - Hillary L Shane
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Ewa Lukomska
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Rachel Baur
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Stacey E Anderson
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| |
Collapse
|